Home | History | Annotate | Download | only in CodeGen
      1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a top-down list scheduler, using standard algorithms.
     11 // The basic approach uses a priority queue of available nodes to schedule.
     12 // One at a time, nodes are taken from the priority queue (thus in priority
     13 // order), checked for legality to schedule, and emitted if legal.
     14 //
     15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
     16 // pipeline or resource constraints) or because an input to the instruction has
     17 // not completed execution.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #define DEBUG_TYPE "post-RA-sched"
     22 #include "AntiDepBreaker.h"
     23 #include "AggressiveAntiDepBreaker.h"
     24 #include "CriticalAntiDepBreaker.h"
     25 #include "RegisterClassInfo.h"
     26 #include "ScheduleDAGInstrs.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/CodeGen/LatencyPriorityQueue.h"
     29 #include "llvm/CodeGen/SchedulerRegistry.h"
     30 #include "llvm/CodeGen/MachineDominators.h"
     31 #include "llvm/CodeGen/MachineFrameInfo.h"
     32 #include "llvm/CodeGen/MachineFunctionPass.h"
     33 #include "llvm/CodeGen/MachineLoopInfo.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/Target/TargetLowering.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include "llvm/Target/TargetInstrInfo.h"
     40 #include "llvm/Target/TargetRegisterInfo.h"
     41 #include "llvm/Target/TargetSubtargetInfo.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/ADT/BitVector.h"
     47 #include "llvm/ADT/Statistic.h"
     48 #include <set>
     49 using namespace llvm;
     50 
     51 STATISTIC(NumNoops, "Number of noops inserted");
     52 STATISTIC(NumStalls, "Number of pipeline stalls");
     53 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
     54 
     55 // Post-RA scheduling is enabled with
     56 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
     57 // override the target.
     58 static cl::opt<bool>
     59 EnablePostRAScheduler("post-RA-scheduler",
     60                        cl::desc("Enable scheduling after register allocation"),
     61                        cl::init(false), cl::Hidden);
     62 static cl::opt<std::string>
     63 EnableAntiDepBreaking("break-anti-dependencies",
     64                       cl::desc("Break post-RA scheduling anti-dependencies: "
     65                                "\"critical\", \"all\", or \"none\""),
     66                       cl::init("none"), cl::Hidden);
     67 
     68 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
     69 static cl::opt<int>
     70 DebugDiv("postra-sched-debugdiv",
     71                       cl::desc("Debug control MBBs that are scheduled"),
     72                       cl::init(0), cl::Hidden);
     73 static cl::opt<int>
     74 DebugMod("postra-sched-debugmod",
     75                       cl::desc("Debug control MBBs that are scheduled"),
     76                       cl::init(0), cl::Hidden);
     77 
     78 AntiDepBreaker::~AntiDepBreaker() { }
     79 
     80 namespace {
     81   class PostRAScheduler : public MachineFunctionPass {
     82     AliasAnalysis *AA;
     83     const TargetInstrInfo *TII;
     84     RegisterClassInfo RegClassInfo;
     85     CodeGenOpt::Level OptLevel;
     86 
     87   public:
     88     static char ID;
     89     PostRAScheduler(CodeGenOpt::Level ol) :
     90       MachineFunctionPass(ID), OptLevel(ol) {}
     91 
     92     void getAnalysisUsage(AnalysisUsage &AU) const {
     93       AU.setPreservesCFG();
     94       AU.addRequired<AliasAnalysis>();
     95       AU.addRequired<MachineDominatorTree>();
     96       AU.addPreserved<MachineDominatorTree>();
     97       AU.addRequired<MachineLoopInfo>();
     98       AU.addPreserved<MachineLoopInfo>();
     99       MachineFunctionPass::getAnalysisUsage(AU);
    100     }
    101 
    102     const char *getPassName() const {
    103       return "Post RA top-down list latency scheduler";
    104     }
    105 
    106     bool runOnMachineFunction(MachineFunction &Fn);
    107   };
    108   char PostRAScheduler::ID = 0;
    109 
    110   class SchedulePostRATDList : public ScheduleDAGInstrs {
    111     /// AvailableQueue - The priority queue to use for the available SUnits.
