Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
     11 // categorize scalar expressions in loops.  It specializes in recognizing
     12 // general induction variables, representing them with the abstract and opaque
     13 // SCEV class.  Given this analysis, trip counts of loops and other important
     14 // properties can be obtained.
     15 //
     16 // This analysis is primarily useful for induction variable substitution and
     17 // strength reduction.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
     22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
     23 
     24 #include "llvm/Pass.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/Operator.h"
     28 #include "llvm/Support/DataTypes.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include "llvm/Support/Allocator.h"
     31 #include "llvm/Support/ConstantRange.h"
     32 #include "llvm/ADT/FoldingSet.h"
     33 #include "llvm/ADT/DenseMap.h"
     34 #include <map>
     35 
     36 namespace llvm {
     37   class APInt;
     38   class Constant;
     39   class ConstantInt;
     40   class DominatorTree;
     41   class Type;
     42   class ScalarEvolution;
     43   class TargetData;
     44   class LLVMContext;
     45   class Loop;
     46   class LoopInfo;
     47   class Operator;
     48   class SCEVUnknown;
     49   class SCEV;
     50   template<> struct FoldingSetTrait<SCEV>;
     51 
     52   /// SCEV - This class represents an analyzed expression in the program.  These
     53   /// are opaque objects that the client is not allowed to do much with
     54   /// directly.
     55   ///
     56   class SCEV : public FoldingSetNode {
     57     friend struct FoldingSetTrait<SCEV>;
     58 
     59     /// FastID - A reference to an Interned FoldingSetNodeID for this node.
     60     /// The ScalarEvolution's BumpPtrAllocator holds the data.
     61     FoldingSetNodeIDRef FastID;
     62 
     63     // The SCEV baseclass this node corresponds to
     64     const unsigned short SCEVType;
     65 
     66   protected:
     67     /// SubclassData - This field is initialized to zero and may be used in
     68     /// subclasses to store miscellaneous information.
     69     unsigned short SubclassData;
     70 
     71   private:
     72     SCEV(const SCEV &);            // DO NOT IMPLEMENT
     73     void operator=(const SCEV &);  // DO NOT IMPLEMENT
     74 
     75   public:
     76     /// NoWrapFlags are bitfield indices into SubclassData.
     77     ///
     78     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
     79     /// no-signed-wrap <NSW> properties, which are derived from the IR
     80     /// operator. NSW is a misnomer that we use to mean no signed overflow or
     81     /// underflow.
     82     ///
     83     /// AddRec expression may have a no-self-wraparound <NW> property if the
     84     /// result can never reach the start value. This property is independent of
     85     /// the actual start value and step direction. Self-wraparound is defined
     86     /// purely in terms of the recurrence's loop, step size, and
     87     /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
     88     /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
     89     ///
     90     /// Note that NUW and NSW are also valid properties of a recurrence, and
     91     /// either implies NW. For convenience, NW will be set for a recurrence
     92     /// whenever either NUW or NSW are set.
     93     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
     94                        FlagNW      = (1 << 0),   // No self-wrap.
     95                        FlagNUW     = (1 << 1),   // No unsigned wrap.
     96                        FlagNSW     = (1 << 2),   // No signed wrap.
     97                        NoWrapMask  = (1 << 3) -1 };
     98 
     99     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
    100       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
    101 
    102     unsigned getSCEVType() const { return SCEVType; }
    103 
    104     /// getType - Return the LLVM type of this SCEV expression.
    105     ///
    106     Type *getType() const;
    107 
    108     /// isZero - Return true if the expression is a constant zero.
    109     ///
    110     bool isZero() const;
    111 
    112     /// isOne - Return true if the expression is a constant one.
    113     ///
    114     bool isOne() const;
    115 
    116     /// isAllOnesValue - Return true if the expression is a constant
    117     /// all-ones value.
    118     ///
    119     bool isAllOnesValue() const;
    120 
    121     /// print - Print out the internal representation of this scalar to the
    122     /// specified stream.  This should really only be used for debugging
    123     /// purposes.
