1 /* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkGlyphCache.h" 9 #include "SkPaint.h" 10 #include "SkScalerContext.h" 11 12 #include "SkAutoMalloc.h" 13 #include "SkAutoPixmapStorage.h" 14 #include "SkColorData.h" 15 #include "SkDescriptor.h" 16 #include "SkDraw.h" 17 #include "SkGlyph.h" 18 #include "SkMakeUnique.h" 19 #include "SkMaskFilter.h" 20 #include "SkMaskGamma.h" 21 #include "SkMatrix22.h" 22 #include "SkPaintPriv.h" 23 #include "SkPathEffect.h" 24 #include "SkRasterClip.h" 25 #include "SkReadBuffer.h" 26 #include "SkStroke.h" 27 #include "SkStrokeRec.h" 28 #include "SkSurfacePriv.h" 29 #include "SkTextFormatParams.h" 30 #include "SkWriteBuffer.h" 31 32 void SkGlyph::toMask(SkMask* mask) const { 33 SkASSERT(mask); 34 35 mask->fImage = (uint8_t*)fImage; 36 mask->fBounds.set(fLeft, fTop, fLeft + fWidth, fTop + fHeight); 37 mask->fRowBytes = this->rowBytes(); 38 mask->fFormat = static_cast<SkMask::Format>(fMaskFormat); 39 } 40 41 size_t SkGlyph::computeImageSize() const { 42 const size_t size = this->rowBytes() * fHeight; 43 44 switch (fMaskFormat) { 45 case SkMask::k3D_Format: 46 return 3 * size; 47 default: 48 return size; 49 } 50 } 51 52 void SkGlyph::zeroMetrics() { 53 fAdvanceX = 0; 54 fAdvanceY = 0; 55 fWidth = 0; 56 fHeight = 0; 57 fTop = 0; 58 fLeft = 0; 59 fRsbDelta = 0; 60 fLsbDelta = 0; 61 } 62 63 /////////////////////////////////////////////////////////////////////////////// 64 65 #ifdef SK_DEBUG 66 #define DUMP_RECx 67 #endif 68 69 SkScalerContext::SkScalerContext(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects, 70 const SkDescriptor* desc) 71 : fRec(*static_cast<const SkScalerContextRec*>(desc->findEntry(kRec_SkDescriptorTag, nullptr))) 72 73 , fTypeface(std::move(typeface)) 74 , fPathEffect(sk_ref_sp(effects.fPathEffect)) 75 , fMaskFilter(sk_ref_sp(effects.fMaskFilter)) 76 // Initialize based on our settings. Subclasses can also force this. 77 , fGenerateImageFromPath(fRec.fFrameWidth > 0 || fPathEffect != nullptr) 78 79 , fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec)) 80 , fPreBlendForFilter(fMaskFilter ? SkScalerContext::GetMaskPreBlend(fRec) 81 : SkMaskGamma::PreBlend()) 82 { 83 #ifdef DUMP_REC 84 desc->assertChecksum(); 85 SkDebugf("SkScalerContext checksum %x count %d length %d\n", 86 desc->getChecksum(), desc->getCount(), desc->getLength()); 87 SkDebugf(" textsize %g prescale %g preskew %g post [%g %g %g %g]\n", 88 rec->fTextSize, rec->fPreScaleX, rec->fPreSkewX, rec->fPost2x2[0][0], 89 rec->fPost2x2[0][1], rec->fPost2x2[1][0], rec->fPost2x2[1][1]); 90 SkDebugf(" frame %g miter %g hints %d framefill %d format %d join %d cap %d\n", 91 rec->fFrameWidth, rec->fMiterLimit, rec->fHints, rec->fFrameAndFill, 92 rec->fMaskFormat, rec->fStrokeJoin, rec->fStrokeCap); 93 SkDebugf(" pathEffect %x maskFilter %x\n", 94 desc->findEntry(kPathEffect_SkDescriptorTag, nullptr), 95 desc->findEntry(kMaskFilter_SkDescriptorTag, nullptr)); 96 #endif 97 } 98 99 SkScalerContext::~SkScalerContext() {} 100 101 void SkScalerContext::getAdvance(SkGlyph* glyph) { 102 // mark us as just having a valid advance 103 glyph->fMaskFormat = MASK_FORMAT_JUST_ADVANCE; 104 // we mark the format before making the call, in case the impl 105 // internally ends up calling its generateMetrics, which is OK 106 // albeit slower than strictly necessary 107 generateAdvance(glyph); 108 } 109 110 void SkScalerContext::getMetrics(SkGlyph* glyph) { 111 generateMetrics(glyph); 112 113 // for now we have separate cache entries for devkerning on and off 114 // in the future we might share caches, but make our measure/draw 115 // code make the distinction. Thus we zap the values if the caller 116 // has not asked for them. 117 if ((fRec.fFlags & SkScalerContext::kDevKernText_Flag) == 0) { 118 // no devkern, so zap the fields 119 glyph->fLsbDelta = glyph->fRsbDelta = 0; 120 } 121 122 // if either dimension is empty, zap the image bounds of the glyph 123 if (0 == glyph->fWidth || 0 == glyph->fHeight) { 124 glyph->fWidth = 0; 125 glyph->fHeight = 0; 126 glyph->fTop = 0; 127 glyph->fLeft = 0; 128 glyph->fMaskFormat = 0; 129 return; 130 } 131 132 bool generatingImageFromPath = fGenerateImageFromPath; 133 if (fGenerateImageFromPath) { 134 SkPath devPath, fillPath; 135 SkMatrix fillToDevMatrix; 136 137 this->internalGetPath(glyph->getPackedID(), &fillPath, &devPath, &fillToDevMatrix); 138 if (fillPath.isEmpty()) { 139 generatingImageFromPath = false; 140 } else { 141 // just use devPath 142 const SkIRect ir = devPath.getBounds().roundOut(); 143 144 if (ir.isEmpty() || !ir.is16Bit()) { 145 goto SK_ERROR; 146 } 147 glyph->fLeft = ir.fLeft; 148 glyph->fTop = ir.fTop; 149 glyph->fWidth = SkToU16(ir.width()); 150 glyph->fHeight = SkToU16(ir.height()); 151 152 if (glyph->fWidth > 0) { 153 switch (fRec.fMaskFormat) { 154 case SkMask::kLCD16_Format: 155 glyph->fWidth += 2; 156 glyph->fLeft -= 1; 157 break; 158 default: 159 break; 160 } 161 } 162 } 163 } 164 165 if (SkMask::kARGB32_Format != glyph->fMaskFormat) { 166 glyph->fMaskFormat = fRec.fMaskFormat; 167 } 168 169 // If we are going to create the mask, then we cannot keep the color 170 if ((generatingImageFromPath || fMaskFilter) && SkMask::kARGB32_Format == glyph->fMaskFormat) { 171 glyph->fMaskFormat = SkMask::kA8_Format; 172 } 173 174 if (fMaskFilter) { 175 SkMask src, dst; 176 SkMatrix matrix; 177 178 glyph->toMask(&src); 179 fRec.getMatrixFrom2x2(&matrix); 180 181 src.fImage = nullptr; // only want the bounds from the filter 182 if (as_MFB(fMaskFilter)->filterMask(&dst, src, matrix, nullptr)) { 183 if (dst.fBounds.isEmpty() || !dst.fBounds.is16Bit()) { 184 goto SK_ERROR; 185 } 186 SkASSERT(dst.fImage == nullptr); 187 glyph->fLeft = dst.fBounds.fLeft; 188 glyph->fTop = dst.fBounds.fTop; 189 glyph->fWidth = SkToU16(dst.fBounds.width()); 190 glyph->fHeight = SkToU16(dst.fBounds.height()); 191 glyph->fMaskFormat = dst.fFormat; 192 } 193 } 194 return; 195 196 SK_ERROR: 197 // draw nothing 'cause we failed 198 glyph->fLeft = 0; 199 glyph->fTop = 0; 200 glyph->fWidth = 0; 201 glyph->fHeight = 0; 202 // put a valid value here, in case it was earlier set to 203 // MASK_FORMAT_JUST_ADVANCE 204 glyph->fMaskFormat = fRec.fMaskFormat; 205 } 206 207 #define SK_SHOW_TEXT_BLIT_COVERAGE 0 208 209 static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) { 210 uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage; 211 unsigned rowBytes = mask.fRowBytes; 212 213 for (int y = mask.fBounds.height() - 1; y >= 0; --y) { 214 for (int x = mask.fBounds.width() - 1; x >= 0; --x) { 215 dst[x] = lut[dst[x]]; 216 } 217 dst += rowBytes; 218 } 219 } 220 221 template<bool APPLY_PREBLEND> 222 static void pack4xHToLCD16(const SkPixmap& src, const SkMask& dst, 223 const SkMaskGamma::PreBlend& maskPreBlend) { 224 #define SAMPLES_PER_PIXEL 4 225 #define LCD_PER_PIXEL 3 226 SkASSERT(kAlpha_8_SkColorType == src.colorType()); 227 SkASSERT(SkMask::kLCD16_Format == dst.fFormat); 228 229 const int sample_width = src.width(); 230 const int height = src.height(); 231 232 uint16_t* dstP = (uint16_t*)dst.fImage; 233 size_t dstRB = dst.fRowBytes; 234 // An N tap FIR is defined by 235 // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N] 236 // or 237 // out[n] = sum(i, 0, N, coeff[i]*x[n-i]) 238 239 // The strategy is to use one FIR (different coefficients) for each of r, g, and b. 240 // This means using every 4th FIR output value of each FIR and discarding the rest. 241 // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'. 242 // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.) 243 244 // These are in some fixed point repesentation. 245 // Adding up to more than one simulates ink spread. 246 // For implementation reasons, these should never add up to more than two. 247 248 // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast'). 249 // Calculated using tools/generate_fir_coeff.py 250 // With this one almost no fringing is ever seen, but it is imperceptibly blurry. 251 // The lcd smoothed text is almost imperceptibly different from gray, 252 // but is still sharper on small stems and small rounded corners than gray. 253 // This also seems to be about as wide as one can get and only have a three pixel kernel. 254 // TODO: caculate these at runtime so parameters can be adjusted (esp contrast). 255 static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = { 256 //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted. 257 { 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, }, 258 //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric 259 { 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, }, 260 //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted. 261 { 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, }, 262 }; 263 264 for (int y = 0; y < height; ++y) { 265 const uint8_t* srcP = src.addr8(0, y); 266 267 // TODO: this fir filter implementation is straight forward, but slow. 268 // It should be possible to make it much faster. 269 for (int sample_x = -4, pixel_x = 0; sample_x < sample_width + 4; sample_x += 4, ++pixel_x) { 270 int fir[LCD_PER_PIXEL] = { 0 }; 271 for (int sample_index = SkMax32(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4) 272 ; sample_index < SkMin32(sample_x + 8, sample_width) 273 ; ++sample_index, ++coeff_index) 274 { 275 int sample_value = srcP[sample_index]; 276 for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) { 277 fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value; 278 } 279 } 280 for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) { 281 fir[subpxl_index] /= 0x100; 282 fir[subpxl_index] = SkMin32(fir[subpxl_index], 255); 283 } 284 285 U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(fir[0], maskPreBlend.fR); 286 U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(fir[1], maskPreBlend.fG); 287 U8CPU b = sk_apply_lut_if<APPLY_PREBLEND>(fir[2], maskPreBlend.fB); 288 #if SK_SHOW_TEXT_BLIT_COVERAGE 289 r = SkMax32(r, 10); g = SkMax32(g, 10); b = SkMax32(b, 10); 290 #endif 291 dstP[pixel_x] = SkPack888ToRGB16(r, g, b); 292 } 293 dstP = (uint16_t*)((char*)dstP + dstRB); 294 } 295 } 296 297 static inline int convert_8_to_1(unsigned byte) { 298 SkASSERT(byte <= 0xFF); 299 return byte >> 7; 300 } 301 302 static uint8_t pack_8_to_1(const uint8_t alpha[8]) { 303 unsigned bits = 0; 304 for (int i = 0; i < 8; ++i) { 305 bits <<= 1; 306 bits |= convert_8_to_1(alpha[i]); 307 } 308 return SkToU8(bits); 309 } 310 311 static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) { 312 const int height = mask.fBounds.height(); 313 const int width = mask.fBounds.width(); 314 const int octs = width >> 3; 315 const int leftOverBits = width & 7; 316 317 uint8_t* dst = mask.fImage; 318 const int dstPad = mask.fRowBytes - SkAlign8(width)/8; 319 SkASSERT(dstPad >= 0); 320 321 SkASSERT(width >= 0); 322 SkASSERT(srcRB >= (size_t)width); 323 const size_t srcPad = srcRB - width; 324 325 for (int y = 0; y < height; ++y) { 326 for (int i = 0; i < octs; ++i) { 327 *dst++ = pack_8_to_1(src); 328 src += 8; 329 } 330 if (leftOverBits > 0) { 331 unsigned bits = 0; 332 int shift = 7; 333 for (int i = 0; i < leftOverBits; ++i, --shift) { 334 bits |= convert_8_to_1(*src++) << shift; 335 } 336 *dst++ = bits; 337 } 338 src += srcPad; 339 dst += dstPad; 340 } 341 } 342 343 static void generateMask(const SkMask& mask, const SkPath& path, 344 const SkMaskGamma::PreBlend& maskPreBlend) { 345 SkPaint paint; 346 347 int srcW = mask.fBounds.width(); 348 int srcH = mask.fBounds.height(); 349 int dstW = srcW; 350 int dstH = srcH; 351 int dstRB = mask.fRowBytes; 352 353 SkMatrix matrix; 354 matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft), 355 -SkIntToScalar(mask.fBounds.fTop)); 356 357 paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat); 358 switch (mask.fFormat) { 359 case SkMask::kBW_Format: 360 dstRB = 0; // signals we need a copy 361 break; 362 case SkMask::kA8_Format: 363 break; 364 case SkMask::kLCD16_Format: 365 // TODO: trigger off LCD orientation 366 dstW = 4*dstW - 8; 367 matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft + 1), 368 -SkIntToScalar(mask.fBounds.fTop)); 369 matrix.postScale(SkIntToScalar(4), SK_Scalar1); 370 dstRB = 0; // signals we need a copy 371 break; 372 default: 373 SkDEBUGFAIL("unexpected mask format"); 374 } 375 376 SkRasterClip clip; 377 clip.setRect(SkIRect::MakeWH(dstW, dstH)); 378 379 const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH); 380 SkAutoPixmapStorage dst; 381 382 if (0 == dstRB) { 383 if (!dst.tryAlloc(info)) { 384 // can't allocate offscreen, so empty the mask and return 385 sk_bzero(mask.fImage, mask.computeImageSize()); 386 return; 387 } 388 } else { 389 dst.reset(info, mask.fImage, dstRB); 390 } 391 sk_bzero(dst.writable_addr(), dst.computeByteSize()); 392 393 SkDraw draw; 394 draw.fDst = dst; 395 draw.fRC = &clip; 396 draw.fMatrix = &matrix; 397 draw.drawPath(path, paint); 398 399 switch (mask.fFormat) { 400 case SkMask::kBW_Format: 401 packA8ToA1(mask, dst.addr8(0, 0), dst.rowBytes()); 402 break; 403 case SkMask::kA8_Format: 404 if (maskPreBlend.isApplicable()) { 405 applyLUTToA8Mask(mask, maskPreBlend.fG); 406 } 407 break; 408 case SkMask::kLCD16_Format: 409 if (maskPreBlend.isApplicable()) { 410 pack4xHToLCD16<true>(dst, mask, maskPreBlend); 411 } else { 412 pack4xHToLCD16<false>(dst, mask, maskPreBlend); 413 } 414 break; 415 default: 416 break; 417 } 418 } 419 420 static void extract_alpha(const SkMask& dst, 421 const SkPMColor* srcRow, size_t srcRB) { 422 int width = dst.fBounds.width(); 423 int height = dst.fBounds.height(); 424 int dstRB = dst.fRowBytes; 425 uint8_t* dstRow = dst.fImage; 426 427 for (int y = 0; y < height; ++y) { 428 for (int x = 0; x < width; ++x) { 429 dstRow[x] = SkGetPackedA32(srcRow[x]); 430 } 431 // zero any padding on each row 432 for (int x = width; x < dstRB; ++x) { 433 dstRow[x] = 0; 434 } 435 dstRow += dstRB; 436 srcRow = (const SkPMColor*)((const char*)srcRow + srcRB); 437 } 438 } 439 440 void SkScalerContext::getImage(const SkGlyph& origGlyph) { 441 const SkGlyph* glyph = &origGlyph; 442 SkGlyph tmpGlyph; 443 444 // in case we need to call generateImage on a mask-format that is different 445 // (i.e. larger) than what our caller allocated by looking at origGlyph. 446 SkAutoMalloc tmpGlyphImageStorage; 447 448 if (fMaskFilter) { // restore the prefilter bounds 449 tmpGlyph.initWithGlyphID(origGlyph.getPackedID()); 450 451 // need the original bounds, sans our maskfilter 452 SkMaskFilter* mf = fMaskFilter.release(); // temp disable 453 this->getMetrics(&tmpGlyph); 454 fMaskFilter = sk_sp<SkMaskFilter>(mf); // restore 455 456 // we need the prefilter bounds to be <= filter bounds 457 SkASSERT(tmpGlyph.fWidth <= origGlyph.fWidth); 458 SkASSERT(tmpGlyph.fHeight <= origGlyph.fHeight); 459 460 if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat) { 461 tmpGlyph.fImage = origGlyph.fImage; 462 } else { 463 tmpGlyphImageStorage.reset(tmpGlyph.computeImageSize()); 464 tmpGlyph.fImage = tmpGlyphImageStorage.get(); 465 } 466 glyph = &tmpGlyph; 467 } 468 469 if (fGenerateImageFromPath) { 470 SkPath devPath, fillPath; 471 SkMatrix fillToDevMatrix; 472 SkMask mask; 473 474 this->internalGetPath(glyph->getPackedID(), &fillPath, &devPath, &fillToDevMatrix); 475 glyph->toMask(&mask); 476 477 if (fillPath.isEmpty()) { 478 generateImage(*glyph); 479 } else { 480 SkASSERT(SkMask::kARGB32_Format != origGlyph.fMaskFormat); 481 SkASSERT(SkMask::kARGB32_Format != mask.fFormat); 482 generateMask(mask, devPath, fPreBlend); 483 } 484 } else { 485 generateImage(*glyph); 486 } 487 488 if (fMaskFilter) { 