1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements a top-down list scheduler, using standard algorithms. 11 // The basic approach uses a priority queue of available nodes to schedule. 12 // One at a time, nodes are taken from the priority queue (thus in priority 13 // order), checked for legality to schedule, and emitted if legal. 14 // 15 // Nodes may not be legal to schedule either due to structural hazards (e.g. 16 // pipeline or resource constraints) or because an input to the instruction has 17 // not completed execution. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #define DEBUG_TYPE "post-RA-sched" 22 #include "AntiDepBreaker.h" 23 #include "AggressiveAntiDepBreaker.h" 24 #include "CriticalAntiDepBreaker.h" 25 #include "RegisterClassInfo.h" 26 #include "ScheduleDAGInstrs.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/LatencyPriorityQueue.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/ADT/BitVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include <set> 49 using namespace llvm; 50 51 STATISTIC(NumNoops, "Number of noops inserted"); 52 STATISTIC(NumStalls, "Number of pipeline stalls"); 53 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); 54 55 // Post-RA scheduling is enabled with 56 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to 57 // override the target. 58 static cl::opt<bool> 59 EnablePostRAScheduler("post-RA-scheduler", 60 cl::desc("Enable scheduling after register allocation"), 61 cl::init(false), cl::Hidden); 62 static cl::opt<std::string> 63 EnableAntiDepBreaking("break-anti-dependencies", 64 cl::desc("Break post-RA scheduling anti-dependencies: " 65 "\"critical\", \"all\", or \"none\""), 66 cl::init("none"), cl::Hidden); 67 68 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 69 static cl::opt<int> 70 DebugDiv("postra-sched-debugdiv", 71 cl::desc("Debug control MBBs that are scheduled"), 72 cl::init(0), cl::Hidden); 73 static cl::opt<int> 74 DebugMod("postra-sched-debugmod", 75 cl::desc("Debug control MBBs that are scheduled"), 76 cl::init(0), cl::Hidden); 77 78 AntiDepBreaker::~AntiDepBreaker() { } 79 80 namespace { 81 class PostRAScheduler : public MachineFunctionPass { 82 AliasAnalysis *AA; 83 const TargetInstrInfo *TII; 84 RegisterClassInfo RegClassInfo; 85 CodeGenOpt::Level OptLevel; 86 87 public: 88 static char ID; 89 PostRAScheduler(CodeGenOpt::Level ol) : 90 MachineFunctionPass(ID), OptLevel(ol) {} 91 92 void getAnalysisUsage(AnalysisUsage &AU) const { 93 AU.setPreservesCFG(); 94 AU.addRequired<AliasAnalysis>(); 95 AU.addRequired<MachineDominatorTree>(); 96 AU.addPreserved<MachineDominatorTree>(); 97 AU.addRequired<MachineLoopInfo>(); 98 AU.addPreserved<MachineLoopInfo>(); 99 MachineFunctionPass::getAnalysisUsage(AU); 100 } 101 102 const char *getPassName() const { 103 return "Post RA top-down list latency scheduler"; 104 } 105 106 bool runOnMachineFunction(MachineFunction &Fn); 107 }; 108 char PostRAScheduler::ID = 0; 109 110 class SchedulePostRATDList : public ScheduleDAGInstrs { 111 /// AvailableQueue - The priority queue to use for the available SUnits. 112 /// 113 LatencyPriorityQueue AvailableQueue; 114 115 /// PendingQueue - This contains all of the instructions whose operands have 116 /// been issued, but their results are not ready yet (due to the latency of 117 /// the operation). Once the operands becomes available, the instruction is 118 /// added to the AvailableQueue. 119 std::vector<SUnit*> PendingQueue; 120 121 /// Topo - A topological ordering for SUnits. 122 ScheduleDAGTopologicalSort Topo; 123 124 /// HazardRec - The hazard recognizer to use. 125 ScheduleHazardRecognizer *HazardRec; 126 127 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none 128 AntiDepBreaker *AntiDepBreak; 129 130 /// AA - AliasAnalysis for making memory reference queries. 131 AliasAnalysis *AA; 132 133 /// KillIndices - The index of the most recent kill (proceding bottom-up), 134 /// or ~0u if the register is not live. 135 std::vector<unsigned> KillIndices; 136 137 public: 138 SchedulePostRATDList( 139 MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT, 140 AliasAnalysis *AA, const RegisterClassInfo&, 141 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 142 SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs); 143 144 ~SchedulePostRATDList(); 145 146 /// StartBlock - Initialize register live-range state for scheduling in 147 /// this block. 148 /// 149 void StartBlock(MachineBasicBlock *BB); 150 151 /// Schedule - Schedule the instruction range using list scheduling. 152 /// 153 void Schedule(); 154 155 /// Observe - Update liveness information to account for the current 156 /// instruction, which will not be scheduled. 