Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_IA32
      6 
      7 #include "src/code-stubs.h"
      8 #include "src/api-arguments.h"
      9 #include "src/base/bits.h"
     10 #include "src/bootstrapper.h"
     11 #include "src/codegen.h"
     12 #include "src/ia32/code-stubs-ia32.h"
     13 #include "src/ia32/frames-ia32.h"
     14 #include "src/ic/handler-compiler.h"
     15 #include "src/ic/ic.h"
     16 #include "src/ic/stub-cache.h"
     17 #include "src/isolate.h"
     18 #include "src/regexp/jsregexp.h"
     19 #include "src/regexp/regexp-macro-assembler.h"
     20 #include "src/runtime/runtime.h"
     21 
     22 namespace v8 {
     23 namespace internal {
     24 
     25 #define __ ACCESS_MASM(masm)
     26 
     27 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
     28   __ pop(ecx);
     29   __ mov(MemOperand(esp, eax, times_4, 0), edi);
     30   __ push(edi);
     31   __ push(ebx);
     32   __ push(ecx);
     33   __ add(eax, Immediate(3));
     34   __ TailCallRuntime(Runtime::kNewArray);
     35 }
     36 
     37 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
     38                                                ExternalReference miss) {
     39   // Update the static counter each time a new code stub is generated.
     40   isolate()->counters()->code_stubs()->Increment();
     41 
     42   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
     43   int param_count = descriptor.GetRegisterParameterCount();
     44   {
     45     // Call the runtime system in a fresh internal frame.
     46     FrameScope scope(masm, StackFrame::INTERNAL);
     47     DCHECK(param_count == 0 ||
     48            eax.is(descriptor.GetRegisterParameter(param_count - 1)));
     49     // Push arguments
     50     for (int i = 0; i < param_count; ++i) {
     51       __ push(descriptor.GetRegisterParameter(i));
     52     }
     53     __ CallExternalReference(miss, param_count);
     54   }
     55 
     56   __ ret(0);
     57 }
     58 
     59 
     60 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
     61   // We don't allow a GC during a store buffer overflow so there is no need to
     62   // store the registers in any particular way, but we do have to store and
     63   // restore them.
     64   __ pushad();
     65   if (save_doubles()) {
     66     __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
     67     for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
     68       XMMRegister reg = XMMRegister::from_code(i);
     69       __ movsd(Operand(esp, i * kDoubleSize), reg);
     70     }
     71   }
     72   const int argument_count = 1;
     73 
     74   AllowExternalCallThatCantCauseGC scope(masm);
     75   __ PrepareCallCFunction(argument_count, ecx);
     76   __ mov(Operand(esp, 0 * kPointerSize),
     77          Immediate(ExternalReference::isolate_address(isolate())));
     78   __ CallCFunction(
     79       ExternalReference::store_buffer_overflow_function(isolate()),
     80       argument_count);
     81   if (save_doubles()) {
     82     for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
     83       XMMRegister reg = XMMRegister::from_code(i);
     84       __ movsd(reg, Operand(esp, i * kDoubleSize));
     85     }
     86     __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
     87   }
     88   __ popad();
     89   __ ret(0);
     90 }
     91 
     92 
     93 class FloatingPointHelper : public AllStatic {
     94  public:
     95   enum ArgLocation {
     96     ARGS_ON_STACK,
     97     ARGS_IN_REGISTERS
     98   };
     99 
    100   // Code pattern for loading a floating point value. Input value must
    101   // be either a smi or a heap number object (fp value). Requirements:
    102   // operand in register number. Returns operand as floating point number
    103   // on FPU stack.
    104   static void LoadFloatOperand(MacroAssembler* masm, Register number);
    105 
    106   // Test if operands are smi or number objects (fp). Requirements:
    107   // operand_1 in eax, operand_2 in edx; falls through on float
    108   // operands, jumps to the non_float label otherwise.
    109   static void CheckFloatOperands(MacroAssembler* masm,
    110                                  Label* non_float,
    111                                  Register scratch);
    112 
    113   // Test if operands are numbers (smi or HeapNumber objects), and load
    114   // them into xmm0 and xmm1 if they are.  Jump to label not_numbers if
    115   // either operand is not a number.  Operands are in edx and eax.
    116   // Leaves operands unchanged.
    117   static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
    118 };
    119 
    120 
    121 void DoubleToIStub::Generate(MacroAssembler* masm) {
    122   Register input_reg = this->source();
    123   Register final_result_reg = this->destination();
    124   DCHECK(is_truncating());
    125 
    126   Label check_negative, process_64_bits, done, done_no_stash;
    127 
    128   int double_offset = offset();
    129 
    130   // Account for return address and saved regs if input is esp.
    131   if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
    132 
    133   MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
    134   MemOperand exponent_operand(MemOperand(input_reg,
    135                                          double_offset + kDoubleSize / 2));
    136 
    137   Register scratch1;
    138   {
    139     Register scratch_candidates[3] = { ebx, edx, edi };
    140     for (int i = 0; i < 3; i++) {
    141       scratch1 = scratch_candidates[i];
    142       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
    143     }
    144   }
    145   // Since we must use ecx for shifts below, use some other register (eax)
    146   // to calculate the result if ecx is the requested return register.
    147   Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
    148   // Save ecx if it isn't the return register and therefore volatile, or if it
    149   // is the return register, then save the temp register we use in its stead for
    150   // the result.
    151   Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
    152   __ push(scratch1);
    153   __ push(save_reg);
    154 
    155   bool stash_exponent_copy = !input_reg.is(esp);
    156   __ mov(scratch1, mantissa_operand);
    157   if (CpuFeatures::IsSupported(SSE3)) {
    158     CpuFeatureScope scope(masm, SSE3);
    159     // Load x87 register with heap number.
    160     __ fld_d(mantissa_operand);
    161   }
    162   __ mov(ecx, exponent_operand);
    163   if (stash_exponent_copy) __ push(ecx);
    164 
    165   __ and_(ecx, HeapNumber::kExponentMask);
    166   __ shr(ecx, HeapNumber::kExponentShift);
    167   __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
    168   __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
    169   __ j(below, &process_64_bits);
    170 
    171   // Result is entirely in lower 32-bits of mantissa
    172   int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
    173   if (CpuFeatures::IsSupported(SSE3)) {
    174     __ fstp(0);
    175   }
    176   __ sub(ecx, Immediate(delta));
    177   __ xor_(result_reg, result_reg);
    178   __ cmp(ecx, Immediate(31));
    179   __ j(above, &done);
    180   __ shl_cl(scratch1);
    181   __ jmp(&check_negative);
    182 
    183   __ bind(&process_64_bits);
    184   if (CpuFeatures::IsSupported(SSE3)) {
    185     CpuFeatureScope scope(masm, SSE3);
    186     if (stash_exponent_copy) {
    187       // Already a copy of the exponent on the stack, overwrite it.
    188       STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
    189       __ sub(esp, Immediate(kDoubleSize / 2));
    190     } else {
    191       // Reserve space for 64 bit answer.
    192       __ sub(esp, Immediate(kDoubleSize));  // Nolint.
    193     }
    194     // Do conversion, which cannot fail because we checked the exponent.
    195     __ fisttp_d(Operand(esp, 0));
    196     __ mov(result_reg, Operand(esp, 0));  // Load low word of answer as result
    197     __ add(esp, Immediate(kDoubleSize));
    198     __ jmp(&done_no_stash);
    199   } else {
    200     // Result must be extracted from shifted 32-bit mantissa
    201     __ sub(ecx, Immediate(delta));
    202     __ neg(ecx);
    203     if (stash_exponent_copy) {
    204       __ mov(result_reg, MemOperand(esp, 0));
    205     } else {
    206       __ mov(result_reg, exponent_operand);
    207     }
    208     __ and_(result_reg,
    209             Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
    210     __ add(result_reg,
    211            Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
    212     __ shrd_cl(scratch1, result_reg);
    213     __ shr_cl(result_reg);
    214     __ test(ecx, Immediate(32));
    215     __ cmov(not_equal, scratch1, result_reg);
    216   }
    217 
    218   // If the double was negative, negate the integer result.
