Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright (c) 2016 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  */
     24 
     25 /** @file hsw_queryobj.c
     26  *
     27  * Support for query buffer objects (GL_ARB_query_buffer_object) on Haswell+.
     28  */
     29 #include "main/imports.h"
     30 
     31 #include "brw_context.h"
     32 #include "brw_defines.h"
     33 #include "intel_batchbuffer.h"
     34 #include "intel_buffer_objects.h"
     35 
     36 /*
     37  * GPR0 = 80 * GPR0;
     38  */
     39 static void
     40 mult_gpr0_by_80(struct brw_context *brw)
     41 {
     42    static const uint32_t maths[] = {
     43       MI_MATH_ALU2(LOAD, SRCA, R0),
     44       MI_MATH_ALU2(LOAD, SRCB, R0),
     45       MI_MATH_ALU0(ADD),
     46       MI_MATH_ALU2(STORE, R1, ACCU),
     47       MI_MATH_ALU2(LOAD, SRCA, R1),
     48       MI_MATH_ALU2(LOAD, SRCB, R1),
     49       MI_MATH_ALU0(ADD),
     50       MI_MATH_ALU2(STORE, R1, ACCU),
     51       MI_MATH_ALU2(LOAD, SRCA, R1),
     52       MI_MATH_ALU2(LOAD, SRCB, R1),
     53       MI_MATH_ALU0(ADD),
     54       MI_MATH_ALU2(STORE, R1, ACCU),
     55       MI_MATH_ALU2(LOAD, SRCA, R1),
     56       MI_MATH_ALU2(LOAD, SRCB, R1),
     57       MI_MATH_ALU0(ADD),
     58       /* GPR1 = 16 * GPR0 */
     59       MI_MATH_ALU2(STORE, R1, ACCU),
     60       MI_MATH_ALU2(LOAD, SRCA, R1),
     61       MI_MATH_ALU2(LOAD, SRCB, R1),
     62       MI_MATH_ALU0(ADD),
     63       MI_MATH_ALU2(STORE, R2, ACCU),
     64       MI_MATH_ALU2(LOAD, SRCA, R2),
     65       MI_MATH_ALU2(LOAD, SRCB, R2),
     66       MI_MATH_ALU0(ADD),
     67       /* GPR2 = 64 * GPR0 */
     68       MI_MATH_ALU2(STORE, R2, ACCU),
     69       MI_MATH_ALU2(LOAD, SRCA, R1),
     70       MI_MATH_ALU2(LOAD, SRCB, R2),
     71       MI_MATH_ALU0(ADD),
     72       /* GPR0 = 80 * GPR0 */
     73       MI_MATH_ALU2(STORE, R0, ACCU),
     74    };
     75 
     76    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
     77    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
     78 
     79    for (int m = 0; m < ARRAY_SIZE(maths); m++)
     80       OUT_BATCH(maths[m]);
     81 
     82    ADVANCE_BATCH();
     83 }
     84 
     85 /*
     86  * GPR0 = GPR0 & ((1ull << n) - 1);
     87  */
     88 static void
     89 keep_gpr0_lower_n_bits(struct brw_context *brw, uint32_t n)
     90 {
     91    static const uint32_t maths[] = {
     92       MI_MATH_ALU2(LOAD, SRCA, R0),
     93       MI_MATH_ALU2(LOAD, SRCB, R1),
     94       MI_MATH_ALU0(AND),
     95       MI_MATH_ALU2(STORE, R0, ACCU),
     96    };
     97 
     98    assert(n < 64);
     99    brw_load_register_imm64(brw, HSW_CS_GPR(1), (1ull << n) - 1);
    100 
    101    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
    102    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
    103 
    104    for (int m = 0; m < ARRAY_SIZE(maths); m++)
    105       OUT_BATCH(maths[m]);
    106 
    107    ADVANCE_BATCH();
    108 }
    109 
    110 /*
    111  * GPR0 = GPR0 << 30;
    112  */
    113 static void
    114 shl_gpr0_by_30_bits(struct brw_context *brw)
    115 {
    116    /* First we mask 34 bits of GPR0 to prevent overflow */
    117    keep_gpr0_lower_n_bits(brw, 34);
    118 
    119    static const uint32_t shl_maths[] = {
    120       MI_MATH_ALU2(LOAD, SRCA, R0),
    121       MI_MATH_ALU2(LOAD, SRCB, R0),
    122       MI_MATH_ALU0(ADD),
    123       MI_MATH_ALU2(STORE, R0, ACCU),
    124    };
    125 
    126    const uint32_t outer_count = 5;
    127    const uint32_t inner_count = 6;
    128    STATIC_ASSERT(outer_count * inner_count == 30);
    129    const uint32_t cmd_len = 1 + inner_count * ARRAY_SIZE(shl_maths);
    130    const uint32_t batch_len = cmd_len * outer_count;
    131 
    132    BEGIN_BATCH(batch_len);
    133 
    134    /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
    135     * 30 left shifts.
