1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Support/GetElementPtrTypeIterator.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/PatternMatch.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include <cstring> 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 const unsigned MaxDepth = 6; 34 35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 36 /// unknown returns 0). For vector types, returns the element type's bitwidth. 37 static unsigned getBitWidth(Type *Ty, const TargetData *TD) { 38 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 39 return BitWidth; 40 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 41 return TD ? TD->getPointerSizeInBits() : 0; 42 } 43 44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 45 /// known to be either zero or one and return them in the KnownZero/KnownOne 46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 47 /// processing. 48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 49 /// we cannot optimize based on the assumption that it is zero without changing 50 /// it to be an explicit zero. If we don't change it to zero, other code could 51 /// optimized based on the contradictory assumption that it is non-zero. 52 /// Because instcombine aggressively folds operations with undef args anyway, 53 /// this won't lose us code quality. 54 /// 55 /// This function is defined on values with integer type, values with pointer 56 /// type (but only if TD is non-null), and vectors of integers. In the case 57 /// where V is a vector, the mask, known zero, and known one values are the 58 /// same width as the vector element, and the bit is set only if it is true 59 /// for all of the elements in the vector. 60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 61 APInt &KnownZero, APInt &KnownOne, 62 const TargetData *TD, unsigned Depth) { 63 assert(V && "No Value?"); 64 assert(Depth <= MaxDepth && "Limit Search Depth"); 65 unsigned BitWidth = Mask.getBitWidth(); 66 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy()) 67 && "Not integer or pointer type!"); 68 assert((!TD || 69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 70 (!V->getType()->isIntOrIntVectorTy() || 71 V->getType()->getScalarSizeInBits() == BitWidth) && 72 KnownZero.getBitWidth() == BitWidth && 73 KnownOne.getBitWidth() == BitWidth && 74 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 75 76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 77 // We know all of the bits for a constant! 78 KnownOne = CI->getValue() & Mask; 79 KnownZero = ~KnownOne & Mask; 80 return; 81 } 82 // Null and aggregate-zero are all-zeros. 83 if (isa<ConstantPointerNull>(V) || 84 isa<ConstantAggregateZero>(V)) { 85 KnownOne.clearAllBits(); 86 KnownZero = Mask; 87 return; 88 } 89 // Handle a constant vector by taking the intersection of the known bits of 90 // each element. 91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 92 KnownZero.setAllBits(); KnownOne.setAllBits(); 93 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, 96 TD, Depth); 97 KnownZero &= KnownZero2; 98 KnownOne &= KnownOne2; 99 } 100 return; 101 } 102 // The address of an aligned GlobalValue has trailing zeros. 103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 104 unsigned Align = GV->getAlignment(); 105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { 106 Type *ObjectType = GV->getType()->getElementType(); 107 // If the object is defined in the current Module, we'll be giving 108 // it the preferred alignment. Otherwise, we have to assume that it 109 // may only have the minimum ABI alignment. 110 if (!GV->isDeclaration() && !GV->mayBeOverridden()) 111 Align = TD->getPrefTypeAlignment(ObjectType); 112 else 113 Align = TD->getABITypeAlignment(ObjectType); 114 } 115 if (Align > 0) 116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 117 CountTrailingZeros_32(Align)); 118 else 119 KnownZero.clearAllBits(); 120 KnownOne.clearAllBits(); 121 return; 122 } 123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 124 // the bits of its aliasee. 125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 126 if (GA->mayBeOverridden()) { 127 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 128 } else { 129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 130 TD, Depth+1); 131 } 132 return; 133 } 134 135 if (Argument *A = dyn_cast<Argument>(V)) { 136 // Get alignment information off byval arguments if specified in the IR. 137 if (A->hasByValAttr()) 138 if (unsigned Align = A->getParamAlignment()) 139 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 140 CountTrailingZeros_32(Align)); 141 return; 142 } 143 144 // Start out not knowing anything. 145 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 146 147 if (Depth == MaxDepth || Mask == 0) 148 return; // Limit search depth. 149 150 Operator *I = dyn_cast<Operator>(V); 151 if (!I) return; 152 153 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 154 switch (I->getOpcode()) { 155 default: break; 156 case Instruction::And: { 157 // If either the LHS or the RHS are Zero, the result is zero. 158 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 159 APInt Mask2(Mask & ~KnownZero); 160 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 161 Depth+1); 162 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 163 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 164 165 // Output known-1 bits are only known if set in both the LHS & RHS. 166 KnownOne &= KnownOne2; 167 // Output known-0 are known to be clear if zero in either the LHS | RHS. 168 KnownZero |= KnownZero2; 169 return; 170 } 171 case Instruction::Or: { 172 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 173 APInt Mask2(Mask & ~KnownOne); 174 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 175 Depth+1); 176 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 177 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 178 179 // Output known-0 bits are only known if clear in both the LHS & RHS. 180 KnownZero &= KnownZero2; 181 // Output known-1 are known to be set if set in either the LHS | RHS. 182 KnownOne |= KnownOne2; 183 return; 184 } 185 case Instruction::Xor: { 186 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 187 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 188 Depth+1); 189 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 190 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 191 192 // Output known-0 bits are known if clear or set in both the LHS & RHS. 193 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 194 // Output known-1 are known to be set if set in only one of the LHS, RHS. 195 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 196 KnownZero = KnownZeroOut; 197 return; 198 } 199 case Instruction::Mul: { 200 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 201 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); 202 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 203 Depth+1); 204 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 205 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 206 207 // If low bits are zero in either operand, output low known-0 bits. 208 // Also compute a conserative estimate for high known-0 bits. 209 // More trickiness is possible, but this is sufficient for the 210 // interesting case of alignment computation. 211 KnownOne.clearAllBits(); 212 unsigned TrailZ = KnownZero.countTrailingOnes() + 213 KnownZero2.countTrailingOnes(); 214 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 215 KnownZero2.countLeadingOnes(), 216 BitWidth) - BitWidth; 217 218 TrailZ = std::min(TrailZ, BitWidth); 219 LeadZ = std::min(LeadZ, BitWidth); 220 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 221 APInt::getHighBitsSet(BitWidth, LeadZ); 222 KnownZero &= Mask; 223 return; 224 } 225 case Instruction::UDiv: { 226 // For the purposes of computing leading zeros we can conservatively 227 // treat a udiv as a logical right shift by the power of 2 known to 228 // be less than the denominator. 