Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrPathUtils.h"
      9 
     10 #include "GrTypes.h"
     11 #include "SkMathPriv.h"
     12 #include "SkPointPriv.h"
     13 
     14 static const SkScalar gMinCurveTol = 0.0001f;
     15 
     16 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
     17                                           const SkMatrix& viewM,
     18                                           const SkRect& pathBounds) {
     19     // In order to tesselate the path we get a bound on how much the matrix can
     20     // scale when mapping to screen coordinates.
     21     SkScalar stretch = viewM.getMaxScale();
     22 
     23     if (stretch < 0) {
     24         // take worst case mapRadius amoung four corners.
     25         // (less than perfect)
     26         for (int i = 0; i < 4; ++i) {
     27             SkMatrix mat;
     28             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
     29                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
     30             mat.postConcat(viewM);
     31             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
     32         }
     33     }
     34     SkScalar srcTol = devTol / stretch;
     35     if (srcTol < gMinCurveTol) {
     36         srcTol = gMinCurveTol;
     37     }
     38     return srcTol;
     39 }
     40 
     41 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
     42     // You should have called scaleToleranceToSrc, which guarantees this
     43     SkASSERT(tol >= gMinCurveTol);
     44 
     45     SkScalar d = SkPointPriv::DistanceToLineSegmentBetween(points[1], points[0], points[2]);
     46     if (!SkScalarIsFinite(d)) {
     47         return kMaxPointsPerCurve;
     48     } else if (d <= tol) {
     49         return 1;
     50     } else {
     51         // Each time we subdivide, d should be cut in 4. So we need to
     52         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
     53         // points.
     54         // 2^(log4(x)) = sqrt(x);
     55         SkScalar divSqrt = SkScalarSqrt(d / tol);
     56         if (((SkScalar)SK_MaxS32) <= divSqrt) {
     57             return kMaxPointsPerCurve;
     58         } else {
     59             int temp = SkScalarCeilToInt(divSqrt);
     60             int pow2 = GrNextPow2(temp);
     61             // Because of NaNs & INFs we can wind up with a degenerate temp
     62             // such that pow2 comes out negative. Also, our point generator
     63             // will always output at least one pt.
     64             if (pow2 < 1) {
     65                 pow2 = 1;
     66             }
     67             return SkTMin(pow2, kMaxPointsPerCurve);
     68         }
     69     }
     70 }
     71 
     72 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
     73                                               const SkPoint& p1,
     74                                               const SkPoint& p2,
     75                                               SkScalar tolSqd,
     76                                               SkPoint** points,
     77                                               uint32_t pointsLeft) {
     78     if (pointsLeft < 2 ||
     79         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
     80         (*points)[0] = p2;
     81         *points += 1;
     82         return 1;
     83     }
     84 
     85     SkPoint q[] = {
     86         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
     87         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
     88     };
     89     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
     90 
     91     pointsLeft >>= 1;
     92     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
     93     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
     94     return a + b;
     95 }
     96 
     97 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
     98                                            SkScalar tol) {
     99     // You should have called scaleToleranceToSrc, which guarantees this
    100     SkASSERT(tol >= gMinCurveTol);
    101 
    102     SkScalar d = SkTMax(
    103         SkPointPriv::DistanceToLineSegmentBetweenSqd(points[1], points[0], points[3]),
    104         SkPointPriv::DistanceToLineSegmentBetweenSqd(points[2], points[0], points[3]));
    105     d = SkScalarSqrt(d);
    106     if (!SkScalarIsFinite(d)) {
    107         return kMaxPointsPerCurve;
    108     } else if (d <= tol) {
    109         return 1;
    110     } else {
    111         SkScalar divSqrt = SkScalarSqrt(d / tol);
    112         if (((SkScalar)SK_MaxS32) <= divSqrt) {
    113             return kMaxPointsPerCurve;
    114         } else {
    115             int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
    116             int pow2 = GrNextPow2(temp);
    117             // Because of NaNs & INFs we can wind up with a degenerate temp
    118             // such that pow2 comes out negative. Also, our point generator
    119             // will always output at least one pt.