    136     */
    137    for (int o = 0; o < outer_count; o++) {
    138       /* Submit one MI_MATH to shift left by 6 bits */
    139       OUT_BATCH(HSW_MI_MATH | (cmd_len - 2));
    140       for (int i = 0; i < inner_count; i++)
    141          for (int m = 0; m < ARRAY_SIZE(shl_maths); m++)
    142             OUT_BATCH(shl_maths[m]);
    143    }
    144 
    145    ADVANCE_BATCH();
    146 }
    147 
    148 /*
    149  * GPR0 = GPR0 >> 2;
    150  *
    151  * Note that the upper 30 bits of GPR0 are lost!
    152  */
    153 static void
    154 shr_gpr0_by_2_bits(struct brw_context *brw)
    155 {
    156    shl_gpr0_by_30_bits(brw);
    157    brw_load_register_reg(brw, HSW_CS_GPR(0) + 4, HSW_CS_GPR(0));
    158    brw_load_register_imm32(brw, HSW_CS_GPR(0) + 4, 0);
    159 }
    160 
    161 /*
    162  * GPR0 = (GPR0 == 0) ? 0 : 1;
    163  */
    164 static void
    165 gpr0_to_bool(struct brw_context *brw)
    166 {
    167    static const uint32_t maths[] = {
    168       MI_MATH_ALU2(LOAD, SRCA, R0),
    169       MI_MATH_ALU1(LOAD0, SRCB),
    170       MI_MATH_ALU0(ADD),
    171       MI_MATH_ALU2(STOREINV, R0, ZF),
    172       MI_MATH_ALU2(LOAD, SRCA, R0),
    173       MI_MATH_ALU2(LOAD, SRCB, R1),
    174       MI_MATH_ALU0(AND),
    175       MI_MATH_ALU2(STORE, R0, ACCU),
    176    };
    177 
    178    brw_load_register_imm64(brw, HSW_CS_GPR(1), 1ull);
    179 
    180    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
    181    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
    182 
    183    for (int m = 0; m < ARRAY_SIZE(maths); m++)
    184       OUT_BATCH(maths[m]);
    185 
    186    ADVANCE_BATCH();
    187 }
    188 
    189 static void
    190 hsw_result_to_gpr0(struct gl_context *ctx, struct brw_query_object *query,
    191                    struct gl_buffer_object *buf, intptr_t offset,
    192                    GLenum pname, GLenum ptype)
    193 {
    194    struct brw_context *brw = brw_context(ctx);
    195 
    196    assert(query->bo);
    197    assert(pname != GL_QUERY_TARGET);
    198 
    199    if (pname == GL_QUERY_RESULT_AVAILABLE) {
    200       /* The query result availability is stored at offset 0 of the buffer. */
    201       brw_load_register_mem64(brw,
    202                               HSW_CS_GPR(0),
    203                               query->bo,
    204                               I915_GEM_DOMAIN_INSTRUCTION,
    205                               I915_GEM_DOMAIN_INSTRUCTION,
    206                               2 * sizeof(uint64_t));
    207       return;
    208    }
    209 
    210    if (pname == GL_QUERY_RESULT) {
    211       /* Since GL_QUERY_RESULT_NO_WAIT wasn't used, they want us to stall to
    212        * make sure the query is available.