489 SkMask srcM, dstM; 490 SkMatrix matrix; 491 492 // the src glyph image shouldn't be 3D 493 SkASSERT(SkMask::k3D_Format != glyph->fMaskFormat); 494 495 SkAutoSMalloc<32*32> a8storage; 496 glyph->toMask(&srcM); 497 if (SkMask::kARGB32_Format == srcM.fFormat) { 498 // now we need to extract the alpha-channel from the glyph's image 499 // and copy it into a temp buffer, and then point srcM at that temp. 500 srcM.fFormat = SkMask::kA8_Format; 501 srcM.fRowBytes = SkAlign4(srcM.fBounds.width()); 502 size_t size = srcM.computeImageSize(); 503 a8storage.reset(size); 504 srcM.fImage = (uint8_t*)a8storage.get(); 505 extract_alpha(srcM, 506 (const SkPMColor*)glyph->fImage, glyph->rowBytes()); 507 } 508 509 fRec.getMatrixFrom2x2(&matrix); 510 511 if (as_MFB(fMaskFilter)->filterMask(&dstM, srcM, matrix, nullptr)) { 512 int width = SkFastMin32(origGlyph.fWidth, dstM.fBounds.width()); 513 int height = SkFastMin32(origGlyph.fHeight, dstM.fBounds.height()); 514 int dstRB = origGlyph.rowBytes(); 515 int srcRB = dstM.fRowBytes; 516 517 const uint8_t* src = (const uint8_t*)dstM.fImage; 518 uint8_t* dst = (uint8_t*)origGlyph.fImage; 519 520 if (SkMask::k3D_Format == dstM.fFormat) { 521 // we have to copy 3 times as much 522 height *= 3; 523 } 524 525 // clean out our glyph, since it may be larger than dstM 526 //sk_bzero(dst, height * dstRB); 527 528 while (--height >= 0) { 529 memcpy(dst, src, width); 530 src += srcRB; 531 dst += dstRB; 532 } 533 SkMask::FreeImage(dstM.fImage); 534 535 if (fPreBlendForFilter.isApplicable()) { 536 applyLUTToA8Mask(srcM, fPreBlendForFilter.fG); 537 } 538 } 539 } 540 } 541 542 void SkScalerContext::getPath(SkPackedGlyphID glyphID, SkPath* path) { 543 this->internalGetPath(glyphID, nullptr, path, nullptr); 544 } 545 546 void SkScalerContext::getFontMetrics(SkPaint::FontMetrics* fm) { 547 SkASSERT(fm); 548 this->generateFontMetrics(fm); 549 } 550 551 SkUnichar SkScalerContext::generateGlyphToChar(uint16_t glyph) { 552 return 0; 553 } 554 555 /////////////////////////////////////////////////////////////////////////////// 556 557 void SkScalerContext::internalGetPath(SkPackedGlyphID glyphID, SkPath* fillPath, 558 SkPath* devPath, SkMatrix* fillToDevMatrix) { 559 SkPath path; 560 generatePath(glyphID.code(), &path); 561 562 if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) { 563 SkFixed dx = glyphID.getSubXFixed(); 564 SkFixed dy = glyphID.getSubYFixed(); 565 if (dx | dy) { 566 path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy)); 567 } 568 } 569 570 if (fRec.fFrameWidth > 0 || fPathEffect != nullptr) { 571 // need the path in user-space, with only the point-size applied 572 // so that our stroking and effects will operate the same way they 573 // would if the user had extracted the path themself, and then 574 // called drawPath 575 SkPath localPath; 576 SkMatrix matrix, inverse; 577 578 fRec.getMatrixFrom2x2(&matrix); 579 if (!matrix.invert(&inverse)) { 580 // assume fillPath and devPath are already empty. 581 return; 582 } 583 path.transform(inverse, &localPath); 584 // now localPath is only affected by the paint settings, and not the canvas matrix 585 586 SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); 587 588 if (fRec.fFrameWidth > 0) { 589 rec.setStrokeStyle(fRec.fFrameWidth, 590 SkToBool(fRec.fFlags & kFrameAndFill_Flag)); 591 // glyphs are always closed contours, so cap type is ignored, 592 // so we just pass something. 593 rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap, 594 (SkPaint::Join)fRec.fStrokeJoin, 595 fRec.fMiterLimit); 596 } 597 598 if (fPathEffect) { 599 SkPath effectPath; 600 if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr)) { 601 localPath.swap(effectPath); 602 } 603 } 604 605 if (rec.needToApply()) { 606 SkPath strokePath; 607 if (rec.applyToPath(&strokePath, localPath)) { 608 localPath.swap(strokePath); 609 } 610 } 611 612 // now return stuff to the caller 613 if (fillToDevMatrix) { 614 *fillToDevMatrix = matrix; 615 } 616 if (devPath) { 617 localPath.transform(matrix, devPath); 618 } 619 if (fillPath) { 620 fillPath->swap(localPath); 621 } 622 } else { // nothing tricky to do 623 if (fillToDevMatrix) { 624 fillToDevMatrix->reset(); 625 } 626 if (devPath) { 627 if (fillPath == nullptr) { 628 devPath->swap(path); 629 } else { 630 *devPath = path; 631 } 632 } 633 634 if (fillPath) { 635 fillPath->swap(path); 636 } 637 } 638 639 if (devPath) { 640 devPath->updateBoundsCache(); 641 } 642 if (fillPath) { 643 fillPath->updateBoundsCache(); 644 } 645 } 646 647 648 void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const { 649 dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0, 650 fPost2x2[1][0], fPost2x2[1][1], 0, 651 0, 0, 1); 652 } 653 654 void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const { 655 SkPaintPriv::MakeTextMatrix(m, fTextSize, fPreScaleX, fPreSkewX); 656 } 657 658 void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const { 659 this->getLocalMatrix(m); 660 661 // now concat the device matrix 662 SkMatrix deviceMatrix; 663 this->getMatrixFrom2x2(&deviceMatrix); 664 m->postConcat(deviceMatrix); 665 } 666 667 bool SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA, 668 SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out) 669 { 670 // A is the 'total' matrix. 