    120             if (pow2 < 1) {
    121                 pow2 = 1;
    122             }
    123             return SkTMin(pow2, kMaxPointsPerCurve);
    124         }
    125     }
    126 }
    127 
    128 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
    129                                           const SkPoint& p1,
    130                                           const SkPoint& p2,
    131                                           const SkPoint& p3,
    132                                           SkScalar tolSqd,
    133                                           SkPoint** points,
    134                                           uint32_t pointsLeft) {
    135     if (pointsLeft < 2 ||
    136         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
    137          SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
    138         (*points)[0] = p3;
    139         *points += 1;
    140         return 1;
    141     }
    142     SkPoint q[] = {
    143         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    144         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    145         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    146     };
    147     SkPoint r[] = {
    148         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    149         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    150     };
    151     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    152     pointsLeft >>= 1;
    153     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    154     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    155     return a + b;
    156 }
    157 
    158 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, SkScalar tol) {
    159     // You should have called scaleToleranceToSrc, which guarantees this
    160     SkASSERT(tol >= gMinCurveTol);
    161 
    162     int pointCount = 0;
    163     *subpaths = 1;
    164 
    165     bool first = true;
    166 
    167     SkPath::Iter iter(path, false);
    168     SkPath::Verb verb;
    169 
    170     SkPoint pts[4];
    171     while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
    172 
    173         switch (verb) {
    174             case SkPath::kLine_Verb:
    175                 pointCount += 1;
    176                 break;
    177             case SkPath::kConic_Verb: {
    178                 SkScalar weight = iter.conicWeight();
    179                 SkAutoConicToQuads converter;
    180                 const SkPoint* quadPts = converter.computeQuads(pts, weight, tol);
    181                 for (int i = 0; i < converter.countQuads(); ++i) {
    182                     pointCount += quadraticPointCount(quadPts + 2*i, tol);
    183                 }
    184             }
    185             case SkPath::kQuad_Verb:
    186                 pointCount += quadraticPointCount(pts, tol);
    187                 break;
    188             case SkPath::kCubic_Verb:
    189                 pointCount += cubicPointCount(pts, tol);
    190                 break;
    191             case SkPath::kMove_Verb:
    192                 pointCount += 1;
    193                 if (!first) {
    194                     ++(*subpaths);
    195                 }
    196                 break;
    197             default:
    198                 break;
    199         }
    200         first = false;
    201     }
    202     return pointCount;
    203 }
    204 
    205 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
    206     SkMatrix m;
    207     // We want M such that M * xy_pt = uv_pt
    208     // We know M * control_pts = [0  1/2 1]
    209     //                           [0  0   1]
    210     //                           [1  1   1]
    211     // And control_pts = [x0 x1 x2]
    212     //                   [y0 y1 y2]
    213     //                   [1  1  1 ]
    214     // We invert the control pt matrix and post concat to both sides to get M.
    215     // Using the known form of the control point matrix and the result, we can
    216     // optimize and improve precision.
    217 
    218     double x0 = qPts[0].fX;
    219     double y0 = qPts[0].fY;
    220     double x1 = qPts[1].fX;
    221     double y1 = qPts[1].fY;
    222     double x2 = qPts[2].fX;
    223     double y2 = qPts[2].fY;
    224     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
    225 
    226     if (!sk_float_isfinite(det)
    227         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
    228         // The quad is degenerate. Hopefully this is rare. Find the pts that are
    229         // farthest apart to compute a line (unless it is really a pt).
