Home | History | Annotate | Download | only in Utils
      1 //===-- Local.cpp - Functions to perform local transformations ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/GlobalAlias.h"
     18 #include "llvm/GlobalVariable.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/Intrinsics.h"
     22 #include "llvm/IntrinsicInst.h"
     23 #include "llvm/Metadata.h"
     24 #include "llvm/Operator.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/SmallPtrSet.h"
     27 #include "llvm/Analysis/DebugInfo.h"
     28 #include "llvm/Analysis/DIBuilder.h"
     29 #include "llvm/Analysis/Dominators.h"
     30 #include "llvm/Analysis/InstructionSimplify.h"
     31 #include "llvm/Analysis/ProfileInfo.h"
     32 #include "llvm/Analysis/ValueTracking.h"
     33 #include "llvm/Target/TargetData.h"
     34 #include "llvm/Support/CFG.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/GetElementPtrTypeIterator.h"
     37 #include "llvm/Support/IRBuilder.h"
     38 #include "llvm/Support/MathExtras.h"
     39 #include "llvm/Support/ValueHandle.h"
     40 #include "llvm/Support/raw_ostream.h"
     41 using namespace llvm;
     42 
     43 //===----------------------------------------------------------------------===//
     44 //  Local constant propagation.
     45 //
     46 
     47 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     48 /// constant value, convert it into an unconditional branch to the constant
     49 /// destination.  This is a nontrivial operation because the successors of this
     50 /// basic block must have their PHI nodes updated.
     51 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     52 /// conditions and indirectbr addresses this might make dead if
     53 /// DeleteDeadConditions is true.
     54 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
     55   TerminatorInst *T = BB->getTerminator();
     56   IRBuilder<> Builder(T);
     57 
     58   // Branch - See if we are conditional jumping on constant
     59   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
     60     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
     61     BasicBlock *Dest1 = BI->getSuccessor(0);
     62     BasicBlock *Dest2 = BI->getSuccessor(1);
     63 
     64     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
     65       // Are we branching on constant?
     66       // YES.  Change to unconditional branch...
     67       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
     68       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
     69 
     70       //cerr << "Function: " << T->getParent()->getParent()
     71       //     << "\nRemoving branch from " << T->getParent()
     72       //     << "\n\nTo: " << OldDest << endl;
     73 
     74       // Let the basic block know that we are letting go of it.  Based on this,
     75       // it will adjust it's PHI nodes.
     76       OldDest->removePredecessor(BB);
     77 
     78       // Replace the conditional branch with an unconditional one.
     79       Builder.CreateBr(Destination);
     80       BI->eraseFromParent();
     81       return true;
     82     }
     83 
     84     if (Dest2 == Dest1) {       // Conditional branch to same location?
     85       // This branch matches something like this:
     86       //     br bool %cond, label %Dest, label %Dest
     87       // and changes it into:  br label %Dest
     88 
     89       // Let the basic block know that we are letting go of one copy of it.
     90       assert(BI->getParent() && "Terminator not inserted in block!");
     91       Dest1->removePredecessor(BI->getParent());
     92 
     93       // Replace the conditional branch with an unconditional one.
     94       Builder.CreateBr(Dest1);
     95       Value *Cond = BI->getCondition();
     96       BI->eraseFromParent();
     97       if (DeleteDeadConditions)
     98         RecursivelyDeleteTriviallyDeadInstructions(Cond);
     99       return true;
    100     }
    101     return false;
    102   }
    103 
    104   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    105     // If we are switching on a constant, we can convert the switch into a
    106     // single branch instruction!
    107     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    108     BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
    109     BasicBlock *DefaultDest = TheOnlyDest;
    110     assert(TheOnlyDest == SI->getDefaultDest() &&
    111            "Default destination is not successor #0?");
    112 
    113     // Figure out which case it goes to.
    114     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
    115       // Found case matching a constant operand?
    116       if (SI->getSuccessorValue(i) == CI) {
    117         TheOnlyDest = SI->getSuccessor(i);
    118         break;
    119       }
    120 
    121       // Check to see if this branch is going to the same place as the default
    122       // dest.  If so, eliminate it as an explicit compare.
    123       if (SI->getSuccessor(i) == DefaultDest) {
    124         // Remove this entry.
    125         DefaultDest->removePredecessor(SI->getParent());
    126         SI->removeCase(i);
    127         --i; --e;  // Don't skip an entry...