157 /// 158 void Observe(MachineInstr *MI, unsigned Count); 159 160 /// FinishBlock - Clean up register live-range state. 161 /// 162 void FinishBlock(); 163 164 /// FixupKills - Fix register kill flags that have been made 165 /// invalid due to scheduling 166 /// 167 void FixupKills(MachineBasicBlock *MBB); 168 169 private: 170 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 171 void ReleaseSuccessors(SUnit *SU); 172 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 173 void ListScheduleTopDown(); 174 void StartBlockForKills(MachineBasicBlock *BB); 175 176 // ToggleKillFlag - Toggle a register operand kill flag. Other 177 // adjustments may be made to the instruction if necessary. Return 178 // true if the operand has been deleted, false if not. 179 bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO); 180 }; 181 } 182 183 SchedulePostRATDList::SchedulePostRATDList( 184 MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT, 185 AliasAnalysis *AA, const RegisterClassInfo &RCI, 186 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 187 SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs) 188 : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits), AA(AA), 189 KillIndices(TRI->getNumRegs()) 190 { 191 const TargetMachine &TM = MF.getTarget(); 192 const InstrItineraryData *InstrItins = TM.getInstrItineraryData(); 193 HazardRec = 194 TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this); 195 AntiDepBreak = 196 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ? 197 (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) : 198 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ? 199 (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL)); 200 } 201 202 SchedulePostRATDList::~SchedulePostRATDList() { 203 delete HazardRec; 204 delete AntiDepBreak; 205 } 206 207 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 208 TII = Fn.getTarget().getInstrInfo(); 209 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 210 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 211 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); 212 RegClassInfo.runOnMachineFunction(Fn); 213 214 // Check for explicit enable/disable of post-ra scheduling. 215 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = TargetSubtargetInfo::ANTIDEP_NONE; 216 SmallVector<TargetRegisterClass*, 4> CriticalPathRCs; 217 if (EnablePostRAScheduler.getPosition() > 0) { 218 if (!EnablePostRAScheduler) 219 return false; 220 } else { 221 // Check that post-RA scheduling is enabled for this target. 222 // This may upgrade the AntiDepMode. 223 const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>(); 224 if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs)) 225 return false; 226 } 227 228 // Check for antidep breaking override... 229 if (EnableAntiDepBreaking.getPosition() > 0) { 230 AntiDepMode = (EnableAntiDepBreaking == "all") 231 ? TargetSubtargetInfo::ANTIDEP_ALL 232 : ((EnableAntiDepBreaking == "critical") 233 ? TargetSubtargetInfo::ANTIDEP_CRITICAL 234 : TargetSubtargetInfo::ANTIDEP_NONE); 235 } 236 237 DEBUG(dbgs() << "PostRAScheduler\n"); 238 239 SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode, 240 CriticalPathRCs); 241 242 // Loop over all of the basic blocks 243 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); 244 MBB != MBBe; ++MBB) { 245 #ifndef NDEBUG 246 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 247 if (DebugDiv > 0) { 248 static int bbcnt = 0; 249 if (bbcnt++ % DebugDiv != DebugMod) 250 continue; 251 dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() << 252 ":BB#" << MBB->getNumber() << " ***\n"; 253 } 254 #endif 255 256 // Initialize register live-range state for scheduling in this block. 257 Scheduler.StartBlock(MBB); 258 259 // Schedule each sequence of instructions not interrupted by a label 260 // or anything else that effectively needs to shut down scheduling. 261 MachineBasicBlock::iterator Current = MBB->end(); 262 unsigned Count = MBB->size(), CurrentCount = Count; 263 for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) { 264 MachineInstr *MI = llvm::prior(I); 265 if (TII->isSchedulingBoundary(MI, MBB, Fn)) { 266 Scheduler.Run(MBB, I, Current, CurrentCount); 267 Scheduler.EmitSchedule(); 268 Current = MI; 269 CurrentCount = Count - 1; 270 Scheduler.Observe(MI, CurrentCount); 271 } 272 I = MI; 273 --Count; 274 } 275 assert(Count == 0 && "Instruction count mismatch!"); 276 assert((MBB->begin() == Current || CurrentCount != 0) && 277 "Instruction count mismatch!"); 278 Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount); 279 Scheduler.EmitSchedule(); 280 281 // Clean up register live-range state. 