Home | History | Annotate | Download | only in Analysis
      1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains routines that help analyze properties that chains of
     11 // computations have.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/Instructions.h"
     19 #include "llvm/GlobalVariable.h"
     20 #include "llvm/GlobalAlias.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/LLVMContext.h"
     23 #include "llvm/Operator.h"
     24 #include "llvm/Target/TargetData.h"
     25 #include "llvm/Support/GetElementPtrTypeIterator.h"
     26 #include "llvm/Support/MathExtras.h"
     27 #include "llvm/Support/PatternMatch.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include <cstring>
     30 using namespace llvm;
     31 using namespace llvm::PatternMatch;
     32 
     33 const unsigned MaxDepth = 6;
     34 
     35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
     36 /// unknown returns 0).  For vector types, returns the element type's bitwidth.
     37 static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
     38   if (unsigned BitWidth = Ty->getScalarSizeInBits())
     39     return BitWidth;
     40   assert(isa<PointerType>(Ty) && "Expected a pointer type!");
     41   return TD ? TD->getPointerSizeInBits() : 0;
     42 }
     43 
     44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
     45 /// known to be either zero or one and return them in the KnownZero/KnownOne
     46 /// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
     47 /// processing.
     48 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
     49 /// we cannot optimize based on the assumption that it is zero without changing
     50 /// it to be an explicit zero.  If we don't change it to zero, other code could
     51 /// optimized based on the contradictory assumption that it is non-zero.
     52 /// Because instcombine aggressively folds operations with undef args anyway,
     53 /// this won't lose us code quality.
     54 ///
     55 /// This function is defined on values with integer type, values with pointer
     56 /// type (but only if TD is non-null), and vectors of integers.  In the case
     57 /// where V is a vector, the mask, known zero, and known one values are the
     58 /// same width as the vector element, and the bit is set only if it is true
     59 /// for all of the elements in the vector.
     60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
     61                              APInt &KnownZero, APInt &KnownOne,
     62                              const TargetData *TD, unsigned Depth) {
     63   assert(V && "No Value?");
     64   assert(Depth <= MaxDepth && "Limit Search Depth");
     65   unsigned BitWidth = Mask.getBitWidth();
     66   assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
     67          && "Not integer or pointer type!");
     68   assert((!TD ||
     69           TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
     70          (!V->getType()->isIntOrIntVectorTy() ||
     71           V->getType()->getScalarSizeInBits() == BitWidth) &&
     72          KnownZero.getBitWidth() == BitWidth &&
     73          KnownOne.getBitWidth() == BitWidth &&
     74          "V, Mask, KnownOne and KnownZero should have same BitWidth");
     75 
     76   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
     77     // We know all of the bits for a constant!
     78     KnownOne = CI->getValue() & Mask;
     79     KnownZero = ~KnownOne & Mask;
     80     return;
     81   }
     82   // Null and aggregate-zero are all-zeros.
     83   if (isa<ConstantPointerNull>(V) ||
     84       isa<ConstantAggregateZero>(V)) {
     85     KnownOne.clearAllBits();
     86     KnownZero = Mask;
     87     return;
     88   }
     89   // Handle a constant vector by taking the intersection of the known bits of
     90   // each element.
     91   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
     92     KnownZero.setAllBits(); KnownOne.setAllBits();
     93     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
     94       APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
     95       ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
     96                         TD, Depth);
     97       KnownZero &= KnownZero2;
     98       KnownOne &= KnownOne2;
     99     }
    100     return;
    101   }
    102   // The address of an aligned GlobalValue has trailing zeros.
    103   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    104     unsigned Align = GV->getAlignment();
    105     if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
    106       Type *ObjectType = GV->getType()->getElementType();
    107       // If the object is defined in the current Module, we'll be giving
    108       // it the preferred alignment. Otherwise, we have to assume that it
    109       // may only have the minimum ABI alignment.
    110       if (!GV->isDeclaration() && !GV->mayBeOverridden())
    111         Align = TD->getPrefTypeAlignment(ObjectType);
    112       else
    113         Align = TD->getABITypeAlignment(ObjectType);
    114     }
    115     if (Align > 0)
    116       KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
    117                                               CountTrailingZeros_32(Align));
    118     else
    119       KnownZero.clearAllBits();
    120     KnownOne.clearAllBits();
    121     return;
    122   }
    123   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
    124   // the bits of its aliasee.
    125   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    126     if (GA->mayBeOverridden()) {
    127       KnownZero.clearAllBits(); KnownOne.clearAllBits();
    128     } else {
    129       ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
    130                         TD, Depth+1);
    131     }
    132     return;
    133   }
    134 
    135   if (Argument *A = dyn_cast<Argument>(V)) {
    136     // Get alignment information off byval arguments if specified in the IR.
    137     if (A->hasByValAttr())
    138       if (unsigned Align = A->getParamAlignment())
    139         KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
    140                                                 CountTrailingZeros_32(Align));
    141     return;
    142   }
    143 
    144   // Start out not knowing anything.
    145   KnownZero.clearAllBits(); KnownOne.clearAllBits();
    146 
    147   if (Depth == MaxDepth || Mask == 0)
    148     return;  // Limit search depth.
    149 
    150   Operator *I = dyn_cast<Operator>(V);
    151   if (!I) return;
    152 
    153   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
    154   switch (I->getOpcode()) {
    155   default: break;
    156   case Instruction::And: {
    157     // If either the LHS or the RHS are Zero, the result is zero.
    158     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
    159     APInt Mask2(Mask & ~KnownZero);
    160     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
    161                       Depth+1);
    162     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    163     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    164 
    165     // Output known-1 bits are only known if set in both the LHS & RHS.
    166     KnownOne &= KnownOne2;
    167     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    168     KnownZero |= KnownZero2;
    169     return;
    170   }
    171   case Instruction::Or: {
    172     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
    173     APInt Mask2(Mask & ~KnownOne);
    174     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
    175                       Depth+1);
    176     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    177     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    178 
    179     // Output known-0 bits are only known if clear in both the LHS & RHS.
    180     KnownZero &= KnownZero2;
    181     // Output known-1 are known to be set if set in either the LHS | RHS.
    182     KnownOne |= KnownOne2;
    183     return;
    184   }
    185   case Instruction::Xor: {
    186     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
    187     ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
    188                       Depth+1);
    189     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    190     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    191 
    192     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    193     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    194     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    195     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    196     KnownZero = KnownZeroOut;
    197     return;
    198   }
    199   case Instruction::Mul: {
    200     APInt Mask2 = APInt::getAllOnesValue(BitWidth);
    201     ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
    202     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
    203                       Depth+1);
    204     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    205     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    206 
    207     // If low bits are zero in either operand, output low known-0 bits.
    208     // Also compute a conserative estimate for high known-0 bits.
    209     // More trickiness is possible, but this is sufficient for the
    210     // interesting case of alignment computation.
    211     KnownOne.clearAllBits();
    212     unsigned TrailZ = KnownZero.countTrailingOnes() +
    213                       KnownZero2.countTrailingOnes();
    214     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
    215                                KnownZero2.countLeadingOnes(),
    216                                BitWidth) - BitWidth;
    217 
    218     TrailZ = std::min(TrailZ, BitWidth);
    219     LeadZ = std::min(LeadZ, BitWidth);
    220     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
    221                 APInt::getHighBitsSet(BitWidth, LeadZ);
    222     KnownZero &= Mask;
    223     return;
    224   }
    225   case Instruction::UDiv: {
    226     // For the purposes of computing leading zeros we can conservatively
    227     // treat a udiv as a logical right shift by the power of 2 known to
    228     // be less than the denominator.