    128         continue;
    129       }
    130 
    131       // Otherwise, check to see if the switch only branches to one destination.
    132       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
    133       // destinations.
    134       if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
    135     }
    136 
    137     if (CI && !TheOnlyDest) {
    138       // Branching on a constant, but not any of the cases, go to the default
    139       // successor.
    140       TheOnlyDest = SI->getDefaultDest();
    141     }
    142 
    143     // If we found a single destination that we can fold the switch into, do so
    144     // now.
    145     if (TheOnlyDest) {
    146       // Insert the new branch.
    147       Builder.CreateBr(TheOnlyDest);
    148       BasicBlock *BB = SI->getParent();
    149 
    150       // Remove entries from PHI nodes which we no longer branch to...
    151       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
    152         // Found case matching a constant operand?
    153         BasicBlock *Succ = SI->getSuccessor(i);
    154         if (Succ == TheOnlyDest)
    155           TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
    156         else
    157           Succ->removePredecessor(BB);
    158       }
    159 
    160       // Delete the old switch.
    161       Value *Cond = SI->getCondition();
    162       SI->eraseFromParent();
    163       if (DeleteDeadConditions)
    164         RecursivelyDeleteTriviallyDeadInstructions(Cond);
    165       return true;
    166     }
    167 
    168     if (SI->getNumSuccessors() == 2) {
    169       // Otherwise, we can fold this switch into a conditional branch
    170       // instruction if it has only one non-default destination.
    171       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
    172                                          SI->getSuccessorValue(1), "cond");
    173 
    174       // Insert the new branch.
    175       Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0));
    176 
    177       // Delete the old switch.
    178       SI->eraseFromParent();
    179       return true;
    180     }
    181     return false;
    182   }
    183 
    184   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
    185     // indirectbr blockaddress(@F, @BB) -> br label @BB
    186     if (BlockAddress *BA =
    187           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
    188       BasicBlock *TheOnlyDest = BA->getBasicBlock();
    189       // Insert the new branch.
    190       Builder.CreateBr(TheOnlyDest);
    191 
    192       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
    193         if (IBI->getDestination(i) == TheOnlyDest)
    194           TheOnlyDest = 0;
    195         else
    196           IBI->getDestination(i)->removePredecessor(IBI->getParent());
    197       }
    198       Value *Address = IBI->getAddress();
    199       IBI->eraseFromParent();
    200       if (DeleteDeadConditions)
    201         RecursivelyDeleteTriviallyDeadInstructions(Address);
    202 
    203       // If we didn't find our destination in the IBI successor list, then we
    204       // have undefined behavior.  Replace the unconditional branch with an
    205       // 'unreachable' instruction.
    206       if (TheOnlyDest) {
    207         BB->getTerminator()->eraseFromParent();
    208         new UnreachableInst(BB->getContext(), BB);
    209       }
    210 
    211       return true;
    212     }
    213   }
    214 
    215   return false;
    216 }
    217 
    218 
    219 //===----------------------------------------------------------------------===//
    220 //  Local dead code elimination.
    221 //
    222 
    223 /// isInstructionTriviallyDead - Return true if the result produced by the
    224 /// instruction is not used, and the instruction has no side effects.
    225 ///
    226 bool llvm::isInstructionTriviallyDead(Instruction *I) {
    227   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
    228 
    229   // We don't want the landingpad instruction removed by anything this general.
    230   if (isa<LandingPadInst>(I))
    231     return false;
    232 
    233   // We don't want debug info removed by anything this general, unless
    234   // debug info is empty.
    235   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
    236     if (DDI->getAddress())
    237       return false;
    238     return true;
    239   }
    240   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
    241     if (DVI->getValue())
    242       return false;
    243     return true;
    244   }
    245 
    246   if (!I->mayHaveSideEffects()) return true;
    247 
    248   // Special case intrinsics that "may have side effects" but can be deleted
    249   // when dead.
    250   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    251     // Safe to delete llvm.stacksave if dead.
    252     if (II->getIntrinsicID() == Intrinsic::stacksave)
    253       return true;
    254 
    255     // Lifetime intrinsics are dead when their right-hand is undef.
    256     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    257         II->getIntrinsicID() == Intrinsic::lifetime_end)
    258       return isa<UndefValue>(II->getArgOperand(1));
    259   }
    260   return false;
    261 }
    262 
    263 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
    264 /// trivially dead instruction, delete it.  If that makes any of its operands
    265 /// trivially dead, delete them too, recursively.  Return true if any
    266 /// instructions were deleted.