229 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 230 ComputeMaskedBits(I->getOperand(0), 231 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 232 unsigned LeadZ = KnownZero2.countLeadingOnes(); 233 234 KnownOne2.clearAllBits(); 235 KnownZero2.clearAllBits(); 236 ComputeMaskedBits(I->getOperand(1), 237 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 238 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 239 if (RHSUnknownLeadingOnes != BitWidth) 240 LeadZ = std::min(BitWidth, 241 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 242 243 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 244 return; 245 } 246 case Instruction::Select: 247 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 248 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 249 Depth+1); 250 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 251 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 252 253 // Only known if known in both the LHS and RHS. 254 KnownOne &= KnownOne2; 255 KnownZero &= KnownZero2; 256 return; 257 case Instruction::FPTrunc: 258 case Instruction::FPExt: 259 case Instruction::FPToUI: 260 case Instruction::FPToSI: 261 case Instruction::SIToFP: 262 case Instruction::UIToFP: 263 return; // Can't work with floating point. 264 case Instruction::PtrToInt: 265 case Instruction::IntToPtr: 266 // We can't handle these if we don't know the pointer size. 267 if (!TD) return; 268 // FALL THROUGH and handle them the same as zext/trunc. 269 case Instruction::ZExt: 270 case Instruction::Trunc: { 271 Type *SrcTy = I->getOperand(0)->getType(); 272 273 unsigned SrcBitWidth; 274 // Note that we handle pointer operands here because of inttoptr/ptrtoint 275 // which fall through here. 276 if (SrcTy->isPointerTy()) 277 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 278 else 279 SrcBitWidth = SrcTy->getScalarSizeInBits(); 280 281 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 282 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 283 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 284 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 285 Depth+1); 286 KnownZero = KnownZero.zextOrTrunc(BitWidth); 287 KnownOne = KnownOne.zextOrTrunc(BitWidth); 288 // Any top bits are known to be zero. 289 if (BitWidth > SrcBitWidth) 290 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 291 return; 292 } 293 case Instruction::BitCast: { 294 Type *SrcTy = I->getOperand(0)->getType(); 295 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 296 // TODO: For now, not handling conversions like: 297 // (bitcast i64 %x to <2 x i32>) 298 !I->getType()->isVectorTy()) { 299 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 300 Depth+1); 301 return; 302 } 303 break; 304 } 305 case Instruction::SExt: { 306 // Compute the bits in the result that are not present in the input. 307 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 308 309 APInt MaskIn = Mask.trunc(SrcBitWidth); 310 KnownZero = KnownZero.trunc(SrcBitWidth); 311 KnownOne = KnownOne.trunc(SrcBitWidth); 312 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 313 Depth+1); 314 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 315 KnownZero = KnownZero.zext(BitWidth); 316 KnownOne = KnownOne.zext(BitWidth); 317 318 // If the sign bit of the input is known set or clear, then we know the 319 // top bits of the result. 320 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 321 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 322 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 323 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 324 return; 325 } 326 case Instruction::Shl: 327 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 328 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 329 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 330 APInt Mask2(Mask.lshr(ShiftAmt)); 331 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 332 Depth+1); 333 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 334 KnownZero <<= ShiftAmt; 335 KnownOne <<= ShiftAmt; 336 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 337 return; 338 } 339 break; 340 case Instruction::LShr: 341 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 342 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 343 // Compute the new bits that are at the top now. 344 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 345 346 // Unsigned shift right. 347 APInt Mask2(Mask.shl(ShiftAmt)); 348 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 349 Depth+1); 350 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 351 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 352 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 353 // high bits known zero. 354 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 355 return; 356 } 357 break; 358 case Instruction::AShr: 359 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 360 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 361 // Compute the new bits that are at the top now. 362 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 363 364 // Signed shift right. 365 APInt Mask2(Mask.shl(ShiftAmt)); 366 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 367 Depth+1); 368 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 369 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 370 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 371 372 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 373 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 374 KnownZero |= HighBits; 375 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 376 KnownOne |= HighBits; 377 return; 378 } 379 break; 380 case Instruction::Sub: { 381 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { 382 // We know that the top bits of C-X are clear if X contains less bits 383 // than C (i.e. no wrap-around can happen). For example, 20-X is 384 // positive if we can prove that X is >= 0 and < 16. 385 if (!CLHS->getValue().isNegative()) { 386 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 387 // NLZ can't be BitWidth with no sign bit 388 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 389 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, 390 TD, Depth+1); 391 392 // If all of the MaskV bits are known to be zero, then we know the 393 // output top bits are zero, because we now know that the output is 394 // from [0-C]. 395 if ((KnownZero2 & MaskV) == MaskV) { 396 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 397 // Top bits known zero. 398 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 399 } 400 } 401 } 402 } 403 // fall through 404 case Instruction::Add: { 405 // If one of the operands has trailing zeros, then the bits that the 406 // other operand has in those bit positions will be preserved in the 407 // result. For an add, this works with either operand. For a subtract, 408 // this only works if the known zeros are in the right operand. 409 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 410 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 411 BitWidth - Mask.countLeadingZeros()); 412 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 413 Depth+1); 414 assert((LHSKnownZero & LHSKnownOne) == 0 && 415 "Bits known to be one AND zero?"); 416 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 417 418 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, 419 Depth+1); 420 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 421 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 422 423 // Determine which operand has more trailing zeros, and use that 424 // many bits from the other operand. 425 if (LHSKnownZeroOut > RHSKnownZeroOut) { 426 if (I->getOpcode() == Instruction::Add) { 427 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 428 KnownZero |= KnownZero2 & Mask; 429 KnownOne |= KnownOne2 & Mask; 430 } else { 431 // If the known zeros are in the left operand for a subtract, 432 // fall back to the minimum known zeros in both operands. 433 KnownZero |= APInt::getLowBitsSet(BitWidth, 434 std::min(LHSKnownZeroOut, 435 RHSKnownZeroOut)); 436 } 437 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 438 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 439 KnownZero |= LHSKnownZero & Mask; 440 KnownOne |= LHSKnownOne & Mask; 441 } 442 443 // Are we still trying to solve for the sign bit? 444 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){ 445 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I); 446 if (OBO->hasNoSignedWrap()) { 447 if (I->getOpcode() == Instruction::Add) { 448 // Adding two positive numbers can't wrap into negative 449 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 450 KnownZero |= APInt::getSignBit(BitWidth); 451 // and adding two negative numbers can't wrap into positive. 