    229     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    230     ComputeMaskedBits(I->getOperand(0),
    231                       AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
    232     unsigned LeadZ = KnownZero2.countLeadingOnes();
    233 
    234     KnownOne2.clearAllBits();
    235     KnownZero2.clearAllBits();
    236     ComputeMaskedBits(I->getOperand(1),
    237                       AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
    238     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
    239     if (RHSUnknownLeadingOnes != BitWidth)
    240       LeadZ = std::min(BitWidth,
    241                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
    242 
    243     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
    244     return;
    245   }
    246   case Instruction::Select:
    247     ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
    248     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
    249                       Depth+1);
    250     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    251     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    252 
    253     // Only known if known in both the LHS and RHS.
    254     KnownOne &= KnownOne2;
    255     KnownZero &= KnownZero2;
    256     return;
    257   case Instruction::FPTrunc:
    258   case Instruction::FPExt:
    259   case Instruction::FPToUI:
    260   case Instruction::FPToSI:
    261   case Instruction::SIToFP:
    262   case Instruction::UIToFP:
    263     return; // Can't work with floating point.
    264   case Instruction::PtrToInt:
    265   case Instruction::IntToPtr:
    266     // We can't handle these if we don't know the pointer size.
    267     if (!TD) return;
    268     // FALL THROUGH and handle them the same as zext/trunc.
    269   case Instruction::ZExt:
    270   case Instruction::Trunc: {
    271     Type *SrcTy = I->getOperand(0)->getType();
    272 
    273     unsigned SrcBitWidth;
    274     // Note that we handle pointer operands here because of inttoptr/ptrtoint
    275     // which fall through here.
    276     if (SrcTy->isPointerTy())
    277       SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
    278     else
    279       SrcBitWidth = SrcTy->getScalarSizeInBits();
    280 
    281     APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
    282     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
    283     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
    284     ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
    285                       Depth+1);
    286     KnownZero = KnownZero.zextOrTrunc(BitWidth);
    287     KnownOne = KnownOne.zextOrTrunc(BitWidth);
    288     // Any top bits are known to be zero.
    289     if (BitWidth > SrcBitWidth)
    290       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    291     return;
    292   }
    293   case Instruction::BitCast: {
    294     Type *SrcTy = I->getOperand(0)->getType();
    295     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
    296         // TODO: For now, not handling conversions like:
    297         // (bitcast i64 %x to <2 x i32>)
    298         !I->getType()->isVectorTy()) {
    299       ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
    300                         Depth+1);
    301       return;
    302     }
    303     break;
    304   }
    305   case Instruction::SExt: {
    306     // Compute the bits in the result that are not present in the input.
    307     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
    308 
    309     APInt MaskIn = Mask.trunc(SrcBitWidth);
    310     KnownZero = KnownZero.trunc(SrcBitWidth);
    311     KnownOne = KnownOne.trunc(SrcBitWidth);
    312     ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
    313                       Depth+1);
    314     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    315     KnownZero = KnownZero.zext(BitWidth);
    316     KnownOne = KnownOne.zext(BitWidth);
    317 
    318     // If the sign bit of the input is known set or clear, then we know the
    319     // top bits of the result.
    320     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
    321       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    322     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
    323       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    324     return;
    325   }
    326   case Instruction::Shl:
    327     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    328     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    329       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
    330       APInt Mask2(Mask.lshr(ShiftAmt));
    331       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
    332                         Depth+1);
    333       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    334       KnownZero <<= ShiftAmt;
    335       KnownOne  <<= ShiftAmt;
    336       KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
    337       return;
    338     }
    339     break;
    340   case Instruction::LShr:
    341     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    342     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    343       // Compute the new bits that are at the top now.
    344       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
    345 
    346       // Unsigned shift right.
    347       APInt Mask2(Mask.shl(ShiftAmt));
    348       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
    349                         Depth+1);
    350       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    351       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    352       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    353       // high bits known zero.
    354       KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    355       return;
    356     }
    357     break;
    358   case Instruction::AShr:
    359     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    360     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    361       // Compute the new bits that are at the top now.
    362       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    363 
    364       // Signed shift right.
    365       APInt Mask2(Mask.shl(ShiftAmt));
    366       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
    367                         Depth+1);
    368       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    369       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    370       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    371 
    372       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
    373       if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
    374         KnownZero |= HighBits;
    375       else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
    376         KnownOne |= HighBits;
    377       return;
    378     }
    379     break;
    380   case Instruction::Sub: {
    381     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
    382       // We know that the top bits of C-X are clear if X contains less bits
    383       // than C (i.e. no wrap-around can happen).  For example, 20-X is
    384       // positive if we can prove that X is >= 0 and < 16.
    385       if (!CLHS->getValue().isNegative()) {
    386         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
    387         // NLZ can't be BitWidth with no sign bit
    388         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
    389         ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
    390                           TD, Depth+1);
    391 
    392         // If all of the MaskV bits are known to be zero, then we know the
    393         // output top bits are zero, because we now know that the output is
    394         // from [0-C].
    395         if ((KnownZero2 & MaskV) == MaskV) {
    396           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
    397           // Top bits known zero.
    398           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
    399         }
    400       }
    401     }
    402   }
    403   // fall through
    404   case Instruction::Add: {
    405     // If one of the operands has trailing zeros, then the bits that the
    406     // other operand has in those bit positions will be preserved in the
    407     // result. For an add, this works with either operand. For a subtract,
    408     // this only works if the known zeros are in the right operand.
    409     APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    410     APInt Mask2 = APInt::getLowBitsSet(BitWidth,
    411                                        BitWidth - Mask.countLeadingZeros());
    412     ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
    413                       Depth+1);
    414     assert((LHSKnownZero & LHSKnownOne) == 0 &&
    415            "Bits known to be one AND zero?");
    416     unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
    417 
    418     ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
    419                       Depth+1);
    420     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    421     unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
    422 
    423     // Determine which operand has more trailing zeros, and use that
    424     // many bits from the other operand.
    425     if (LHSKnownZeroOut > RHSKnownZeroOut) {
    426       if (I->getOpcode() == Instruction::Add) {
    427         APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
    428         KnownZero |= KnownZero2 & Mask;
    429         KnownOne  |= KnownOne2 & Mask;
    430       } else {
    431         // If the known zeros are in the left operand for a subtract,
    432         // fall back to the minimum known zeros in both operands.
    433         KnownZero |= APInt::getLowBitsSet(BitWidth,
    434                                           std::min(LHSKnownZeroOut,
    435                                                    RHSKnownZeroOut));
    436       }
    437     } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
    438       APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
    439       KnownZero |= LHSKnownZero & Mask;
    440       KnownOne  |= LHSKnownOne & Mask;
    441     }
    442 
    443     // Are we still trying to solve for the sign bit?
    444     if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
    445       OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
    446       if (OBO->hasNoSignedWrap()) {
    447         if (I->getOpcode() == Instruction::Add) {
    448           // Adding two positive numbers can't wrap into negative
    449           if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
    450             KnownZero |= APInt::getSignBit(BitWidth);
    451           // and adding two negative numbers can't wrap into positive.
    452           else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
    453             KnownOne |= APInt::getSignBit(BitWidth);
    454         } else {
    455           // Subtracting a negative number from a positive one can't wrap
    456           if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
    457             KnownZero |= APInt::getSignBit(BitWidth);
    458           // neither can subtracting a positive number from a negative one.
    459           else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
    460             KnownOne |= APInt::getSignBit(BitWidth);
    461         }
    462       }
    463     }
    464 
    465     return;
    466   }
    467   case Instruction::SRem:
    468     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    469       APInt RA = Rem->getValue().abs();
    470       if (RA.isPowerOf2()) {
    471         APInt LowBits = RA - 1;
    472         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
    473         ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
    474                           Depth+1);
    475 
    476         // The low bits of the first operand are unchanged by the srem.
    477         KnownZero = KnownZero2 & LowBits;
    478         KnownOne = KnownOne2 & LowBits;
    479 
    480         // If the first operand is non-negative or has all low bits zero, then
    481         // the upper bits are all zero.