    124     void print(raw_ostream &OS) const;
    125 
    126     /// dump - This method is used for debugging.
    127     ///
    128     void dump() const;
    129   };
    130 
    131   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
    132   // temporary FoldingSetNodeID values.
    133   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    134     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
    135       ID = X.FastID;
    136     }
    137     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
    138                        FoldingSetNodeID &TempID) {
    139       return ID == X.FastID;
    140     }
    141     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    142       return X.FastID.ComputeHash();
    143     }
    144   };
    145 
    146   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    147     S.print(OS);
    148     return OS;
    149   }
    150 
    151   /// SCEVCouldNotCompute - An object of this class is returned by queries that
    152   /// could not be answered.  For example, if you ask for the number of
    153   /// iterations of a linked-list traversal loop, you will get one of these.
    154   /// None of the standard SCEV operations are valid on this class, it is just a
    155   /// marker.
    156   struct SCEVCouldNotCompute : public SCEV {
    157     SCEVCouldNotCompute();
    158 
    159     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    160     static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
    161     static bool classof(const SCEV *S);
    162   };
    163 
    164   /// ScalarEvolution - This class is the main scalar evolution driver.  Because
    165   /// client code (intentionally) can't do much with the SCEV objects directly,
    166   /// they must ask this class for services.
    167   ///
    168   class ScalarEvolution : public FunctionPass {
    169   public:
    170     /// LoopDisposition - An enum describing the relationship between a
    171     /// SCEV and a loop.
    172     enum LoopDisposition {
    173       LoopVariant,    ///< The SCEV is loop-variant (unknown).
    174       LoopInvariant,  ///< The SCEV is loop-invariant.
    175       LoopComputable  ///< The SCEV varies predictably with the loop.
    176     };
    177 
    178     /// BlockDisposition - An enum describing the relationship between a
    179     /// SCEV and a basic block.
    180     enum BlockDisposition {
    181       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    182       DominatesBlock,        ///< The SCEV dominates the block.
    183       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    184     };
    185 
    186     /// Convenient NoWrapFlags manipulation that hides enum casts and is
    187     /// visible in the ScalarEvolution name space.
    188     static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
    189       return (SCEV::NoWrapFlags)(Flags & Mask);
    190     }
    191     static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
    192                                       SCEV::NoWrapFlags OnFlags) {
    193       return (SCEV::NoWrapFlags)(Flags | OnFlags);
    194     }
    195     static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
    196                                         SCEV::NoWrapFlags OffFlags) {
    197       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    198     }
    199 
    200   private:
    201     /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
    202     /// notified whenever a Value is deleted.
    203     class SCEVCallbackVH : public CallbackVH {
    204       ScalarEvolution *SE;
    205       virtual void deleted();
    206       virtual void allUsesReplacedWith(Value *New);
    207     public:
    208       SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
    209     };
    210 
    211     friend class SCEVCallbackVH;
    212     friend class SCEVExpander;
    213     friend class SCEVUnknown;
    214 
    215     /// F - The function we are analyzing.
    216     ///
    217     Function *F;
    218 
    219     /// LI - The loop information for the function we are currently analyzing.
    220     ///
    221     LoopInfo *LI;
    222 
    223     /// TD - The target data information for the target we are targeting.
    224     ///
    225     TargetData *TD;
    226 
    227     /// DT - The dominator tree.
    228     ///
    229     DominatorTree *DT;
    230 
    231     /// CouldNotCompute - This SCEV is used to represent unknown trip
    232     /// counts and things.
    233     SCEVCouldNotCompute CouldNotCompute;
    234 
    235     /// ValueExprMapType - The typedef for ValueExprMap.
    236     ///
    237     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
    238       ValueExprMapType;
    239 
    240     /// ValueExprMap - This is a cache of the values we have analyzed so far.
    241     ///
    242     ValueExprMapType ValueExprMap;
    243 
    244     /// ExitLimit - Information about the number of loop iterations for
    245     /// which a loop exit's branch condition evaluates to the not-taken path.