282 Scheduler.FinishBlock(); 283 284 // Update register kills 285 Scheduler.FixupKills(MBB); 286 } 287 288 return true; 289 } 290 291 /// StartBlock - Initialize register live-range state for scheduling in 292 /// this block. 293 /// 294 void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) { 295 // Call the superclass. 296 ScheduleDAGInstrs::StartBlock(BB); 297 298 // Reset the hazard recognizer and anti-dep breaker. 299 HazardRec->Reset(); 300 if (AntiDepBreak != NULL) 301 AntiDepBreak->StartBlock(BB); 302 } 303 304 /// Schedule - Schedule the instruction range using list scheduling. 305 /// 306 void SchedulePostRATDList::Schedule() { 307 // Build the scheduling graph. 308 BuildSchedGraph(AA); 309 310 if (AntiDepBreak != NULL) { 311 unsigned Broken = 312 AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos, 313 InsertPosIndex, DbgValues); 314 315 if (Broken != 0) { 316 // We made changes. Update the dependency graph. 317 // Theoretically we could update the graph in place: 318 // When a live range is changed to use a different register, remove 319 // the def's anti-dependence *and* output-dependence edges due to 320 // that register, and add new anti-dependence and output-dependence 321 // edges based on the next live range of the register. 322 SUnits.clear(); 323 Sequence.clear(); 324 EntrySU = SUnit(); 325 ExitSU = SUnit(); 326 BuildSchedGraph(AA); 327 328 NumFixedAnti += Broken; 329 } 330 } 331 332 DEBUG(dbgs() << "********** List Scheduling **********\n"); 333 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 334 SUnits[su].dumpAll(this)); 335 336 AvailableQueue.initNodes(SUnits); 337 ListScheduleTopDown(); 338 AvailableQueue.releaseState(); 339 } 340 341 /// Observe - Update liveness information to account for the current 342 /// instruction, which will not be scheduled. 343 /// 344 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) { 345 if (AntiDepBreak != NULL) 346 AntiDepBreak->Observe(MI, Count, InsertPosIndex); 347 } 348 349 /// FinishBlock - Clean up register live-range state. 350 /// 351 void SchedulePostRATDList::FinishBlock() { 352 if (AntiDepBreak != NULL) 353 AntiDepBreak->FinishBlock(); 354 355 // Call the superclass. 356 ScheduleDAGInstrs::FinishBlock(); 357 } 358 359 /// StartBlockForKills - Initialize register live-range state for updating kills 360 /// 361 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) { 362 // Initialize the indices to indicate that no registers are live. 363 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) 364 KillIndices[i] = ~0u; 365 366 // Determine the live-out physregs for this block. 367 if (!BB->empty() && BB->back().getDesc().isReturn()) { 368 // In a return block, examine the function live-out regs. 369 for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), 370 E = MRI.liveout_end(); I != E; ++I) { 371 unsigned Reg = *I; 372 KillIndices[Reg] = BB->size(); 373 // Repeat, for all subregs. 374 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 375 *Subreg; ++Subreg) { 376 KillIndices[*Subreg] = BB->size(); 377 } 378 } 379 } 380 else { 381 // In a non-return block, examine the live-in regs of all successors. 382 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 383 SE = BB->succ_end(); SI != SE; ++SI) { 384 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 385 E = (*SI)->livein_end(); I != E; ++I) { 386 unsigned Reg = *I; 387 KillIndices[Reg] = BB->size(); 388 // Repeat, for all subregs. 389 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 390 *Subreg; ++Subreg) { 391 KillIndices[*Subreg] = BB->size(); 392 } 393 } 394 } 395 } 396 } 397 398 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI, 399 MachineOperand &MO) { 400 // Setting kill flag... 401 if (!MO.isKill()) { 402 MO.setIsKill(true); 403 return false; 404 } 405 406 // If MO itself is live, clear the kill flag... 407 if (KillIndices[MO.getReg()] != ~0u) { 408 MO.setIsKill(false); 409 return false; 410 } 411 412 // If any subreg of MO is live, then create an imp-def for that 413 // subreg and keep MO marked as killed. 414 MO.setIsKill(false); 415 bool AllDead = true; 416 const unsigned SuperReg = MO.getReg(); 417 for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg); 418 *Subreg; ++Subreg) { 419 if (KillIndices[*Subreg] != ~0u) { 420 MI->addOperand(MachineOperand::CreateReg(*Subreg, 421 true /*IsDef*/, 422 true /*IsImp*/, 423 false /*IsKill*/, 424 false /*IsDead*/)); 425 AllDead = false; 426 } 427 } 428 429 if(AllDead) 430 MO.setIsKill(true); 431 return false; 432 } 433 434 /// FixupKills - Fix the register kill flags, they may have been made 435 /// incorrect by instruction reordering. 