452 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 453 KnownOne |= APInt::getSignBit(BitWidth); 454 } else { 455 // Subtracting a negative number from a positive one can't wrap 456 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 457 KnownZero |= APInt::getSignBit(BitWidth); 458 // neither can subtracting a positive number from a negative one. 459 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 460 KnownOne |= APInt::getSignBit(BitWidth); 461 } 462 } 463 } 464 465 return; 466 } 467 case Instruction::SRem: 468 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 469 APInt RA = Rem->getValue().abs(); 470 if (RA.isPowerOf2()) { 471 APInt LowBits = RA - 1; 472 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 473 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 474 Depth+1); 475 476 // The low bits of the first operand are unchanged by the srem. 477 KnownZero = KnownZero2 & LowBits; 478 KnownOne = KnownOne2 & LowBits; 479 480 // If the first operand is non-negative or has all low bits zero, then 481 // the upper bits are all zero. 482 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 483 KnownZero |= ~LowBits; 484 485 // If the first operand is negative and not all low bits are zero, then 486 // the upper bits are all one. 487 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 488 KnownOne |= ~LowBits; 489 490 KnownZero &= Mask; 491 KnownOne &= Mask; 492 493 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 494 } 495 } 496 497 // The sign bit is the LHS's sign bit, except when the result of the 498 // remainder is zero. 499 if (Mask.isNegative() && KnownZero.isNonNegative()) { 500 APInt Mask2 = APInt::getSignBit(BitWidth); 501 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 502 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 503 Depth+1); 504 // If it's known zero, our sign bit is also zero. 505 if (LHSKnownZero.isNegative()) 506 KnownZero |= LHSKnownZero; 507 } 508 509 break; 510 case Instruction::URem: { 511 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 512 APInt RA = Rem->getValue(); 513 if (RA.isPowerOf2()) { 514 APInt LowBits = (RA - 1); 515 APInt Mask2 = LowBits & Mask; 516 KnownZero |= ~LowBits & Mask; 517 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 518 Depth+1); 519 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 520 break; 521 } 522 } 523 524 // Since the result is less than or equal to either operand, any leading 525 // zero bits in either operand must also exist in the result. 526 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 527 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 528 TD, Depth+1); 529 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 530 TD, Depth+1); 531 532 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 533 KnownZero2.countLeadingOnes()); 534 KnownOne.clearAllBits(); 535 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 536 break; 537 } 538 539 case Instruction::Alloca: { 540 AllocaInst *AI = cast<AllocaInst>(V); 541 unsigned Align = AI->getAlignment(); 542 if (Align == 0 && TD) 543 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 544 545 if (Align > 0) 546 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 547 CountTrailingZeros_32(Align)); 548 break; 549 } 550 case Instruction::GetElementPtr: { 551 // Analyze all of the subscripts of this getelementptr instruction 552 // to determine if we can prove known low zero bits. 553 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 554 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 555 ComputeMaskedBits(I->getOperand(0), LocalMask, 556 LocalKnownZero, LocalKnownOne, TD, Depth+1); 557 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 558 559 gep_type_iterator GTI = gep_type_begin(I); 560 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 561 Value *Index = I->getOperand(i); 562 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 563 // Handle struct member offset arithmetic. 564 if (!TD) return; 565 const StructLayout *SL = TD->getStructLayout(STy); 566 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 567 uint64_t Offset = SL->getElementOffset(Idx); 568 TrailZ = std::min(TrailZ, 569 CountTrailingZeros_64(Offset)); 570 } else { 571 // Handle array index arithmetic. 572 Type *IndexedTy = GTI.getIndexedType(); 573 if (!IndexedTy->isSized()) return; 574 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 575 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 576 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 577 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 578 ComputeMaskedBits(Index, LocalMask, 579 LocalKnownZero, LocalKnownOne, TD, Depth+1); 580 TrailZ = std::min(TrailZ, 581 unsigned(CountTrailingZeros_64(TypeSize) + 582 LocalKnownZero.countTrailingOnes())); 583 } 584 } 585 586 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 587 break; 588 } 589 case Instruction::PHI: { 590 PHINode *P = cast<PHINode>(I); 591 // Handle the case of a simple two-predecessor recurrence PHI. 592 // There's a lot more that could theoretically be done here, but 593 // this is sufficient to catch some interesting cases. 594 if (P->getNumIncomingValues() == 2) { 595 for (unsigned i = 0; i != 2; ++i) { 596 Value *L = P->getIncomingValue(i); 597 Value *R = P->getIncomingValue(!i); 598 Operator *LU = dyn_cast<Operator>(L); 599 if (!LU) 600 continue; 601 unsigned Opcode = LU->getOpcode(); 602 // Check for operations that have the property that if 603 // both their operands have low zero bits, the result 604 // will have low zero bits. 605 if (Opcode == Instruction::Add || 606 Opcode == Instruction::Sub || 607 Opcode == Instruction::And || 608 Opcode == Instruction::Or || 609 Opcode == Instruction::Mul) { 610 Value *LL = LU->getOperand(0); 611 Value *LR = LU->getOperand(1); 612 // Find a recurrence. 613 if (LL == I) 614 L = LR; 615 else if (LR == I) 616 L = LL; 617 else 618 break; 619 // Ok, we have a PHI of the form L op= R. Check for low 620 // zero bits. 621 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 622 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 623 Mask2 = APInt::getLowBitsSet(BitWidth, 624 KnownZero2.countTrailingOnes()); 625 626 // We need to take the minimum number of known bits 627 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 628 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 629 630 KnownZero = Mask & 631 APInt::getLowBitsSet(BitWidth, 632 std::min(KnownZero2.countTrailingOnes(), 633 KnownZero3.countTrailingOnes())); 634 break; 635 } 636 } 637 } 638 639 // Unreachable blocks may have zero-operand PHI nodes. 640 if (P->getNumIncomingValues() == 0) 641 return; 642 643 // Otherwise take the unions of the known bit sets of the operands, 644 // taking conservative care to avoid excessive recursion. 645 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 646 // Skip if every incoming value references to ourself. 647 if (P->hasConstantValue() == P) 648 break; 649 650 KnownZero = APInt::getAllOnesValue(BitWidth); 651 KnownOne = APInt::getAllOnesValue(BitWidth); 652 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 653 // Skip direct self references. 654 if (P->getIncomingValue(i) == P) continue; 655 656 KnownZero2 = APInt(BitWidth, 0); 657 KnownOne2 = APInt(BitWidth, 0); 658 // Recurse, but cap the recursion to one level, because we don't 659 // want to waste time spinning around in loops. 660 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 661 KnownZero2, KnownOne2, TD, MaxDepth-1); 662 KnownZero &= KnownZero2; 663 KnownOne &= KnownOne2; 664 // If all bits have been ruled out, there's no need to check 665 // more operands. 666 if (!KnownZero && !KnownOne) 667 break; 668 } 669 } 670 break; 671 } 672 case Instruction::Call: 673 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 674 switch (II->getIntrinsicID()) { 675 default: break; 676 case Intrinsic::ctpop: 677 case Intrinsic::ctlz: 678 case Intrinsic::cttz: { 679 unsigned LowBits = Log2_32(BitWidth)+1; 680 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 681 break; 682 } 683 case Intrinsic::x86_sse42_crc32_64_8: 684 case Intrinsic::x86_sse42_crc32_64_64: 685 KnownZero = APInt::getHighBitsSet(64, 32); 686 break; 687 } 688 } 689 break; 690 } 691 } 692 693 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 694 /// one. Convenience wrapper around ComputeMaskedBits. 