    246     /// This is a temporary pair of exact and max expressions that are
    247     /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
    248     struct ExitLimit {
    249       const SCEV *Exact;
    250       const SCEV *Max;
    251 
    252       /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
    253 
    254       ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
    255 
    256       /// hasAnyInfo - Test whether this ExitLimit contains any computed
    257       /// information, or whether it's all SCEVCouldNotCompute values.
    258       bool hasAnyInfo() const {
    259         return !isa<SCEVCouldNotCompute>(Exact) ||
    260           !isa<SCEVCouldNotCompute>(Max);
    261       }
    262     };
    263 
    264     /// ExitNotTakenInfo - Information about the number of times a particular
    265     /// loop exit may be reached before exiting the loop.
    266     struct ExitNotTakenInfo {
    267       AssertingVH<BasicBlock> ExitingBlock;
    268       const SCEV *ExactNotTaken;
    269       PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
    270 
    271       ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
    272 
    273       /// isCompleteList - Return true if all loop exits are computable.
    274       bool isCompleteList() const {
    275         return NextExit.getInt() == 0;
    276       }
    277 
    278       void setIncomplete() { NextExit.setInt(1); }
    279 
    280       /// getNextExit - Return a pointer to the next exit's not-taken info.
    281       ExitNotTakenInfo *getNextExit() const {
    282         return NextExit.getPointer();
    283       }
    284 
    285       void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
    286     };
    287 
    288     /// BackedgeTakenInfo - Information about the backedge-taken count
    289     /// of a loop. This currently includes an exact count and a maximum count.
    290     ///
    291     class BackedgeTakenInfo {
    292       /// ExitNotTaken - A list of computable exits and their not-taken counts.
    293       /// Loops almost never have more than one computable exit.
    294       ExitNotTakenInfo ExitNotTaken;
    295 
    296       /// Max - An expression indicating the least maximum backedge-taken
    297       /// count of the loop that is known, or a SCEVCouldNotCompute.
    298       const SCEV *Max;
    299 
    300     public:
    301       BackedgeTakenInfo() : Max(0) {}
    302 
    303       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    304       BackedgeTakenInfo(
    305         SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
    306         bool Complete, const SCEV *MaxCount);
    307 
    308       /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
    309       /// computed information, or whether it's all SCEVCouldNotCompute
    310       /// values.
    311       bool hasAnyInfo() const {
    312         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
    313       }
    314 
    315       /// getExact - Return an expression indicating the exact backedge-taken
    316       /// count of the loop if it is known, or SCEVCouldNotCompute
    317       /// otherwise. This is the number of times the loop header can be
    318       /// guaranteed to execute, minus one.
    319       const SCEV *getExact(ScalarEvolution *SE) const;
    320 
    321       /// getExact - Return the number of times this loop exit may fall through
    322       /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
    323       /// to exit via this block before this number of iterations, but may exit
    324       /// via another block.
    325       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
    326 
    327       /// getMax - Get the max backedge taken count for the loop.
    328       const SCEV *getMax(ScalarEvolution *SE) const;
    329 
    330       /// clear - Invalidate this result and free associated memory.
    331       void clear();
    332     };
    333 
    334     /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
    335     /// this function as they are computed.
    336     DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
    337 
    338     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
    339     /// the PHI instructions that we attempt to compute constant evolutions for.
    340     /// This allows us to avoid potentially expensive recomputation of these
    341     /// properties.  An instruction maps to null if we are unable to compute its
    342     /// exit value.
    343     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
    344 
    345     /// ValuesAtScopes - This map contains entries for all the expressions
    346     /// that we attempt to compute getSCEVAtScope information for, which can
    347     /// be expensive in extreme cases.
    348     DenseMap<const SCEV *,
    349              std::map<const Loop *, const SCEV *> > ValuesAtScopes;
    350 
    351     /// LoopDispositions - Memoized computeLoopDisposition results.