    267 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
    268   Instruction *I = dyn_cast<Instruction>(V);
    269   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
    270     return false;
    271 
    272   SmallVector<Instruction*, 16> DeadInsts;
    273   DeadInsts.push_back(I);
    274 
    275   do {
    276     I = DeadInsts.pop_back_val();
    277 
    278     // Null out all of the instruction's operands to see if any operand becomes
    279     // dead as we go.
    280     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    281       Value *OpV = I->getOperand(i);
    282       I->setOperand(i, 0);
    283 
    284       if (!OpV->use_empty()) continue;
    285 
    286       // If the operand is an instruction that became dead as we nulled out the
    287       // operand, and if it is 'trivially' dead, delete it in a future loop
    288       // iteration.
    289       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
    290         if (isInstructionTriviallyDead(OpI))
    291           DeadInsts.push_back(OpI);
    292     }
    293 
    294     I->eraseFromParent();
    295   } while (!DeadInsts.empty());
    296 
    297   return true;
    298 }
    299 
    300 /// areAllUsesEqual - Check whether the uses of a value are all the same.
    301 /// This is similar to Instruction::hasOneUse() except this will also return
    302 /// true when there are no uses or multiple uses that all refer to the same
    303 /// value.
    304 static bool areAllUsesEqual(Instruction *I) {
    305   Value::use_iterator UI = I->use_begin();
    306   Value::use_iterator UE = I->use_end();
    307   if (UI == UE)
    308     return true;
    309 
    310   User *TheUse = *UI;
    311   for (++UI; UI != UE; ++UI) {
    312     if (*UI != TheUse)
    313       return false;
    314   }
    315   return true;
    316 }
    317 
    318 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
    319 /// dead PHI node, due to being a def-use chain of single-use nodes that
    320 /// either forms a cycle or is terminated by a trivially dead instruction,
    321 /// delete it.  If that makes any of its operands trivially dead, delete them
    322 /// too, recursively.  Return true if a change was made.
    323 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
    324   SmallPtrSet<Instruction*, 4> Visited;
    325   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
    326        I = cast<Instruction>(*I->use_begin())) {
    327     if (I->use_empty())
    328       return RecursivelyDeleteTriviallyDeadInstructions(I);
    329 
    330     // If we find an instruction more than once, we're on a cycle that
    331     // won't prove fruitful.
    332     if (!Visited.insert(I)) {
    333       // Break the cycle and delete the instruction and its operands.
    334       I->replaceAllUsesWith(UndefValue::get(I->getType()));
    335       (void)RecursivelyDeleteTriviallyDeadInstructions(I);
    336       return true;
    337     }
    338   }
    339   return false;
    340 }
    341 
    342 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
    343 /// simplify any instructions in it and recursively delete dead instructions.
    344 ///
    345 /// This returns true if it changed the code, note that it can delete
    346 /// instructions in other blocks as well in this block.
    347 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
    348   bool MadeChange = false;
    349   for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
    350     Instruction *Inst = BI++;
    351 
    352     if (Value *V = SimplifyInstruction(Inst, TD)) {
    353       WeakVH BIHandle(BI);
    354       ReplaceAndSimplifyAllUses(Inst, V, TD);
    355       MadeChange = true;
    356       if (BIHandle != BI)
    357         BI = BB->begin();
    358       continue;
    359     }
    360 
    361     if (Inst->isTerminator())
    362       break;
    363 
    364     WeakVH BIHandle(BI);
    365     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
    366     if (BIHandle != BI)
    367       BI = BB->begin();
    368   }
    369   return MadeChange;
    370 }
    371 
    372 //===----------------------------------------------------------------------===//
    373 //  Control Flow Graph Restructuring.
    374 //
    375 
    376 
    377 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
    378 /// method is called when we're about to delete Pred as a predecessor of BB.  If
    379 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
    380 ///
    381 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    382 /// nodes that collapse into identity values.  For example, if we have:
    383 ///   x = phi(1, 0, 0, 0)
    384 ///   y = and x, z
    385 ///
    386 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    387 /// recursively fold the and to 0.
    388 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
    389                                         TargetData *TD) {
    390   // This only adjusts blocks with PHI nodes.