695 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 696 const TargetData *TD, unsigned Depth) { 697 unsigned BitWidth = getBitWidth(V->getType(), TD); 698 if (!BitWidth) { 699 KnownZero = false; 700 KnownOne = false; 701 return; 702 } 703 APInt ZeroBits(BitWidth, 0); 704 APInt OneBits(BitWidth, 0); 705 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 706 Depth); 707 KnownOne = OneBits[BitWidth - 1]; 708 KnownZero = ZeroBits[BitWidth - 1]; 709 } 710 711 /// isPowerOfTwo - Return true if the given value is known to have exactly one 712 /// bit set when defined. For vectors return true if every element is known to 713 /// be a power of two when defined. Supports values with integer or pointer 714 /// types and vectors of integers. 715 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) { 716 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 717 return CI->getValue().isPowerOf2(); 718 // TODO: Handle vector constants. 719 720 // 1 << X is clearly a power of two if the one is not shifted off the end. If 721 // it is shifted off the end then the result is undefined. 722 if (match(V, m_Shl(m_One(), m_Value()))) 723 return true; 724 725 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 726 // bottom. If it is shifted off the bottom then the result is undefined. 727 if (match(V, m_LShr(m_SignBit(), m_Value()))) 728 return true; 729 730 // The remaining tests are all recursive, so bail out if we hit the limit. 731 if (Depth++ == MaxDepth) 732 return false; 733 734 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 735 return isPowerOfTwo(ZI->getOperand(0), TD, Depth); 736 737 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 738 return isPowerOfTwo(SI->getTrueValue(), TD, Depth) && 739 isPowerOfTwo(SI->getFalseValue(), TD, Depth); 740 741 // An exact divide or right shift can only shift off zero bits, so the result 742 // is a power of two only if the first operand is a power of two and not 743 // copying a sign bit (sdiv int_min, 2). 744 if (match(V, m_LShr(m_Value(), m_Value())) || 745 match(V, m_UDiv(m_Value(), m_Value()))) { 746 PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V); 747 if (PEO->isExact()) 748 return isPowerOfTwo(PEO->getOperand(0), TD, Depth); 749 } 750 751 return false; 752 } 753 754 /// isKnownNonZero - Return true if the given value is known to be non-zero 755 /// when defined. For vectors return true if every element is known to be 756 /// non-zero when defined. Supports values with integer or pointer type and 757 /// vectors of integers. 758 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 759 if (Constant *C = dyn_cast<Constant>(V)) { 760 if (C->isNullValue()) 761 return false; 762 if (isa<ConstantInt>(C)) 763 // Must be non-zero due to null test above. 764 return true; 765 // TODO: Handle vectors 766 return false; 767 } 768 769 // The remaining tests are all recursive, so bail out if we hit the limit. 770 if (Depth++ == MaxDepth) 771 return false; 772 773 unsigned BitWidth = getBitWidth(V->getType(), TD); 774 775 // X | Y != 0 if X != 0 or Y != 0. 776 Value *X = 0, *Y = 0; 777 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 778 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 779 780 // ext X != 0 if X != 0. 781 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 782 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 783 784 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 785 // if the lowest bit is shifted off the end. 786 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 787 // shl nuw can't remove any non-zero bits. 788 BinaryOperator *BO = cast<BinaryOperator>(V); 789 if (BO->hasNoUnsignedWrap()) 790 return isKnownNonZero(X, TD, Depth); 791 792 APInt KnownZero(BitWidth, 0); 793 APInt KnownOne(BitWidth, 0); 794 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 795 if (KnownOne[0]) 796 return true; 797 } 798 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 799 // defined if the sign bit is shifted off the end. 800 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 801 // shr exact can only shift out zero bits. 802 BinaryOperator *BO = cast<BinaryOperator>(V); 803 if (BO->isExact()) 804 return isKnownNonZero(X, TD, Depth); 805 806 bool XKnownNonNegative, XKnownNegative; 807 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 808 if (XKnownNegative) 809 return true; 810 } 811 // div exact can only produce a zero if the dividend is zero. 812 else if (match(V, m_IDiv(m_Value(X), m_Value()))) { 813 BinaryOperator *BO = cast<BinaryOperator>(V); 814 if (BO->isExact()) 815 return isKnownNonZero(X, TD, Depth); 816 } 817 // X + Y. 818 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 819 bool XKnownNonNegative, XKnownNegative; 820 bool YKnownNonNegative, YKnownNegative; 821 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 822 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 823 824 // If X and Y are both non-negative (as signed values) then their sum is not 825 // zero unless both X and Y are zero. 826 if (XKnownNonNegative && YKnownNonNegative) 827 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 828 return true; 829 830 // If X and Y are both negative (as signed values) then their sum is not 831 // zero unless both X and Y equal INT_MIN. 832 if (BitWidth && XKnownNegative && YKnownNegative) { 833 APInt KnownZero(BitWidth, 0); 834 APInt KnownOne(BitWidth, 0); 835 APInt Mask = APInt::getSignedMaxValue(BitWidth); 836 // The sign bit of X is set. If some other bit is set then X is not equal 837 // to INT_MIN. 838 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 839 if ((KnownOne & Mask) != 0) 840 return true; 841 // The sign bit of Y is set. If some other bit is set then Y is not equal 842 // to INT_MIN. 843 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 844 if ((KnownOne & Mask) != 0) 845 return true; 846 } 847 848 // The sum of a non-negative number and a power of two is not zero. 849 if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth)) 850 return true; 851 if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth)) 852 return true; 853 } 854 // (C ? X : Y) != 0 if X != 0 and Y != 0. 855 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 856 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 857 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 858 return true; 859 } 860 861 if (!BitWidth) return false; 862 APInt KnownZero(BitWidth, 0); 863 APInt KnownOne(BitWidth, 0); 864 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 865 TD, Depth); 866 return KnownOne != 0; 867 } 868 869 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 870 /// this predicate to simplify operations downstream. Mask is known to be zero 871 /// for bits that V cannot have. 872 /// 873 /// This function is defined on values with integer type, values with pointer 874 /// type (but only if TD is non-null), and vectors of integers. In the case 875 /// where V is a vector, the mask, known zero, and known one values are the 876 /// same width as the vector element, and the bit is set only if it is true 877 /// for all of the elements in the vector. 878 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 879 const TargetData *TD, unsigned Depth) { 880 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 881 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 882 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 883 return (KnownZero & Mask) == Mask; 884 } 885 886 887 888 /// ComputeNumSignBits - Return the number of times the sign bit of the 889 /// register is replicated into the other bits. We know that at least 1 bit 890 /// is always equal to the sign bit (itself), but other cases can give us 891 /// information. For example, immediately after an "ashr X, 2", we know that 892 /// the top 3 bits are all equal to each other, so we return 3. 893 /// 894 /// 'Op' must have a scalar integer type. 895 /// 896 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 897 unsigned Depth) { 898 assert((TD || V->getType()->isIntOrIntVectorTy()) && 899 "ComputeNumSignBits requires a TargetData object to operate " 900 "on non-integer values!"); 901 Type *Ty = V->getType(); 902 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 903 Ty->getScalarSizeInBits(); 904 unsigned Tmp, Tmp2; 905 unsigned FirstAnswer = 1; 906 907 // Note that ConstantInt is handled by the general ComputeMaskedBits case 908 // below. 