    352     DenseMap<const SCEV *,
    353              std::map<const Loop *, LoopDisposition> > LoopDispositions;
    354 
    355     /// computeLoopDisposition - Compute a LoopDisposition value.
    356     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
    357 
    358     /// BlockDispositions - Memoized computeBlockDisposition results.
    359     DenseMap<const SCEV *,
    360              std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
    361 
    362     /// computeBlockDisposition - Compute a BlockDisposition value.
    363     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
    364 
    365     /// UnsignedRanges - Memoized results from getUnsignedRange
    366     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
    367 
    368     /// SignedRanges - Memoized results from getSignedRange
    369     DenseMap<const SCEV *, ConstantRange> SignedRanges;
    370 
    371     /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
    372     const ConstantRange &setUnsignedRange(const SCEV *S,
    373                                           const ConstantRange &CR) {
    374       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    375         UnsignedRanges.insert(std::make_pair(S, CR));
    376       if (!Pair.second)
    377         Pair.first->second = CR;
    378       return Pair.first->second;
    379     }
    380 
    381     /// setUnsignedRange - Set the memoized signed range for the given SCEV.
    382     const ConstantRange &setSignedRange(const SCEV *S,
    383                                         const ConstantRange &CR) {
    384       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    385         SignedRanges.insert(std::make_pair(S, CR));
    386       if (!Pair.second)
    387         Pair.first->second = CR;
    388       return Pair.first->second;
    389     }
    390 
    391     /// createSCEV - We know that there is no SCEV for the specified value.
    392     /// Analyze the expression.
    393     const SCEV *createSCEV(Value *V);
    394 
    395     /// createNodeForPHI - Provide the special handling we need to analyze PHI
    396     /// SCEVs.
    397     const SCEV *createNodeForPHI(PHINode *PN);
    398 
    399     /// createNodeForGEP - Provide the special handling we need to analyze GEP
    400     /// SCEVs.
    401     const SCEV *createNodeForGEP(GEPOperator *GEP);
    402 
    403     /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
    404     /// at most once for each SCEV+Loop pair.
    405     ///
    406     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
    407 
    408     /// ForgetSymbolicValue - This looks up computed SCEV values for all
    409     /// instructions that depend on the given instruction and removes them from
    410     /// the ValueExprMap map if they reference SymName. This is used during PHI
    411     /// resolution.
    412     void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
    413 
    414     /// getBECount - Subtract the end and start values and divide by the step,
    415     /// rounding up, to get the number of times the backedge is executed. Return
    416     /// CouldNotCompute if an intermediate computation overflows.
    417     const SCEV *getBECount(const SCEV *Start,
    418                            const SCEV *End,
    419                            const SCEV *Step,
    420                            bool NoWrap);
    421 
    422     /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
    423     /// loop, lazily computing new values if the loop hasn't been analyzed
    424     /// yet.
    425     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
    426 
    427     /// ComputeBackedgeTakenCount - Compute the number of times the specified
    428     /// loop will iterate.
    429     BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
    430 
    431     /// ComputeExitLimit - Compute the number of times the backedge of the
    432     /// specified loop will execute if it exits via the specified block.
    433     ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
    434 
    435     /// ComputeExitLimitFromCond - Compute the number of times the backedge of
    436     /// the specified loop will execute if its exit condition were a conditional
    437     /// branch of ExitCond, TBB, and FBB.
    438     ExitLimit ComputeExitLimitFromCond(const Loop *L,
    439                                        Value *ExitCond,
    440                                        BasicBlock *TBB,
    441                                        BasicBlock *FBB);
    442 
    443     /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
    444     /// the specified loop will execute if its exit condition were a conditional
    445     /// branch of the ICmpInst ExitCond, TBB, and FBB.
    446     ExitLimit ComputeExitLimitFromICmp(const Loop *L,
    447                                        ICmpInst *ExitCond,
    448                                        BasicBlock *TBB,
    449                                        BasicBlock *FBB);
    450 
    451     /// ComputeLoadConstantCompareExitLimit - Given an exit condition
    452     /// of 'icmp op load X, cst', try to see if we can compute the
    453     /// backedge-taken count.