    112     ///
    113     LatencyPriorityQueue AvailableQueue;
    114 
    115     /// PendingQueue - This contains all of the instructions whose operands have
    116     /// been issued, but their results are not ready yet (due to the latency of
    117     /// the operation).  Once the operands becomes available, the instruction is
    118     /// added to the AvailableQueue.
    119     std::vector<SUnit*> PendingQueue;
    120 
    121     /// Topo - A topological ordering for SUnits.
    122     ScheduleDAGTopologicalSort Topo;
    123 
    124     /// HazardRec - The hazard recognizer to use.
    125     ScheduleHazardRecognizer *HazardRec;
    126 
    127     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
    128     AntiDepBreaker *AntiDepBreak;
    129 
    130     /// AA - AliasAnalysis for making memory reference queries.
    131     AliasAnalysis *AA;
    132 
    133     /// KillIndices - The index of the most recent kill (proceding bottom-up),
    134     /// or ~0u if the register is not live.
    135     std::vector<unsigned> KillIndices;
    136 
    137   public:
    138     SchedulePostRATDList(
    139       MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
    140       AliasAnalysis *AA, const RegisterClassInfo&,
    141       TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    142       SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs);
    143 
    144     ~SchedulePostRATDList();
    145 
    146     /// StartBlock - Initialize register live-range state for scheduling in
    147     /// this block.
    148     ///
    149     void StartBlock(MachineBasicBlock *BB);
    150 
    151     /// Schedule - Schedule the instruction range using list scheduling.
    152     ///
    153     void Schedule();
    154 
    155     /// Observe - Update liveness information to account for the current
    156     /// instruction, which will not be scheduled.
    157     ///
    158     void Observe(MachineInstr *MI, unsigned Count);
    159 
    160     /// FinishBlock - Clean up register live-range state.
    161     ///
    162     void FinishBlock();
    163 
    164     /// FixupKills - Fix register kill flags that have been made
    165     /// invalid due to scheduling
    166     ///
    167     void FixupKills(MachineBasicBlock *MBB);
    168 
    169   private:
    170     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
    171     void ReleaseSuccessors(SUnit *SU);
    172     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
    173     void ListScheduleTopDown();
    174     void StartBlockForKills(MachineBasicBlock *BB);
    175 
    176     // ToggleKillFlag - Toggle a register operand kill flag. Other
    177     // adjustments may be made to the instruction if necessary. Return
    178     // true if the operand has been deleted, false if not.
    179     bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
    180   };
    181 }
    182 
    183 SchedulePostRATDList::SchedulePostRATDList(
    184   MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
    185   AliasAnalysis *AA, const RegisterClassInfo &RCI,
    186   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    187   SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs)
    188   : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits), AA(AA),
    189     KillIndices(TRI->getNumRegs())
    190 {
    191   const TargetMachine &TM = MF.getTarget();
    192   const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
    193   HazardRec =
    194     TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
    195   AntiDepBreak =
    196     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
    197      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
    198      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
    199       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
    200 }
    201 
    202 SchedulePostRATDList::~SchedulePostRATDList() {
    203   delete HazardRec;
    204   delete AntiDepBreak;
    205 }
    206 
    207 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
    208   TII = Fn.getTarget().getInstrInfo();
    209   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
    210   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
    211   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
    212   RegClassInfo.runOnMachineFunction(Fn);
    213 
    214   // Check for explicit enable/disable of post-ra scheduling.
    215   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = TargetSubtargetInfo::ANTIDEP_NONE;
    216   SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
    217   if (EnablePostRAScheduler.getPosition() > 0) {
    218     if (!EnablePostRAScheduler)
    219       return false;
    220   } else {
    221     // Check that post-RA scheduling is enabled for this target.
    222     // This may upgrade the AntiDepMode.
    223     const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
    224     if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
    225       return false;
    226   }
    227 
    228   // Check for antidep breaking override...