671 SkMatrix A; 672 this->getSingleMatrix(&A); 673 674 // The caller may find the 'total' matrix useful when dealing directly with EM sizes. 675 if (A_out) { 676 *A_out = A; 677 } 678 679 // GA is the matrix A with rotation removed. 680 SkMatrix GA; 681 bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0; 682 if (skewedOrFlipped) { 683 // QR by Givens rotations. G is Q^T and GA is R. G is rotational (no reflections). 684 // h is where A maps the horizontal baseline. 685 SkPoint h = SkPoint::Make(SK_Scalar1, 0); 686 A.mapPoints(&h, 1); 687 688 // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0). 689 SkMatrix G; 690 SkComputeGivensRotation(h, &G); 691 692 GA = G; 693 GA.preConcat(A); 694 695 // The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational. 696 if (G_inv) { 697 G_inv->setAll( 698 G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX), 699 -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY), 700 G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2)); 701 } 702 } else { 703 GA = A; 704 if (G_inv) { 705 G_inv->reset(); 706 } 707 } 708 709 // If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices. 710 // All underlying ports have issues with zero text size, so use the matricies to zero. 711 // If one of the scale factors is less than 1/256 then an EM filling square will 712 // never affect any pixels. 713 if (SkScalarAbs(GA.get(SkMatrix::kMScaleX)) <= SK_ScalarNearlyZero || 714 SkScalarAbs(GA.get(SkMatrix::kMScaleY)) <= SK_ScalarNearlyZero) 715 { 716 s->fX = SK_Scalar1; 717 s->fY = SK_Scalar1; 718 sA->setScale(0, 0); 719 if (GsA) { 720 GsA->setScale(0, 0); 721 } 722 if (G_inv) { 723 G_inv->reset(); 724 } 725 return false; 726 } 727 728 // At this point, given GA, create s. 729 switch (preMatrixScale) { 730 case kFull_PreMatrixScale: 731 s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX)); 732 s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); 733 break; 734 case kVertical_PreMatrixScale: { 735 SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); 736 s->fX = yScale; 737 s->fY = yScale; 738 break; 739 } 740 case kVerticalInteger_PreMatrixScale: { 741 SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); 742 SkScalar intYScale = SkScalarRoundToScalar(realYScale); 743 if (intYScale == 0) { 744 intYScale = SK_Scalar1; 745 } 746 s->fX = intYScale; 747 s->fY = intYScale; 748 break; 749 } 750 } 751 752 // The 'remaining' matrix sA is the total matrix A without the scale. 753 if (!skewedOrFlipped && ( 754 (kFull_PreMatrixScale == preMatrixScale) || 755 (kVertical_PreMatrixScale == preMatrixScale && A.getScaleX() == A.getScaleY()))) 756 { 757 // If GA == A and kFull_PreMatrixScale, sA is identity. 758 // If GA == A and kVertical_PreMatrixScale and A.scaleX == A.scaleY, sA is identity. 759 sA->reset(); 760 } else if (!skewedOrFlipped && kVertical_PreMatrixScale == preMatrixScale) { 761 // If GA == A and kVertical_PreMatrixScale, sA.scaleY is SK_Scalar1. 762 sA->reset(); 763 sA->setScaleX(A.getScaleX() / s->fY); 764 } else { 765 // TODO: like kVertical_PreMatrixScale, kVerticalInteger_PreMatrixScale with int scales. 766 *sA = A; 767 sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY)); 768 } 769 770 // The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale. 771 if (GsA) { 772 *GsA = GA; 773 // G is rotational so reorders with the scale. 774 GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY)); 775 } 776 777 return true; 778 } 779 780 SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() { 781 // Why fPost2x2 can be used here. 782 // getSingleMatrix multiplies in getLocalMatrix, which consists of 783 // * fTextSize (a scale, which has no effect) 784 // * fPreScaleX (a scale in x, which has no effect) 785 // * fPreSkewX (has no effect, but would on vertical text alignment). 786 // In other words, making the text bigger, stretching it along the 787 // horizontal axis, or fake italicizing it does not move the baseline. 788 789 if (0 == fRec.fPost2x2[1][0]) { 790 // The x axis is mapped onto the x axis. 791 return kX_SkAxisAlignment; 792 } 793 if (0 == fRec.fPost2x2[0][0]) { 794 // The x axis is mapped onto the y axis. 795 return kY_SkAxisAlignment; 796 } 797 return kNone_SkAxisAlignment; 798 } 799 800 /////////////////////////////////////////////////////////////////////////////// 801 802 class SkScalerContext_Empty : public SkScalerContext { 803 public: 804 SkScalerContext_Empty(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects, 805 const SkDescriptor* desc) 806 : SkScalerContext(std::move(typeface), effects, desc) {} 807 808 protected: 809 unsigned generateGlyphCount() override { 810 return 0; 811 } 812 uint16_t generateCharToGlyph(SkUnichar uni) override { 813 return 0; 814 } 815 void generateAdvance(SkGlyph* glyph) override { 816 glyph->zeroMetrics(); 817 } 818 void generateMetrics(SkGlyph* glyph) override { 819 glyph->zeroMetrics(); 820 } 821 void generateImage(const SkGlyph& glyph) override {} 822 void generatePath(SkGlyphID glyph, SkPath* path) override {} 823 void generateFontMetrics(SkPaint::FontMetrics* metrics) override { 824 if (metrics) { 825 sk_bzero(metrics, sizeof(*metrics)); 826 } 827 } 828 }; 829 830 extern SkScalerContext* SkCreateColorScalerContext(const SkDescriptor* desc); 831 832 std::unique_ptr<SkScalerContext> SkTypeface::createScalerContext( 833 const SkScalerContextEffects& effects, const SkDescriptor* desc, bool allowFailure) const 834 { 835 std::unique_ptr<SkScalerContext> c(this->onCreateScalerContext(effects, desc)); 836 if (!c && !allowFailure) { 837 c = skstd::make_unique<SkScalerContext_Empty>(sk_ref_sp(const_cast<SkTypeface*>(this)), 838 effects, desc); 839 } 840 return c; 841 } 842 843 /* 844 * Return the scalar with only limited fractional precision. Used to consolidate matrices 845 * that vary only slightly when we create our key into the font cache, since the font scaler 846 * typically returns the same looking resuts for tiny changes in the matrix. 847 */ 848 static SkScalar sk_relax(SkScalar x) { 849 SkScalar n = SkScalarRoundToScalar(x * 1024); 850 return n / 1024.0f; 851 } 852 853 static SkMask::Format compute_mask_format(const SkPaint& paint) { 854 uint32_t flags = paint.getFlags(); 855 856 // Antialiasing being disabled trumps all other settings. 857 if (!(flags & SkPaint::kAntiAlias_Flag)) { 858 return SkMask::kBW_Format; 859 } 860 861 if (flags & SkPaint::kLCDRenderText_Flag) { 862 return SkMask::kLCD16_Format; 863 } 864 865 return SkMask::kA8_Format; 866 } 867 868 // Beyond this size, LCD doesn't appreciably improve quality, but it always 869 // cost more RAM and draws slower, so we set a cap. 870 #ifndef SK_MAX_SIZE_FOR_LCDTEXT 871 #define SK_MAX_SIZE_FOR_LCDTEXT 48 872 #endif 873 874 const SkScalar gMaxSize2ForLCDText = SK_MAX_SIZE_FOR_LCDTEXT * SK_MAX_SIZE_FOR_LCDTEXT; 875 876 static bool too_big_for_lcd(const SkScalerContextRec& rec, bool checkPost2x2) { 877 if (checkPost2x2) { 878 SkScalar area = rec.fPost2x2[0][0] * rec.fPost2x2[1][1] - 879 rec.fPost2x2[1][0] * rec.fPost2x2[0][1]; 880 area *= rec.fTextSize * rec.fTextSize; 881 return area > gMaxSize2ForLCDText; 882 } else { 883 return rec.fTextSize > SK_MAX_SIZE_FOR_LCDTEXT; 884 } 885 } 886 887 // if linear-text is on, then we force hinting to be off (since that's sort of 888 // the point of linear-text. 889 static SkPaint::Hinting computeHinting(const SkPaint& paint) { 890 SkPaint::Hinting h = paint.getHinting(); 891 if (paint.isLinearText()) { 892 h = SkPaint::kNo_Hinting; 893 } 894 return h; 895 } 896 897 // The only reason this is not file static is because it needs the context of SkScalerContext to 898 // access SkPaint::computeLuminanceColor. 899 void SkScalerContext::MakeRecAndEffects(const SkPaint& paint, 900 const SkSurfaceProps* surfaceProps, 901 const SkMatrix* deviceMatrix, 902 SkScalerContextFlags scalerContextFlags, 903 SkScalerContextRec* rec, 904 SkScalerContextEffects* effects) { 905 SkASSERT(deviceMatrix == nullptr || !deviceMatrix->hasPerspective()); 906 907 SkTypeface* typeface = paint.getTypeface(); 908 if (nullptr == typeface) { 909 typeface = SkTypeface::GetDefaultTypeface(); 910 } 911 rec->fFontID = typeface->uniqueID(); 912 rec->fTextSize = paint.getTextSize(); 913 rec->fPreScaleX = paint.getTextScaleX(); 914 rec->fPreSkewX = paint.getTextSkewX(); 915 916 bool checkPost2x2 = false; 917 918 if (deviceMatrix) { 919 const SkMatrix::TypeMask mask = deviceMatrix->getType(); 920 if (mask & SkMatrix::kScale_Mask) { 921 rec->fPost2x2[0][0] = sk_relax(deviceMatrix->getScaleX()); 922 rec->fPost2x2[1][1] = sk_relax(deviceMatrix->getScaleY()); 923 checkPost2x2 = true; 924 } else { 925 rec->fPost2x2[0][0] = rec->fPost2x2[1][1] = SK_Scalar1; 926 } 927 if (mask & SkMatrix::kAffine_Mask) { 928 rec->fPost2x2[0][1] = sk_relax(deviceMatrix->getSkewX()); 929 rec->fPost2x2[1][0] = sk_relax(deviceMatrix->getSkewY()); 930 checkPost2x2 = true; 931 } else { 932 rec->fPost2x2[0][1] = rec->fPost2x2[1][0] = 0; 933 } 934 } else { 935 rec->fPost2x2[0][0] = rec->fPost2x2[1][1] = SK_Scalar1; 936 rec->fPost2x2[0][1] = rec->fPost2x2[1][0] = 0; 937 } 938 939 SkPaint::Style style = paint.getStyle(); 940 SkScalar strokeWidth = paint.getStrokeWidth(); 941 942 unsigned flags = 0; 943 944 if (paint.isFakeBoldText()) { 945 #ifdef SK_USE_FREETYPE_EMBOLDEN 946 flags |= SkScalerContext::kEmbolden_Flag; 947 #else 948 SkScalar fakeBoldScale = SkScalarInterpFunc(paint.getTextSize(), 949 kStdFakeBoldInterpKeys, 950 kStdFakeBoldInterpValues, 951 kStdFakeBoldInterpLength); 952 SkScalar extra = paint.getTextSize() * fakeBoldScale; 953 954 if (style == SkPaint::kFill_Style) { 955 style = SkPaint::kStrokeAndFill_Style; 956 strokeWidth = extra; // ignore paint's strokeWidth if it was "fill" 957 } else { 958 strokeWidth += extra; 959 } 960 #endif 961 } 962 963 if (paint.isDevKernText()) { 964 flags |= SkScalerContext::kDevKernText_Flag; 965 } 966 967 if (style != SkPaint::kFill_Style && strokeWidth > 0) { 968 rec->fFrameWidth = strokeWidth; 969 rec->fMiterLimit = paint.getStrokeMiter(); 970 rec->fStrokeJoin = SkToU8(paint.getStrokeJoin()); 971 rec->fStrokeCap = SkToU8(paint.getStrokeCap()); 972 973 if (style == SkPaint::kStrokeAndFill_Style) { 974 flags |= SkScalerContext::kFrameAndFill_Flag; 975 } 976 } else { 977 rec->fFrameWidth = 0; 978 rec->fMiterLimit = 0; 979 rec->fStrokeJoin = 0; 980 rec->fStrokeCap = 0; 981 } 982 983 rec->fMaskFormat = SkToU8(compute_mask_format(paint)); 984 985 if (SkMask::kLCD16_Format == rec->fMaskFormat) { 986 if (too_big_for_lcd(*rec, checkPost2x2)) { 987 rec->fMaskFormat = SkMask::kA8_Format; 988 flags |= SkScalerContext::kGenA8FromLCD_Flag; 989 } else { 990 SkPixelGeometry geometry = surfaceProps 991 ? surfaceProps->pixelGeometry() 992 : SkSurfacePropsDefaultPixelGeometry(); 993 switch (geometry) { 994 case kUnknown_SkPixelGeometry: 995 // eeek, can't support LCD 996 rec->fMaskFormat = SkMask::kA8_Format; 997 flags |= SkScalerContext::kGenA8FromLCD_Flag; 998 break; 999 case kRGB_H_SkPixelGeometry: 1000 // our default, do nothing. 