    391   if (!isa<PHINode>(BB->begin()))
    392     return;
    393 
    394   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
    395   // them down.  This will leave us with single entry phi nodes and other phis
    396   // that can be removed.
    397   BB->removePredecessor(Pred, true);
    398 
    399   WeakVH PhiIt = &BB->front();
    400   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
    401     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
    402 
    403     Value *PNV = SimplifyInstruction(PN, TD);
    404     if (PNV == 0) continue;
    405 
    406     // If we're able to simplify the phi to a single value, substitute the new
    407     // value into all of its uses.
    408     assert(PNV != PN && "SimplifyInstruction broken!");
    409 
    410     Value *OldPhiIt = PhiIt;
    411     ReplaceAndSimplifyAllUses(PN, PNV, TD);
    412 
    413     // If recursive simplification ended up deleting the next PHI node we would
    414     // iterate to, then our iterator is invalid, restart scanning from the top
    415     // of the block.
    416     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
    417   }
    418 }
    419 
    420 
    421 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
    422 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
    423 /// between them, moving the instructions in the predecessor into DestBB and
    424 /// deleting the predecessor block.
    425 ///
    426 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
    427   // If BB has single-entry PHI nodes, fold them.
    428   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    429     Value *NewVal = PN->getIncomingValue(0);
    430     // Replace self referencing PHI with undef, it must be dead.
    431     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
    432     PN->replaceAllUsesWith(NewVal);
    433     PN->eraseFromParent();
    434   }
    435 
    436   BasicBlock *PredBB = DestBB->getSinglePredecessor();
    437   assert(PredBB && "Block doesn't have a single predecessor!");
    438 
    439   // Zap anything that took the address of DestBB.  Not doing this will give the
    440   // address an invalid value.
    441   if (DestBB->hasAddressTaken()) {
    442     BlockAddress *BA = BlockAddress::get(DestBB);
    443     Constant *Replacement =
    444       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
    445     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
    446                                                      BA->getType()));
    447     BA->destroyConstant();
    448   }
    449 
    450   // Anything that branched to PredBB now branches to DestBB.
    451   PredBB->replaceAllUsesWith(DestBB);
    452 
    453   // Splice all the instructions from PredBB to DestBB.
    454   PredBB->getTerminator()->eraseFromParent();
    455   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
    456 
    457   if (P) {
    458     DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
    459     if (DT) {
    460       BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
    461       DT->changeImmediateDominator(DestBB, PredBBIDom);
    462       DT->eraseNode(PredBB);
    463     }
    464     ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
    465     if (PI) {
    466       PI->replaceAllUses(PredBB, DestBB);
    467       PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
    468     }
    469   }
    470   // Nuke BB.
    471   PredBB->eraseFromParent();
    472 }
    473 
    474 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
    475 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
    476 ///
    477 /// Assumption: Succ is the single successor for BB.
    478 ///
    479 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
    480   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
    481 
    482   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
    483         << Succ->getName() << "\n");
    484   // Shortcut, if there is only a single predecessor it must be BB and merging
    485   // is always safe
    486   if (Succ->getSinglePredecessor()) return true;
    487 
    488   // Make a list of the predecessors of BB
    489   typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
    490   BlockSet BBPreds(pred_begin(BB), pred_end(BB));
    491 
    492   // Use that list to make another list of common predecessors of BB and Succ
    493   BlockSet CommonPreds;
    494   for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
    495        PI != PE; ++PI) {
    496     BasicBlock *P = *PI;
    497     if (BBPreds.count(P))
    498       CommonPreds.insert(P);
    499   }
    500 
    501   // Shortcut, if there are no common predecessors, merging is always safe
    502   if (CommonPreds.empty())
    503     return true;
    504 
    505   // Look at all the phi nodes in Succ, to see if they present a conflict when
    506   // merging these blocks
    507   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    508     PHINode *PN = cast<PHINode>(I);
    509 
    510     // If the incoming value from BB is again a PHINode in
    511     // BB which has the same incoming value for *PI as PN does, we can
    512     // merge the phi nodes and then the blocks can still be merged
    513     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    514     if (BBPN && BBPN->getParent() == BB) {
    515       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
    516             PI != PE; PI++) {
    517         if (BBPN->getIncomingValueForBlock(*PI)
    518               != PN->getIncomingValueForBlock(*PI)) {
    519           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    520                 << Succ->getName() << " is conflicting with "
    521                 << BBPN->getName() << " with regard to common predecessor "
    522                 << (*PI)->getName() << "\n");
    523           return false;
    524         }
    525       }
    526     } else {
    527       Value* Val = PN->getIncomingValueForBlock(BB);
    528       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
    529             PI != PE; PI++) {
    530         // See if the incoming value for the common predecessor is equal to the
    531         // one for BB, in which case this phi node will not prevent the merging
    532         // of the block.