    213        */
    214       brw_emit_pipe_control_flush(brw,
    215                                   PIPE_CONTROL_CS_STALL |
    216                                   PIPE_CONTROL_STALL_AT_SCOREBOARD);
    217    }
    218 
    219    if (query->Base.Target == GL_TIMESTAMP) {
    220       brw_load_register_mem64(brw,
    221                               HSW_CS_GPR(0),
    222                               query->bo,
    223                               I915_GEM_DOMAIN_INSTRUCTION,
    224                               I915_GEM_DOMAIN_INSTRUCTION,
    225                               0 * sizeof(uint64_t));
    226    } else {
    227       brw_load_register_mem64(brw,
    228                               HSW_CS_GPR(1),
    229                               query->bo,
    230                               I915_GEM_DOMAIN_INSTRUCTION,
    231                               I915_GEM_DOMAIN_INSTRUCTION,
    232                               0 * sizeof(uint64_t));
    233       brw_load_register_mem64(brw,
    234                               HSW_CS_GPR(2),
    235                               query->bo,
    236                               I915_GEM_DOMAIN_INSTRUCTION,
    237                               I915_GEM_DOMAIN_INSTRUCTION,
    238                               1 * sizeof(uint64_t));
    239 
    240       BEGIN_BATCH(5);
    241       OUT_BATCH(HSW_MI_MATH | (5 - 2));
    242 
    243       OUT_BATCH(MI_MATH_ALU2(LOAD, SRCA, R2));
    244       OUT_BATCH(MI_MATH_ALU2(LOAD, SRCB, R1));
    245       OUT_BATCH(MI_MATH_ALU0(SUB));
    246       OUT_BATCH(MI_MATH_ALU2(STORE, R0, ACCU));
    247 
    248       ADVANCE_BATCH();
    249    }
    250 
    251    switch (query->Base.Target) {
    252    case GL_FRAGMENT_SHADER_INVOCATIONS_ARB:
    253       /* Implement the "WaDividePSInvocationCountBy4:HSW,BDW" workaround:
    254        * "Invocation counter is 4 times actual.  WA: SW to divide HW reported
    255        *  PS Invocations value by 4."
    256        *
    257        * Prior to Haswell, invocation count was counted by the WM, and it
    258        * buggily counted invocations in units of subspans (2x2 unit). To get the
    259        * correct value, the CS multiplied this by 4. With HSW the logic moved,
    260        * and correctly emitted the number of pixel shader invocations, but,
    261        * whomever forgot to undo the multiply by 4.
    262        */
    263       if (brw->gen == 8 || brw->is_haswell)
    264          shr_gpr0_by_2_bits(brw);
    265       break;
    266    case GL_TIME_ELAPSED:
    267    case GL_TIMESTAMP:
    268       mult_gpr0_by_80(brw);
    269       if (query->Base.Target == GL_TIMESTAMP) {
    270          keep_gpr0_lower_n_bits(brw, 36);
    271       }
    272       break;
    273    case GL_ANY_SAMPLES_PASSED:
    274    case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
    275       gpr0_to_bool(brw);
    276       break;
    277    }
    278 }
    279 
    280 /*
    281  * Store immediate data into the user buffer using the requested size.
    282  */
    283 static void
    284 store_query_result_imm(struct brw_context *brw, drm_intel_bo *bo,
    285                        uint32_t offset, GLenum ptype, uint64_t imm)
    286 {
    287    switch (ptype) {
    288    case GL_INT:
    289    case GL_UNSIGNED_INT:
    290       brw_store_data_imm32(brw, bo, offset, imm);
    291       break;
    292    case GL_INT64_ARB:
    293    case GL_UNSIGNED_INT64_ARB:
    294       brw_store_data_imm64(brw, bo, offset, imm);
    295       break;
    296    default:
    297       unreachable("Unexpected result type");
    298    }
    299 }
    300 
    301 static void
    302 set_predicate(struct brw_context *brw, drm_intel_bo *query_bo)
    303 {
    304    brw_load_register_imm64(brw, MI_PREDICATE_SRC1, 0ull);
    305 
    306    /* Load query availability into SRC0 */
    307    brw_load_register_mem64(brw, MI_PREDICATE_SRC0, query_bo,
    308                            I915_GEM_DOMAIN_INSTRUCTION, 0,
    309                            2 * sizeof(uint64_t));
    310 
    311    /* predicate = !(query_availability == 0); */
    312    BEGIN_BATCH(1);
    313    OUT_BATCH(GEN7_MI_PREDICATE |
    314              MI_PREDICATE_LOADOP_LOADINV |
    315              MI_PREDICATE_COMBINEOP_SET |
    316              MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
    317    ADVANCE_BATCH();
    318 }
    319 
    320 /*
    321  * Store data from the register into the user buffer using the requested size.