1001 break; 1002 case kBGR_H_SkPixelGeometry: 1003 flags |= SkScalerContext::kLCD_BGROrder_Flag; 1004 break; 1005 case kRGB_V_SkPixelGeometry: 1006 flags |= SkScalerContext::kLCD_Vertical_Flag; 1007 break; 1008 case kBGR_V_SkPixelGeometry: 1009 flags |= SkScalerContext::kLCD_Vertical_Flag; 1010 flags |= SkScalerContext::kLCD_BGROrder_Flag; 1011 break; 1012 } 1013 } 1014 } 1015 1016 if (paint.isEmbeddedBitmapText()) { 1017 flags |= SkScalerContext::kEmbeddedBitmapText_Flag; 1018 } 1019 if (paint.isSubpixelText()) { 1020 flags |= SkScalerContext::kSubpixelPositioning_Flag; 1021 } 1022 if (paint.isAutohinted()) { 1023 flags |= SkScalerContext::kForceAutohinting_Flag; 1024 } 1025 if (paint.isVerticalText()) { 1026 flags |= SkScalerContext::kVertical_Flag; 1027 } 1028 if (paint.getFlags() & SkPaint::kGenA8FromLCD_Flag) { 1029 flags |= SkScalerContext::kGenA8FromLCD_Flag; 1030 } 1031 rec->fFlags = SkToU16(flags); 1032 1033 // these modify fFlags, so do them after assigning fFlags 1034 rec->setHinting(computeHinting(paint)); 1035 1036 rec->setLuminanceColor(paint.computeLuminanceColor()); 1037 1038 // For now always set the paint gamma equal to the device gamma. 1039 // The math in SkMaskGamma can handle them being different, 1040 // but it requires superluminous masks when 1041 // Ex : deviceGamma(x) < paintGamma(x) and x is sufficiently large. 1042 rec->setDeviceGamma(SK_GAMMA_EXPONENT); 1043 rec->setPaintGamma(SK_GAMMA_EXPONENT); 1044 1045 #ifdef SK_GAMMA_CONTRAST 1046 rec->setContrast(SK_GAMMA_CONTRAST); 1047 #else 1048 // A value of 0.5 for SK_GAMMA_CONTRAST appears to be a good compromise. 1049 // With lower values small text appears washed out (though correctly so). 1050 // With higher values lcd fringing is worse and the smoothing effect of 1051 // partial coverage is diminished. 1052 rec->setContrast(0.5f); 1053 #endif 1054 1055 rec->fReservedAlign = 0; 1056 1057 // Allow the fonthost to modify our rec before we use it as a key into the 1058 // cache. This way if we're asking for something that they will ignore, 1059 // they can modify our rec up front, so we don't create duplicate cache 1060 // entries. 1061 typeface->onFilterRec(rec); 1062 1063 if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kFakeGamma)) { 1064 rec->ignoreGamma(); 1065 } 1066 if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kBoostContrast)) { 1067 rec->setContrast(0); 1068 } 1069 1070 new (effects) SkScalerContextEffects{paint}; 1071 if (effects->fPathEffect) { 1072 rec->fMaskFormat = SkMask::kA8_Format; // force antialiasing when we do the scan conversion 1073 // seems like we could support kLCD as well at this point... 1074 } 1075 if (effects->fMaskFilter) { 1076 // force antialiasing with maskfilters 1077 rec->fMaskFormat = SkMask::kA8_Format; 1078 // Pre-blend is not currently applied to filtered text. 1079 // The primary filter is blur, for which contrast makes no sense, 1080 // and for which the destination guess error is more visible. 1081 // Also, all existing users of blur have calibrated for linear. 1082 rec->ignorePreBlend(); 1083 } 1084 1085 // If we're asking for A8, we force the colorlum to be gray, since that 1086 // limits the number of unique entries, and the scaler will only look at 1087 // the lum of one of them. 1088 switch (rec->fMaskFormat) { 1089 case SkMask::kLCD16_Format: { 1090 // filter down the luminance color to a finite number of bits 1091 SkColor color = rec->getLuminanceColor(); 1092 rec->setLuminanceColor(SkMaskGamma::CanonicalColor(color)); 1093 break; 1094 } 1095 case SkMask::kA8_Format: { 1096 // filter down the luminance to a single component, since A8 can't 1097 // use per-component information 1098 SkColor color = rec->getLuminanceColor(); 1099 U8CPU lum = SkComputeLuminance(SkColorGetR(color), 1100 SkColorGetG(color), 1101 SkColorGetB(color)); 1102 // reduce to our finite number of bits 1103 color = SkColorSetRGB(lum, lum, lum); 1104 rec->setLuminanceColor(SkMaskGamma::CanonicalColor(color)); 1105 break; 1106 } 1107 case SkMask::kBW_Format: 1108 // No need to differentiate gamma or apply contrast if we're BW 1109 rec->ignorePreBlend(); 1110 break; 1111 } 1112 } 1113 1114 1115 SkDescriptor* SkScalerContext::CreateDescriptorAndEffectsUsingPaint( 1116 const SkPaint& paint, const SkSurfaceProps* surfaceProps, 1117 SkScalerContextFlags scalerContextFlags, 1118 const SkMatrix* deviceMatrix, SkAutoDescriptor* ad, 1119 SkScalerContextEffects* effects) { 1120 1121 