    230         SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
    231         int maxEdge = 0;
    232         SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
    233         if (d > maxD) {
    234             maxD = d;
    235             maxEdge = 1;
    236         }
    237         d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
    238         if (d > maxD) {
    239             maxD = d;
    240             maxEdge = 2;
    241         }
    242         // We could have a tolerance here, not sure if it would improve anything
    243         if (maxD > 0) {
    244             // Set the matrix to give (u = 0, v = distance_to_line)
    245             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
    246             // when looking from the point 0 down the line we want positive
    247             // distances to be to the left. This matches the non-degenerate
    248             // case.
    249             SkPointPriv::SetOrthog(&lineVec, lineVec, SkPointPriv::kLeft_Side);
    250             // first row
    251             fM[0] = 0;
    252             fM[1] = 0;
    253             fM[2] = 0;
    254             // second row
    255             fM[3] = lineVec.fX;
    256             fM[4] = lineVec.fY;
    257             fM[5] = -lineVec.dot(qPts[maxEdge]);
    258         } else {
    259             // It's a point. It should cover zero area. Just set the matrix such
    260             // that (u, v) will always be far away from the quad.
    261             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
    262             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
    263         }
    264     } else {
    265         double scale = 1.0/det;
    266 
    267         // compute adjugate matrix
    268         double a2, a3, a4, a5, a6, a7, a8;
    269         a2 = x1*y2-x2*y1;
    270 
    271         a3 = y2-y0;
    272         a4 = x0-x2;
    273         a5 = x2*y0-x0*y2;
    274 
    275         a6 = y0-y1;
    276         a7 = x1-x0;
    277         a8 = x0*y1-x1*y0;
    278 
    279         // this performs the uv_pts*adjugate(control_pts) multiply,
    280         // then does the scale by 1/det afterwards to improve precision
    281         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
    282         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
    283         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
    284 
    285         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
    286         m[SkMatrix::kMScaleY] = (float)(a7*scale);
    287         m[SkMatrix::kMTransY] = (float)(a8*scale);
    288 
    289         // kMPersp0 & kMPersp1 should algebraically be zero
    290         m[SkMatrix::kMPersp0] = 0.0f;
    291         m[SkMatrix::kMPersp1] = 0.0f;
    292         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
    293 
    294         // It may not be normalized to have 1.0 in the bottom right
    295         float m33 = m.get(SkMatrix::kMPersp2);
    296         if (1.f != m33) {
    297             m33 = 1.f / m33;
    298             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
    299             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
    300             fM[2] = m33 * m.get(SkMatrix::kMTransX);
    301             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
    302             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
    303             fM[5] = m33 * m.get(SkMatrix::kMTransY);
    304         } else {
    305             fM[0] = m.get(SkMatrix::kMScaleX);
    306             fM[1] = m.get(SkMatrix::kMSkewX);
    307             fM[2] = m.get(SkMatrix::kMTransX);
    308             fM[3] = m.get(SkMatrix::kMSkewY);
    309             fM[4] = m.get(SkMatrix::kMScaleY);
    310             fM[5] = m.get(SkMatrix::kMTransY);
    311         }
    312     }
    313 }
    314 
    315 ////////////////////////////////////////////////////////////////////////////////
    316 
    317 // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
    318 // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
    319 // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
    320 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
    321     SkMatrix& klm = *out;
    322     const SkScalar w2 = 2.f * weight;
    323     klm[0] = p[2].fY - p[0].fY;
    324     klm[1] = p[0].fX - p[2].fX;
    325     klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
    326 
    327     klm[3] = w2 * (p[1].fY - p[0].fY);
    328     klm[4] = w2 * (p[0].fX - p[1].fX);
    329     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
    330 
    331     klm[6] = w2 * (p[2].fY - p[1].fY);
    332     klm[7] = w2 * (p[1].fX - p[2].fX);
    333     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
    334 
    335     // scale the max absolute value of coeffs to 10
    336     SkScalar scale = 0.f;
    337     for (int i = 0; i < 9; ++i) {
    338        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
    339     }
    340     SkASSERT(scale > 0.f);
    341     scale = 10.f / scale;
    342     for (int i = 0; i < 9; ++i) {
    343         klm[i] *= scale;
    344     }
    345 }
    346 
    347 ////////////////////////////////////////////////////////////////////////////////
    348 
    349 namespace {
    350 
    351 // a is the first control point of the cubic.