    219   __ bind(&check_negative);
    220   __ mov(result_reg, scratch1);
    221   __ neg(result_reg);
    222   if (stash_exponent_copy) {
    223     __ cmp(MemOperand(esp, 0), Immediate(0));
    224   } else {
    225     __ cmp(exponent_operand, Immediate(0));
    226   }
    227     __ cmov(greater, result_reg, scratch1);
    228 
    229   // Restore registers
    230   __ bind(&done);
    231   if (stash_exponent_copy) {
    232     __ add(esp, Immediate(kDoubleSize / 2));
    233   }
    234   __ bind(&done_no_stash);
    235   if (!final_result_reg.is(result_reg)) {
    236     DCHECK(final_result_reg.is(ecx));
    237     __ mov(final_result_reg, result_reg);
    238   }
    239   __ pop(save_reg);
    240   __ pop(scratch1);
    241   __ ret(0);
    242 }
    243 
    244 
    245 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
    246                                            Register number) {
    247   Label load_smi, done;
    248 
    249   __ JumpIfSmi(number, &load_smi, Label::kNear);
    250   __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
    251   __ jmp(&done, Label::kNear);
    252 
    253   __ bind(&load_smi);
    254   __ SmiUntag(number);
    255   __ push(number);
    256   __ fild_s(Operand(esp, 0));
    257   __ pop(number);
    258 
    259   __ bind(&done);
    260 }
    261 
    262 
    263 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
    264                                            Label* not_numbers) {
    265   Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
    266   // Load operand in edx into xmm0, or branch to not_numbers.
    267   __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
    268   Factory* factory = masm->isolate()->factory();
    269   __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
    270   __ j(not_equal, not_numbers);  // Argument in edx is not a number.
    271   __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
    272   __ bind(&load_eax);
    273   // Load operand in eax into xmm1, or branch to not_numbers.
    274   __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
    275   __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
    276   __ j(equal, &load_float_eax, Label::kNear);
    277   __ jmp(not_numbers);  // Argument in eax is not a number.
    278   __ bind(&load_smi_edx);
    279   __ SmiUntag(edx);  // Untag smi before converting to float.
    280   __ Cvtsi2sd(xmm0, edx);
    281   __ SmiTag(edx);  // Retag smi for heap number overwriting test.
    282   __ jmp(&load_eax);
    283   __ bind(&load_smi_eax);
    284   __ SmiUntag(eax);  // Untag smi before converting to float.
    285   __ Cvtsi2sd(xmm1, eax);
    286   __ SmiTag(eax);  // Retag smi for heap number overwriting test.
    287   __ jmp(&done, Label::kNear);
    288   __ bind(&load_float_eax);
    289   __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
    290   __ bind(&done);
    291 }
    292 
    293 
    294 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
    295                                              Label* non_float,
    296                                              Register scratch) {
    297   Label test_other, done;
    298   // Test if both operands are floats or smi -> scratch=k_is_float;
    299   // Otherwise scratch = k_not_float.
    300   __ JumpIfSmi(edx, &test_other, Label::kNear);
    301   __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
    302   Factory* factory = masm->isolate()->factory();
    303   __ cmp(scratch, factory->heap_number_map());
    304   __ j(not_equal, non_float);  // argument in edx is not a number -> NaN
    305 
    306   __ bind(&test_other);
    307   __ JumpIfSmi(eax, &done, Label::kNear);
    308   __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
    309   __ cmp(scratch, factory->heap_number_map());
    310   __ j(not_equal, non_float);  // argument in eax is not a number -> NaN
    311 
    312   // Fall-through: Both operands are numbers.
    313   __ bind(&done);
    314 }
    315 
    316 
    317 void MathPowStub::Generate(MacroAssembler* masm) {
    318   const Register exponent = MathPowTaggedDescriptor::exponent();
    319   DCHECK(exponent.is(eax));
    320   const Register scratch = ecx;
    321   const XMMRegister double_result = xmm3;
    322   const XMMRegister double_base = xmm2;
    323   const XMMRegister double_exponent = xmm1;
    324   const XMMRegister double_scratch = xmm4;
    325 
    326   Label call_runtime, done, exponent_not_smi, int_exponent;
    327 
    328   // Save 1 in double_result - we need this several times later on.
    329   __ mov(scratch, Immediate(1));
    330   __ Cvtsi2sd(double_result, scratch);
    331 
    332   if (exponent_type() == TAGGED) {
    333     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    334     __ SmiUntag(exponent);
    335     __ jmp(&int_exponent);
    336 
    337     __ bind(&exponent_not_smi);
    338     __ movsd(double_exponent,
    339               FieldOperand(exponent, HeapNumber::kValueOffset));
    340   }
    341 
    342   if (exponent_type() != INTEGER) {
    343     Label fast_power, try_arithmetic_simplification;
    344     __ DoubleToI(exponent, double_exponent, double_scratch,
    345                  TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
    346                  &try_arithmetic_simplification,
    347                  &try_arithmetic_simplification);
    348     __ jmp(&int_exponent);
    349 
    350     __ bind(&try_arithmetic_simplification);
    351     // Skip to runtime if possibly NaN (indicated by the indefinite integer).
    352     __ cvttsd2si(exponent, Operand(double_exponent));
    353     __ cmp(exponent, Immediate(0x1));
    354     __ j(overflow, &call_runtime);
    355 
    356     // Using FPU instructions to calculate power.
    357     Label fast_power_failed;
    358     __ bind(&fast_power);
    359     __ fnclex();  // Clear flags to catch exceptions later.
    360     // Transfer (B)ase and (E)xponent onto the FPU register stack.
    361     __ sub(esp, Immediate(kDoubleSize));
    362     __ movsd(Operand(esp, 0), double_exponent);
    363     __ fld_d(Operand(esp, 0));  // E
    364     __ movsd(Operand(esp, 0), double_base);
    365     __ fld_d(Operand(esp, 0));  // B, E
    366 
    367     // Exponent is in st(1) and base is in st(0)
    368     // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
    369     // FYL2X calculates st(1) * log2(st(0))
    370     __ fyl2x();    // X
    371     __ fld(0);     // X, X
    372     __ frndint();  // rnd(X), X
    373     __ fsub(1);    // rnd(X), X-rnd(X)
    374     __ fxch(1);    // X - rnd(X), rnd(X)
    375     // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
    376     __ f2xm1();    // 2^(X-rnd(X)) - 1, rnd(X)
    377     __ fld1();     // 1, 2^(X-rnd(X)) - 1, rnd(X)
    378     __ faddp(1);   // 2^(X-rnd(X)), rnd(X)
    379     // FSCALE calculates st(0) * 2^st(1)
    380     __ fscale();   // 2^X, rnd(X)
    381     __ fstp(1);    // 2^X
    382     // Bail out to runtime in case of exceptions in the status word.
    383     __ fnstsw_ax();
    384     __ test_b(eax,
    385               Immediate(0x5F));  // We check for all but precision exception.
    386     __ j(not_zero, &fast_power_failed, Label::kNear);
    387     __ fstp_d(Operand(esp, 0));
    388     __ movsd(double_result, Operand(esp, 0));
    389     __ add(esp, Immediate(kDoubleSize));
    390     __ jmp(&done);
    391 
    392     __ bind(&fast_power_failed);
    393     __ fninit();
    394     __ add(esp, Immediate(kDoubleSize));
    395     __ jmp(&call_runtime);
    396   }
    397 
    398   // Calculate power with integer exponent.
    399   __ bind(&int_exponent);
    400   const XMMRegister double_scratch2 = double_exponent;
    401   __ mov(scratch, exponent);  // Back up exponent.
    402   __ movsd(double_scratch, double_base);  // Back up base.
    403   __ movsd(double_scratch2, double_result);  // Load double_exponent with 1.
    404 
    405   // Get absolute value of exponent.
    406   Label no_neg, while_true, while_false;
    407   __ test(scratch, scratch);
    408   __ j(positive, &no_neg, Label::kNear);
    409   __ neg(scratch);
    410   __ bind(&no_neg);
    411 
    412   __ j(zero, &while_false, Label::kNear);
    413   __ shr(scratch, 1);
    414   // Above condition means CF==0 && ZF==0.  This means that the
    415   // bit that has been shifted out is 0 and the result is not 0.