    533         if (Val != PN->getIncomingValueForBlock(*PI)) {
    534           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    535                 << Succ->getName() << " is conflicting with regard to common "
    536                 << "predecessor " << (*PI)->getName() << "\n");
    537           return false;
    538         }
    539       }
    540     }
    541   }
    542 
    543   return true;
    544 }
    545 
    546 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    547 /// unconditional branch, and contains no instructions other than PHI nodes,
    548 /// potential side-effect free intrinsics and the branch.  If possible,
    549 /// eliminate BB by rewriting all the predecessors to branch to the successor
    550 /// block and return true.  If we can't transform, return false.
    551 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
    552   assert(BB != &BB->getParent()->getEntryBlock() &&
    553          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
    554 
    555   // We can't eliminate infinite loops.
    556   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
    557   if (BB == Succ) return false;
    558 
    559   // Check to see if merging these blocks would cause conflicts for any of the
    560   // phi nodes in BB or Succ. If not, we can safely merge.
    561   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
    562 
    563   // Check for cases where Succ has multiple predecessors and a PHI node in BB
    564   // has uses which will not disappear when the PHI nodes are merged.  It is
    565   // possible to handle such cases, but difficult: it requires checking whether
    566   // BB dominates Succ, which is non-trivial to calculate in the case where
    567   // Succ has multiple predecessors.  Also, it requires checking whether
    568   // constructing the necessary self-referential PHI node doesn't intoduce any
    569   // conflicts; this isn't too difficult, but the previous code for doing this
    570   // was incorrect.
    571   //
    572   // Note that if this check finds a live use, BB dominates Succ, so BB is
    573   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
    574   // folding the branch isn't profitable in that case anyway.
    575   if (!Succ->getSinglePredecessor()) {
    576     BasicBlock::iterator BBI = BB->begin();
    577     while (isa<PHINode>(*BBI)) {
    578       for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
    579            UI != E; ++UI) {
    580         if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
    581           if (PN->getIncomingBlock(UI) != BB)
    582             return false;
    583         } else {
    584           return false;
    585         }
    586       }
    587       ++BBI;
    588     }
    589   }
    590 
    591   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
    592 
    593   if (isa<PHINode>(Succ->begin())) {
    594     // If there is more than one pred of succ, and there are PHI nodes in
    595     // the successor, then we need to add incoming edges for the PHI nodes
    596     //
    597     const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    598 
    599     // Loop over all of the PHI nodes in the successor of BB.
    600     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    601       PHINode *PN = cast<PHINode>(I);
    602       Value *OldVal = PN->removeIncomingValue(BB, false);
    603       assert(OldVal && "No entry in PHI for Pred BB!");
    604 
    605       // If this incoming value is one of the PHI nodes in BB, the new entries
    606       // in the PHI node are the entries from the old PHI.
    607       if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
    608         PHINode *OldValPN = cast<PHINode>(OldVal);
    609         for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
    610           // Note that, since we are merging phi nodes and BB and Succ might
    611           // have common predecessors, we could end up with a phi node with
    612           // identical incoming branches. This will be cleaned up later (and
    613           // will trigger asserts if we try to clean it up now, without also
    614           // simplifying the corresponding conditional branch).
    615           PN->addIncoming(OldValPN->getIncomingValue(i),
    616                           OldValPN->getIncomingBlock(i));
    617       } else {
    618         // Add an incoming value for each of the new incoming values.
    619         for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
    620           PN->addIncoming(OldVal, BBPreds[i]);
    621       }
    622     }
    623   }
    624 
    625   if (Succ->getSinglePredecessor()) {
    626     // BB is the only predecessor of Succ, so Succ will end up with exactly
    627     // the same predecessors BB had.
    628 
    629     // Copy over any phi, debug or lifetime instruction.
    630     BB->getTerminator()->eraseFromParent();
    631     Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
    632   } else {
    633     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
    634       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
    635       assert(PN->use_empty() && "There shouldn't be any uses here!");
    636       PN->eraseFromParent();
    637     }
    638   }
    639 
    640   // Everything that jumped to BB now goes to Succ.