    352 // ab is the vector from a to the second control point.
    353 // dc is the vector from the fourth to the third control point.
    354 // d is the fourth control point.
    355 // p is the candidate quadratic control point.
    356 // this assumes that the cubic doesn't inflect and is simple
    357 bool is_point_within_cubic_tangents(const SkPoint& a,
    358                                     const SkVector& ab,
    359                                     const SkVector& dc,
    360                                     const SkPoint& d,
    361                                     SkPathPriv::FirstDirection dir,
    362                                     const SkPoint p) {
    363     SkVector ap = p - a;
    364     SkScalar apXab = ap.cross(ab);
    365     if (SkPathPriv::kCW_FirstDirection == dir) {
    366         if (apXab > 0) {
    367             return false;
    368         }
    369     } else {
    370         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
    371         if (apXab < 0) {
    372             return false;
    373         }
    374     }
    375 
    376     SkVector dp = p - d;
    377     SkScalar dpXdc = dp.cross(dc);
    378     if (SkPathPriv::kCW_FirstDirection == dir) {
    379         if (dpXdc < 0) {
    380             return false;
    381         }
    382     } else {
    383         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
    384         if (dpXdc > 0) {
    385             return false;
    386         }
    387     }
    388     return true;
    389 }
    390 
    391 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
    392                                        SkScalar toleranceSqd,
    393                                        bool constrainWithinTangents,
    394                                        SkPathPriv::FirstDirection dir,
    395                                        SkTArray<SkPoint, true>* quads,
    396                                        int sublevel = 0) {
    397 
    398     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    399     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
    400 
    401     SkVector ab = p[1] - p[0];
    402     SkVector dc = p[2] - p[3];
    403 
    404     if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
    405         if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
    406             SkPoint* degQuad = quads->push_back_n(3);
    407             degQuad[0] = p[0];
    408             degQuad[1] = p[0];
    409             degQuad[2] = p[3];
    410             return;
    411         }
    412         ab = p[2] - p[0];
    413     }
    414     if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
    415         dc = p[1] - p[3];
    416     }
    417 
    418     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
    419     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
    420     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
    421     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
    422     // control points are very close to the baseline vector. If so then we just pick quadratic
    423     // points on the control polygon.
    424 
    425     if (constrainWithinTangents) {
    426         SkVector da = p[0] - p[3];
    427         bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
    428                        SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
    429         if (!doQuads) {
    430             SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
    431             if (invDALengthSqd > SK_ScalarNearlyZero) {
    432                 invDALengthSqd = SkScalarInvert(invDALengthSqd);
    433                 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
    434                 // same goes for point c using vector cd.
    435                 SkScalar detABSqd = ab.cross(da);
    436                 detABSqd = SkScalarSquare(detABSqd);
    437                 SkScalar detDCSqd = dc.cross(da);
    438                 detDCSqd = SkScalarSquare(detDCSqd);
    439                 if (detABSqd * invDALengthSqd < toleranceSqd &&
    440                     detDCSqd * invDALengthSqd < toleranceSqd)
    441                 {
    442                     doQuads = true;
    443                 }
    444             }
    445         }
    446         if (doQuads) {
    447             SkPoint b = p[0] + ab;
    448             SkPoint c = p[3] + dc;
    449             SkPoint mid = b + c;
    450             mid.scale(SK_ScalarHalf);
    451             // Insert two quadratics to cover the case when ab points away from d and/or dc
    452             // points away from a.