436 /// 437 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) { 438 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 439 440 std::set<unsigned> killedRegs; 441 BitVector ReservedRegs = TRI->getReservedRegs(MF); 442 443 StartBlockForKills(MBB); 444 445 // Examine block from end to start... 446 unsigned Count = MBB->size(); 447 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 448 I != E; --Count) { 449 MachineInstr *MI = --I; 450 if (MI->isDebugValue()) 451 continue; 452 453 // Update liveness. Registers that are defed but not used in this 454 // instruction are now dead. Mark register and all subregs as they 455 // are completely defined. 456 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 457 MachineOperand &MO = MI->getOperand(i); 458 if (!MO.isReg()) continue; 459 unsigned Reg = MO.getReg(); 460 if (Reg == 0) continue; 461 if (!MO.isDef()) continue; 462 // Ignore two-addr defs. 463 if (MI->isRegTiedToUseOperand(i)) continue; 464 465 KillIndices[Reg] = ~0u; 466 467 // Repeat for all subregs. 468 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 469 *Subreg; ++Subreg) { 470 KillIndices[*Subreg] = ~0u; 471 } 472 } 473 474 // Examine all used registers and set/clear kill flag. When a 475 // register is used multiple times we only set the kill flag on 476 // the first use. 477 killedRegs.clear(); 478 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 479 MachineOperand &MO = MI->getOperand(i); 480 if (!MO.isReg() || !MO.isUse()) continue; 481 unsigned Reg = MO.getReg(); 482 if ((Reg == 0) || ReservedRegs.test(Reg)) continue; 483 484 bool kill = false; 485 if (killedRegs.find(Reg) == killedRegs.end()) { 486 kill = true; 487 // A register is not killed if any subregs are live... 488 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 489 *Subreg; ++Subreg) { 490 if (KillIndices[*Subreg] != ~0u) { 491 kill = false; 492 break; 493 } 494 } 495 496 // If subreg is not live, then register is killed if it became 497 // live in this instruction 498 if (kill) 499 kill = (KillIndices[Reg] == ~0u); 500 } 501 502 if (MO.isKill() != kill) { 503 DEBUG(dbgs() << "Fixing " << MO << " in "); 504 // Warning: ToggleKillFlag may invalidate MO. 505 ToggleKillFlag(MI, MO); 506 DEBUG(MI->dump()); 507 } 508 509 killedRegs.insert(Reg); 510 } 511 512 // Mark any used register (that is not using undef) and subregs as 513 // now live... 514 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 515 MachineOperand &MO = MI->getOperand(i); 516 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 517 unsigned Reg = MO.getReg(); 518 if ((Reg == 0) || ReservedRegs.test(Reg)) continue; 519 520 KillIndices[Reg] = Count; 521 522 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 523 *Subreg; ++Subreg) { 524 KillIndices[*Subreg] = Count; 525 } 526 } 527 } 528 } 529 530 //===----------------------------------------------------------------------===// 531 // Top-Down Scheduling 532 //===----------------------------------------------------------------------===// 533 534 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 535 /// the PendingQueue if the count reaches zero. Also update its cycle bound. 536 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 537 SUnit *SuccSU = SuccEdge->getSUnit(); 538 539 #ifndef NDEBUG 540 if (SuccSU->NumPredsLeft == 0) { 541 dbgs() << "*** Scheduling failed! ***\n"; 542 SuccSU->dump(this); 543 dbgs() << " has been released too many times!\n"; 544 llvm_unreachable(0); 545 } 546 #endif 547 --SuccSU->NumPredsLeft; 548 549 // Standard scheduler algorithms will recompute the depth of the successor 550 // here as such: 551 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 552 // 553 // However, we lazily compute node depth instead. Note that 554 // ScheduleNodeTopDown has already updated the depth of this node which causes 555 // all descendents to be marked dirty. Setting the successor depth explicitly 556 // here would cause depth to be recomputed for all its ancestors. If the 557 // successor is not yet ready (because of a transitively redundant edge) then 558 // this causes depth computation to be quadratic in the size of the DAG. 559 560 // If all the node's predecessors are scheduled, this node is ready 561 // to be scheduled. Ignore the special ExitSU node. 562 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 563 PendingQueue.push_back(SuccSU); 564 } 565 566 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 567 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 568 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 569 I != E; ++I) { 570 ReleaseSucc(SU, &*I); 571 } 572 } 573 574 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 575 /// count of its successors. If a successor pending count is zero, add it to 576 /// the Available queue. 