    416   __ j(above, &while_true, Label::kNear);
    417   __ movsd(double_result, double_scratch);
    418   __ j(zero, &while_false, Label::kNear);
    419 
    420   __ bind(&while_true);
    421   __ shr(scratch, 1);
    422   __ mulsd(double_scratch, double_scratch);
    423   __ j(above, &while_true, Label::kNear);
    424   __ mulsd(double_result, double_scratch);
    425   __ j(not_zero, &while_true);
    426 
    427   __ bind(&while_false);
    428   // scratch has the original value of the exponent - if the exponent is
    429   // negative, return 1/result.
    430   __ test(exponent, exponent);
    431   __ j(positive, &done);
    432   __ divsd(double_scratch2, double_result);
    433   __ movsd(double_result, double_scratch2);
    434   // Test whether result is zero.  Bail out to check for subnormal result.
    435   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    436   __ xorps(double_scratch2, double_scratch2);
    437   __ ucomisd(double_scratch2, double_result);  // Result cannot be NaN.
    438   // double_exponent aliased as double_scratch2 has already been overwritten
    439   // and may not have contained the exponent value in the first place when the
    440   // exponent is a smi.  We reset it with exponent value before bailing out.
    441   __ j(not_equal, &done);
    442   __ Cvtsi2sd(double_exponent, exponent);
    443 
    444   // Returning or bailing out.
    445   __ bind(&call_runtime);
    446   {
    447     AllowExternalCallThatCantCauseGC scope(masm);
    448     __ PrepareCallCFunction(4, scratch);
    449     __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
    450     __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
    451     __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
    452                      4);
    453   }
    454   // Return value is in st(0) on ia32.
    455   // Store it into the (fixed) result register.
    456   __ sub(esp, Immediate(kDoubleSize));
    457   __ fstp_d(Operand(esp, 0));
    458   __ movsd(double_result, Operand(esp, 0));
    459   __ add(esp, Immediate(kDoubleSize));
    460 
    461   __ bind(&done);
    462   __ ret(0);
    463 }
    464 
    465 void RegExpExecStub::Generate(MacroAssembler* masm) {
    466   // Just jump directly to runtime if native RegExp is not selected at compile
    467   // time or if regexp entry in generated code is turned off runtime switch or
    468   // at compilation.
    469 #ifdef V8_INTERPRETED_REGEXP
    470   __ TailCallRuntime(Runtime::kRegExpExec);
    471 #else  // V8_INTERPRETED_REGEXP
    472 
    473   // Stack frame on entry.
    474   //  esp[0]: return address
    475   //  esp[4]: last_match_info (expected JSArray)
    476   //  esp[8]: previous index
    477   //  esp[12]: subject string
    478   //  esp[16]: JSRegExp object
    479 
    480   static const int kLastMatchInfoOffset = 1 * kPointerSize;
    481   static const int kPreviousIndexOffset = 2 * kPointerSize;
    482   static const int kSubjectOffset = 3 * kPointerSize;
    483   static const int kJSRegExpOffset = 4 * kPointerSize;
    484 
    485   Label runtime;
    486   Factory* factory = isolate()->factory();
    487 
    488   // Ensure that a RegExp stack is allocated.
    489   ExternalReference address_of_regexp_stack_memory_address =
    490       ExternalReference::address_of_regexp_stack_memory_address(isolate());
    491   ExternalReference address_of_regexp_stack_memory_size =
    492       ExternalReference::address_of_regexp_stack_memory_size(isolate());
    493   __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
    494   __ test(ebx, ebx);
    495   __ j(zero, &runtime);
    496 
    497   // Check that the first argument is a JSRegExp object.
    498   __ mov(eax, Operand(esp, kJSRegExpOffset));
    499   STATIC_ASSERT(kSmiTag == 0);
    500   __ JumpIfSmi(eax, &runtime);
    501   __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
    502   __ j(not_equal, &runtime);
    503 
    504   // Check that the RegExp has been compiled (data contains a fixed array).
    505   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
    506   if (FLAG_debug_code) {
    507     __ test(ecx, Immediate(kSmiTagMask));
    508     __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
    509     __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
    510     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
    511   }
    512 
    513   // ecx: RegExp data (FixedArray)
    514   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
    515   __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
    516   __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
    517   __ j(not_equal, &runtime);
    518 
    519   // ecx: RegExp data (FixedArray)
    520   // Check that the number of captures fit in the static offsets vector buffer.
    521   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
    522   // Check (number_of_captures + 1) * 2 <= offsets vector size
    523   // Or          number_of_captures * 2 <= offsets vector size - 2
    524   // Multiplying by 2 comes for free since edx is smi-tagged.
    525   STATIC_ASSERT(kSmiTag == 0);
    526   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
    527   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
    528   __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
    529   __ j(above, &runtime);
    530 
    531   // Reset offset for possibly sliced string.
    532   __ Move(edi, Immediate(0));
    533   __ mov(eax, Operand(esp, kSubjectOffset));
    534   __ JumpIfSmi(eax, &runtime);
    535   __ mov(edx, eax);  // Make a copy of the original subject string.
    536 
    537   // eax: subject string
    538   // edx: subject string
    539   // ecx: RegExp data (FixedArray)
    540   // Handle subject string according to its encoding and representation:
    541   // (1) Sequential two byte?  If yes, go to (9).
    542   // (2) Sequential one byte?  If yes, go to (5).
    543   // (3) Sequential or cons?  If not, go to (6).
    544   // (4) Cons string.  If the string is flat, replace subject with first string
    545   //     and go to (1). Otherwise bail out to runtime.
    546   // (5) One byte sequential.  Load regexp code for one byte.
    547   // (E) Carry on.
    548   /// [...]
    549 
    550   // Deferred code at the end of the stub:
    551   // (6) Long external string?  If not, go to (10).
    552   // (7) External string.  Make it, offset-wise, look like a sequential string.
    553   // (8) Is the external string one byte?  If yes, go to (5).
    554   // (9) Two byte sequential.  Load regexp code for two byte. Go to (E).
    555   // (10) Short external string or not a string?  If yes, bail out to runtime.
    556   // (11) Sliced or thin string.  Replace subject with parent. Go to (1).
    557 
    558   Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */,
    559       external_string /* 7 */, check_underlying /* 1 */,
    560       not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */;
    561 
    562   __ bind(&check_underlying);
    563   // (1) Sequential two byte?  If yes, go to (9).
    564   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
    565   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
    566 
    567   __ and_(ebx, kIsNotStringMask |
    568                kStringRepresentationMask |
    569                kStringEncodingMask |
    570                kShortExternalStringMask);
    571   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
    572   __ j(zero, &seq_two_byte_string);  // Go to (9).
    573 
    574   // (2) Sequential one byte?  If yes, go to (5).
    575   // Any other sequential string must be one byte.
    576   __ and_(ebx, Immediate(kIsNotStringMask |
    577                          kStringRepresentationMask |
    578                          kShortExternalStringMask));
    579   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (5).
    580 
    581   // (3) Sequential or cons?  If not, go to (6).
    582   // We check whether the subject string is a cons, since sequential strings
    583   // have already been covered.
    584   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
    585   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
    586   STATIC_ASSERT(kThinStringTag > kExternalStringTag);
    587   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
    588   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
    589   __ cmp(ebx, Immediate(kExternalStringTag));
    590   __ j(greater_equal, &not_seq_nor_cons);  // Go to (6).
    591 
    592   // (4) Cons string.  Check that it's flat.
    593   // Replace subject with first string and reload instance type.
    594   __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
    595   __ j(not_equal, &runtime);
    596   __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
    597   __ jmp(&check_underlying);
    598 
    599   // eax: sequential subject string (or look-alike, external string)
    600   // edx: original subject string
    601   // ecx: RegExp data (FixedArray)
    602   // (5) One byte sequential.  Load regexp code for one byte.
    603   __ bind(&seq_one_byte_string);
    604   // Load previous index and check range before edx is overwritten.  We have
    605   // to use edx instead of eax here because it might have been only made to
    606   // look like a sequential string when it actually is an external string.
    607   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
    608   __ JumpIfNotSmi(ebx, &runtime);
    609   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
    610   __ j(above_equal, &runtime);
    611   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
    612   __ Move(ecx, Immediate(1));  // Type is one byte.
    613 
    614   // (E) Carry on.  String handling is done.
    615   __ bind(&check_code);
    616   // edx: irregexp code
    617   // Check that the irregexp code has been generated for the actual string
    618   // encoding. If it has, the field contains a code object otherwise it contains
    619   // a smi (code flushing support).