    453             if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
    454                 SkPoint* qpts = quads->push_back_n(6);
    455                 qpts[0] = p[0];
    456                 qpts[1] = b;
    457                 qpts[2] = mid;
    458                 qpts[3] = mid;
    459                 qpts[4] = c;
    460                 qpts[5] = p[3];
    461             } else {
    462                 SkPoint* qpts = quads->push_back_n(3);
    463                 qpts[0] = p[0];
    464                 qpts[1] = mid;
    465                 qpts[2] = p[3];
    466             }
    467             return;
    468         }
    469     }
    470 
    471     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    472     static const int kMaxSubdivs = 10;
    473 
    474     ab.scale(kLengthScale);
    475     dc.scale(kLengthScale);
    476 
    477     // e0 and e1 are extrapolations along vectors ab and dc.
    478     SkVector c0 = p[0];
    479     c0 += ab;
    480     SkVector c1 = p[3];
    481     c1 += dc;
    482 
    483     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
    484     if (dSqd < toleranceSqd) {
    485         SkPoint cAvg = c0;
    486         cAvg += c1;
    487         cAvg.scale(SK_ScalarHalf);
    488 
    489         bool subdivide = false;
    490 
    491         if (constrainWithinTangents &&
    492             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
    493             // choose a new cAvg that is the intersection of the two tangent lines.
    494             SkPointPriv::SetOrthog(&ab, ab);
    495             SkScalar z0 = -ab.dot(p[0]);
    496             SkPointPriv::SetOrthog(&dc, dc);
    497             SkScalar z1 = -dc.dot(p[3]);
    498             cAvg.fX = ab.fY * z1 - z0 * dc.fY;
    499             cAvg.fY = z0 * dc.fX - ab.fX * z1;
    500             SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
    501             z = SkScalarInvert(z);
    502             cAvg.fX *= z;
    503             cAvg.fY *= z;
    504             if (sublevel <= kMaxSubdivs) {
    505                 SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
    506                 SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
    507                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
    508                 // the distances and tolerance can't be negative.
    509                 // (d0 + d1)^2 > toleranceSqd
    510                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
    511                 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
    512                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
    513             }
    514         }
    515         if (!subdivide) {
    516             SkPoint* pts = quads->push_back_n(3);
    517             pts[0] = p[0];
    518             pts[1] = cAvg;
    519             pts[2] = p[3];
    520             return;
    521         }
    522     }
    523     SkPoint choppedPts[7];
    524     SkChopCubicAtHalf(p, choppedPts);
    525     convert_noninflect_cubic_to_quads(choppedPts + 0,
    526                                       toleranceSqd,
    527                                       constrainWithinTangents,
    528                                       dir,
    529                                       quads,
    530                                       sublevel + 1);
    531     convert_noninflect_cubic_to_quads(choppedPts + 3,
    532                                       toleranceSqd,
    533                                       constrainWithinTangents,
    534                                       dir,
    535                                       quads,
    536                                       sublevel + 1);
    537 }
    538 }
    539 
    540 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
    541                                       SkScalar tolScale,
    542                                       SkTArray<SkPoint, true>* quads) {
    543     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
    544         return;
    545     }
    546     SkPoint chopped[10];
    547     int count = SkChopCubicAtInflections(p, chopped);
    548 
    549     const SkScalar tolSqd = SkScalarSquare(tolScale);
    550 
    551     for (int i = 0; i < count; ++i) {
    552         SkPoint* cubic = chopped + 3*i;
    553         // The direction param is ignored if the third param is false.
    554         convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
    555                                           SkPathPriv::kCCW_FirstDirection, quads);
    556     }
    557 }
    558 
    559 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
    560                                                          SkScalar tolScale,
    561                                                          SkPathPriv::FirstDirection dir,
    562                                                          SkTArray<SkPoint, true>* quads) {
    563     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
    564         return;
    565     }
    566     SkPoint chopped[10];
    567     int count = SkChopCubicAtInflections(p, chopped);
    568 
    569     const SkScalar tolSqd = SkScalarSquare(tolScale);
    570 
    571     for (int i = 0; i < count; ++i) {
    572         SkPoint* cubic = chopped + 3*i;
    573         convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
    574     }
    575 }
    576 
    577 ////////////////////////////////////////////////////////////////////////////////
    578 
    579 using ExcludedTerm = GrPathUtils::ExcludedTerm;
    580 
    581 ExcludedTerm GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4],
    582                                                                     SkMatrix* out) {
    583     GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
    584 
    585     // First convert the bezier coordinates p[0..3] to power basis coefficients X,Y(,W=[0 0 0 1]).