    454     ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
    455                                                   Constant *RHS,
    456                                                   const Loop *L,
    457                                                   ICmpInst::Predicate p);
    458 
    459     /// ComputeExitCountExhaustively - If the loop is known to execute a
    460     /// constant number of times (the condition evolves only from constants),
    461     /// try to evaluate a few iterations of the loop until we get the exit
    462     /// condition gets a value of ExitWhen (true or false).  If we cannot
    463     /// evaluate the exit count of the loop, return CouldNotCompute.
    464     const SCEV *ComputeExitCountExhaustively(const Loop *L,
    465                                              Value *Cond,
    466                                              bool ExitWhen);
    467 
    468     /// HowFarToZero - Return the number of times an exit condition comparing
    469     /// the specified value to zero will execute.  If not computable, return
    470     /// CouldNotCompute.
    471     ExitLimit HowFarToZero(const SCEV *V, const Loop *L);
    472 
    473     /// HowFarToNonZero - Return the number of times an exit condition checking
    474     /// the specified value for nonzero will execute.  If not computable, return
    475     /// CouldNotCompute.
    476     ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
    477 
    478     /// HowManyLessThans - Return the number of times an exit condition
    479     /// containing the specified less-than comparison will execute.  If not
    480     /// computable, return CouldNotCompute. isSigned specifies whether the
    481     /// less-than is signed.
    482     ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
    483                                const Loop *L, bool isSigned);
    484 
    485     /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
    486     /// (which may not be an immediate predecessor) which has exactly one
    487     /// successor from which BB is reachable, or null if no such block is
    488     /// found.
    489     std::pair<BasicBlock *, BasicBlock *>
    490     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
    491 
    492     /// isImpliedCond - Test whether the condition described by Pred, LHS, and
    493     /// RHS is true whenever the given FoundCondValue value evaluates to true.
    494     bool isImpliedCond(ICmpInst::Predicate Pred,
    495                        const SCEV *LHS, const SCEV *RHS,
    496                        Value *FoundCondValue,
    497                        bool Inverse);
    498 
    499     /// isImpliedCondOperands - Test whether the condition described by Pred,
    500     /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
    501     /// and FoundRHS is true.
    502     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
    503                                const SCEV *LHS, const SCEV *RHS,
    504                                const SCEV *FoundLHS, const SCEV *FoundRHS);
    505 
    506     /// isImpliedCondOperandsHelper - Test whether the condition described by
    507     /// Pred, LHS, and RHS is true whenever the condition described by Pred,
    508     /// FoundLHS, and FoundRHS is true.
    509     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
    510                                      const SCEV *LHS, const SCEV *RHS,
    511                                      const SCEV *FoundLHS,
    512                                      const SCEV *FoundRHS);
    513 
    514     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
    515     /// in the header of its containing loop, we know the loop executes a
    516     /// constant number of times, and the PHI node is just a recurrence
    517     /// involving constants, fold it.
    518     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
    519                                                 const Loop *L);
    520 
    521     /// isKnownPredicateWithRanges - Test if the given expression is known to
    522     /// satisfy the condition described by Pred and the known constant ranges
    523     /// of LHS and RHS.
    524     ///
    525     bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
    526                                     const SCEV *LHS, const SCEV *RHS);
    527 
    528     /// forgetMemoizedResults - Drop memoized information computed for S.
    529     void forgetMemoizedResults(const SCEV *S);
    530 
    531   public:
    532     static char ID; // Pass identification, replacement for typeid
    533     ScalarEvolution();
    534 
    535     LLVMContext &getContext() const { return F->getContext(); }
    536 
    537     /// isSCEVable - Test if values of the given type are analyzable within
    538     /// the SCEV framework. This primarily includes integer types, and it
    539     /// can optionally include pointer types if the ScalarEvolution class
    540     /// has access to target-specific information.