    229   if (EnableAntiDepBreaking.getPosition() > 0) {
    230     AntiDepMode = (EnableAntiDepBreaking == "all")
    231       ? TargetSubtargetInfo::ANTIDEP_ALL
    232       : ((EnableAntiDepBreaking == "critical")
    233          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
    234          : TargetSubtargetInfo::ANTIDEP_NONE);
    235   }
    236 
    237   DEBUG(dbgs() << "PostRAScheduler\n");
    238 
    239   SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
    240                                  CriticalPathRCs);
    241 
    242   // Loop over all of the basic blocks
    243   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
    244        MBB != MBBe; ++MBB) {
    245 #ifndef NDEBUG
    246     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
    247     if (DebugDiv > 0) {
    248       static int bbcnt = 0;
    249       if (bbcnt++ % DebugDiv != DebugMod)
    250         continue;
    251       dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
    252         ":BB#" << MBB->getNumber() << " ***\n";
    253     }
    254 #endif
    255 
    256     // Initialize register live-range state for scheduling in this block.
    257     Scheduler.StartBlock(MBB);
    258 
    259     // Schedule each sequence of instructions not interrupted by a label
    260     // or anything else that effectively needs to shut down scheduling.
    261     MachineBasicBlock::iterator Current = MBB->end();
    262     unsigned Count = MBB->size(), CurrentCount = Count;
    263     for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
    264       MachineInstr *MI = llvm::prior(I);
    265       if (TII->isSchedulingBoundary(MI, MBB, Fn)) {
    266         Scheduler.Run(MBB, I, Current, CurrentCount);
    267         Scheduler.EmitSchedule();
    268         Current = MI;
    269         CurrentCount = Count - 1;
    270         Scheduler.Observe(MI, CurrentCount);
    271       }
    272       I = MI;
    273       --Count;
    274     }
    275     assert(Count == 0 && "Instruction count mismatch!");
    276     assert((MBB->begin() == Current || CurrentCount != 0) &&
    277            "Instruction count mismatch!");
    278     Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
    279     Scheduler.EmitSchedule();
    280 
    281     // Clean up register live-range state.
    282     Scheduler.FinishBlock();
    283 
    284     // Update register kills
    285     Scheduler.FixupKills(MBB);
    286   }
    287 
    288   return true;
    289 }
    290 
    291 /// StartBlock - Initialize register live-range state for scheduling in
    292 /// this block.
    293 ///
    294 void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
    295   // Call the superclass.
    296   ScheduleDAGInstrs::StartBlock(BB);
    297 
    298   // Reset the hazard recognizer and anti-dep breaker.
    299   HazardRec->Reset();
    300   if (AntiDepBreak != NULL)
    301     AntiDepBreak->StartBlock(BB);
    302 }
    303 
    304 /// Schedule - Schedule the instruction range using list scheduling.
    305 ///
    306 void SchedulePostRATDList::Schedule() {
    307   // Build the scheduling graph.
    308   BuildSchedGraph(AA);
    309 
    310   if (AntiDepBreak != NULL) {
    311     unsigned Broken =
    312       AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
    313                                           InsertPosIndex, DbgValues);
    314 
    315     if (Broken != 0) {
    316       // We made changes. Update the dependency graph.
    317       // Theoretically we could update the graph in place:
    318       // When a live range is changed to use a different register, remove
    319       // the def's anti-dependence *and* output-dependence edges due to
    320       // that register, and add new anti-dependence and output-dependence
    321       // edges based on the next live range of the register.
    322       SUnits.clear();
    323       Sequence.clear();
    324       EntrySU = SUnit();
    325       ExitSU = SUnit();
    326       BuildSchedGraph(AA);
    327 
    328       NumFixedAnti += Broken;
    329     }
    330   }
    331 
    332   DEBUG(dbgs() << "********** List Scheduling **********\n");
    333   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    334           SUnits[su].dumpAll(this));
    335 
    336   AvailableQueue.initNodes(SUnits);
    337   ListScheduleTopDown();
    338   AvailableQueue.releaseState();
    339 }
    340 
    341 /// Observe - Update liveness information to account for the current
    342 /// instruction, which will not be scheduled.
    343 ///
    344 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
    345   if (AntiDepBreak != NULL)
    346     AntiDepBreak->Observe(MI, Count, InsertPosIndex);
    347 }
    348 
    349 /// FinishBlock - Clean up register live-range state.