    586     // M3 is the matrix that does this conversion. The homogeneous equation for the cubic becomes:
    587     //
    588     //                                     | X   Y   0 |
    589     // C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | .   .   0 |
    590     //                                     | .   .   0 |
    591     //                                     | .   .   1 |
    592     //
    593     const Sk4f M3[3] = {Sk4f(-1, 3, -3, 1),
    594                         Sk4f(3, -6, 3, 0),
    595                         Sk4f(-3, 3, 0, 0)};
    596     // 4th col of M3 =  Sk4f(1, 0, 0, 0)};
    597     Sk4f X(p[3].x(), 0, 0, 0);
    598     Sk4f Y(p[3].y(), 0, 0, 0);
    599     for (int i = 2; i >= 0; --i) {
    600         X += M3[i] * p[i].x();
    601         Y += M3[i] * p[i].y();
    602     }
    603 
    604     // The matrix is 3x4. In order to invert it, we first need to make it square by throwing out one
    605     // of the middle two rows. We toss the row that leaves us with the largest absolute determinant.
    606     // Since the right column will be [0 0 1], the respective determinants reduce to x0*y2 - y0*x2
    607     // and x0*y1 - y0*x1.
    608     SkScalar dets[4];
    609     Sk4f D = SkNx_shuffle<0,0,2,1>(X) * SkNx_shuffle<2,1,0,0>(Y);
    610     D -= SkNx_shuffle<2,3,0,1>(D);
    611     D.store(dets);
    612     ExcludedTerm skipTerm = SkScalarAbs(dets[0]) > SkScalarAbs(dets[1]) ?
    613                             ExcludedTerm::kQuadraticTerm : ExcludedTerm::kLinearTerm;
    614     SkScalar det = dets[ExcludedTerm::kQuadraticTerm == skipTerm ? 0 : 1];
    615     if (0 == det) {
    616         return ExcludedTerm::kNonInvertible;
    617     }
    618     SkScalar rdet = 1 / det;
    619 
    620     // Compute the inverse-transpose of the power basis matrix with the 'skipRow'th row removed.
    621     // Since W=[0 0 0 1], it follows that our corresponding solution will be equal to:
    622     //
    623     //             |  y1  -x1   x1*y2 - y1*x2 |
    624     //     1/det * | -y0   x0  -x0*y2 + y0*x2 |
    625     //             |   0    0             det |
    626     //
    627     SkScalar x[4], y[4], z[4];
    628     X.store(x);
    629     Y.store(y);
    630     (X * SkNx_shuffle<3,3,3,3>(Y) - Y * SkNx_shuffle<3,3,3,3>(X)).store(z);
    631 
    632     int middleRow = ExcludedTerm::kQuadraticTerm == skipTerm ? 2 : 1;
    633     out->setAll( y[middleRow] * rdet, -x[middleRow] * rdet,  z[middleRow] * rdet,
    634                         -y[0] * rdet,          x[0] * rdet,         -z[0] * rdet,
    635                                    0,                    0,                    1);
    636 
    637     return skipTerm;
    638 }
    639 
    640 inline static void calc_serp_kcoeffs(SkScalar tl, SkScalar sl, SkScalar tm, SkScalar sm,
    641                                      ExcludedTerm skipTerm, SkScalar outCoeffs[3]) {
    642     SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
    643     outCoeffs[0] = 0;
    644     outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sm : -tl*sm - tm*sl;
    645     outCoeffs[2] = tl*tm;
    646 }
    647 
    648 inline static void calc_serp_lmcoeffs(SkScalar t, SkScalar s, ExcludedTerm skipTerm,
    649                                       SkScalar outCoeffs[3]) {
    650     SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
    651     outCoeffs[0] = -s*s*s;
    652     outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? 3*s*s*t : -3*s*t*t;
    653     outCoeffs[2] = t*t*t;
    654 }
    655 
    656 inline static void calc_loop_kcoeffs(SkScalar td, SkScalar sd, SkScalar te, SkScalar se,
    657                                      SkScalar tdse, SkScalar tesd, ExcludedTerm skipTerm,
    658                                      SkScalar outCoeffs[3]) {