    541     bool isSCEVable(Type *Ty) const;
    542 
    543     /// getTypeSizeInBits - Return the size in bits of the specified type,
    544     /// for which isSCEVable must return true.
    545     uint64_t getTypeSizeInBits(Type *Ty) const;
    546 
    547     /// getEffectiveSCEVType - Return a type with the same bitwidth as
    548     /// the given type and which represents how SCEV will treat the given
    549     /// type, for which isSCEVable must return true. For pointer types,
    550     /// this is the pointer-sized integer type.
    551     Type *getEffectiveSCEVType(Type *Ty) const;
    552 
    553     /// getSCEV - Return a SCEV expression for the full generality of the
    554     /// specified expression.
    555     const SCEV *getSCEV(Value *V);
    556 
    557     const SCEV *getConstant(ConstantInt *V);
    558     const SCEV *getConstant(const APInt& Val);
    559     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
    560     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
    561     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
    562     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
    563     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
    564     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
    565                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    566     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
    567                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    568       SmallVector<const SCEV *, 2> Ops;
    569       Ops.push_back(LHS);
    570       Ops.push_back(RHS);
    571       return getAddExpr(Ops, Flags);
    572     }
    573     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    574                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    575       SmallVector<const SCEV *, 3> Ops;
    576       Ops.push_back(Op0);
    577       Ops.push_back(Op1);
    578       Ops.push_back(Op2);
    579       return getAddExpr(Ops, Flags);
    580     }
    581     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
    582                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    583     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
    584                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
    585     {
    586       SmallVector<const SCEV *, 2> Ops;
    587       Ops.push_back(LHS);
    588       Ops.push_back(RHS);
    589       return getMulExpr(Ops, Flags);
    590     }
    591     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    592                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    593       SmallVector<const SCEV *, 3> Ops;
    594       Ops.push_back(Op0);
    595       Ops.push_back(Op1);
    596       Ops.push_back(Op2);
    597       return getMulExpr(Ops, Flags);
    598     }
    599     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
    600     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
    601                               const Loop *L, SCEV::NoWrapFlags Flags);
    602     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
    603                               const Loop *L, SCEV::NoWrapFlags Flags);
    604     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
    605                               const Loop *L, SCEV::NoWrapFlags Flags) {
    606       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
    607       return getAddRecExpr(NewOp, L, Flags);
    608     }
    609     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
    610     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    611     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
    612     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    613     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
    614     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
    615     const SCEV *getUnknown(Value *V);
    616     const SCEV *getCouldNotCompute();
    617 
    618     /// getSizeOfExpr - Return an expression for sizeof on the given type.
    619     ///
    620     const SCEV *getSizeOfExpr(Type *AllocTy);
    621 
    622     /// getAlignOfExpr - Return an expression for alignof on the given type.
    623     ///
    624     const SCEV *getAlignOfExpr(Type *AllocTy);
    625 
    626     /// getOffsetOfExpr - Return an expression for offsetof on the given field.
    627     ///
    628     const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
    629 
    630     /// getOffsetOfExpr - Return an expression for offsetof on the given field.
    631     ///
    632     const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
    633 
    634     /// getNegativeSCEV - Return the SCEV object corresponding to -V.
    635     ///
    636     const SCEV *getNegativeSCEV(const SCEV *V);
    637 
    638     /// getNotSCEV - Return the SCEV object corresponding to ~V.
    639     ///
    640     const SCEV *getNotSCEV(const SCEV *V);
    641 
    642     /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
    643     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
    644                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    645 
    646     /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
    647     /// of the input value to the specified type.  If the type must be
    648     /// extended, it is zero extended.
    649     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
    650 
    651     /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
    652     /// of the input value to the specified type.  If the type must be
    653     /// extended, it is sign extended.
    654     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
    655 
    656     /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
    657     /// the input value to the specified type.  If the type must be extended,
    658     /// it is zero extended.  The conversion must not be narrowing.
    659     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
    660 
    661     /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
    662     /// the input value to the specified type.  If the type must be extended,
    663     /// it is sign extended.  The conversion must not be narrowing.