    620   __ JumpIfSmi(edx, &runtime);
    621 
    622   // eax: subject string
    623   // ebx: previous index (smi)
    624   // edx: code
    625   // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
    626   // All checks done. Now push arguments for native regexp code.
    627   Counters* counters = isolate()->counters();
    628   __ IncrementCounter(counters->regexp_entry_native(), 1);
    629 
    630   // Isolates: note we add an additional parameter here (isolate pointer).
    631   static const int kRegExpExecuteArguments = 9;
    632   __ EnterApiExitFrame(kRegExpExecuteArguments);
    633 
    634   // Argument 9: Pass current isolate address.
    635   __ mov(Operand(esp, 8 * kPointerSize),
    636       Immediate(ExternalReference::isolate_address(isolate())));
    637 
    638   // Argument 8: Indicate that this is a direct call from JavaScript.
    639   __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
    640 
    641   // Argument 7: Start (high end) of backtracking stack memory area.
    642   __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
    643   __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
    644   __ mov(Operand(esp, 6 * kPointerSize), esi);
    645 
    646   // Argument 6: Set the number of capture registers to zero to force global
    647   // regexps to behave as non-global.  This does not affect non-global regexps.
    648   __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
    649 
    650   // Argument 5: static offsets vector buffer.
    651   __ mov(Operand(esp, 4 * kPointerSize),
    652          Immediate(ExternalReference::address_of_static_offsets_vector(
    653              isolate())));
    654 
    655   // Argument 2: Previous index.
    656   __ SmiUntag(ebx);
    657   __ mov(Operand(esp, 1 * kPointerSize), ebx);
    658 
    659   // Argument 1: Original subject string.
    660   // The original subject is in the previous stack frame. Therefore we have to
    661   // use ebp, which points exactly to one pointer size below the previous esp.
    662   // (Because creating a new stack frame pushes the previous ebp onto the stack
    663   // and thereby moves up esp by one kPointerSize.)
    664   __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
    665   __ mov(Operand(esp, 0 * kPointerSize), esi);
    666 
    667   // esi: original subject string
    668   // eax: underlying subject string
    669   // ebx: previous index
    670   // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
    671   // edx: code
    672   // Argument 4: End of string data
    673   // Argument 3: Start of string data
    674   // Prepare start and end index of the input.
    675   // Load the length from the original sliced string if that is the case.
    676   __ mov(esi, FieldOperand(esi, String::kLengthOffset));
    677   __ add(esi, edi);  // Calculate input end wrt offset.
    678   __ SmiUntag(edi);
    679   __ add(ebx, edi);  // Calculate input start wrt offset.
    680 
    681   // ebx: start index of the input string
    682   // esi: end index of the input string
    683   Label setup_two_byte, setup_rest;
    684   __ test(ecx, ecx);
    685   __ j(zero, &setup_two_byte, Label::kNear);
    686   __ SmiUntag(esi);
    687   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
    688   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
    689   __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
    690   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
    691   __ jmp(&setup_rest, Label::kNear);
    692 
    693   __ bind(&setup_two_byte);
    694   STATIC_ASSERT(kSmiTag == 0);
    695   STATIC_ASSERT(kSmiTagSize == 1);  // esi is smi (powered by 2).
    696   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
    697   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
    698   __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
    699   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
    700 
    701   __ bind(&setup_rest);
    702 
    703   // Locate the code entry and call it.
    704   __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
    705   __ call(edx);
    706 
    707   // Drop arguments and come back to JS mode.
    708   __ LeaveApiExitFrame(true);
    709 
    710   // Check the result.
    711   Label success;
    712   __ cmp(eax, 1);
    713   // We expect exactly one result since we force the called regexp to behave
    714   // as non-global.
    715   __ j(equal, &success);
    716   Label failure;
    717   __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
    718   __ j(equal, &failure);
    719   __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
    720   // If not exception it can only be retry. Handle that in the runtime system.
    721   __ j(not_equal, &runtime);
    722   // Result must now be exception. If there is no pending exception already a
    723   // stack overflow (on the backtrack stack) was detected in RegExp code but
    724   // haven't created the exception yet. Handle that in the runtime system.
    725   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
    726   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
    727                                       isolate());
    728   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
    729   __ mov(eax, Operand::StaticVariable(pending_exception));
    730   __ cmp(edx, eax);
    731   __ j(equal, &runtime);
    732 
    733   // For exception, throw the exception again.
    734   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
    735 
    736   __ bind(&failure);
    737   // For failure to match, return null.
    738   __ mov(eax, factory->null_value());
    739   __ ret(4 * kPointerSize);
    740 
    741   // Load RegExp data.
    742   __ bind(&success);
    743   __ mov(eax, Operand(esp, kJSRegExpOffset));
    744   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
    745   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
    746   // Calculate number of capture registers (number_of_captures + 1) * 2.
    747   STATIC_ASSERT(kSmiTag == 0);
    748   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
    749   __ add(edx, Immediate(2));  // edx was a smi.
    750 
    751   // edx: Number of capture registers
    752   // Check that the last match info is a FixedArray.
    753   __ mov(ebx, Operand(esp, kLastMatchInfoOffset));
    754   __ JumpIfSmi(ebx, &runtime);
    755   // Check that the object has fast elements.
    756   __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
    757   __ cmp(eax, factory->fixed_array_map());
    758   __ j(not_equal, &runtime);
    759   // Check that the last match info has space for the capture registers and the
    760   // additional information.
    761   __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
    762   __ SmiUntag(eax);
    763   __ sub(eax, Immediate(RegExpMatchInfo::kLastMatchOverhead));
    764   __ cmp(edx, eax);
    765   __ j(greater, &runtime);
    766 
    767   // ebx: last_match_info (FixedArray)
    768   // edx: number of capture registers
    769   // Store the capture count.
    770   __ SmiTag(edx);  // Number of capture registers to smi.
    771   __ mov(FieldOperand(ebx, RegExpMatchInfo::kNumberOfCapturesOffset), edx);
    772   __ SmiUntag(edx);  // Number of capture registers back from smi.
    773   // Store last subject and last input.
    774   __ mov(eax, Operand(esp, kSubjectOffset));
    775   __ mov(ecx, eax);
    776   __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastSubjectOffset), eax);
    777   __ RecordWriteField(ebx, RegExpMatchInfo::kLastSubjectOffset, eax, edi,
    778                       kDontSaveFPRegs);
    779   __ mov(eax, ecx);
    780   __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastInputOffset), eax);
    781   __ RecordWriteField(ebx, RegExpMatchInfo::kLastInputOffset, eax, edi,
    782                       kDontSaveFPRegs);
    783 
    784   // Get the static offsets vector filled by the native regexp code.
    785   ExternalReference address_of_static_offsets_vector =
    786       ExternalReference::address_of_static_offsets_vector(isolate());
    787   __ mov(ecx, Immediate(address_of_static_offsets_vector));
    788 
    789   // ebx: last_match_info (FixedArray)
    790   // ecx: offsets vector
    791   // edx: number of capture registers
    792   Label next_capture, done;
    793   // Capture register counter starts from number of capture registers and
    794   // counts down until wrapping after zero.
    795   __ bind(&next_capture);
    796   __ sub(edx, Immediate(1));
    797   __ j(negative, &done, Label::kNear);
    798   // Read the value from the static offsets vector buffer.
    799   __ mov(edi, Operand(ecx, edx, times_int_size, 0));
    800   __ SmiTag(edi);
    801   // Store the smi value in the last match info.
    802   __ mov(FieldOperand(ebx, edx, times_pointer_size,
    803                       RegExpMatchInfo::kFirstCaptureOffset),
    804          edi);
    805   __ jmp(&next_capture);
    806   __ bind(&done);
    807 
    808   // Return last match info.
    809   __ mov(eax, ebx);
    810   __ ret(4 * kPointerSize);
    811 
    812   // Do the runtime call to execute the regexp.
    813   __ bind(&runtime);
    814   __ TailCallRuntime(Runtime::kRegExpExec);
    815 
    816   // Deferred code for string handling.
    817   // (6) Long external string?  If not, go to (10).
    818   __ bind(&not_seq_nor_cons);
    819   // Compare flags are still set from (3).
    820   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
    821 
    822   // (7) External string.  Short external strings have been ruled out.
    823   __ bind(&external_string);
    824   // Reload instance type.