    482         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
    483           KnownZero |= ~LowBits;
    484 
    485         // If the first operand is negative and not all low bits are zero, then
    486         // the upper bits are all one.
    487         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
    488           KnownOne |= ~LowBits;
    489 
    490         KnownZero &= Mask;
    491         KnownOne &= Mask;
    492 
    493         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    494       }
    495     }
    496 
    497     // The sign bit is the LHS's sign bit, except when the result of the
    498     // remainder is zero.
    499     if (Mask.isNegative() && KnownZero.isNonNegative()) {
    500       APInt Mask2 = APInt::getSignBit(BitWidth);
    501       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    502       ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
    503                         Depth+1);
    504       // If it's known zero, our sign bit is also zero.
    505       if (LHSKnownZero.isNegative())
    506         KnownZero |= LHSKnownZero;
    507     }
    508 
    509     break;
    510   case Instruction::URem: {
    511     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    512       APInt RA = Rem->getValue();
    513       if (RA.isPowerOf2()) {
    514         APInt LowBits = (RA - 1);
    515         APInt Mask2 = LowBits & Mask;
    516         KnownZero |= ~LowBits & Mask;
    517         ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
    518                           Depth+1);
    519         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    520         break;
    521       }
    522     }
    523 
    524     // Since the result is less than or equal to either operand, any leading
    525     // zero bits in either operand must also exist in the result.
    526     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    527     ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
    528                       TD, Depth+1);
    529     ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
    530                       TD, Depth+1);
    531 
    532     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
    533                                 KnownZero2.countLeadingOnes());
    534     KnownOne.clearAllBits();
    535     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
    536     break;
    537   }
    538 
    539   case Instruction::Alloca: {
    540     AllocaInst *AI = cast<AllocaInst>(V);
    541     unsigned Align = AI->getAlignment();
    542     if (Align == 0 && TD)
    543       Align = TD->getABITypeAlignment(AI->getType()->getElementType());
    544 
    545     if (Align > 0)
    546       KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
    547                                               CountTrailingZeros_32(Align));
    548     break;
    549   }
    550   case Instruction::GetElementPtr: {
    551     // Analyze all of the subscripts of this getelementptr instruction
    552     // to determine if we can prove known low zero bits.
    553     APInt LocalMask = APInt::getAllOnesValue(BitWidth);
    554     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
    555     ComputeMaskedBits(I->getOperand(0), LocalMask,
    556                       LocalKnownZero, LocalKnownOne, TD, Depth+1);
    557     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
    558 
    559     gep_type_iterator GTI = gep_type_begin(I);
    560     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
    561       Value *Index = I->getOperand(i);
    562       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    563         // Handle struct member offset arithmetic.
    564         if (!TD) return;
    565         const StructLayout *SL = TD->getStructLayout(STy);
    566         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
    567         uint64_t Offset = SL->getElementOffset(Idx);
    568         TrailZ = std::min(TrailZ,
    569                           CountTrailingZeros_64(Offset));
    570       } else {
    571         // Handle array index arithmetic.
    572         Type *IndexedTy = GTI.getIndexedType();
    573         if (!IndexedTy->isSized()) return;
    574         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
    575         uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
    576         LocalMask = APInt::getAllOnesValue(GEPOpiBits);
    577         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
    578         ComputeMaskedBits(Index, LocalMask,
    579                           LocalKnownZero, LocalKnownOne, TD, Depth+1);
    580         TrailZ = std::min(TrailZ,
    581                           unsigned(CountTrailingZeros_64(TypeSize) +
    582                                    LocalKnownZero.countTrailingOnes()));
    583       }
    584     }
    585 
    586     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
    587     break;
    588   }
    589   case Instruction::PHI: {
    590     PHINode *P = cast<PHINode>(I);
    591     // Handle the case of a simple two-predecessor recurrence PHI.
    592     // There's a lot more that could theoretically be done here, but
    593     // this is sufficient to catch some interesting cases.
    594     if (P->getNumIncomingValues() == 2) {
    595       for (unsigned i = 0; i != 2; ++i) {
    596         Value *L = P->getIncomingValue(i);
    597         Value *R = P->getIncomingValue(!i);
    598         Operator *LU = dyn_cast<Operator>(L);
    599         if (!LU)
    600           continue;
    601         unsigned Opcode = LU->getOpcode();
    602         // Check for operations that have the property that if
    603         // both their operands have low zero bits, the result
    604         // will have low zero bits.
    605         if (Opcode == Instruction::Add ||
    606             Opcode == Instruction::Sub ||
    607             Opcode == Instruction::And ||
    608             Opcode == Instruction::Or ||
    609             Opcode == Instruction::Mul) {
    610           Value *LL = LU->getOperand(0);
    611           Value *LR = LU->getOperand(1);
    612           // Find a recurrence.
    613           if (LL == I)
    614             L = LR;
    615           else if (LR == I)
    616             L = LL;
    617           else
    618             break;
    619           // Ok, we have a PHI of the form L op= R. Check for low
    620           // zero bits.
    621           APInt Mask2 = APInt::getAllOnesValue(BitWidth);
    622           ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
    623           Mask2 = APInt::getLowBitsSet(BitWidth,
    624                                        KnownZero2.countTrailingOnes());
    625 
    626           // We need to take the minimum number of known bits
    627           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
    628           ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
    629 
    630           KnownZero = Mask &
    631                       APInt::getLowBitsSet(BitWidth,
    632                                            std::min(KnownZero2.countTrailingOnes(),
    633                                                     KnownZero3.countTrailingOnes()));
    634           break;
    635         }
    636       }
    637     }
    638 
    639     // Unreachable blocks may have zero-operand PHI nodes.
    640     if (P->getNumIncomingValues() == 0)
    641       return;
    642 
    643     // Otherwise take the unions of the known bit sets of the operands,
    644     // taking conservative care to avoid excessive recursion.
    645     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
    646       // Skip if every incoming value references to ourself.
    647       if (P->hasConstantValue() == P)
    648         break;
    649 
    650       KnownZero = APInt::getAllOnesValue(BitWidth);
    651       KnownOne = APInt::getAllOnesValue(BitWidth);
    652       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
    653         // Skip direct self references.
    654         if (P->getIncomingValue(i) == P) continue;
    655 
    656         KnownZero2 = APInt(BitWidth, 0);
    657         KnownOne2 = APInt(BitWidth, 0);
    658         // Recurse, but cap the recursion to one level, because we don't
    659         // want to waste time spinning around in loops.
    660         ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
    661                           KnownZero2, KnownOne2, TD, MaxDepth-1);
    662         KnownZero &= KnownZero2;
    663         KnownOne &= KnownOne2;
    664         // If all bits have been ruled out, there's no need to check
    665         // more operands.
    666         if (!KnownZero && !KnownOne)
    667           break;
    668       }
    669     }
    670     break;
    671   }
    672   case Instruction::Call:
    673     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    674       switch (II->getIntrinsicID()) {
    675       default: break;
    676       case Intrinsic::ctpop:
    677       case Intrinsic::ctlz:
    678       case Intrinsic::cttz: {
    679         unsigned LowBits = Log2_32(BitWidth)+1;
    680         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    681         break;
    682       }
    683       case Intrinsic::x86_sse42_crc32_64_8:
    684       case Intrinsic::x86_sse42_crc32_64_64:
    685         KnownZero = APInt::getHighBitsSet(64, 32);
    686         break;
    687       }
    688     }
    689     break;
    690   }
    691 }
    692 
    693 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
    694 /// one.  Convenience wrapper around ComputeMaskedBits.