909 910 if (Depth == 6) 911 return 1; // Limit search depth. 912 913 Operator *U = dyn_cast<Operator>(V); 914 switch (Operator::getOpcode(V)) { 915 default: break; 916 case Instruction::SExt: 917 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 918 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 919 920 case Instruction::AShr: 921 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 922 // ashr X, C -> adds C sign bits. 923 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 924 Tmp += C->getZExtValue(); 925 if (Tmp > TyBits) Tmp = TyBits; 926 } 927 // vector ashr X, <C, C, C, C> -> adds C sign bits 928 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) { 929 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { 930 Tmp += CI->getZExtValue(); 931 if (Tmp > TyBits) Tmp = TyBits; 932 } 933 } 934 return Tmp; 935 case Instruction::Shl: 936 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 937 // shl destroys sign bits. 938 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 939 if (C->getZExtValue() >= TyBits || // Bad shift. 940 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 941 return Tmp - C->getZExtValue(); 942 } 943 break; 944 case Instruction::And: 945 case Instruction::Or: 946 case Instruction::Xor: // NOT is handled here. 947 // Logical binary ops preserve the number of sign bits at the worst. 948 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 949 if (Tmp != 1) { 950 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 951 FirstAnswer = std::min(Tmp, Tmp2); 952 // We computed what we know about the sign bits as our first 953 // answer. Now proceed to the generic code that uses 954 // ComputeMaskedBits, and pick whichever answer is better. 955 } 956 break; 957 958 case Instruction::Select: 959 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 960 if (Tmp == 1) return 1; // Early out. 961 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 962 return std::min(Tmp, Tmp2); 963 964 case Instruction::Add: 965 // Add can have at most one carry bit. Thus we know that the output 966 // is, at worst, one more bit than the inputs. 967 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 968 if (Tmp == 1) return 1; // Early out. 969 970 // Special case decrementing a value (ADD X, -1): 971 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 972 if (CRHS->isAllOnesValue()) { 973 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 974 APInt Mask = APInt::getAllOnesValue(TyBits); 975 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 976 Depth+1); 977 978 // If the input is known to be 0 or 1, the output is 0/-1, which is all 979 // sign bits set. 980 if ((KnownZero | APInt(TyBits, 1)) == Mask) 981 return TyBits; 982 983 // If we are subtracting one from a positive number, there is no carry 984 // out of the result. 985 if (KnownZero.isNegative()) 986 return Tmp; 987 } 988 989 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 990 if (Tmp2 == 1) return 1; 991 return std::min(Tmp, Tmp2)-1; 992 993 case Instruction::Sub: 994 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 995 if (Tmp2 == 1) return 1; 996 997 // Handle NEG. 998 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 999 if (CLHS->isNullValue()) { 1000 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1001 APInt Mask = APInt::getAllOnesValue(TyBits); 1002 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 1003 TD, Depth+1); 1004 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1005 // sign bits set. 1006 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1007 return TyBits; 1008 1009 // If the input is known to be positive (the sign bit is known clear), 1010 // the output of the NEG has the same number of sign bits as the input. 1011 if (KnownZero.isNegative()) 1012 return Tmp2; 1013 1014 // Otherwise, we treat this like a SUB. 1015 } 1016 1017 // Sub can have at most one carry bit. Thus we know that the output 1018 // is, at worst, one more bit than the inputs. 1019 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1020 if (Tmp == 1) return 1; // Early out. 1021 return std::min(Tmp, Tmp2)-1; 1022 1023 case Instruction::PHI: { 1024 PHINode *PN = cast<PHINode>(U); 1025 // Don't analyze large in-degree PHIs. 1026 if (PN->getNumIncomingValues() > 4) break; 1027 1028 // Take the minimum of all incoming values. This can't infinitely loop 1029 // because of our depth threshold. 1030 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1031 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1032 if (Tmp == 1) return Tmp; 1033 Tmp = std::min(Tmp, 1034 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1035 } 1036 return Tmp; 1037 } 1038 1039 case Instruction::Trunc: 1040 // FIXME: it's tricky to do anything useful for this, but it is an important 1041 // case for targets like X86. 1042 break; 1043 } 1044 1045 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1046 // use this information. 1047 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1048 APInt Mask = APInt::getAllOnesValue(TyBits); 1049 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1050 1051 if (KnownZero.isNegative()) { // sign bit is 0 1052 Mask = KnownZero; 1053 } else if (KnownOne.isNegative()) { // sign bit is 1; 1054 Mask = KnownOne; 1055 } else { 1056 // Nothing known. 1057 return FirstAnswer; 1058 } 1059 1060 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1061 // the number of identical bits in the top of the input value. 1062 Mask = ~Mask; 1063 Mask <<= Mask.getBitWidth()-TyBits; 1064 // Return # leading zeros. We use 'min' here in case Val was zero before 1065 // shifting. We don't want to return '64' as for an i32 "0". 1066 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1067 } 1068 1069 /// ComputeMultiple - This function computes the integer multiple of Base that 1070 /// equals V. If successful, it returns true and returns the multiple in 1071 /// Multiple. If unsuccessful, it returns false. It looks 1072 /// through SExt instructions only if LookThroughSExt is true. 1073 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1074 bool LookThroughSExt, unsigned Depth) { 1075 const unsigned MaxDepth = 6; 1076 1077 assert(V && "No Value?"); 1078 assert(Depth <= MaxDepth && "Limit Search Depth"); 1079 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1080 1081 Type *T = V->getType(); 1082 1083 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1084 1085 if (Base == 0) 1086 return false; 1087 1088 if (Base == 1) { 1089 Multiple = V; 1090 return true; 1091 } 1092 1093 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1094 Constant *BaseVal = ConstantInt::get(T, Base); 1095 if (CO && CO == BaseVal) { 1096 // Multiple is 1. 1097 Multiple = ConstantInt::get(T, 1); 1098 return true; 1099 } 1100 1101 if (CI && CI->getZExtValue() % Base == 0) { 1102 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1103 return true; 1104 } 1105 1106 if (Depth == MaxDepth) return false; // Limit search depth. 