    825   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
    826   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
    827   if (FLAG_debug_code) {
    828     // Assert that we do not have a cons or slice (indirect strings) here.
    829     // Sequential strings have already been ruled out.
    830     __ test_b(ebx, Immediate(kIsIndirectStringMask));
    831     __ Assert(zero, kExternalStringExpectedButNotFound);
    832   }
    833   __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
    834   // Move the pointer so that offset-wise, it looks like a sequential string.
    835   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
    836   __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
    837   STATIC_ASSERT(kTwoByteStringTag == 0);
    838   // (8) Is the external string one byte?  If yes, go to (5).
    839   __ test_b(ebx, Immediate(kStringEncodingMask));
    840   __ j(not_zero, &seq_one_byte_string);  // Go to (5).
    841 
    842   // eax: sequential subject string (or look-alike, external string)
    843   // edx: original subject string
    844   // ecx: RegExp data (FixedArray)
    845   // (9) Two byte sequential.  Load regexp code for two byte. Go to (E).
    846   __ bind(&seq_two_byte_string);
    847   // Load previous index and check range before edx is overwritten.  We have
    848   // to use edx instead of eax here because it might have been only made to
    849   // look like a sequential string when it actually is an external string.
    850   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
    851   __ JumpIfNotSmi(ebx, &runtime);
    852   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
    853   __ j(above_equal, &runtime);
    854   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
    855   __ Move(ecx, Immediate(0));  // Type is two byte.
    856   __ jmp(&check_code);  // Go to (E).
    857 
    858   // (10) Not a string or a short external string?  If yes, bail out to runtime.
    859   __ bind(&not_long_external);
    860   // Catch non-string subject or short external string.
    861   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
    862   __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
    863   __ j(not_zero, &runtime);
    864 
    865   // (11) Sliced or thin string.  Replace subject with parent.  Go to (1).
    866   Label thin_string;
    867   __ cmp(ebx, Immediate(kThinStringTag));
    868   __ j(equal, &thin_string, Label::kNear);
    869   // Load offset into edi and replace subject string with parent.
    870   __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
    871   __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
    872   __ jmp(&check_underlying);  // Go to (1).
    873 
    874   __ bind(&thin_string);
    875   __ mov(eax, FieldOperand(eax, ThinString::kActualOffset));
    876   __ jmp(&check_underlying);  // Go to (1).
    877 #endif  // V8_INTERPRETED_REGEXP
    878 }
    879 
    880 
    881 static int NegativeComparisonResult(Condition cc) {
    882   DCHECK(cc != equal);
    883   DCHECK((cc == less) || (cc == less_equal)
    884       || (cc == greater) || (cc == greater_equal));
    885   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
    886 }
    887 
    888 
    889 static void CheckInputType(MacroAssembler* masm, Register input,
    890                            CompareICState::State expected, Label* fail) {
    891   Label ok;
    892   if (expected == CompareICState::SMI) {
    893     __ JumpIfNotSmi(input, fail);
    894   } else if (expected == CompareICState::NUMBER) {
    895     __ JumpIfSmi(input, &ok);
    896     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
    897            Immediate(masm->isolate()->factory()->heap_number_map()));
    898     __ j(not_equal, fail);
    899   }
    900   // We could be strict about internalized/non-internalized here, but as long as
    901   // hydrogen doesn't care, the stub doesn't have to care either.
    902   __ bind(&ok);
    903 }
    904 
    905 
    906 static void BranchIfNotInternalizedString(MacroAssembler* masm,
    907                                           Label* label,
    908                                           Register object,
    909                                           Register scratch) {
    910   __ JumpIfSmi(object, label);
    911   __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
    912   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
    913   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    914   __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
    915   __ j(not_zero, label);
    916 }
    917 
    918 
    919 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    920   Label runtime_call, check_unequal_objects;
    921   Condition cc = GetCondition();
    922 
    923   Label miss;
    924   CheckInputType(masm, edx, left(), &miss);
    925   CheckInputType(masm, eax, right(), &miss);
    926 
    927   // Compare two smis.
    928   Label non_smi, smi_done;
    929   __ mov(ecx, edx);
    930   __ or_(ecx, eax);
    931   __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
    932   __ sub(edx, eax);  // Return on the result of the subtraction.
    933   __ j(no_overflow, &smi_done, Label::kNear);
    934   __ not_(edx);  // Correct sign in case of overflow. edx is never 0 here.
    935   __ bind(&smi_done);
    936   __ mov(eax, edx);
    937   __ ret(0);
    938   __ bind(&non_smi);
    939 
    940   // NOTICE! This code is only reached after a smi-fast-case check, so
    941   // it is certain that at least one operand isn't a smi.
    942 
    943   // Identical objects can be compared fast, but there are some tricky cases
    944   // for NaN and undefined.
    945   Label generic_heap_number_comparison;
    946   {
    947     Label not_identical;
    948     __ cmp(eax, edx);
    949     __ j(not_equal, &not_identical);
    950 
    951     if (cc != equal) {
    952       // Check for undefined.  undefined OP undefined is false even though
    953       // undefined == undefined.
    954       __ cmp(edx, isolate()->factory()->undefined_value());
    955       Label check_for_nan;
    956       __ j(not_equal, &check_for_nan, Label::kNear);
    957       __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
    958       __ ret(0);
    959       __ bind(&check_for_nan);
    960     }
    961 
    962     // Test for NaN. Compare heap numbers in a general way,
    963     // to handle NaNs correctly.
    964     __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
    965            Immediate(isolate()->factory()->heap_number_map()));
    966     __ j(equal, &generic_heap_number_comparison, Label::kNear);
    967     if (cc != equal) {
    968       __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
    969       __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
    970       // Call runtime on identical JSObjects.  Otherwise return equal.
    971       __ cmpb(ecx, Immediate(FIRST_JS_RECEIVER_TYPE));
    972       __ j(above_equal, &runtime_call, Label::kFar);
    973       // Call runtime on identical symbols since we need to throw a TypeError.
    974       __ cmpb(ecx, Immediate(SYMBOL_TYPE));
    975       __ j(equal, &runtime_call, Label::kFar);
    976     }
    977     __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
    978     __ ret(0);
    979 
    980 
    981     __ bind(&not_identical);
    982   }
    983 
    984   // Strict equality can quickly decide whether objects are equal.
    985   // Non-strict object equality is slower, so it is handled later in the stub.
    986   if (cc == equal && strict()) {
    987     Label slow;  // Fallthrough label.
    988     Label not_smis;
    989     // If we're doing a strict equality comparison, we don't have to do
    990     // type conversion, so we generate code to do fast comparison for objects
    991     // and oddballs. Non-smi numbers and strings still go through the usual
    992     // slow-case code.
    993     // If either is a Smi (we know that not both are), then they can only
    994     // be equal if the other is a HeapNumber. If so, use the slow case.
    995     STATIC_ASSERT(kSmiTag == 0);
    996     DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
    997     __ mov(ecx, Immediate(kSmiTagMask));
    998     __ and_(ecx, eax);
    999     __ test(ecx, edx);
   1000     __ j(not_zero, &not_smis, Label::kNear);
   1001     // One operand is a smi.
   1002 
   1003     // Check whether the non-smi is a heap number.
   1004     STATIC_ASSERT(kSmiTagMask == 1);
   1005     // ecx still holds eax & kSmiTag, which is either zero or one.
   1006     __ sub(ecx, Immediate(0x01));
   1007     __ mov(ebx, edx);
   1008     __ xor_(ebx, eax);
   1009     __ and_(ebx, ecx);  // ebx holds either 0 or eax ^ edx.
   1010     __ xor_(ebx, eax);
   1011     // if eax was smi, ebx is now edx, else eax.
   1012 
   1013     // Check if the non-smi operand is a heap number.
   1014     __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
   1015            Immediate(isolate()->factory()->heap_number_map()));
   1016     // If heap number, handle it in the slow case.
   1017     __ j(equal, &slow, Label::kNear);
   1018     // Return non-equal (ebx is not zero)
   1019     __ mov(eax, ebx);
   1020     __ ret(0);
   1021 
   1022     __ bind(&not_smis);
   1023     // If either operand is a JSObject or an oddball value, then they are not
   1024     // equal since their pointers are different
   1025     // There is no test for undetectability in strict equality.
   1026 
   1027     // Get the type of the first operand.