    659     SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
    660     outCoeffs[0] = 0;
    661     outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? sd*se : -tdse - tesd;
    662     outCoeffs[2] = td*te;
    663 }
    664 
    665 inline static void calc_loop_lmcoeffs(SkScalar t2, SkScalar s2, SkScalar t1, SkScalar s1,
    666                                       SkScalar t2s1, SkScalar t1s2, ExcludedTerm skipTerm,
    667                                       SkScalar outCoeffs[3]) {
    668     SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
    669     outCoeffs[0] = -s2*s2*s1;
    670     outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? s2 * (2*t2s1 + t1s2)
    671                                                            : -t2 * (t2s1 + 2*t1s2);
    672     outCoeffs[2] = t2*t2*t1;
    673 }
    674 
    675 // For the case when a cubic bezier is actually a quadratic. We duplicate k in l so that the
    676 // implicit becomes:
    677 //
    678 //     k^3 - l*m == k^3 - l*k == k * (k^2 - l)
    679 //
    680 // In the quadratic case we can simply assign fixed values at each control point:
    681 //
    682 //     | ..K.. |     | pts[0]  pts[1]  pts[2]  pts[3] |      | 0   1/3  2/3  1 |
    683 //     | ..L.. |  *  |   .       .       .       .    |  ==  | 0     0  1/3  1 |
    684 //     | ..K.. |     |   1       1       1       1    |      | 0   1/3  2/3  1 |
    685 //
    686 static void calc_quadratic_klm(const SkPoint pts[4], double d3, SkMatrix* klm) {
    687     SkMatrix klmAtPts;
    688     klmAtPts.setAll(0,  1.f/3,  1,
    689                     0,      0,  1,
    690                     0,  1.f/3,  1);
    691 
    692     SkMatrix inversePts;
    693     inversePts.setAll(pts[0].x(),  pts[1].x(),  pts[3].x(),
    694                       pts[0].y(),  pts[1].y(),  pts[3].y(),
    695                                1,           1,           1);
    696     SkAssertResult(inversePts.invert(&inversePts));
    697 
    698     klm->setConcat(klmAtPts, inversePts);
    699 
    700     // If d3 > 0 we need to flip the orientation of our curve
    701     // This is done by negating the k and l values
    702     if (d3 > 0) {
    703         klm->postScale(-1, -1);
    704     }
    705 }
    706 
    707 // For the case when a cubic bezier is actually a line. We set K=0, L=1, M=-line, which results in
    708 // the following implicit:
    709 //
    710 //     k^3 - l*m == 0^3 - 1*(-line) == -(-line) == line
    711 //
    712 static void calc_line_klm(const SkPoint pts[4], SkMatrix* klm) {
    713     SkScalar ny = pts[0].x() - pts[3].x();
    714     SkScalar nx = pts[3].y() - pts[0].y();
    715     SkScalar k = nx * pts[0].x() + ny * pts[0].y();
    716     klm->setAll(  0,   0, 0,
    717                   0,   0, 1,
    718                 -nx, -ny, k);
    719 }
    720 
    721 SkCubicType GrPathUtils::getCubicKLM(const SkPoint src[4], SkMatrix* klm, double tt[2],
    722                                      double ss[2]) {
    723     double d[4];
    724     SkCubicType type = SkClassifyCubic(src, tt, ss, d);
    725 
    726     if (SkCubicType::kLineOrPoint == type) {
    727         calc_line_klm(src, klm);
    728         return SkCubicType::kLineOrPoint;
    729     }
    730 
    731     if (SkCubicType::kQuadratic == type) {
    732         calc_quadratic_klm(src, d[3], klm);
    733         return SkCubicType::kQuadratic;
    734     }
    735 
    736     SkMatrix CIT;
    737     ExcludedTerm skipTerm = calcCubicInverseTransposePowerBasisMatrix(src, &CIT);
    738     if (ExcludedTerm::kNonInvertible == skipTerm) {
    739         // This could technically also happen if the curve were quadratic, but SkClassifyCubic
    740         // should have detected that case already with tolerance.