    350 ///
    351 void SchedulePostRATDList::FinishBlock() {
    352   if (AntiDepBreak != NULL)
    353     AntiDepBreak->FinishBlock();
    354 
    355   // Call the superclass.
    356   ScheduleDAGInstrs::FinishBlock();
    357 }
    358 
    359 /// StartBlockForKills - Initialize register live-range state for updating kills
    360 ///
    361 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
    362   // Initialize the indices to indicate that no registers are live.
    363   for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
    364     KillIndices[i] = ~0u;
    365 
    366   // Determine the live-out physregs for this block.
    367   if (!BB->empty() && BB->back().getDesc().isReturn()) {
    368     // In a return block, examine the function live-out regs.
    369     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
    370            E = MRI.liveout_end(); I != E; ++I) {
    371       unsigned Reg = *I;
    372       KillIndices[Reg] = BB->size();
    373       // Repeat, for all subregs.
    374       for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    375            *Subreg; ++Subreg) {
    376         KillIndices[*Subreg] = BB->size();
    377       }
    378     }
    379   }
    380   else {
    381     // In a non-return block, examine the live-in regs of all successors.
    382     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    383            SE = BB->succ_end(); SI != SE; ++SI) {
    384       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    385              E = (*SI)->livein_end(); I != E; ++I) {
    386         unsigned Reg = *I;
    387         KillIndices[Reg] = BB->size();
    388         // Repeat, for all subregs.
    389         for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    390              *Subreg; ++Subreg) {
    391           KillIndices[*Subreg] = BB->size();
    392         }
    393       }
    394     }
    395   }
    396 }
    397 
    398 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
    399                                           MachineOperand &MO) {
    400   // Setting kill flag...
    401   if (!MO.isKill()) {
    402     MO.setIsKill(true);
    403     return false;
    404   }
    405 
    406   // If MO itself is live, clear the kill flag...
    407   if (KillIndices[MO.getReg()] != ~0u) {
    408     MO.setIsKill(false);
    409     return false;
    410   }
    411 
    412   // If any subreg of MO is live, then create an imp-def for that
    413   // subreg and keep MO marked as killed.
    414   MO.setIsKill(false);
    415   bool AllDead = true;
    416   const unsigned SuperReg = MO.getReg();
    417   for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
    418        *Subreg; ++Subreg) {
    419     if (KillIndices[*Subreg] != ~0u) {
    420       MI->addOperand(MachineOperand::CreateReg(*Subreg,
    421                                                true  /*IsDef*/,
    422                                                true  /*IsImp*/,
    423                                                false /*IsKill*/,
    424                                                false /*IsDead*/));
    425       AllDead = false;
    426     }
    427   }
    428 
    429   if(AllDead)
    430     MO.setIsKill(true);
    431   return false;
    432 }
    433 
    434 /// FixupKills - Fix the register kill flags, they may have been made
    435 /// incorrect by instruction reordering.
    436 ///
    437 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
    438   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
    439 
    440   std::set<unsigned> killedRegs;
    441   BitVector ReservedRegs = TRI->getReservedRegs(MF);
    442 
    443   StartBlockForKills(MBB);
    444 
    445   // Examine block from end to start...
    446   unsigned Count = MBB->size();
    447   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
    448        I != E; --Count) {
    449     MachineInstr *MI = --I;
    450     if (MI->isDebugValue())
    451       continue;
    452 
    453     // Update liveness.  Registers that are defed but not used in this
    454     // instruction are now dead. Mark register and all subregs as they
    455     // are completely defined.
    456     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    457       MachineOperand &MO = MI->getOperand(i);
    458       if (!MO.isReg()) continue;
    459       unsigned Reg = MO.getReg();
    460       if (Reg == 0) continue;
    461       if (!MO.isDef()) continue;
    462       // Ignore two-addr defs.
    463       if (MI->isRegTiedToUseOperand(i)) continue;
    464 
    465       KillIndices[Reg] = ~0u;
    466 
    467       // Repeat for all subregs.
    468       for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    469            *Subreg; ++Subreg) {
    470         KillIndices[*Subreg] = ~0u;
    471       }
    472     }
    473 
    474     // Examine all used registers and set/clear kill flag. When a
    475     // register is used multiple times we only set the kill flag on
    476     // the first use.