    695 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
    696                           const TargetData *TD, unsigned Depth) {
    697   unsigned BitWidth = getBitWidth(V->getType(), TD);
    698   if (!BitWidth) {
    699     KnownZero = false;
    700     KnownOne = false;
    701     return;
    702   }
    703   APInt ZeroBits(BitWidth, 0);
    704   APInt OneBits(BitWidth, 0);
    705   ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
    706                     Depth);
    707   KnownOne = OneBits[BitWidth - 1];
    708   KnownZero = ZeroBits[BitWidth - 1];
    709 }
    710 
    711 /// isPowerOfTwo - Return true if the given value is known to have exactly one
    712 /// bit set when defined. For vectors return true if every element is known to
    713 /// be a power of two when defined.  Supports values with integer or pointer
    714 /// types and vectors of integers.
    715 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
    716   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    717     return CI->getValue().isPowerOf2();
    718   // TODO: Handle vector constants.
    719 
    720   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
    721   // it is shifted off the end then the result is undefined.
    722   if (match(V, m_Shl(m_One(), m_Value())))
    723     return true;
    724 
    725   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
    726   // bottom.  If it is shifted off the bottom then the result is undefined.
    727   if (match(V, m_LShr(m_SignBit(), m_Value())))
    728     return true;
    729 
    730   // The remaining tests are all recursive, so bail out if we hit the limit.
    731   if (Depth++ == MaxDepth)
    732     return false;
    733 
    734   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
    735     return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
    736 
    737   if (SelectInst *SI = dyn_cast<SelectInst>(V))
    738     return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
    739       isPowerOfTwo(SI->getFalseValue(), TD, Depth);
    740 
    741   // An exact divide or right shift can only shift off zero bits, so the result
    742   // is a power of two only if the first operand is a power of two and not
    743   // copying a sign bit (sdiv int_min, 2).
    744   if (match(V, m_LShr(m_Value(), m_Value())) ||
    745       match(V, m_UDiv(m_Value(), m_Value()))) {
    746     PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
    747     if (PEO->isExact())
    748       return isPowerOfTwo(PEO->getOperand(0), TD, Depth);
    749   }
    750 
    751   return false;
    752 }
    753 
    754 /// isKnownNonZero - Return true if the given value is known to be non-zero
    755 /// when defined.  For vectors return true if every element is known to be
    756 /// non-zero when defined.  Supports values with integer or pointer type and
    757 /// vectors of integers.
    758 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
    759   if (Constant *C = dyn_cast<Constant>(V)) {
    760     if (C->isNullValue())
    761       return false;
    762     if (isa<ConstantInt>(C))
    763       // Must be non-zero due to null test above.
    764       return true;
    765     // TODO: Handle vectors
    766     return false;
    767   }
    768 
    769   // The remaining tests are all recursive, so bail out if we hit the limit.
    770   if (Depth++ == MaxDepth)
    771     return false;
    772 
    773   unsigned BitWidth = getBitWidth(V->getType(), TD);
    774 
    775   // X | Y != 0 if X != 0 or Y != 0.
    776   Value *X = 0, *Y = 0;
    777   if (match(V, m_Or(m_Value(X), m_Value(Y))))
    778     return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
    779 
    780   // ext X != 0 if X != 0.
    781   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
    782     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
    783 
    784   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
    785   // if the lowest bit is shifted off the end.
    786   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
    787     // shl nuw can't remove any non-zero bits.
    788     BinaryOperator *BO = cast<BinaryOperator>(V);
    789     if (BO->hasNoUnsignedWrap())
    790       return isKnownNonZero(X, TD, Depth);
    791 
    792     APInt KnownZero(BitWidth, 0);
    793     APInt KnownOne(BitWidth, 0);
    794     ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
    795     if (KnownOne[0])
    796       return true;
    797   }
    798   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
    799   // defined if the sign bit is shifted off the end.
    800   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
    801     // shr exact can only shift out zero bits.
    802     BinaryOperator *BO = cast<BinaryOperator>(V);
    803     if (BO->isExact())
    804       return isKnownNonZero(X, TD, Depth);
    805 
    806     bool XKnownNonNegative, XKnownNegative;
    807     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
    808     if (XKnownNegative)
    809       return true;
    810   }
    811   // div exact can only produce a zero if the dividend is zero.
    812   else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
    813     BinaryOperator *BO = cast<BinaryOperator>(V);
    814     if (BO->isExact())
    815       return isKnownNonZero(X, TD, Depth);
    816   }
    817   // X + Y.
    818   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
    819     bool XKnownNonNegative, XKnownNegative;
    820     bool YKnownNonNegative, YKnownNegative;
    821     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
    822     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
    823 
    824     // If X and Y are both non-negative (as signed values) then their sum is not
    825     // zero unless both X and Y are zero.
    826     if (XKnownNonNegative && YKnownNonNegative)
    827       if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
    828         return true;
    829 
    830     // If X and Y are both negative (as signed values) then their sum is not
    831     // zero unless both X and Y equal INT_MIN.
    832     if (BitWidth && XKnownNegative && YKnownNegative) {
    833       APInt KnownZero(BitWidth, 0);
    834       APInt KnownOne(BitWidth, 0);
    835       APInt Mask = APInt::getSignedMaxValue(BitWidth);
    836       // The sign bit of X is set.  If some other bit is set then X is not equal
    837       // to INT_MIN.
    838       ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
    839       if ((KnownOne & Mask) != 0)
    840         return true;
    841       // The sign bit of Y is set.  If some other bit is set then Y is not equal
    842       // to INT_MIN.
    843       ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
    844       if ((KnownOne & Mask) != 0)
    845         return true;
    846     }
    847 
    848     // The sum of a non-negative number and a power of two is not zero.
    849     if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
    850       return true;
    851     if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
    852       return true;
    853   }
    854   // (C ? X : Y) != 0 if X != 0 and Y != 0.
    855   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
    856     if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
    857         isKnownNonZero(SI->getFalseValue(), TD, Depth))
    858       return true;
    859   }
    860 
    861   if (!BitWidth) return false;
    862   APInt KnownZero(BitWidth, 0);
    863   APInt KnownOne(BitWidth, 0);
    864   ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
    865                     TD, Depth);
    866   return KnownOne != 0;
    867 }
    868 
    869 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
    870 /// this predicate to simplify operations downstream.  Mask is known to be zero
    871 /// for bits that V cannot have.
    872 ///
    873 /// This function is defined on values with integer type, values with pointer
    874 /// type (but only if TD is non-null), and vectors of integers.  In the case
    875 /// where V is a vector, the mask, known zero, and known one values are the
    876 /// same width as the vector element, and the bit is set only if it is true
    877 /// for all of the elements in the vector.
    878 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
    879                              const TargetData *TD, unsigned Depth) {
    880   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
    881   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
    882   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    883   return (KnownZero & Mask) == Mask;
    884 }
    885 
    886 
    887 
    888 /// ComputeNumSignBits - Return the number of times the sign bit of the
    889 /// register is replicated into the other bits.  We know that at least 1 bit
    890 /// is always equal to the sign bit (itself), but other cases can give us
    891 /// information.  For example, immediately after an "ashr X, 2", we know that
    892 /// the top 3 bits are all equal to each other, so we return 3.
    893 ///
    894 /// 'Op' must have a scalar integer type.
    895 ///
    896 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
    897                                   unsigned Depth) {
    898   assert((TD || V->getType()->isIntOrIntVectorTy()) &&
    899          "ComputeNumSignBits requires a TargetData object to operate "
    900          "on non-integer values!");
    901   Type *Ty = V->getType();
    902   unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
    903                          Ty->getScalarSizeInBits();
    904   unsigned Tmp, Tmp2;
    905   unsigned FirstAnswer = 1;
    906 
    907   // Note that ConstantInt is handled by the general ComputeMaskedBits case
    908   // below.
    909 
    910   if (Depth == 6)
    911     return 1;  // Limit search depth.
    912 
    913   Operator *U = dyn_cast<Operator>(V);
    914   switch (Operator::getOpcode(V)) {
    915   default: break;
    916   case Instruction::SExt:
    917     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
    918     return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
    919 
    920   case Instruction::AShr:
    921     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
    922     // ashr X, C   -> adds C sign bits.