1107 1108 Operator *I = dyn_cast<Operator>(V); 1109 if (!I) return false; 1110 1111 switch (I->getOpcode()) { 1112 default: break; 1113 case Instruction::SExt: 1114 if (!LookThroughSExt) return false; 1115 // otherwise fall through to ZExt 1116 case Instruction::ZExt: 1117 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1118 LookThroughSExt, Depth+1); 1119 case Instruction::Shl: 1120 case Instruction::Mul: { 1121 Value *Op0 = I->getOperand(0); 1122 Value *Op1 = I->getOperand(1); 1123 1124 if (I->getOpcode() == Instruction::Shl) { 1125 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1126 if (!Op1CI) return false; 1127 // Turn Op0 << Op1 into Op0 * 2^Op1 1128 APInt Op1Int = Op1CI->getValue(); 1129 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1130 APInt API(Op1Int.getBitWidth(), 0); 1131 API.setBit(BitToSet); 1132 Op1 = ConstantInt::get(V->getContext(), API); 1133 } 1134 1135 Value *Mul0 = NULL; 1136 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1137 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1138 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1139 if (Op1C->getType()->getPrimitiveSizeInBits() < 1140 MulC->getType()->getPrimitiveSizeInBits()) 1141 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1142 if (Op1C->getType()->getPrimitiveSizeInBits() > 1143 MulC->getType()->getPrimitiveSizeInBits()) 1144 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1145 1146 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1147 Multiple = ConstantExpr::getMul(MulC, Op1C); 1148 return true; 1149 } 1150 1151 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1152 if (Mul0CI->getValue() == 1) { 1153 // V == Base * Op1, so return Op1 1154 Multiple = Op1; 1155 return true; 1156 } 1157 } 1158 1159 Value *Mul1 = NULL; 1160 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1161 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1162 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1163 if (Op0C->getType()->getPrimitiveSizeInBits() < 1164 MulC->getType()->getPrimitiveSizeInBits()) 1165 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1166 if (Op0C->getType()->getPrimitiveSizeInBits() > 1167 MulC->getType()->getPrimitiveSizeInBits()) 1168 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1169 1170 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1171 Multiple = ConstantExpr::getMul(MulC, Op0C); 1172 return true; 1173 } 1174 1175 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1176 if (Mul1CI->getValue() == 1) { 1177 // V == Base * Op0, so return Op0 1178 Multiple = Op0; 1179 return true; 1180 } 1181 } 1182 } 1183 } 1184 1185 // We could not determine if V is a multiple of Base. 1186 return false; 1187 } 1188 1189 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1190 /// value is never equal to -0.0. 1191 /// 1192 /// NOTE: this function will need to be revisited when we support non-default 1193 /// rounding modes! 1194 /// 1195 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1196 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1197 return !CFP->getValueAPF().isNegZero(); 1198 1199 if (Depth == 6) 1200 return 1; // Limit search depth. 1201 1202 const Operator *I = dyn_cast<Operator>(V); 1203 if (I == 0) return false; 1204 1205 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1206 if (I->getOpcode() == Instruction::FAdd && 1207 isa<ConstantFP>(I->getOperand(1)) && 1208 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1209 return true; 1210 1211 // sitofp and uitofp turn into +0.0 for zero. 1212 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1213 return true; 1214 1215 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1216 // sqrt(-0.0) = -0.0, no other negative results are possible. 1217 if (II->getIntrinsicID() == Intrinsic::sqrt) 1218 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1219 1220 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1221 if (const Function *F = CI->getCalledFunction()) { 1222 if (F->isDeclaration()) { 1223 // abs(x) != -0.0 1224 if (F->getName() == "abs") return true; 1225 // fabs[lf](x) != -0.0 1226 if (F->getName() == "fabs") return true; 1227 if (F->getName() == "fabsf") return true; 1228 if (F->getName() == "fabsl") return true; 1229 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1230 F->getName() == "sqrtl") 1231 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1232 } 1233 } 1234 1235 return false; 1236 } 1237 1238 /// isBytewiseValue - If the specified value can be set by repeating the same 1239 /// byte in memory, return the i8 value that it is represented with. This is 1240 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1241 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1242 /// byte store (e.g. i16 0x1234), return null. 1243 Value *llvm::isBytewiseValue(Value *V) { 1244 // All byte-wide stores are splatable, even of arbitrary variables. 1245 if (V->getType()->isIntegerTy(8)) return V; 1246 1247 // Handle 'null' ConstantArrayZero etc. 1248 if (Constant *C = dyn_cast<Constant>(V)) 1249 if (C->isNullValue()) 1250 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1251 1252 // Constant float and double values can be handled as integer values if the 1253 // corresponding integer value is "byteable". An important case is 0.0. 1254 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1255 if (CFP->getType()->isFloatTy()) 1256 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1257 if (CFP->getType()->isDoubleTy()) 1258 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1259 // Don't handle long double formats, which have strange constraints. 1260 } 1261 1262 // We can handle constant integers that are power of two in size and a 1263 // multiple of 8 bits. 1264 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1265 unsigned Width = CI->getBitWidth(); 1266 if (isPowerOf2_32(Width) && Width > 8) { 1267 // We can handle this value if the recursive binary decomposition is the 1268 // same at all levels. 1269 APInt Val = CI->getValue(); 1270 APInt Val2; 1271 while (Val.getBitWidth() != 8) { 1272 unsigned NextWidth = Val.getBitWidth()/2; 1273 Val2 = Val.lshr(NextWidth); 1274 Val2 = Val2.trunc(Val.getBitWidth()/2); 1275 Val = Val.trunc(Val.getBitWidth()/2); 1276 1277 // If the top/bottom halves aren't the same, reject it. 1278 if (Val != Val2) 1279 return 0; 1280 } 1281 return ConstantInt::get(V->getContext(), Val); 1282 } 1283 } 1284 1285 // A ConstantArray is splatable if all its members are equal and also 1286 // splatable. 1287 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1288 if (CA->getNumOperands() == 0) 1289 return 0; 1290 1291 Value *Val = isBytewiseValue(CA->getOperand(0)); 1292 if (!Val) 1293 return 0; 1294 1295 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I) 1296 if (CA->getOperand(I-1) != CA->getOperand(I)) 1297 return 0; 1298 1299 return Val; 1300 } 1301 1302 // Conceptually, we could handle things like: 1303 // %a = zext i8 %X to i16 1304 // %b = shl i16 %a, 8 1305 // %c = or i16 %a, %b 1306 // but until there is an example that actually needs this, it doesn't seem 1307 // worth worrying about. 1308 return 0; 1309 } 1310 1311 1312 // This is the recursive version of BuildSubAggregate. It takes a few different 1313 // arguments. Idxs is the index within the nested struct From that we are 1314 // looking at now (which is of type IndexedType). IdxSkip is the number of 1315 // indices from Idxs that should be left out when inserting into the resulting 1316 // struct. To is the result struct built so far, new insertvalue instructions 1317 // build on that. 1318 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1319 SmallVector<unsigned, 10> &Idxs, 1320 unsigned IdxSkip, 1321 Instruction *InsertBefore) { 1322 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1323 if (STy) { 1324 // Save the original To argument so we can modify it 1325 Value *OrigTo = To; 1326 // General case, the type indexed by Idxs is a struct 1327 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1328 // Process each struct element recursively 1329 Idxs.push_back(i); 1330 Value *PrevTo = To; 1331 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1332 InsertBefore); 1333 Idxs.pop_back(); 1334 if (!To) { 1335 // Couldn't find any inserted value for this index? Cleanup 1336 while (PrevTo != OrigTo) { 1337 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1338 PrevTo = Del->getAggregateOperand(); 1339 Del->eraseFromParent(); 1340 } 1341 // Stop processing elements 1342 break; 1343 } 1344 } 1345 // If we successfully found a value for each of our subaggregates 1346 if (To) 1347 return To; 1348 } 1349 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1350 // the struct's elements had a value that was inserted directly. In the latter 1351 // case, perhaps we can't determine each of the subelements individually, but 1352 // we might be able to find the complete struct somewhere. 1353 1354 // Find the value that is at that particular spot 1355 Value *V = FindInsertedValue(From, Idxs); 1356 1357 if (!V) 1358 return NULL; 1359 1360 // Insert the value in the new (sub) aggregrate 1361 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1362 "tmp", InsertBefore); 1363 } 1364 1365 // This helper takes a nested struct and extracts a part of it (which is again a 1366 // struct) into a new value. For example, given the struct: 1367 // { a, { b, { c, d }, e } } 1368 // and the indices "1, 1" this returns 1369 // { c, d }. 