SkScalerContextRec rec; 1122 MakeRecAndEffects(paint, surfaceProps, deviceMatrix, scalerContextFlags, &rec, effects); 1123 return AutoDescriptorGivenRecAndEffects(rec, *effects, ad); 1124 } 1125 1126 static size_t calculate_size_and_flatten( 1127 const SkScalerContextRec& rec, 1128 const SkScalerContextEffects& effects, 1129 SkBinaryWriteBuffer* pathEffectBuffer, 1130 SkBinaryWriteBuffer* maskFilterBuffer) 1131 { 1132 size_t descSize = sizeof(rec); 1133 int entryCount = 1; 1134 1135 if (effects.fPathEffect) { 1136 effects.fPathEffect->flatten(*pathEffectBuffer); 1137 descSize += pathEffectBuffer->bytesWritten(); 1138 entryCount += 1; 1139 } 1140 if (effects.fMaskFilter) { 1141 effects.fMaskFilter->flatten(*maskFilterBuffer); 1142 descSize += maskFilterBuffer->bytesWritten(); 1143 entryCount += 1; 1144 } 1145 1146 descSize += SkDescriptor::ComputeOverhead(entryCount); 1147 return descSize; 1148 } 1149 1150 #ifdef SK_DEBUG 1151 #define TEST_DESC 1152 #endif 1153 1154 #ifdef TEST_DESC 1155 static void test_desc(const SkScalerContextRec& rec, 1156 const SkScalerContextEffects& effects, 1157 SkBinaryWriteBuffer* peBuffer, 1158 SkBinaryWriteBuffer* mfBuffer, 1159 const SkDescriptor* desc) { 1160 // Check that we completely write the bytes in desc (our key), and that 1161 // there are no uninitialized bytes. If there were, then we would get 1162 // false-misses (or worse, false-hits) in our fontcache. 1163 // 1164 // We do this buy filling 2 others, one with 0s and the other with 1s 1165 // and create those, and then check that all 3 are identical. 1166 SkAutoDescriptor ad1(desc->getLength()); 1167 SkAutoDescriptor ad2(desc->getLength()); 1168 SkDescriptor* desc1 = ad1.getDesc(); 1169 SkDescriptor* desc2 = ad2.getDesc(); 1170 1171 memset(desc1, 0x00, desc->getLength()); 1172 memset(desc2, 0xFF, desc->getLength()); 1173 1174 desc1->init(); 1175 desc2->init(); 1176 desc1->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec); 1177 desc2->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec); 1178 1179 auto add_flattenable = [](SkDescriptor* desc, uint32_t tag, 1180 SkBinaryWriteBuffer* buffer) { 1181 buffer->writeToMemory(desc->addEntry(tag, buffer->bytesWritten(), nullptr)); 1182 }; 1183 1184 if (effects.fPathEffect) { 1185 add_flattenable(desc1, kPathEffect_SkDescriptorTag, peBuffer); 1186 add_flattenable(desc2, kPathEffect_SkDescriptorTag, peBuffer); 1187 } 1188 if (effects.fMaskFilter) { 1189 add_flattenable(desc1, kMaskFilter_SkDescriptorTag, mfBuffer); 1190 add_flattenable(desc2, kMaskFilter_SkDescriptorTag, mfBuffer); 1191 } 1192 1193 SkASSERT(desc->getLength() == desc1->getLength()); 1194 SkASSERT(desc->getLength() == desc2->getLength()); 1195 desc1->computeChecksum(); 1196 desc2->computeChecksum(); 1197 SkASSERT(!memcmp(desc, desc1, desc->getLength())); 1198 SkASSERT(!memcmp(desc, desc2, desc->getLength())); 1199 } 1200 #endif 1201 1202 void generate_descriptor( 1203 const SkScalerContextRec& rec, 1204 const SkScalerContextEffects& effects, 1205 SkBinaryWriteBuffer* pathEffectBuffer, 1206 SkBinaryWriteBuffer* maskFilterBuffer, 1207 SkDescriptor* desc) 1208 { 1209 desc->init(); 1210 desc->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec); 1211 1212 auto add = [&desc](uint32_t tag, SkBinaryWriteBuffer* buffer) { 1213 buffer->writeToMemory(desc->addEntry(tag, buffer->bytesWritten(), nullptr)); 1214 }; 1215 1216 if (effects.fPathEffect) { 1217 add(kPathEffect_SkDescriptorTag, pathEffectBuffer); 1218 } 1219 if (effects.fMaskFilter) { 1220 add(kMaskFilter_SkDescriptorTag, maskFilterBuffer); 1221 } 1222 1223 desc->computeChecksum(); 1224 #ifdef TEST_DESC 1225 test_desc(rec, effects, pathEffectBuffer, maskFilterBuffer, desc); 1226 #endif 1227 } 1228 1229 SkDescriptor* SkScalerContext::AutoDescriptorGivenRecAndEffects( 1230 const SkScalerContextRec& rec, 1231 const SkScalerContextEffects& effects, 1232 SkAutoDescriptor* ad) 1233 { 1234 SkBinaryWriteBuffer peBuffer, mfBuffer; 1235 1236 ad->reset(calculate_size_and_flatten(rec, effects, &peBuffer, &mfBuffer)); 1237 1238 generate_descriptor(rec, effects, &peBuffer, &mfBuffer, ad->getDesc()); 1239 1240 return ad->getDesc(); 1241 } 1242 1243 std::unique_ptr<SkDescriptor> SkScalerContext::DescriptorGivenRecAndEffects( 1244 const SkScalerContextRec& rec, 1245 const SkScalerContextEffects& effects) 1246 { 1247 SkBinaryWriteBuffer peBuffer, mfBuffer; 1248 1249 auto desc = SkDescriptor::Alloc(calculate_size_and_flatten(rec, effects, &peBuffer, &mfBuffer)); 1250 1251 generate_descriptor(rec, effects, &peBuffer, &mfBuffer, desc.get()); 1252 1253 return desc; 1254 } 1255 1256 void SkScalerContext::DescriptorBufferGiveRec(const SkScalerContextRec& rec, void* buffer) { 1257 SkScalerContextEffects noEffects; 1258 SkBinaryWriteBuffer peBuffer, mfBuffer; 1259 generate_descriptor(rec, noEffects, &peBuffer, &mfBuffer, (SkDescriptor*)buffer); 1260 } 1261 1262 bool SkScalerContext::CheckBufferSizeForRec(const SkScalerContextRec& rec, 1263 const SkScalerContextEffects& effects, 1264 size_t size) { 1265 SkBinaryWriteBuffer peBuffer, mfBuffer; 1266 1267 return size >= calculate_size_and_flatten(rec, effects, &peBuffer, &mfBuffer); 1268 } 1269 1270 1271 1272 1273