577 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 578 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 579 DEBUG(SU->dump(this)); 580 581 Sequence.push_back(SU); 582 assert(CurCycle >= SU->getDepth() && 583 "Node scheduled above its depth!"); 584 SU->setDepthToAtLeast(CurCycle); 585 586 ReleaseSuccessors(SU); 587 SU->isScheduled = true; 588 AvailableQueue.ScheduledNode(SU); 589 } 590 591 /// ListScheduleTopDown - The main loop of list scheduling for top-down 592 /// schedulers. 593 void SchedulePostRATDList::ListScheduleTopDown() { 594 unsigned CurCycle = 0; 595 596 // We're scheduling top-down but we're visiting the regions in 597 // bottom-up order, so we don't know the hazards at the start of a 598 // region. So assume no hazards (this should usually be ok as most 599 // blocks are a single region). 600 HazardRec->Reset(); 601 602 // Release any successors of the special Entry node. 603 ReleaseSuccessors(&EntrySU); 604 605 // Add all leaves to Available queue. 606 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 607 // It is available if it has no predecessors. 608 bool available = SUnits[i].Preds.empty(); 609 if (available) { 610 AvailableQueue.push(&SUnits[i]); 611 SUnits[i].isAvailable = true; 612 } 613 } 614 615 // In any cycle where we can't schedule any instructions, we must 616 // stall or emit a noop, depending on the target. 617 bool CycleHasInsts = false; 618 619 // While Available queue is not empty, grab the node with the highest 620 // priority. If it is not ready put it back. Schedule the node. 621 std::vector<SUnit*> NotReady; 622 Sequence.reserve(SUnits.size()); 623 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 624 // Check to see if any of the pending instructions are ready to issue. If 625 // so, add them to the available queue. 626 unsigned MinDepth = ~0u; 627 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 628 if (PendingQueue[i]->getDepth() <= CurCycle) { 629 AvailableQueue.push(PendingQueue[i]); 630 PendingQueue[i]->isAvailable = true; 631 PendingQueue[i] = PendingQueue.back(); 632 PendingQueue.pop_back(); 633 --i; --e; 634 } else if (PendingQueue[i]->getDepth() < MinDepth) 635 MinDepth = PendingQueue[i]->getDepth(); 636 } 637 638 DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this)); 639 640 SUnit *FoundSUnit = 0; 641 bool HasNoopHazards = false; 642 while (!AvailableQueue.empty()) { 643 SUnit *CurSUnit = AvailableQueue.pop(); 644 645 ScheduleHazardRecognizer::HazardType HT = 646 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 647 if (HT == ScheduleHazardRecognizer::NoHazard) { 648 FoundSUnit = CurSUnit; 649 break; 650 } 651 652 // Remember if this is a noop hazard. 653 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 654 655 NotReady.push_back(CurSUnit); 656 } 657 658 // Add the nodes that aren't ready back onto the available list. 659 if (!NotReady.empty()) { 660 AvailableQueue.push_all(NotReady); 661 NotReady.clear(); 662 } 663 664 // If we found a node to schedule... 665 if (FoundSUnit) { 666 // ... schedule the node... 667 ScheduleNodeTopDown(FoundSUnit, CurCycle); 668 HazardRec->EmitInstruction(FoundSUnit); 669 CycleHasInsts = true; 670 if (HazardRec->atIssueLimit()) { 671 DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n'); 672 HazardRec->AdvanceCycle(); 673 ++CurCycle; 674 CycleHasInsts = false; 675 } 676 } else { 677 if (CycleHasInsts) { 678 DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); 679 HazardRec->AdvanceCycle(); 680 } else if (!HasNoopHazards) { 681 // Otherwise, we have a pipeline stall, but no other problem, 682 // just advance the current cycle and try again. 683 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); 684 HazardRec->AdvanceCycle(); 685 ++NumStalls; 686 } else { 687 // Otherwise, we have no instructions to issue and we have instructions 688 // that will fault if we don't do this right. This is the case for 689 // processors without pipeline interlocks and other cases. 690 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); 691 HazardRec->EmitNoop(); 692 Sequence.push_back(0); // NULL here means noop 693 ++NumNoops; 694 } 695 696 ++CurCycle; 697 CycleHasInsts = false; 698 } 699 } 700 701 #ifndef NDEBUG 702 VerifySchedule(/*isBottomUp=*/false); 703 #endif 704 } 705 706 //===----------------------------------------------------------------------===// 707 // Public Constructor Functions 708 //===----------------------------------------------------------------------===// 709 710 FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) { 711 return new PostRAScheduler(OptLevel); 712 } 713