1370 // 1371 // It does this by inserting an insertvalue for each element in the resulting 1372 // struct, as opposed to just inserting a single struct. This will only work if 1373 // each of the elements of the substruct are known (ie, inserted into From by an 1374 // insertvalue instruction somewhere). 1375 // 1376 // All inserted insertvalue instructions are inserted before InsertBefore 1377 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1378 Instruction *InsertBefore) { 1379 assert(InsertBefore && "Must have someplace to insert!"); 1380 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1381 idx_range); 1382 Value *To = UndefValue::get(IndexedType); 1383 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1384 unsigned IdxSkip = Idxs.size(); 1385 1386 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1387 } 1388 1389 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1390 /// the scalar value indexed is already around as a register, for example if it 1391 /// were inserted directly into the aggregrate. 1392 /// 1393 /// If InsertBefore is not null, this function will duplicate (modified) 1394 /// insertvalues when a part of a nested struct is extracted. 1395 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1396 Instruction *InsertBefore) { 1397 // Nothing to index? Just return V then (this is useful at the end of our 1398 // recursion) 1399 if (idx_range.empty()) 1400 return V; 1401 // We have indices, so V should have an indexable type 1402 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) 1403 && "Not looking at a struct or array?"); 1404 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) 1405 && "Invalid indices for type?"); 1406 CompositeType *PTy = cast<CompositeType>(V->getType()); 1407 1408 if (isa<UndefValue>(V)) 1409 return UndefValue::get(ExtractValueInst::getIndexedType(PTy, 1410 idx_range)); 1411 else if (isa<ConstantAggregateZero>(V)) 1412 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, 1413 idx_range)); 1414 else if (Constant *C = dyn_cast<Constant>(V)) { 1415 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) 1416 // Recursively process this constant 1417 return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1), 1418 InsertBefore); 1419 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1420 // Loop the indices for the insertvalue instruction in parallel with the 1421 // requested indices 1422 const unsigned *req_idx = idx_range.begin(); 1423 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1424 i != e; ++i, ++req_idx) { 1425 if (req_idx == idx_range.end()) { 1426 if (InsertBefore) 1427 // The requested index identifies a part of a nested aggregate. Handle 1428 // this specially. For example, 1429 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1430 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1431 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1432 // This can be changed into 1433 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1434 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1435 // which allows the unused 0,0 element from the nested struct to be 1436 // removed. 1437 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1438 InsertBefore); 1439 else 1440 // We can't handle this without inserting insertvalues 1441 return 0; 1442 } 1443 1444 // This insert value inserts something else than what we are looking for. 1445 // See if the (aggregrate) value inserted into has the value we are 1446 // looking for, then. 1447 if (*req_idx != *i) 1448 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1449 InsertBefore); 1450 } 1451 // If we end up here, the indices of the insertvalue match with those 1452 // requested (though possibly only partially). Now we recursively look at 1453 // the inserted value, passing any remaining indices. 1454 return FindInsertedValue(I->getInsertedValueOperand(), 1455 makeArrayRef(req_idx, idx_range.end()), 1456 InsertBefore); 1457 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1458 // If we're extracting a value from an aggregrate that was extracted from 1459 // something else, we can extract from that something else directly instead. 1460 // However, we will need to chain I's indices with the requested indices. 1461 1462 // Calculate the number of indices required 1463 unsigned size = I->getNumIndices() + idx_range.size(); 1464 // Allocate some space to put the new indices in 1465 SmallVector<unsigned, 5> Idxs; 1466 Idxs.reserve(size); 1467 // Add indices from the extract value instruction 1468 Idxs.append(I->idx_begin(), I->idx_end()); 1469 1470 // Add requested indices 1471 Idxs.append(idx_range.begin(), idx_range.end()); 1472 1473 assert(Idxs.size() == size 1474 && "Number of indices added not correct?"); 1475 1476 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1477 } 1478 // Otherwise, we don't know (such as, extracting from a function return value 1479 // or load instruction) 1480 return 0; 1481 } 1482 1483 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1484 /// it can be expressed as a base pointer plus a constant offset. Return the 1485 /// base and offset to the caller. 1486 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1487 const TargetData &TD) { 1488 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1489 if (PtrOp == 0) return Ptr; 1490 1491 // Just look through bitcasts. 1492 if (PtrOp->getOpcode() == Instruction::BitCast) 1493 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1494 1495 // If this is a GEP with constant indices, we can look through it. 1496 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1497 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1498 1499 gep_type_iterator GTI = gep_type_begin(GEP); 1500 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1501 ++I, ++GTI) { 1502 ConstantInt *OpC = cast<ConstantInt>(*I); 1503 if (OpC->isZero()) continue; 1504 1505 // Handle a struct and array indices which add their offset to the pointer. 1506 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1507 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1508 } else { 1509 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1510 Offset += OpC->getSExtValue()*Size; 1511 } 1512 } 1513 1514 // Re-sign extend from the pointer size if needed to get overflow edge cases 1515 // right. 1516 unsigned PtrSize = TD.getPointerSizeInBits(); 1517 if (PtrSize < 64) 1518 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1519 1520 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1521 } 1522 1523 1524 /// GetConstantStringInfo - This function computes the length of a 1525 /// null-terminated C string pointed to by V. If successful, it returns true 1526 /// and returns the string in Str. If unsuccessful, it returns false. 1527 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str, 1528 uint64_t Offset, 1529 bool StopAtNul) { 1530 // If V is NULL then return false; 1531 if (V == NULL) return false; 1532 1533 // Look through bitcast instructions. 1534 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1535 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); 1536 1537 // If the value is not a GEP instruction nor a constant expression with a 1538 // GEP instruction, then return false because ConstantArray can't occur 1539 // any other way 1540 const User *GEP = 0; 1541 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1542 GEP = GEPI; 1543 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1544 if (CE->getOpcode() == Instruction::BitCast) 1545 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); 1546 if (CE->getOpcode() != Instruction::GetElementPtr) 1547 return false; 1548 GEP = CE; 1549 } 1550 1551 if (GEP) { 1552 // Make sure the GEP has exactly three arguments. 1553 if (GEP->getNumOperands() != 3) 1554 return false; 1555 1556 // Make sure the index-ee is a pointer to array of i8. 1557 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1558 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1559 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1560 return false; 1561 1562 // Check to make sure that the first operand of the GEP is an integer and 1563 // has value 0 so that we are sure we're indexing into the initializer. 