   1028     // If the first object is a JS object, we have done pointer comparison.
   1029     Label first_non_object;
   1030     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   1031     __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
   1032     __ j(below, &first_non_object, Label::kNear);
   1033 
   1034     // Return non-zero (eax is not zero)
   1035     Label return_not_equal;
   1036     STATIC_ASSERT(kHeapObjectTag != 0);
   1037     __ bind(&return_not_equal);
   1038     __ ret(0);
   1039 
   1040     __ bind(&first_non_object);
   1041     // Check for oddballs: true, false, null, undefined.
   1042     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   1043     __ j(equal, &return_not_equal);
   1044 
   1045     __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
   1046     __ j(above_equal, &return_not_equal);
   1047 
   1048     // Check for oddballs: true, false, null, undefined.
   1049     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   1050     __ j(equal, &return_not_equal);
   1051 
   1052     // Fall through to the general case.
   1053     __ bind(&slow);
   1054   }
   1055 
   1056   // Generate the number comparison code.
   1057   Label non_number_comparison;
   1058   Label unordered;
   1059   __ bind(&generic_heap_number_comparison);
   1060 
   1061   FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
   1062   __ ucomisd(xmm0, xmm1);
   1063   // Don't base result on EFLAGS when a NaN is involved.
   1064   __ j(parity_even, &unordered, Label::kNear);
   1065 
   1066   __ mov(eax, 0);  // equal
   1067   __ mov(ecx, Immediate(Smi::FromInt(1)));
   1068   __ cmov(above, eax, ecx);
   1069   __ mov(ecx, Immediate(Smi::FromInt(-1)));
   1070   __ cmov(below, eax, ecx);
   1071   __ ret(0);
   1072 
   1073   // If one of the numbers was NaN, then the result is always false.
   1074   // The cc is never not-equal.
   1075   __ bind(&unordered);
   1076   DCHECK(cc != not_equal);
   1077   if (cc == less || cc == less_equal) {
   1078     __ mov(eax, Immediate(Smi::FromInt(1)));
   1079   } else {
   1080     __ mov(eax, Immediate(Smi::FromInt(-1)));
   1081   }
   1082   __ ret(0);
   1083 
   1084   // The number comparison code did not provide a valid result.
   1085   __ bind(&non_number_comparison);
   1086 
   1087   // Fast negative check for internalized-to-internalized equality.
   1088   Label check_for_strings;
   1089   if (cc == equal) {
   1090     BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
   1091     BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
   1092 
   1093     // We've already checked for object identity, so if both operands
   1094     // are internalized they aren't equal. Register eax already holds a
   1095     // non-zero value, which indicates not equal, so just return.
   1096     __ ret(0);
   1097   }
   1098 
   1099   __ bind(&check_for_strings);
   1100 
   1101   __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
   1102                                            &check_unequal_objects);
   1103 
   1104   // Inline comparison of one-byte strings.
   1105   if (cc == equal) {
   1106     StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
   1107   } else {
   1108     StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
   1109                                                     edi);
   1110   }
   1111 #ifdef DEBUG
   1112   __ Abort(kUnexpectedFallThroughFromStringComparison);
   1113 #endif
   1114 
   1115   __ bind(&check_unequal_objects);
   1116   if (cc == equal && !strict()) {
   1117     // Non-strict equality.  Objects are unequal if
   1118     // they are both JSObjects and not undetectable,
   1119     // and their pointers are different.
   1120     Label return_equal, return_unequal, undetectable;
   1121     // At most one is a smi, so we can test for smi by adding the two.
   1122     // A smi plus a heap object has the low bit set, a heap object plus
   1123     // a heap object has the low bit clear.
   1124     STATIC_ASSERT(kSmiTag == 0);
   1125     STATIC_ASSERT(kSmiTagMask == 1);
   1126     __ lea(ecx, Operand(eax, edx, times_1, 0));
   1127     __ test(ecx, Immediate(kSmiTagMask));
   1128     __ j(not_zero, &runtime_call);
   1129 
   1130     __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
   1131     __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
   1132 
   1133     __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
   1134               Immediate(1 << Map::kIsUndetectable));
   1135     __ j(not_zero, &undetectable, Label::kNear);
   1136     __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   1137               Immediate(1 << Map::kIsUndetectable));
   1138     __ j(not_zero, &return_unequal, Label::kNear);
   1139 
   1140     __ CmpInstanceType(ebx, FIRST_JS_RECEIVER_TYPE);
   1141     __ j(below, &runtime_call, Label::kNear);
   1142     __ CmpInstanceType(ecx, FIRST_JS_RECEIVER_TYPE);
   1143     __ j(below, &runtime_call, Label::kNear);
   1144 
   1145     __ bind(&return_unequal);
   1146     // Return non-equal by returning the non-zero object pointer in eax.
   1147     __ ret(0);  // eax, edx were pushed
   1148 
   1149     __ bind(&undetectable);
   1150     __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   1151               Immediate(1 << Map::kIsUndetectable));
   1152     __ j(zero, &return_unequal, Label::kNear);
   1153 
   1154     // If both sides are JSReceivers, then the result is false according to
   1155     // the HTML specification, which says that only comparisons with null or
   1156     // undefined are affected by special casing for document.all.
   1157     __ CmpInstanceType(ebx, ODDBALL_TYPE);
   1158     __ j(zero, &return_equal, Label::kNear);
   1159     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   1160     __ j(not_zero, &return_unequal, Label::kNear);
   1161 
   1162     __ bind(&return_equal);
   1163     __ Move(eax, Immediate(EQUAL));
   1164     __ ret(0);  // eax, edx were pushed
   1165   }
   1166   __ bind(&runtime_call);
   1167 
   1168   if (cc == equal) {
   1169     {
   1170       FrameScope scope(masm, StackFrame::INTERNAL);
   1171       __ Push(esi);
   1172       __ Call(strict() ? isolate()->builtins()->StrictEqual()
   1173                        : isolate()->builtins()->Equal(),
   1174               RelocInfo::CODE_TARGET);
   1175       __ Pop(esi);
   1176     }
   1177     // Turn true into 0 and false into some non-zero value.
   1178     STATIC_ASSERT(EQUAL == 0);
   1179     __ sub(eax, Immediate(isolate()->factory()->true_value()));
   1180     __ Ret();
   1181   } else {
   1182     // Push arguments below the return address.
   1183     __ pop(ecx);
   1184     __ push(edx);
   1185     __ push(eax);
   1186     __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
   1187     __ push(ecx);
   1188     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
   1189     // tagged as a small integer.
   1190     __ TailCallRuntime(Runtime::kCompare);
   1191   }
   1192 
   1193   __ bind(&miss);
   1194   GenerateMiss(masm);
   1195 }
   1196 
   1197 
   1198 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
   1199   // eax : number of arguments to the construct function
   1200   // ebx : feedback vector
   1201   // edx : slot in feedback vector (Smi)
   1202   // edi : the function to call
   1203 
   1204   {
   1205     FrameScope scope(masm, StackFrame::INTERNAL);
   1206 
   1207     // Number-of-arguments register must be smi-tagged to call out.
   1208     __ SmiTag(eax);
   1209     __ push(eax);
   1210     __ push(edi);
   1211     __ push(edx);
   1212     __ push(ebx);
   1213     __ push(esi);
   1214 
   1215     __ CallStub(stub);
   1216 
   1217     __ pop(esi);
   1218     __ pop(ebx);
   1219     __ pop(edx);
   1220     __ pop(edi);
   1221     __ pop(eax);
   1222     __ SmiUntag(eax);
   1223   }
   1224 }
   1225 
   1226 
   1227 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1228   // Cache the called function in a feedback vector slot.  Cache states
   1229   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1230   // megamorphic.
   1231   // eax : number of arguments to the construct function
   1232   // ebx : feedback vector
   1233   // edx : slot in feedback vector (Smi)
   1234   // edi : the function to call
   1235   Isolate* isolate = masm->isolate();
   1236   Label initialize, done, miss, megamorphic, not_array_function;
   1237 
   1238   // Load the cache state into ecx.
   1239   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   1240                            FixedArray::kHeaderSize));
   1241 
   1242   // A monomorphic cache hit or an already megamorphic state: invoke the
   1243   // function without changing the state.
   1244   // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
   1245   // at this position in a symbol (see static asserts in feedback-vector.h).