    322  * The write also enables the predication to prevent writing the result if the
    323  * query has not finished yet.
    324  */
    325 static void
    326 store_query_result_reg(struct brw_context *brw, drm_intel_bo *bo,
    327                        uint32_t offset, GLenum ptype, uint32_t reg,
    328                        const bool pipelined)
    329 {
    330    uint32_t cmd_size = brw->gen >= 8 ? 4 : 3;
    331    uint32_t dwords = (ptype == GL_INT || ptype == GL_UNSIGNED_INT) ? 1 : 2;
    332    assert(brw->gen >= 6);
    333 
    334    BEGIN_BATCH(dwords * cmd_size);
    335    for (int i = 0; i < dwords; i++) {
    336       OUT_BATCH(MI_STORE_REGISTER_MEM |
    337                 (pipelined ? MI_STORE_REGISTER_MEM_PREDICATE : 0) |
    338                 (cmd_size - 2));
    339       OUT_BATCH(reg + 4 * i);
    340       if (brw->gen >= 8) {
    341          OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION,
    342                      I915_GEM_DOMAIN_INSTRUCTION, offset + 4 * i);
    343       } else {
    344          OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION,
    345                    I915_GEM_DOMAIN_INSTRUCTION, offset + 4 * i);
    346       }
    347    }
    348    ADVANCE_BATCH();
    349 }
    350 
    351 static void
    352 hsw_store_query_result(struct gl_context *ctx, struct gl_query_object *q,
    353                        struct gl_buffer_object *buf, intptr_t offset,
    354                        GLenum pname, GLenum ptype)
    355 {
    356    struct brw_context *brw = brw_context(ctx);
    357    struct brw_query_object *query = (struct brw_query_object *)q;
    358    struct intel_buffer_object *bo = intel_buffer_object(buf);
    359    const bool pipelined = brw_is_query_pipelined(query);
    360 
    361    if (pname == GL_QUERY_TARGET) {
    362       store_query_result_imm(brw, bo->buffer, offset, ptype,
    363                              query->Base.Target);
    364       return;
    365    } else if (pname == GL_QUERY_RESULT_AVAILABLE && !pipelined) {
    366       store_query_result_imm(brw, bo->buffer, offset, ptype, 1ull);
    367    } else if (query->bo) {
    368       /* The query bo still around. Therefore, we:
    369        *
    370        *  1. Compute the current result in GPR0
    371        *  2. Set the command streamer predicate based on query availability
    372        *  3. (With predication) Write GPR0 to the requested buffer
    373        */
    374       hsw_result_to_gpr0(ctx, query, buf, offset, pname, ptype);
    375       if (pipelined)
    376          set_predicate(brw, query->bo);
    377       store_query_result_reg(brw, bo->buffer, offset, ptype, HSW_CS_GPR(0),
    378                              pipelined);
    379    } else {
    380       /* The query bo is gone, so the query must have been processed into
    381        * client memory. In this case we can fill the buffer location with the
    382        * requested data using MI_STORE_DATA_IMM.
    383        */
    384       switch (pname) {
    385       case GL_QUERY_RESULT_AVAILABLE:
    386          store_query_result_imm(brw, bo->buffer, offset, ptype, 1ull);
    387          break;
    388       case GL_QUERY_RESULT_NO_WAIT:
    389       case GL_QUERY_RESULT:
    390          store_query_result_imm(brw, bo->buffer, offset, ptype,
    391                                 q->Result);
    392          break;
    393       default:
    394          unreachable("Unexpected result type");
    395       }
    396    }
    397 
    398 }
    399 
    400 /* Initialize hsw+-specific query object functions. */
    401 void hsw_init_queryobj_functions(struct dd_function_table *functions)
    402 {
    403    gen6_init_queryobj_functions(functions);
    404    functions->StoreQueryResult = hsw_store_query_result;
    405 }
    406