1564 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1565 if (FirstIdx == 0 || !FirstIdx->isZero()) 1566 return false; 1567 1568 // If the second index isn't a ConstantInt, then this is a variable index 1569 // into the array. If this occurs, we can't say anything meaningful about 1570 // the string. 1571 uint64_t StartIdx = 0; 1572 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1573 StartIdx = CI->getZExtValue(); 1574 else 1575 return false; 1576 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, 1577 StopAtNul); 1578 } 1579 1580 // The GEP instruction, constant or instruction, must reference a global 1581 // variable that is a constant and is initialized. The referenced constant 1582 // initializer is the array that we'll use for optimization. 1583 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V); 1584 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1585 return false; 1586 const Constant *GlobalInit = GV->getInitializer(); 1587 1588 // Handle the ConstantAggregateZero case 1589 if (isa<ConstantAggregateZero>(GlobalInit)) { 1590 // This is a degenerate case. The initializer is constant zero so the 1591 // length of the string must be zero. 1592 Str.clear(); 1593 return true; 1594 } 1595 1596 // Must be a Constant Array 1597 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1598 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8)) 1599 return false; 1600 1601 // Get the number of elements in the array 1602 uint64_t NumElts = Array->getType()->getNumElements(); 1603 1604 if (Offset > NumElts) 1605 return false; 1606 1607 // Traverse the constant array from 'Offset' which is the place the GEP refers 1608 // to in the array. 1609 Str.reserve(NumElts-Offset); 1610 for (unsigned i = Offset; i != NumElts; ++i) { 1611 const Constant *Elt = Array->getOperand(i); 1612 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1613 if (!CI) // This array isn't suitable, non-int initializer. 1614 return false; 1615 if (StopAtNul && CI->isZero()) 1616 return true; // we found end of string, success! 1617 Str += (char)CI->getZExtValue(); 1618 } 1619 1620 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. 1621 return true; 1622 } 1623 1624 // These next two are very similar to the above, but also look through PHI 1625 // nodes. 1626 // TODO: See if we can integrate these two together. 1627 1628 /// GetStringLengthH - If we can compute the length of the string pointed to by 1629 /// the specified pointer, return 'len+1'. If we can't, return 0. 1630 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1631 // Look through noop bitcast instructions. 1632 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1633 return GetStringLengthH(BCI->getOperand(0), PHIs); 1634 1635 // If this is a PHI node, there are two cases: either we have already seen it 1636 // or we haven't. 1637 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1638 if (!PHIs.insert(PN)) 1639 return ~0ULL; // already in the set. 1640 1641 // If it was new, see if all the input strings are the same length. 1642 uint64_t LenSoFar = ~0ULL; 1643 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1644 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1645 if (Len == 0) return 0; // Unknown length -> unknown. 1646 1647 if (Len == ~0ULL) continue; 1648 1649 if (Len != LenSoFar && LenSoFar != ~0ULL) 1650 return 0; // Disagree -> unknown. 1651 LenSoFar = Len; 1652 } 1653 1654 // Success, all agree. 1655 return LenSoFar; 1656 } 1657 1658 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1659 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1660 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1661 if (Len1 == 0) return 0; 1662 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1663 if (Len2 == 0) return 0; 1664 if (Len1 == ~0ULL) return Len2; 1665 if (Len2 == ~0ULL) return Len1; 1666 if (Len1 != Len2) return 0; 1667 return Len1; 1668 } 1669 1670 // If the value is not a GEP instruction nor a constant expression with a 1671 // GEP instruction, then return unknown. 1672 User *GEP = 0; 1673 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1674 GEP = GEPI; 1675 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1676 if (CE->getOpcode() != Instruction::GetElementPtr) 1677 return 0; 1678 GEP = CE; 1679 } else { 1680 return 0; 1681 } 1682 1683 // Make sure the GEP has exactly three arguments. 1684 if (GEP->getNumOperands() != 3) 1685 return 0; 1686 1687 // Check to make sure that the first operand of the GEP is an integer and 1688 // has value 0 so that we are sure we're indexing into the initializer. 1689 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { 1690 if (!Idx->isZero()) 1691 return 0; 1692 } else 1693 return 0; 1694 1695 // If the second index isn't a ConstantInt, then this is a variable index 1696 // into the array. If this occurs, we can't say anything meaningful about 1697 // the string. 1698 uint64_t StartIdx = 0; 1699 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1700 StartIdx = CI->getZExtValue(); 1701 else 1702 return 0; 1703 1704 // The GEP instruction, constant or instruction, must reference a global 1705 // variable that is a constant and is initialized. The referenced constant 1706 // initializer is the array that we'll use for optimization. 1707 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1708 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1709 GV->mayBeOverridden()) 1710 return 0; 1711 Constant *GlobalInit = GV->getInitializer(); 1712 1713 // Handle the ConstantAggregateZero case, which is a degenerate case. The 1714 // initializer is constant zero so the length of the string must be zero. 1715 if (isa<ConstantAggregateZero>(GlobalInit)) 1716 return 1; // Len = 0 offset by 1. 1717 1718 // Must be a Constant Array 1719 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1720 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8)) 1721 return false; 1722 1723 // Get the number of elements in the array 1724 uint64_t NumElts = Array->getType()->getNumElements(); 1725 1726 // Traverse the constant array from StartIdx (derived above) which is 1727 // the place the GEP refers to in the array. 1728 for (unsigned i = StartIdx; i != NumElts; ++i) { 1729 Constant *Elt = Array->getOperand(i); 1730 ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1731 if (!CI) // This array isn't suitable, non-int initializer. 1732 return 0; 1733 if (CI->isZero()) 1734 return i-StartIdx+1; // We found end of string, success! 1735 } 1736 1737 return 0; // The array isn't null terminated, conservatively return 'unknown'. 1738 } 1739 1740 /// GetStringLength - If we can compute the length of the string pointed to by 1741 /// the specified pointer, return 'len+1'. If we can't, return 0. 1742 uint64_t llvm::GetStringLength(Value *V) { 1743 if (!V->getType()->isPointerTy()) return 0; 1744 1745 SmallPtrSet<PHINode*, 32> PHIs; 1746 uint64_t Len = GetStringLengthH(V, PHIs); 1747 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1748 // an empty string as a length. 1749 return Len == ~0ULL ? 1 : Len; 1750 } 1751 1752 Value * 1753 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1754 if (!V->getType()->isPointerTy()) 1755 return V; 1756 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1757 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1758 V = GEP->getPointerOperand(); 1759 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1760 V = cast<Operator>(V)->getOperand(0); 1761 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1762 if (GA->mayBeOverridden()) 1763 return V; 1764 V = GA->getAliasee(); 1765 } else { 1766 // See if InstructionSimplify knows any relevant tricks. 1767 if (Instruction *I = dyn_cast<Instruction>(V)) 1768 // TODO: Acquire a DominatorTree and use it. 1769 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1770 V = Simplified; 1771 continue; 1772 } 1773 1774 return V; 1775 } 1776 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1777 } 1778 return V; 1779 } 1780 1781 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1782 /// are lifetime markers. 1783 /// 1784 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1785 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1786 UI != UE; ++UI) { 1787 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1788 if (!II) return false; 1789 1790 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1791 II->getIntrinsicID() != Intrinsic::lifetime_end) 1792 return false; 1793 } 1794 return true; 1795 } 1796