    664     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
    665 
    666     /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
    667     /// the input value to the specified type. If the type must be extended,
    668     /// it is extended with unspecified bits. The conversion must not be
    669     /// narrowing.
    670     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
    671 
    672     /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
    673     /// input value to the specified type.  The conversion must not be
    674     /// widening.
    675     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
    676 
    677     /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
    678     /// the types using zero-extension, and then perform a umax operation
    679     /// with them.
    680     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
    681                                            const SCEV *RHS);
    682 
    683     /// getUMinFromMismatchedTypes - Promote the operands to the wider of
    684     /// the types using zero-extension, and then perform a umin operation
    685     /// with them.
    686     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
    687                                            const SCEV *RHS);
    688 
    689     /// getPointerBase - Transitively follow the chain of pointer-type operands
    690     /// until reaching a SCEV that does not have a single pointer operand. This
    691     /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
    692     /// but corner cases do exist.
    693     const SCEV *getPointerBase(const SCEV *V);
    694 
    695     /// getSCEVAtScope - Return a SCEV expression for the specified value
    696     /// at the specified scope in the program.  The L value specifies a loop
    697     /// nest to evaluate the expression at, where null is the top-level or a
    698     /// specified loop is immediately inside of the loop.
    699     ///
    700     /// This method can be used to compute the exit value for a variable defined
    701     /// in a loop by querying what the value will hold in the parent loop.
    702     ///
    703     /// In the case that a relevant loop exit value cannot be computed, the
    704     /// original value V is returned.
    705     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
    706 
    707     /// getSCEVAtScope - This is a convenience function which does
    708     /// getSCEVAtScope(getSCEV(V), L).
    709     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
    710 
    711     /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
    712     /// by a conditional between LHS and RHS.  This is used to help avoid max
    713     /// expressions in loop trip counts, and to eliminate casts.
    714     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    715                                   const SCEV *LHS, const SCEV *RHS);
    716 
    717     /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
    718     /// protected by a conditional between LHS and RHS.  This is used to
    719     /// to eliminate casts.
    720     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    721                                      const SCEV *LHS, const SCEV *RHS);
    722 
    723     /// getSmallConstantTripCount - Returns the maximum trip count of this loop
    724     /// as a normal unsigned value, if possible. Returns 0 if the trip count is
    725     /// unknown or not constant.
    726     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitBlock);
    727 
    728     /// getSmallConstantTripMultiple - Returns the largest constant divisor of
    729     /// the trip count of this loop as a normal unsigned value, if
    730     /// possible. This means that the actual trip count is always a multiple of
    731     /// the returned value (don't forget the trip count could very well be zero
    732     /// as well!).
    733     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitBlock);
    734 
    735     // getExitCount - Get the expression for the number of loop iterations for
    736     // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
    737     // return SCEVCouldNotCompute.
    738     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
    739 
    740     /// getBackedgeTakenCount - If the specified loop has a predictable
    741     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
    742     /// object. The backedge-taken count is the number of times the loop header
    743     /// will be branched to from within the loop. This is one less than the
    744     /// trip count of the loop, since it doesn't count the first iteration,
    745     /// when the header is branched to from outside the loop.
    746     ///
    747     /// Note that it is not valid to call this method on a loop without a
    748     /// loop-invariant backedge-taken count (see
    749     /// hasLoopInvariantBackedgeTakenCount).
    750     ///
    751     const SCEV *getBackedgeTakenCount(const Loop *L);
    752 
    753     /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
    754     /// return the least SCEV value that is known never to be less than the
    755     /// actual backedge taken count.
    756     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
    757 
    758     /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
    759     /// has an analyzable loop-invariant backedge-taken count.
    760     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
    761 
    762     /// forgetLoop - This method should be called by the client when it has
    763     /// changed a loop in a way that may effect ScalarEvolution's ability to
    764     /// compute a trip count, or if the loop is deleted.