    923     if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
    924       Tmp += C->getZExtValue();
    925       if (Tmp > TyBits) Tmp = TyBits;
    926     }
    927     // vector ashr X, <C, C, C, C>  -> adds C sign bits
    928     if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
    929       if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
    930         Tmp += CI->getZExtValue();
    931         if (Tmp > TyBits) Tmp = TyBits;
    932       }
    933     }
    934     return Tmp;
    935   case Instruction::Shl:
    936     if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
    937       // shl destroys sign bits.
    938       Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
    939       if (C->getZExtValue() >= TyBits ||      // Bad shift.
    940           C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
    941       return Tmp - C->getZExtValue();
    942     }
    943     break;
    944   case Instruction::And:
    945   case Instruction::Or:
    946   case Instruction::Xor:    // NOT is handled here.
    947     // Logical binary ops preserve the number of sign bits at the worst.
    948     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
    949     if (Tmp != 1) {
    950       Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
    951       FirstAnswer = std::min(Tmp, Tmp2);
    952       // We computed what we know about the sign bits as our first
    953       // answer. Now proceed to the generic code that uses
    954       // ComputeMaskedBits, and pick whichever answer is better.
    955     }
    956     break;
    957 
    958   case Instruction::Select:
    959     Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
    960     if (Tmp == 1) return 1;  // Early out.
    961     Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
    962     return std::min(Tmp, Tmp2);
    963 
    964   case Instruction::Add:
    965     // Add can have at most one carry bit.  Thus we know that the output
    966     // is, at worst, one more bit than the inputs.
    967     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
    968     if (Tmp == 1) return 1;  // Early out.
    969 
    970     // Special case decrementing a value (ADD X, -1):
    971     if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
    972       if (CRHS->isAllOnesValue()) {
    973         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
    974         APInt Mask = APInt::getAllOnesValue(TyBits);
    975         ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
    976                           Depth+1);
    977 
    978         // If the input is known to be 0 or 1, the output is 0/-1, which is all
    979         // sign bits set.
    980         if ((KnownZero | APInt(TyBits, 1)) == Mask)
    981           return TyBits;
    982 
    983         // If we are subtracting one from a positive number, there is no carry
    984         // out of the result.
    985         if (KnownZero.isNegative())
    986           return Tmp;
    987       }
    988 
    989     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
    990     if (Tmp2 == 1) return 1;
    991     return std::min(Tmp, Tmp2)-1;
    992 
    993   case Instruction::Sub:
    994     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
    995     if (Tmp2 == 1) return 1;
    996 
    997     // Handle NEG.
    998     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
    999       if (CLHS->isNullValue()) {
   1000         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1001         APInt Mask = APInt::getAllOnesValue(TyBits);
   1002         ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
   1003                           TD, Depth+1);
   1004         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   1005         // sign bits set.
   1006         if ((KnownZero | APInt(TyBits, 1)) == Mask)
   1007           return TyBits;
   1008 
   1009         // If the input is known to be positive (the sign bit is known clear),
   1010         // the output of the NEG has the same number of sign bits as the input.
   1011         if (KnownZero.isNegative())
   1012           return Tmp2;
   1013 
   1014         // Otherwise, we treat this like a SUB.
   1015       }
   1016 
   1017     // Sub can have at most one carry bit.  Thus we know that the output
   1018     // is, at worst, one more bit than the inputs.
   1019     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1020     if (Tmp == 1) return 1;  // Early out.
   1021     return std::min(Tmp, Tmp2)-1;
   1022 
   1023   case Instruction::PHI: {
   1024     PHINode *PN = cast<PHINode>(U);
   1025     // Don't analyze large in-degree PHIs.
   1026     if (PN->getNumIncomingValues() > 4) break;
   1027 
   1028     // Take the minimum of all incoming values.  This can't infinitely loop
   1029     // because of our depth threshold.
   1030     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
   1031     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
   1032       if (Tmp == 1) return Tmp;
   1033       Tmp = std::min(Tmp,
   1034                      ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
   1035     }
   1036     return Tmp;
   1037   }
   1038 
   1039   case Instruction::Trunc:
   1040     // FIXME: it's tricky to do anything useful for this, but it is an important
   1041     // case for targets like X86.
   1042     break;
   1043   }
   1044 
   1045   // Finally, if we can prove that the top bits of the result are 0's or 1's,
   1046   // use this information.
   1047   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1048   APInt Mask = APInt::getAllOnesValue(TyBits);
   1049   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
   1050 
   1051   if (KnownZero.isNegative()) {        // sign bit is 0
   1052     Mask = KnownZero;
   1053   } else if (KnownOne.isNegative()) {  // sign bit is 1;
   1054     Mask = KnownOne;
   1055   } else {
   1056     // Nothing known.
   1057     return FirstAnswer;
   1058   }
   1059 
   1060   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
   1061   // the number of identical bits in the top of the input value.
   1062   Mask = ~Mask;
   1063   Mask <<= Mask.getBitWidth()-TyBits;
   1064   // Return # leading zeros.  We use 'min' here in case Val was zero before
   1065   // shifting.  We don't want to return '64' as for an i32 "0".
   1066   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
   1067 }
   1068 
   1069 /// ComputeMultiple - This function computes the integer multiple of Base that
   1070 /// equals V.  If successful, it returns true and returns the multiple in
   1071 /// Multiple.  If unsuccessful, it returns false. It looks
   1072 /// through SExt instructions only if LookThroughSExt is true.
   1073 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
   1074                            bool LookThroughSExt, unsigned Depth) {
   1075   const unsigned MaxDepth = 6;
   1076 
   1077   assert(V && "No Value?");
   1078   assert(Depth <= MaxDepth && "Limit Search Depth");
   1079   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
   1080 
   1081   Type *T = V->getType();
   1082 
   1083   ConstantInt *CI = dyn_cast<ConstantInt>(V);
   1084 
   1085   if (Base == 0)
   1086     return false;
   1087 
   1088   if (Base == 1) {
   1089     Multiple = V;
   1090     return true;
   1091   }
   1092 
   1093   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
   1094   Constant *BaseVal = ConstantInt::get(T, Base);
   1095   if (CO && CO == BaseVal) {
   1096     // Multiple is 1.
   1097     Multiple = ConstantInt::get(T, 1);
   1098     return true;
   1099   }
   1100 
   1101   if (CI && CI->getZExtValue() % Base == 0) {
   1102     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
   1103     return true;
   1104   }
   1105 
   1106   if (Depth == MaxDepth) return false;  // Limit search depth.