    477     killedRegs.clear();
    478     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    479       MachineOperand &MO = MI->getOperand(i);
    480       if (!MO.isReg() || !MO.isUse()) continue;
    481       unsigned Reg = MO.getReg();
    482       if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
    483 
    484       bool kill = false;
    485       if (killedRegs.find(Reg) == killedRegs.end()) {
    486         kill = true;
    487         // A register is not killed if any subregs are live...
    488         for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    489              *Subreg; ++Subreg) {
    490           if (KillIndices[*Subreg] != ~0u) {
    491             kill = false;
    492             break;
    493           }
    494         }
    495 
    496         // If subreg is not live, then register is killed if it became
    497         // live in this instruction
    498         if (kill)
    499           kill = (KillIndices[Reg] == ~0u);
    500       }
    501 
    502       if (MO.isKill() != kill) {
    503         DEBUG(dbgs() << "Fixing " << MO << " in ");
    504         // Warning: ToggleKillFlag may invalidate MO.
    505         ToggleKillFlag(MI, MO);
    506         DEBUG(MI->dump());
    507       }
    508 
    509       killedRegs.insert(Reg);
    510     }
    511 
    512     // Mark any used register (that is not using undef) and subregs as
    513     // now live...
    514     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    515       MachineOperand &MO = MI->getOperand(i);
    516       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
    517       unsigned Reg = MO.getReg();
    518       if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
    519 
    520       KillIndices[Reg] = Count;
    521 
    522       for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    523            *Subreg; ++Subreg) {
    524         KillIndices[*Subreg] = Count;
    525       }
    526     }
    527   }
    528 }
    529 
    530 //===----------------------------------------------------------------------===//
    531 //  Top-Down Scheduling
    532 //===----------------------------------------------------------------------===//
    533 
    534 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
    535 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
    536 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
    537   SUnit *SuccSU = SuccEdge->getSUnit();
    538 
    539 #ifndef NDEBUG
    540   if (SuccSU->NumPredsLeft == 0) {
    541     dbgs() << "*** Scheduling failed! ***\n";
    542     SuccSU->dump(this);
    543     dbgs() << " has been released too many times!\n";
    544     llvm_unreachable(0);
    545   }
    546 #endif
    547   --SuccSU->NumPredsLeft;
    548 
    549   // Standard scheduler algorithms will recompute the depth of the successor
    550   // here as such:
    551   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
    552   //
    553   // However, we lazily compute node depth instead. Note that
    554   // ScheduleNodeTopDown has already updated the depth of this node which causes
    555   // all descendents to be marked dirty. Setting the successor depth explicitly
    556   // here would cause depth to be recomputed for all its ancestors. If the
    557   // successor is not yet ready (because of a transitively redundant edge) then
    558   // this causes depth computation to be quadratic in the size of the DAG.
    559 
    560   // If all the node's predecessors are scheduled, this node is ready
    561   // to be scheduled. Ignore the special ExitSU node.
    562   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    563     PendingQueue.push_back(SuccSU);
    564 }
    565 
    566 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
    567 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
    568   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    569        I != E; ++I) {
    570     ReleaseSucc(SU, &*I);
    571   }
    572 }
    573 
    574 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
    575 /// count of its successors. If a successor pending count is zero, add it to
    576 /// the Available queue.
    577 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
    578   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    579   DEBUG(SU->dump(this));
    580 
    581   Sequence.push_back(SU);
    582   assert(CurCycle >= SU->getDepth() &&
    583          "Node scheduled above its depth!");
    584   SU->setDepthToAtLeast(CurCycle);
    585 
    586   ReleaseSuccessors(SU);
    587   SU->isScheduled = true;
    588   AvailableQueue.ScheduledNode(SU);
    589 }
    590 
    591 /// ListScheduleTopDown - The main loop of list scheduling for top-down
    592 /// schedulers.
    593 void SchedulePostRATDList::ListScheduleTopDown() {
    594   unsigned CurCycle = 0;
    595 
    596   // We're scheduling top-down but we're visiting the regions in
    597   // bottom-up order, so we don't know the hazards at the start of a
    598   // region. So assume no hazards (this should usually be ok as most
    599   // blocks are a single region).