   1246   Label check_allocation_site;
   1247   __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
   1248   __ j(equal, &done, Label::kFar);
   1249   __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
   1250   __ j(equal, &done, Label::kFar);
   1251   __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
   1252                  Heap::kWeakCellMapRootIndex);
   1253   __ j(not_equal, &check_allocation_site);
   1254 
   1255   // If the weak cell is cleared, we have a new chance to become monomorphic.
   1256   __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
   1257   __ jmp(&megamorphic);
   1258 
   1259   __ bind(&check_allocation_site);
   1260   // If we came here, we need to see if we are the array function.
   1261   // If we didn't have a matching function, and we didn't find the megamorph
   1262   // sentinel, then we have in the slot either some other function or an
   1263   // AllocationSite.
   1264   __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
   1265   __ j(not_equal, &miss);
   1266 
   1267   // Make sure the function is the Array() function
   1268   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1269   __ cmp(edi, ecx);
   1270   __ j(not_equal, &megamorphic);
   1271   __ jmp(&done, Label::kFar);
   1272 
   1273   __ bind(&miss);
   1274 
   1275   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1276   // megamorphic.
   1277   __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
   1278   __ j(equal, &initialize);
   1279   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1280   // write-barrier is needed.
   1281   __ bind(&megamorphic);
   1282   __ mov(
   1283       FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
   1284       Immediate(FeedbackVector::MegamorphicSentinel(isolate)));
   1285   __ jmp(&done, Label::kFar);
   1286 
   1287   // An uninitialized cache is patched with the function or sentinel to
   1288   // indicate the ElementsKind if function is the Array constructor.
   1289   __ bind(&initialize);
   1290   // Make sure the function is the Array() function
   1291   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1292   __ cmp(edi, ecx);
   1293   __ j(not_equal, &not_array_function);
   1294 
   1295   // The target function is the Array constructor,
   1296   // Create an AllocationSite if we don't already have it, store it in the
   1297   // slot.
   1298   CreateAllocationSiteStub create_stub(isolate);
   1299   CallStubInRecordCallTarget(masm, &create_stub);
   1300   __ jmp(&done);
   1301 
   1302   __ bind(&not_array_function);
   1303   CreateWeakCellStub weak_cell_stub(isolate);
   1304   CallStubInRecordCallTarget(masm, &weak_cell_stub);
   1305 
   1306   __ bind(&done);
   1307   // Increment the call count for all function calls.
   1308   __ add(FieldOperand(ebx, edx, times_half_pointer_size,
   1309                       FixedArray::kHeaderSize + kPointerSize),
   1310          Immediate(Smi::FromInt(1)));
   1311 }
   1312 
   1313 
   1314 void CallConstructStub::Generate(MacroAssembler* masm) {
   1315   // eax : number of arguments
   1316   // ebx : feedback vector
   1317   // edx : slot in feedback vector (Smi, for RecordCallTarget)
   1318   // edi : constructor function
   1319 
   1320   Label non_function;
   1321   // Check that function is not a smi.
   1322   __ JumpIfSmi(edi, &non_function);
   1323   // Check that function is a JSFunction.
   1324   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   1325   __ j(not_equal, &non_function);
   1326 
   1327   GenerateRecordCallTarget(masm);
   1328 
   1329   Label feedback_register_initialized;
   1330   // Put the AllocationSite from the feedback vector into ebx, or undefined.
   1331   __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
   1332                            FixedArray::kHeaderSize));
   1333   Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
   1334   __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   1335   __ j(equal, &feedback_register_initialized);
   1336   __ mov(ebx, isolate()->factory()->undefined_value());
   1337   __ bind(&feedback_register_initialized);
   1338 
   1339   __ AssertUndefinedOrAllocationSite(ebx);
   1340 
   1341   // Pass new target to construct stub.
   1342   __ mov(edx, edi);
   1343 
   1344   // Tail call to the function-specific construct stub (still in the caller
   1345   // context at this point).
   1346   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   1347   __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
   1348   __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
   1349   __ jmp(ecx);
   1350 
   1351   __ bind(&non_function);
   1352   __ mov(edx, edi);
   1353   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
   1354 }
   1355 
   1356 bool CEntryStub::NeedsImmovableCode() {
   1357   return false;
   1358 }
   1359 
   1360 
   1361 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   1362   CEntryStub::GenerateAheadOfTime(isolate);
   1363   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   1364   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   1365   // It is important that the store buffer overflow stubs are generated first.
   1366   CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
   1367   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   1368   CreateWeakCellStub::GenerateAheadOfTime(isolate);
   1369   BinaryOpICStub::GenerateAheadOfTime(isolate);
   1370   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   1371   StoreFastElementStub::GenerateAheadOfTime(isolate);
   1372 }
   1373 
   1374 
   1375 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   1376   // Generate if not already in cache.
   1377   CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
   1378 }
   1379 
   1380 
   1381 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   1382   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   1383   stub.GetCode();
   1384 }
   1385 
   1386 
   1387 void CEntryStub::Generate(MacroAssembler* masm) {
   1388   // eax: number of arguments including receiver
   1389   // ebx: pointer to C function  (C callee-saved)
   1390   // ebp: frame pointer  (restored after C call)
   1391   // esp: stack pointer  (restored after C call)
   1392   // esi: current context (C callee-saved)
   1393   // edi: JS function of the caller (C callee-saved)
   1394   //
   1395   // If argv_in_register():
   1396   // ecx: pointer to the first argument
   1397 
   1398   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1399 
   1400   // Reserve space on the stack for the three arguments passed to the call. If
   1401   // result size is greater than can be returned in registers, also reserve
   1402   // space for the hidden argument for the result location, and space for the
   1403   // result itself.
   1404   int arg_stack_space = result_size() < 3 ? 3 : 4 + result_size();
   1405 
   1406   // Enter the exit frame that transitions from JavaScript to C++.
   1407   if (argv_in_register()) {
   1408     DCHECK(!save_doubles());
   1409     DCHECK(!is_builtin_exit());
   1410     __ EnterApiExitFrame(arg_stack_space);
   1411 
   1412     // Move argc and argv into the correct registers.
   1413     __ mov(esi, ecx);
   1414     __ mov(edi, eax);
   1415   } else {
   1416     __ EnterExitFrame(
   1417         arg_stack_space, save_doubles(),
   1418         is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
   1419   }
   1420 
   1421   // ebx: pointer to C function  (C callee-saved)
   1422   // ebp: frame pointer  (restored after C call)
   1423   // esp: stack pointer  (restored after C call)
   1424   // edi: number of arguments including receiver  (C callee-saved)
   1425   // esi: pointer to the first argument (C callee-saved)
   1426 
   1427   // Result returned in eax, or eax+edx if result size is 2.
   1428 
   1429   // Check stack alignment.
   1430   if (FLAG_debug_code) {
   1431     __ CheckStackAlignment();
   1432   }
   1433   // Call C function.
   1434   if (result_size() <= 2) {
   1435     __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
   1436     __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
   1437     __ mov(Operand(esp, 2 * kPointerSize),
   1438            Immediate(ExternalReference::isolate_address(isolate())));
   1439   } else {
   1440     DCHECK_EQ(3, result_size());
   1441     // Pass a pointer to the result location as the first argument.
   1442     __ lea(eax, Operand(esp, 4 * kPointerSize));
   1443     __ mov(Operand(esp, 0 * kPointerSize), eax);
   1444     __ mov(Operand(esp, 1 * kPointerSize), edi);  // argc.
   1445     __ mov(Operand(esp, 2 * kPointerSize), esi);  // argv.
   1446     __ mov(Operand(esp, 3 * kPointerSize),
   1447            Immediate(ExternalReference::isolate_address(isolate())));
   1448   }
   1449   __ call(ebx);
   1450 
   1451   if (result_size() > 2) {
   1452     DCHECK_EQ(3, result_size());
   1453 #ifndef _WIN32
   1454     // Restore the "hidden" argument on the stack which was popped by caller.
   1455     __ sub(esp, Immediate(kPointerSize));
   1456 #endif
   1457     // Read result values stored on stack. Result is stored above the arguments.
   1458     __ mov(kReturnRegister0, Operand(esp, 4 * kPointerSize));
   1459     __ mov(kReturnRegister1, Operand(esp, 5 * kPointerSize));
   1460     __ mov(kReturnRegister2, Operand(esp, 6 * kPointerSize));
   1461   }
   1462   // Result is in eax, edx:eax or edi:edx:eax - do not destroy these registers!