   1107 
   1108   Operator *I = dyn_cast<Operator>(V);
   1109   if (!I) return false;
   1110 
   1111   switch (I->getOpcode()) {
   1112   default: break;
   1113   case Instruction::SExt:
   1114     if (!LookThroughSExt) return false;
   1115     // otherwise fall through to ZExt
   1116   case Instruction::ZExt:
   1117     return ComputeMultiple(I->getOperand(0), Base, Multiple,
   1118                            LookThroughSExt, Depth+1);
   1119   case Instruction::Shl:
   1120   case Instruction::Mul: {
   1121     Value *Op0 = I->getOperand(0);
   1122     Value *Op1 = I->getOperand(1);
   1123 
   1124     if (I->getOpcode() == Instruction::Shl) {
   1125       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
   1126       if (!Op1CI) return false;
   1127       // Turn Op0 << Op1 into Op0 * 2^Op1
   1128       APInt Op1Int = Op1CI->getValue();
   1129       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
   1130       APInt API(Op1Int.getBitWidth(), 0);
   1131       API.setBit(BitToSet);
   1132       Op1 = ConstantInt::get(V->getContext(), API);
   1133     }
   1134 
   1135     Value *Mul0 = NULL;
   1136     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
   1137       if (Constant *Op1C = dyn_cast<Constant>(Op1))
   1138         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
   1139           if (Op1C->getType()->getPrimitiveSizeInBits() <
   1140               MulC->getType()->getPrimitiveSizeInBits())
   1141             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
   1142           if (Op1C->getType()->getPrimitiveSizeInBits() >
   1143               MulC->getType()->getPrimitiveSizeInBits())
   1144             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
   1145 
   1146           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
   1147           Multiple = ConstantExpr::getMul(MulC, Op1C);
   1148           return true;
   1149         }
   1150 
   1151       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
   1152         if (Mul0CI->getValue() == 1) {
   1153           // V == Base * Op1, so return Op1
   1154           Multiple = Op1;
   1155           return true;
   1156         }
   1157     }
   1158 
   1159     Value *Mul1 = NULL;
   1160     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
   1161       if (Constant *Op0C = dyn_cast<Constant>(Op0))
   1162         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
   1163           if (Op0C->getType()->getPrimitiveSizeInBits() <
   1164               MulC->getType()->getPrimitiveSizeInBits())
   1165             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
   1166           if (Op0C->getType()->getPrimitiveSizeInBits() >
   1167               MulC->getType()->getPrimitiveSizeInBits())
   1168             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
   1169 
   1170           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
   1171           Multiple = ConstantExpr::getMul(MulC, Op0C);
   1172           return true;
   1173         }
   1174 
   1175       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
   1176         if (Mul1CI->getValue() == 1) {
   1177           // V == Base * Op0, so return Op0
   1178           Multiple = Op0;
   1179           return true;
   1180         }
   1181     }
   1182   }
   1183   }
   1184 
   1185   // We could not determine if V is a multiple of Base.
   1186   return false;
   1187 }
   1188 
   1189 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
   1190 /// value is never equal to -0.0.
   1191 ///
   1192 /// NOTE: this function will need to be revisited when we support non-default
   1193 /// rounding modes!
   1194 ///
   1195 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
   1196   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
   1197     return !CFP->getValueAPF().isNegZero();
   1198 
   1199   if (Depth == 6)
   1200     return 1;  // Limit search depth.
   1201 
   1202   const Operator *I = dyn_cast<Operator>(V);
   1203   if (I == 0) return false;
   1204 
   1205   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
   1206   if (I->getOpcode() == Instruction::FAdd &&
   1207       isa<ConstantFP>(I->getOperand(1)) &&
   1208       cast<ConstantFP>(I->getOperand(1))->isNullValue())
   1209     return true;
   1210 
   1211   // sitofp and uitofp turn into +0.0 for zero.
   1212   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
   1213     return true;
   1214 
   1215   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   1216     // sqrt(-0.0) = -0.0, no other negative results are possible.
   1217     if (II->getIntrinsicID() == Intrinsic::sqrt)
   1218       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
   1219 
   1220   if (const CallInst *CI = dyn_cast<CallInst>(I))
   1221     if (const Function *F = CI->getCalledFunction()) {
   1222       if (F->isDeclaration()) {
   1223         // abs(x) != -0.0
   1224         if (F->getName() == "abs") return true;
   1225         // fabs[lf](x) != -0.0
   1226         if (F->getName() == "fabs") return true;
   1227         if (F->getName() == "fabsf") return true;
   1228         if (F->getName() == "fabsl") return true;
   1229         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
   1230             F->getName() == "sqrtl")
   1231           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
   1232       }
   1233     }
   1234 
   1235   return false;
   1236 }
   1237 
   1238 /// isBytewiseValue - If the specified value can be set by repeating the same
   1239 /// byte in memory, return the i8 value that it is represented with.  This is
   1240 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
   1241 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
   1242 /// byte store (e.g. i16 0x1234), return null.
   1243 Value *llvm::isBytewiseValue(Value *V) {
   1244   // All byte-wide stores are splatable, even of arbitrary variables.
   1245   if (V->getType()->isIntegerTy(8)) return V;
   1246 
   1247   // Handle 'null' ConstantArrayZero etc.
   1248   if (Constant *C = dyn_cast<Constant>(V))
   1249     if (C->isNullValue())
   1250       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
   1251 
   1252   // Constant float and double values can be handled as integer values if the
   1253   // corresponding integer value is "byteable".  An important case is 0.0.
   1254   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1255     if (CFP->getType()->isFloatTy())
   1256       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
   1257     if (CFP->getType()->isDoubleTy())
   1258       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
   1259     // Don't handle long double formats, which have strange constraints.
   1260   }
   1261 
   1262   // We can handle constant integers that are power of two in size and a
   1263   // multiple of 8 bits.
   1264   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1265     unsigned Width = CI->getBitWidth();
   1266     if (isPowerOf2_32(Width) && Width > 8) {
   1267       // We can handle this value if the recursive binary decomposition is the
   1268       // same at all levels.
   1269       APInt Val = CI->getValue();
   1270       APInt Val2;
   1271       while (Val.getBitWidth() != 8) {
   1272         unsigned NextWidth = Val.getBitWidth()/2;
   1273         Val2  = Val.lshr(NextWidth);
   1274         Val2 = Val2.trunc(Val.getBitWidth()/2);
   1275         Val = Val.trunc(Val.getBitWidth()/2);
   1276 
   1277         // If the top/bottom halves aren't the same, reject it.
   1278         if (Val != Val2)
   1279           return 0;
   1280       }
   1281       return ConstantInt::get(V->getContext(), Val);
   1282     }
   1283   }
   1284 
   1285   // A ConstantArray is splatable if all its members are equal and also
   1286   // splatable.
   1287   if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1288     if (CA->getNumOperands() == 0)
   1289       return 0;
   1290 
   1291     Value *Val = isBytewiseValue(CA->getOperand(0));
   1292     if (!Val)
   1293       return 0;
   1294 
   1295     for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
   1296       if (CA->getOperand(I-1) != CA->getOperand(I))
   1297         return 0;
   1298 
   1299     return Val;
   1300   }
   1301 
   1302   // Conceptually, we could handle things like:
   1303   //   %a = zext i8 %X to i16
   1304   //   %b = shl i16 %a, 8
   1305   //   %c = or i16 %a, %b
   1306   // but until there is an example that actually needs this, it doesn't seem
   1307   // worth worrying about.
   1308   return 0;
   1309 }
   1310 
   1311 
   1312 // This is the recursive version of BuildSubAggregate. It takes a few different
   1313 // arguments. Idxs is the index within the nested struct From that we are
   1314 // looking at now (which is of type IndexedType). IdxSkip is the number of
   1315 // indices from Idxs that should be left out when inserting into the resulting
   1316 // struct. To is the result struct built so far, new insertvalue instructions
   1317 // build on that.
   1318 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
   1319                                 SmallVector<unsigned, 10> &Idxs,
   1320                                 unsigned IdxSkip,
   1321                                 Instruction *InsertBefore) {
   1322   llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
   1323   if (STy) {
   1324     // Save the original To argument so we can modify it
   1325     Value *OrigTo = To;
   1326     // General case, the type indexed by Idxs is a struct
   1327     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1328       // Process each struct element recursively
   1329       Idxs.push_back(i);
   1330       Value *PrevTo = To;
   1331       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
   1332                              InsertBefore);
   1333       Idxs.pop_back();
   1334       if (!To) {
   1335         // Couldn't find any inserted value for this index? Cleanup
   1336         while (PrevTo != OrigTo) {
   1337           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
   1338           PrevTo = Del->getAggregateOperand();
   1339           Del->eraseFromParent();
   1340         }
   1341         // Stop processing elements
   1342         break;
   1343       }
   1344     }
   1345     // If we successfully found a value for each of our subaggregates
   1346     if (To)
   1347       return To;
   1348   }
   1349   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
   1350   // the struct's elements had a value that was inserted directly. In the latter
   1351   // case, perhaps we can't determine each of the subelements individually, but
   1352   // we might be able to find the complete struct somewhere.