    600   HazardRec->Reset();
    601 
    602   // Release any successors of the special Entry node.
    603   ReleaseSuccessors(&EntrySU);
    604 
    605   // Add all leaves to Available queue.
    606   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    607     // It is available if it has no predecessors.
    608     bool available = SUnits[i].Preds.empty();
    609     if (available) {
    610       AvailableQueue.push(&SUnits[i]);
    611       SUnits[i].isAvailable = true;
    612     }
    613   }
    614 
    615   // In any cycle where we can't schedule any instructions, we must
    616   // stall or emit a noop, depending on the target.
    617   bool CycleHasInsts = false;
    618 
    619   // While Available queue is not empty, grab the node with the highest
    620   // priority. If it is not ready put it back.  Schedule the node.
    621   std::vector<SUnit*> NotReady;
    622   Sequence.reserve(SUnits.size());
    623   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
    624     // Check to see if any of the pending instructions are ready to issue.  If
    625     // so, add them to the available queue.
    626     unsigned MinDepth = ~0u;
    627     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    628       if (PendingQueue[i]->getDepth() <= CurCycle) {
    629         AvailableQueue.push(PendingQueue[i]);
    630         PendingQueue[i]->isAvailable = true;
    631         PendingQueue[i] = PendingQueue.back();
    632         PendingQueue.pop_back();
    633         --i; --e;
    634       } else if (PendingQueue[i]->getDepth() < MinDepth)
    635         MinDepth = PendingQueue[i]->getDepth();
    636     }
    637 
    638     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
    639 
    640     SUnit *FoundSUnit = 0;
    641     bool HasNoopHazards = false;
    642     while (!AvailableQueue.empty()) {
    643       SUnit *CurSUnit = AvailableQueue.pop();
    644 
    645       ScheduleHazardRecognizer::HazardType HT =
    646         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
    647       if (HT == ScheduleHazardRecognizer::NoHazard) {
    648         FoundSUnit = CurSUnit;
    649         break;
    650       }
    651 
    652       // Remember if this is a noop hazard.
    653       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
    654 
    655       NotReady.push_back(CurSUnit);
    656     }
    657 
    658     // Add the nodes that aren't ready back onto the available list.
    659     if (!NotReady.empty()) {
    660       AvailableQueue.push_all(NotReady);
    661       NotReady.clear();
    662     }
    663 
    664     // If we found a node to schedule...
    665     if (FoundSUnit) {
    666       // ... schedule the node...
    667       ScheduleNodeTopDown(FoundSUnit, CurCycle);
    668       HazardRec->EmitInstruction(FoundSUnit);
    669       CycleHasInsts = true;
    670       if (HazardRec->atIssueLimit()) {
    671         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
    672         HazardRec->AdvanceCycle();
    673         ++CurCycle;
    674         CycleHasInsts = false;
    675       }
    676     } else {
    677       if (CycleHasInsts) {
    678         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
    679         HazardRec->AdvanceCycle();
    680       } else if (!HasNoopHazards) {
    681         // Otherwise, we have a pipeline stall, but no other problem,
    682         // just advance the current cycle and try again.
    683         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
    684         HazardRec->AdvanceCycle();
    685         ++NumStalls;
    686       } else {
    687         // Otherwise, we have no instructions to issue and we have instructions
    688         // that will fault if we don't do this right.  This is the case for
    689         // processors without pipeline interlocks and other cases.
    690         DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
    691         HazardRec->EmitNoop();
    692         Sequence.push_back(0);   // NULL here means noop
    693         ++NumNoops;
    694       }
    695 
    696       ++CurCycle;
    697       CycleHasInsts = false;
    698     }
    699   }
    700 
    701 #ifndef NDEBUG
    702   VerifySchedule(/*isBottomUp=*/false);
    703 #endif
    704 }
    705 
    706 //===----------------------------------------------------------------------===//
    707 //                         Public Constructor Functions
    708 //===----------------------------------------------------------------------===//
    709 
    710 FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
    711   return new PostRAScheduler(OptLevel);
    712 }
    713