    641   BB->replaceAllUsesWith(Succ);
    642   if (!Succ->hasName()) Succ->takeName(BB);
    643   BB->eraseFromParent();              // Delete the old basic block.
    644   return true;
    645 }
    646 
    647 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    648 /// nodes in this block. This doesn't try to be clever about PHI nodes
    649 /// which differ only in the order of the incoming values, but instcombine
    650 /// orders them so it usually won't matter.
    651 ///
    652 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
    653   bool Changed = false;
    654 
    655   // This implementation doesn't currently consider undef operands
    656   // specially. Theoretically, two phis which are identical except for
    657   // one having an undef where the other doesn't could be collapsed.
    658 
    659   // Map from PHI hash values to PHI nodes. If multiple PHIs have
    660   // the same hash value, the element is the first PHI in the
    661   // linked list in CollisionMap.
    662   DenseMap<uintptr_t, PHINode *> HashMap;
    663 
    664   // Maintain linked lists of PHI nodes with common hash values.
    665   DenseMap<PHINode *, PHINode *> CollisionMap;
    666 
    667   // Examine each PHI.
    668   for (BasicBlock::iterator I = BB->begin();
    669        PHINode *PN = dyn_cast<PHINode>(I++); ) {
    670     // Compute a hash value on the operands. Instcombine will likely have sorted
    671     // them, which helps expose duplicates, but we have to check all the
    672     // operands to be safe in case instcombine hasn't run.
    673     uintptr_t Hash = 0;
    674     // This hash algorithm is quite weak as hash functions go, but it seems
    675     // to do a good enough job for this particular purpose, and is very quick.
    676     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
    677       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
    678       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    679     }
    680     for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
    681          I != E; ++I) {
    682       Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
    683       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    684     }
    685     // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
    686     Hash >>= 1;
    687     // If we've never seen this hash value before, it's a unique PHI.
    688     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
    689       HashMap.insert(std::make_pair(Hash, PN));
    690     if (Pair.second) continue;
    691     // Otherwise it's either a duplicate or a hash collision.
    692     for (PHINode *OtherPN = Pair.first->second; ; ) {
    693       if (OtherPN->isIdenticalTo(PN)) {
    694         // A duplicate. Replace this PHI with its duplicate.
    695         PN->replaceAllUsesWith(OtherPN);
    696         PN->eraseFromParent();
    697         Changed = true;
    698         break;
    699       }
    700       // A non-duplicate hash collision.
    701       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
    702       if (I == CollisionMap.end()) {
    703         // Set this PHI to be the head of the linked list of colliding PHIs.
    704         PHINode *Old = Pair.first->second;
    705         Pair.first->second = PN;
    706         CollisionMap[PN] = Old;
    707         break;
    708       }
    709       // Procede to the next PHI in the list.
    710       OtherPN = I->second;
    711     }
    712   }
    713 
    714   return Changed;
    715 }
    716 
    717 /// enforceKnownAlignment - If the specified pointer points to an object that
    718 /// we control, modify the object's alignment to PrefAlign. This isn't
    719 /// often possible though. If alignment is important, a more reliable approach
    720 /// is to simply align all global variables and allocation instructions to
    721 /// their preferred alignment from the beginning.
    722 ///
    723 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
    724                                       unsigned PrefAlign, const TargetData *TD) {
    725   V = V->stripPointerCasts();
    726 
    727   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    728     // If the preferred alignment is greater than the natural stack alignment
    729     // then don't round up. This avoids dynamic stack realignment.
    730     if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
    731       return Align;
    732     // If there is a requested alignment and if this is an alloca, round up.
    733     if (AI->getAlignment() >= PrefAlign)
    734       return AI->getAlignment();
    735     AI->setAlignment(PrefAlign);
    736     return PrefAlign;
    737   }
    738 
    739   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    740     // If there is a large requested alignment and we can, bump up the alignment
    741     // of the global.
    742     if (GV->isDeclaration()) return Align;
    743 
    744     if (GV->getAlignment() >= PrefAlign)
    745       return GV->getAlignment();
    746     // We can only increase the alignment of the global if it has no alignment
    747     // specified or if it is not assigned a section.  If it is assigned a
    748     // section, the global could be densely packed with other objects in the
    749     // section, increasing the alignment could cause padding issues.