   1353 
   1354   // Find the value that is at that particular spot
   1355   Value *V = FindInsertedValue(From, Idxs);
   1356 
   1357   if (!V)
   1358     return NULL;
   1359 
   1360   // Insert the value in the new (sub) aggregrate
   1361   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
   1362                                        "tmp", InsertBefore);
   1363 }
   1364 
   1365 // This helper takes a nested struct and extracts a part of it (which is again a
   1366 // struct) into a new value. For example, given the struct:
   1367 // { a, { b, { c, d }, e } }
   1368 // and the indices "1, 1" this returns
   1369 // { c, d }.
   1370 //
   1371 // It does this by inserting an insertvalue for each element in the resulting
   1372 // struct, as opposed to just inserting a single struct. This will only work if
   1373 // each of the elements of the substruct are known (ie, inserted into From by an
   1374 // insertvalue instruction somewhere).
   1375 //
   1376 // All inserted insertvalue instructions are inserted before InsertBefore
   1377 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
   1378                                 Instruction *InsertBefore) {
   1379   assert(InsertBefore && "Must have someplace to insert!");
   1380   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
   1381                                                              idx_range);
   1382   Value *To = UndefValue::get(IndexedType);
   1383   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
   1384   unsigned IdxSkip = Idxs.size();
   1385 
   1386   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
   1387 }
   1388 
   1389 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
   1390 /// the scalar value indexed is already around as a register, for example if it
   1391 /// were inserted directly into the aggregrate.
   1392 ///
   1393 /// If InsertBefore is not null, this function will duplicate (modified)
   1394 /// insertvalues when a part of a nested struct is extracted.
   1395 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
   1396                                Instruction *InsertBefore) {
   1397   // Nothing to index? Just return V then (this is useful at the end of our
   1398   // recursion)
   1399   if (idx_range.empty())
   1400     return V;
   1401   // We have indices, so V should have an indexable type
   1402   assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
   1403          && "Not looking at a struct or array?");
   1404   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range)
   1405          && "Invalid indices for type?");
   1406   CompositeType *PTy = cast<CompositeType>(V->getType());
   1407 
   1408   if (isa<UndefValue>(V))
   1409     return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
   1410                                                               idx_range));
   1411   else if (isa<ConstantAggregateZero>(V))
   1412     return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
   1413                                                                   idx_range));
   1414   else if (Constant *C = dyn_cast<Constant>(V)) {
   1415     if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
   1416       // Recursively process this constant
   1417       return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1),
   1418                                InsertBefore);
   1419   } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
   1420     // Loop the indices for the insertvalue instruction in parallel with the
   1421     // requested indices
   1422     const unsigned *req_idx = idx_range.begin();
   1423     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
   1424          i != e; ++i, ++req_idx) {
   1425       if (req_idx == idx_range.end()) {
   1426         if (InsertBefore)
   1427           // The requested index identifies a part of a nested aggregate. Handle
   1428           // this specially. For example,
   1429           // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
   1430           // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
   1431           // %C = extractvalue {i32, { i32, i32 } } %B, 1
   1432           // This can be changed into
   1433           // %A = insertvalue {i32, i32 } undef, i32 10, 0
   1434           // %C = insertvalue {i32, i32 } %A, i32 11, 1
   1435           // which allows the unused 0,0 element from the nested struct to be
   1436           // removed.
   1437           return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
   1438                                    InsertBefore);
   1439         else
   1440           // We can't handle this without inserting insertvalues
   1441           return 0;
   1442       }
   1443 
   1444       // This insert value inserts something else than what we are looking for.
   1445       // See if the (aggregrate) value inserted into has the value we are
   1446       // looking for, then.
   1447       if (*req_idx != *i)
   1448         return FindInsertedValue(I->getAggregateOperand(), idx_range,
   1449                                  InsertBefore);
   1450     }
   1451     // If we end up here, the indices of the insertvalue match with those
   1452     // requested (though possibly only partially). Now we recursively look at
   1453     // the inserted value, passing any remaining indices.
   1454     return FindInsertedValue(I->getInsertedValueOperand(),
   1455                              makeArrayRef(req_idx, idx_range.end()),
   1456                              InsertBefore);
   1457   } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
   1458     // If we're extracting a value from an aggregrate that was extracted from
   1459     // something else, we can extract from that something else directly instead.
   1460     // However, we will need to chain I's indices with the requested indices.
   1461 
   1462     // Calculate the number of indices required
   1463     unsigned size = I->getNumIndices() + idx_range.size();
   1464     // Allocate some space to put the new indices in
   1465     SmallVector<unsigned, 5> Idxs;
   1466     Idxs.reserve(size);
   1467     // Add indices from the extract value instruction
   1468     Idxs.append(I->idx_begin(), I->idx_end());
   1469 
   1470     // Add requested indices
   1471     Idxs.append(idx_range.begin(), idx_range.end());
   1472 
   1473     assert(Idxs.size() == size
   1474            && "Number of indices added not correct?");
   1475 
   1476     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
   1477   }
   1478   // Otherwise, we don't know (such as, extracting from a function return value
   1479   // or load instruction)
   1480   return 0;
   1481 }
   1482 
   1483 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
   1484 /// it can be expressed as a base pointer plus a constant offset.  Return the
   1485 /// base and offset to the caller.
   1486 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
   1487                                               const TargetData &TD) {
   1488   Operator *PtrOp = dyn_cast<Operator>(Ptr);
   1489   if (PtrOp == 0) return Ptr;
   1490 
   1491   // Just look through bitcasts.
   1492   if (PtrOp->getOpcode() == Instruction::BitCast)
   1493     return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
   1494 
   1495   // If this is a GEP with constant indices, we can look through it.
   1496   GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
   1497   if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
   1498 
   1499   gep_type_iterator GTI = gep_type_begin(GEP);
   1500   for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
   1501        ++I, ++GTI) {
   1502     ConstantInt *OpC = cast<ConstantInt>(*I);
   1503     if (OpC->isZero()) continue;
   1504 
   1505     // Handle a struct and array indices which add their offset to the pointer.
   1506     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
   1507       Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
   1508     } else {
   1509       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
   1510       Offset += OpC->getSExtValue()*Size;
   1511     }
   1512   }
   1513 
   1514   // Re-sign extend from the pointer size if needed to get overflow edge cases
   1515   // right.
   1516   unsigned PtrSize = TD.getPointerSizeInBits();
   1517   if (PtrSize < 64)
   1518     Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
   1519 
   1520   return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
   1521 }
   1522 
   1523 
   1524 /// GetConstantStringInfo - This function computes the length of a
   1525 /// null-terminated C string pointed to by V.  If successful, it returns true
   1526 /// and returns the string in Str.  If unsuccessful, it returns false.
   1527 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
   1528                                  uint64_t Offset,
   1529                                  bool StopAtNul) {
   1530   // If V is NULL then return false;
   1531   if (V == NULL) return false;
   1532 
   1533   // Look through bitcast instructions.
   1534   if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
   1535     return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
   1536 
   1537   // If the value is not a GEP instruction nor a constant expression with a
   1538   // GEP instruction, then return false because ConstantArray can't occur
   1539   // any other way
   1540   const User *GEP = 0;
   1541   if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
   1542     GEP = GEPI;
   1543   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
   1544     if (CE->getOpcode() == Instruction::BitCast)
   1545       return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
   1546     if (CE->getOpcode() != Instruction::GetElementPtr)
   1547       return false;
   1548     GEP = CE;
   1549   }
   1550 
   1551   if (GEP) {
   1552     // Make sure the GEP has exactly three arguments.
   1553     if (GEP->getNumOperands() != 3)
   1554       return false;
   1555 
   1556     // Make sure the index-ee is a pointer to array of i8.
   1557     PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
   1558     ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
   1559     if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
   1560       return false;
   1561 
   1562     // Check to make sure that the first operand of the GEP is an integer and
   1563     // has value 0 so that we are sure we're indexing into the initializer.