    765     void forgetLoop(const Loop *L);
    766 
    767     /// forgetValue - This method should be called by the client when it has
    768     /// changed a value in a way that may effect its value, or which may
    769     /// disconnect it from a def-use chain linking it to a loop.
    770     void forgetValue(Value *V);
    771 
    772     /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
    773     /// is guaranteed to end in (at every loop iteration).  It is, at the same
    774     /// time, the minimum number of times S is divisible by 2.  For example,
    775     /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
    776     /// bitwidth of S.
    777     uint32_t GetMinTrailingZeros(const SCEV *S);
    778 
    779     /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
    780     ///
    781     ConstantRange getUnsignedRange(const SCEV *S);
    782 
    783     /// getSignedRange - Determine the signed range for a particular SCEV.
    784     ///
    785     ConstantRange getSignedRange(const SCEV *S);
    786 
    787     /// isKnownNegative - Test if the given expression is known to be negative.
    788     ///
    789     bool isKnownNegative(const SCEV *S);
    790 
    791     /// isKnownPositive - Test if the given expression is known to be positive.
    792     ///
    793     bool isKnownPositive(const SCEV *S);
    794 
    795     /// isKnownNonNegative - Test if the given expression is known to be
    796     /// non-negative.
    797     ///
    798     bool isKnownNonNegative(const SCEV *S);
    799 
    800     /// isKnownNonPositive - Test if the given expression is known to be
    801     /// non-positive.
    802     ///
    803     bool isKnownNonPositive(const SCEV *S);
    804 
    805     /// isKnownNonZero - Test if the given expression is known to be
    806     /// non-zero.
    807     ///
    808     bool isKnownNonZero(const SCEV *S);
    809 
    810     /// isKnownPredicate - Test if the given expression is known to satisfy
    811     /// the condition described by Pred, LHS, and RHS.
    812     ///
    813     bool isKnownPredicate(ICmpInst::Predicate Pred,
    814                           const SCEV *LHS, const SCEV *RHS);
    815 
    816     /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
    817     /// predicate Pred. Return true iff any changes were made. If the
    818     /// operands are provably equal or inequal, LHS and RHS are set to
    819     /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
    820     ///
    821     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
    822                               const SCEV *&LHS,
    823                               const SCEV *&RHS);
    824 
    825     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    826     /// respect to the given loop.
    827     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
    828 
    829     /// isLoopInvariant - Return true if the value of the given SCEV is
    830     /// unchanging in the specified loop.
    831     bool isLoopInvariant(const SCEV *S, const Loop *L);
    832 
    833     /// hasComputableLoopEvolution - Return true if the given SCEV changes value
    834     /// in a known way in the specified loop.  This property being true implies
    835     /// that the value is variant in the loop AND that we can emit an expression
    836     /// to compute the value of the expression at any particular loop iteration.
    837     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
    838 
    839     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    840     /// respect to the given block.
    841     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
    842 
    843     /// dominates - Return true if elements that makes up the given SCEV
    844     /// dominate the specified basic block.
    845     bool dominates(const SCEV *S, const BasicBlock *BB);
    846 
    847     /// properlyDominates - Return true if elements that makes up the given SCEV
    848     /// properly dominate the specified basic block.
    849     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
    850 
    851     /// hasOperand - Test whether the given SCEV has Op as a direct or
    852     /// indirect operand.
    853     bool hasOperand(const SCEV *S, const SCEV *Op) const;
    854 
    855     virtual bool runOnFunction(Function &F);
    856     virtual void releaseMemory();
    857     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    858     virtual void print(raw_ostream &OS, const Module* = 0) const;
    859 
    860   private:
    861     FoldingSet<SCEV> UniqueSCEVs;
    862     BumpPtrAllocator SCEVAllocator;
    863 
    864     /// FirstUnknown - The head of a linked list of all SCEVUnknown
    865     /// values that have been allocated. This is used by releaseMemory
    866     /// to locate them all and call their destructors.
    867     SCEVUnknown *FirstUnknown;
    868   };
    869 }
    870 
    871 #endif
    872