    741         calc_line_klm(src, klm);
    742         return SkCubicType::kLineOrPoint;
    743     }
    744 
    745     const SkScalar t0 = static_cast<SkScalar>(tt[0]), t1 = static_cast<SkScalar>(tt[1]),
    746                    s0 = static_cast<SkScalar>(ss[0]), s1 = static_cast<SkScalar>(ss[1]);
    747 
    748     SkMatrix klmCoeffs;
    749     switch (type) {
    750         case SkCubicType::kCuspAtInfinity:
    751             SkASSERT(1 == t1 && 0 == s1); // Infinity.
    752             // fallthru.
    753         case SkCubicType::kLocalCusp:
    754         case SkCubicType::kSerpentine:
    755             calc_serp_kcoeffs(t0, s0, t1, s1, skipTerm, &klmCoeffs[0]);
    756             calc_serp_lmcoeffs(t0, s0, skipTerm, &klmCoeffs[3]);
    757             calc_serp_lmcoeffs(t1, s1, skipTerm, &klmCoeffs[6]);
    758             break;
    759         case SkCubicType::kLoop: {
    760             const SkScalar tdse = t0 * s1;
    761             const SkScalar tesd = t1 * s0;
    762             calc_loop_kcoeffs(t0, s0, t1, s1, tdse, tesd, skipTerm, &klmCoeffs[0]);
    763             calc_loop_lmcoeffs(t0, s0, t1, s1, tdse, tesd, skipTerm, &klmCoeffs[3]);
    764             calc_loop_lmcoeffs(t1, s1, t0, s0, tesd, tdse, skipTerm, &klmCoeffs[6]);
    765             break;
    766         }
    767         default:
    768             SK_ABORT("Unexpected cubic type.");
    769             break;
    770     }
    771 
    772     klm->setConcat(klmCoeffs, CIT);
    773     return type;
    774 }
    775 
    776 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
    777                                              int* loopIndex) {
    778     SkSTArray<2, SkScalar> chops;
    779     *loopIndex = -1;
    780 
    781     double t[2], s[2];
    782     if (SkCubicType::kLoop == GrPathUtils::getCubicKLM(src, klm, t, s)) {
    783         SkScalar t0 = static_cast<SkScalar>(t[0] / s[0]);
    784         SkScalar t1 = static_cast<SkScalar>(t[1] / s[1]);
    785         SkASSERT(t0 <= t1); // Technically t0 != t1 in a loop, but there may be FP error.
    786 
    787         if (t0 < 1 && t1 > 0) {
    788             *loopIndex = 0;
    789             if (t0 > 0) {
    790                 chops.push_back(t0);
    791                 *loopIndex = 1;
    792             }
    793             if (t1 < 1) {
    794                 chops.push_back(t1);
    795                 *loopIndex = chops.count() - 1;
    796             }
    797         }
    798     }
    799 
    800     SkChopCubicAt(src, dst, chops.begin(), chops.count());
    801     return chops.count() + 1;
    802 }
    803