   1564     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
   1565     if (FirstIdx == 0 || !FirstIdx->isZero())
   1566       return false;
   1567 
   1568     // If the second index isn't a ConstantInt, then this is a variable index
   1569     // into the array.  If this occurs, we can't say anything meaningful about
   1570     // the string.
   1571     uint64_t StartIdx = 0;
   1572     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
   1573       StartIdx = CI->getZExtValue();
   1574     else
   1575       return false;
   1576     return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
   1577                                  StopAtNul);
   1578   }
   1579 
   1580   // The GEP instruction, constant or instruction, must reference a global
   1581   // variable that is a constant and is initialized. The referenced constant
   1582   // initializer is the array that we'll use for optimization.
   1583   const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
   1584   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
   1585     return false;
   1586   const Constant *GlobalInit = GV->getInitializer();
   1587 
   1588   // Handle the ConstantAggregateZero case
   1589   if (isa<ConstantAggregateZero>(GlobalInit)) {
   1590     // This is a degenerate case. The initializer is constant zero so the
   1591     // length of the string must be zero.
   1592     Str.clear();
   1593     return true;
   1594   }
   1595 
   1596   // Must be a Constant Array
   1597   const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
   1598   if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
   1599     return false;
   1600 
   1601   // Get the number of elements in the array
   1602   uint64_t NumElts = Array->getType()->getNumElements();
   1603 
   1604   if (Offset > NumElts)
   1605     return false;
   1606 
   1607   // Traverse the constant array from 'Offset' which is the place the GEP refers
   1608   // to in the array.
   1609   Str.reserve(NumElts-Offset);
   1610   for (unsigned i = Offset; i != NumElts; ++i) {
   1611     const Constant *Elt = Array->getOperand(i);
   1612     const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
   1613     if (!CI) // This array isn't suitable, non-int initializer.
   1614       return false;
   1615     if (StopAtNul && CI->isZero())
   1616       return true; // we found end of string, success!
   1617     Str += (char)CI->getZExtValue();
   1618   }
   1619 
   1620   // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
   1621   return true;
   1622 }
   1623 
   1624 // These next two are very similar to the above, but also look through PHI
   1625 // nodes.
   1626 // TODO: See if we can integrate these two together.
   1627 
   1628 /// GetStringLengthH - If we can compute the length of the string pointed to by
   1629 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   1630 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
   1631   // Look through noop bitcast instructions.
   1632   if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
   1633     return GetStringLengthH(BCI->getOperand(0), PHIs);
   1634 
   1635   // If this is a PHI node, there are two cases: either we have already seen it
   1636   // or we haven't.
   1637   if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1638     if (!PHIs.insert(PN))
   1639       return ~0ULL;  // already in the set.
   1640 
   1641     // If it was new, see if all the input strings are the same length.
   1642     uint64_t LenSoFar = ~0ULL;
   1643     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1644       uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
   1645       if (Len == 0) return 0; // Unknown length -> unknown.
   1646 
   1647       if (Len == ~0ULL) continue;
   1648 
   1649       if (Len != LenSoFar && LenSoFar != ~0ULL)
   1650         return 0;    // Disagree -> unknown.
   1651       LenSoFar = Len;
   1652     }
   1653 
   1654     // Success, all agree.
   1655     return LenSoFar;
   1656   }
   1657 
   1658   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
   1659   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
   1660     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
   1661     if (Len1 == 0) return 0;
   1662     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
   1663     if (Len2 == 0) return 0;
   1664     if (Len1 == ~0ULL) return Len2;
   1665     if (Len2 == ~0ULL) return Len1;
   1666     if (Len1 != Len2) return 0;
   1667     return Len1;
   1668   }
   1669 
   1670   // If the value is not a GEP instruction nor a constant expression with a
   1671   // GEP instruction, then return unknown.
   1672   User *GEP = 0;
   1673   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
   1674     GEP = GEPI;
   1675   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
   1676     if (CE->getOpcode() != Instruction::GetElementPtr)
   1677       return 0;
   1678     GEP = CE;
   1679   } else {
   1680     return 0;
   1681   }
   1682 
   1683   // Make sure the GEP has exactly three arguments.
   1684   if (GEP->getNumOperands() != 3)
   1685     return 0;
   1686 
   1687   // Check to make sure that the first operand of the GEP is an integer and
   1688   // has value 0 so that we are sure we're indexing into the initializer.
   1689   if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
   1690     if (!Idx->isZero())
   1691       return 0;
   1692   } else
   1693     return 0;
   1694 
   1695   // If the second index isn't a ConstantInt, then this is a variable index
   1696   // into the array.  If this occurs, we can't say anything meaningful about
   1697   // the string.
   1698   uint64_t StartIdx = 0;
   1699   if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
   1700     StartIdx = CI->getZExtValue();
   1701   else
   1702     return 0;
   1703 
   1704   // The GEP instruction, constant or instruction, must reference a global
   1705   // variable that is a constant and is initialized. The referenced constant
   1706   // initializer is the array that we'll use for optimization.
   1707   GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
   1708   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
   1709       GV->mayBeOverridden())
   1710     return 0;
   1711   Constant *GlobalInit = GV->getInitializer();
   1712 
   1713   // Handle the ConstantAggregateZero case, which is a degenerate case. The
   1714   // initializer is constant zero so the length of the string must be zero.
   1715   if (isa<ConstantAggregateZero>(GlobalInit))
   1716     return 1;  // Len = 0 offset by 1.
   1717 
   1718   // Must be a Constant Array
   1719   ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
   1720   if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
   1721     return false;
   1722 
   1723   // Get the number of elements in the array
   1724   uint64_t NumElts = Array->getType()->getNumElements();
   1725 
   1726   // Traverse the constant array from StartIdx (derived above) which is
   1727   // the place the GEP refers to in the array.
   1728   for (unsigned i = StartIdx; i != NumElts; ++i) {
   1729     Constant *Elt = Array->getOperand(i);
   1730     ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
   1731     if (!CI) // This array isn't suitable, non-int initializer.
   1732       return 0;
   1733     if (CI->isZero())
   1734       return i-StartIdx+1; // We found end of string, success!
   1735   }
   1736 
   1737   return 0; // The array isn't null terminated, conservatively return 'unknown'.
   1738 }
   1739 
   1740 /// GetStringLength - If we can compute the length of the string pointed to by
   1741 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   1742 uint64_t llvm::GetStringLength(Value *V) {
   1743   if (!V->getType()->isPointerTy()) return 0;
   1744 
   1745   SmallPtrSet<PHINode*, 32> PHIs;
   1746   uint64_t Len = GetStringLengthH(V, PHIs);
   1747   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
   1748   // an empty string as a length.
   1749   return Len == ~0ULL ? 1 : Len;
   1750 }
   1751 
   1752 Value *
   1753 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
   1754   if (!V->getType()->isPointerTy())
   1755     return V;
   1756   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
   1757     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   1758       V = GEP->getPointerOperand();
   1759     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
   1760       V = cast<Operator>(V)->getOperand(0);
   1761     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
   1762       if (GA->mayBeOverridden())
   1763         return V;
   1764       V = GA->getAliasee();
   1765     } else {
   1766       // See if InstructionSimplify knows any relevant tricks.
   1767       if (Instruction *I = dyn_cast<Instruction>(V))
   1768         // TODO: Acquire a DominatorTree and use it.
   1769         if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
   1770           V = Simplified;
   1771           continue;
   1772         }
   1773 
   1774       return V;
   1775     }
   1776     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
   1777   }
   1778   return V;
   1779 }
   1780 
   1781 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
   1782 /// are lifetime markers.
   1783 ///
   1784 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
   1785   for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
   1786        UI != UE; ++UI) {
   1787     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
   1788     if (!II) return false;
   1789 
   1790     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
   1791         II->getIntrinsicID() != Intrinsic::lifetime_end)
   1792       return false;
   1793   }
   1794   return true;
   1795 }
   1796