    750     if (!GV->hasSection() || GV->getAlignment() == 0)
    751       GV->setAlignment(PrefAlign);
    752     return GV->getAlignment();
    753   }
    754 
    755   return Align;
    756 }
    757 
    758 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
    759 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
    760 /// and it is more than the alignment of the ultimate object, see if we can
    761 /// increase the alignment of the ultimate object, making this check succeed.
    762 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    763                                           const TargetData *TD) {
    764   assert(V->getType()->isPointerTy() &&
    765          "getOrEnforceKnownAlignment expects a pointer!");
    766   unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
    767   APInt Mask = APInt::getAllOnesValue(BitWidth);
    768   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    769   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
    770   unsigned TrailZ = KnownZero.countTrailingOnes();
    771 
    772   // Avoid trouble with rediculously large TrailZ values, such as
    773   // those computed from a null pointer.
    774   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
    775 
    776   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
    777 
    778   // LLVM doesn't support alignments larger than this currently.
    779   Align = std::min(Align, +Value::MaximumAlignment);
    780 
    781   if (PrefAlign > Align)
    782     Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
    783 
    784   // We don't need to make any adjustment.
    785   return Align;
    786 }
    787 
    788 ///===---------------------------------------------------------------------===//
    789 ///  Dbg Intrinsic utilities
    790 ///
    791 
    792 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
    793 /// that has an associated llvm.dbg.decl intrinsic.
    794 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    795                                            StoreInst *SI, DIBuilder &Builder) {
    796   DIVariable DIVar(DDI->getVariable());
    797   if (!DIVar.Verify())
    798     return false;
    799 
    800   Instruction *DbgVal = NULL;
    801   // If an argument is zero extended then use argument directly. The ZExt
    802   // may be zapped by an optimization pass in future.
    803   Argument *ExtendedArg = NULL;
    804   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
    805     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
    806   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
    807     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
    808   if (ExtendedArg)
    809     DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
    810   else
    811     DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
    812 
    813   // Propagate any debug metadata from the store onto the dbg.value.
    814   DebugLoc SIDL = SI->getDebugLoc();
    815   if (!SIDL.isUnknown())
    816     DbgVal->setDebugLoc(SIDL);
    817   // Otherwise propagate debug metadata from dbg.declare.
    818   else
    819     DbgVal->setDebugLoc(DDI->getDebugLoc());
    820   return true;
    821 }
    822 
    823 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
    824 /// that has an associated llvm.dbg.decl intrinsic.
    825 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    826                                            LoadInst *LI, DIBuilder &Builder) {
    827   DIVariable DIVar(DDI->getVariable());
    828   if (!DIVar.Verify())
    829     return false;
    830 
    831   Instruction *DbgVal =
    832     Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
    833                                     DIVar, LI);
    834 
    835   // Propagate any debug metadata from the store onto the dbg.value.
    836   DebugLoc LIDL = LI->getDebugLoc();
    837   if (!LIDL.isUnknown())
    838     DbgVal->setDebugLoc(LIDL);
    839   // Otherwise propagate debug metadata from dbg.declare.
    840   else
    841     DbgVal->setDebugLoc(DDI->getDebugLoc());
    842   return true;
    843 }
    844 
    845 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
    846 /// of llvm.dbg.value intrinsics.
    847 bool llvm::LowerDbgDeclare(Function &F) {
    848   DIBuilder DIB(*F.getParent());
    849   SmallVector<DbgDeclareInst *, 4> Dbgs;
    850   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
    851     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
    852       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
    853         Dbgs.push_back(DDI);
    854     }
    855   if (Dbgs.empty())
    856     return false;
    857 
    858   for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
    859          E = Dbgs.end(); I != E; ++I) {
    860     DbgDeclareInst *DDI = *I;
    861     if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
    862       bool RemoveDDI = true;
    863       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    864            UI != E; ++UI)
    865         if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
    866           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    867         else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
    868           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
    869         else
    870           RemoveDDI = false;
    871       if (RemoveDDI)
    872         DDI->eraseFromParent();
    873     }
    874   }
    875   return true;
    876 }
    877 
    878 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
    879 /// alloca 'V', if any.
    880 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
    881   if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
    882     for (Value::use_iterator UI = DebugNode->use_begin(),
    883          E = DebugNode->use_end(); UI != E; ++UI)
    884       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
    885         return DDI;
    886 
    887   return 0;
    888 }
    889