   1463 
   1464   // Check result for exception sentinel.
   1465   Label exception_returned;
   1466   __ cmp(eax, isolate()->factory()->exception());
   1467   __ j(equal, &exception_returned);
   1468 
   1469   // Check that there is no pending exception, otherwise we
   1470   // should have returned the exception sentinel.
   1471   if (FLAG_debug_code) {
   1472     __ push(edx);
   1473     __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   1474     Label okay;
   1475     ExternalReference pending_exception_address(
   1476         Isolate::kPendingExceptionAddress, isolate());
   1477     __ cmp(edx, Operand::StaticVariable(pending_exception_address));
   1478     // Cannot use check here as it attempts to generate call into runtime.
   1479     __ j(equal, &okay, Label::kNear);
   1480     __ int3();
   1481     __ bind(&okay);
   1482     __ pop(edx);
   1483   }
   1484 
   1485   // Exit the JavaScript to C++ exit frame.
   1486   __ LeaveExitFrame(save_doubles(), !argv_in_register());
   1487   __ ret(0);
   1488 
   1489   // Handling of exception.
   1490   __ bind(&exception_returned);
   1491 
   1492   ExternalReference pending_handler_context_address(
   1493       Isolate::kPendingHandlerContextAddress, isolate());
   1494   ExternalReference pending_handler_code_address(
   1495       Isolate::kPendingHandlerCodeAddress, isolate());
   1496   ExternalReference pending_handler_offset_address(
   1497       Isolate::kPendingHandlerOffsetAddress, isolate());
   1498   ExternalReference pending_handler_fp_address(
   1499       Isolate::kPendingHandlerFPAddress, isolate());
   1500   ExternalReference pending_handler_sp_address(
   1501       Isolate::kPendingHandlerSPAddress, isolate());
   1502 
   1503   // Ask the runtime for help to determine the handler. This will set eax to
   1504   // contain the current pending exception, don't clobber it.
   1505   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
   1506                                  isolate());
   1507   {
   1508     FrameScope scope(masm, StackFrame::MANUAL);
   1509     __ PrepareCallCFunction(3, eax);
   1510     __ mov(Operand(esp, 0 * kPointerSize), Immediate(0));  // argc.
   1511     __ mov(Operand(esp, 1 * kPointerSize), Immediate(0));  // argv.
   1512     __ mov(Operand(esp, 2 * kPointerSize),
   1513            Immediate(ExternalReference::isolate_address(isolate())));
   1514     __ CallCFunction(find_handler, 3);
   1515   }
   1516 
   1517   // Retrieve the handler context, SP and FP.
   1518   __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
   1519   __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
   1520   __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
   1521 
   1522   // If the handler is a JS frame, restore the context to the frame. Note that
   1523   // the context will be set to (esi == 0) for non-JS frames.
   1524   Label skip;
   1525   __ test(esi, esi);
   1526   __ j(zero, &skip, Label::kNear);
   1527   __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
   1528   __ bind(&skip);
   1529 
   1530   // Compute the handler entry address and jump to it.
   1531   __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
   1532   __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
   1533   __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
   1534   __ jmp(edi);
   1535 }
   1536 
   1537 
   1538 void JSEntryStub::Generate(MacroAssembler* masm) {
   1539   Label invoke, handler_entry, exit;
   1540   Label not_outermost_js, not_outermost_js_2;
   1541 
   1542   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1543 
   1544   // Set up frame.
   1545   __ push(ebp);
   1546   __ mov(ebp, esp);
   1547 
   1548   // Push marker in two places.
   1549   StackFrame::Type marker = type();
   1550   __ push(Immediate(StackFrame::TypeToMarker(marker)));  // marker
   1551   ExternalReference context_address(Isolate::kContextAddress, isolate());
   1552   __ push(Operand::StaticVariable(context_address));  // context
   1553   // Save callee-saved registers (C calling conventions).
   1554   __ push(edi);
   1555   __ push(esi);
   1556   __ push(ebx);
   1557 
   1558   // Save copies of the top frame descriptor on the stack.
   1559   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
   1560   __ push(Operand::StaticVariable(c_entry_fp));
   1561 
   1562   // If this is the outermost JS call, set js_entry_sp value.
   1563   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   1564   __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
   1565   __ j(not_equal, &not_outermost_js, Label::kNear);
   1566   __ mov(Operand::StaticVariable(js_entry_sp), ebp);
   1567   __ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
   1568   __ jmp(&invoke, Label::kNear);
   1569   __ bind(&not_outermost_js);
   1570   __ push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
   1571 
   1572   // Jump to a faked try block that does the invoke, with a faked catch
   1573   // block that sets the pending exception.
   1574   __ jmp(&invoke);
   1575   __ bind(&handler_entry);
   1576   handler_offset_ = handler_entry.pos();
   1577   // Caught exception: Store result (exception) in the pending exception
   1578   // field in the JSEnv and return a failure sentinel.
   1579   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   1580                                       isolate());
   1581   __ mov(Operand::StaticVariable(pending_exception), eax);
   1582   __ mov(eax, Immediate(isolate()->factory()->exception()));
   1583   __ jmp(&exit);
   1584 
   1585   // Invoke: Link this frame into the handler chain.
   1586   __ bind(&invoke);
   1587   __ PushStackHandler();
   1588 
   1589   // Fake a receiver (NULL).
   1590   __ push(Immediate(0));  // receiver
   1591 
   1592   // Invoke the function by calling through JS entry trampoline builtin and
   1593   // pop the faked function when we return. Notice that we cannot store a
   1594   // reference to the trampoline code directly in this stub, because the
   1595   // builtin stubs may not have been generated yet.
   1596   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1597     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1598                                       isolate());
   1599     __ mov(edx, Immediate(construct_entry));
   1600   } else {
   1601     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   1602     __ mov(edx, Immediate(entry));
   1603   }
   1604   __ mov(edx, Operand(edx, 0));  // deref address
   1605   __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
   1606   __ call(edx);
   1607 
   1608   // Unlink this frame from the handler chain.
   1609   __ PopStackHandler();
   1610 
   1611   __ bind(&exit);
   1612   // Check if the current stack frame is marked as the outermost JS frame.
   1613   __ pop(ebx);
   1614   __ cmp(ebx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
   1615   __ j(not_equal, &not_outermost_js_2);
   1616   __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
   1617   __ bind(&not_outermost_js_2);
   1618 
   1619   // Restore the top frame descriptor from the stack.
   1620   __ pop(Operand::StaticVariable(ExternalReference(
   1621       Isolate::kCEntryFPAddress, isolate())));
   1622 
   1623   // Restore callee-saved registers (C calling conventions).
   1624   __ pop(ebx);
   1625   __ pop(esi);
   1626   __ pop(edi);
   1627   __ add(esp, Immediate(2 * kPointerSize));  // remove markers
   1628 
   1629   // Restore frame pointer and return.
   1630   __ pop(ebp);
   1631   __ ret(0);
   1632 }
   1633 
   1634 
   1635 // -------------------------------------------------------------------------
   1636 // StringCharCodeAtGenerator
   1637 
   1638 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   1639   // If the receiver is a smi trigger the non-string case.
   1640   STATIC_ASSERT(kSmiTag == 0);
   1641   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
   1642     __ JumpIfSmi(object_, receiver_not_string_);
   1643 
   1644     // Fetch the instance type of the receiver into result register.
   1645     __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   1646     __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   1647     // If the receiver is not a string trigger the non-string case.
   1648     __ test(result_, Immediate(kIsNotStringMask));
   1649     __ j(not_zero, receiver_not_string_);
   1650   }
   1651 
   1652   // If the index is non-smi trigger the non-smi case.
   1653   STATIC_ASSERT(kSmiTag == 0);
   1654   __ JumpIfNotSmi(index_, &index_not_smi_);
   1655   __ bind(&got_smi_index_);
   1656 
   1657   // Check for index out of range.
   1658   __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
   1659   __ j(above_equal, index_out_of_range_);
   1660 
   1661   __ SmiUntag(index_);
   1662 
   1663   Factory* factory = masm->isolate()->factory();
   1664   StringCharLoadGenerator::Generate(
   1665       masm, factory, object_, index_, result_, &call_runtime_);
   1666 
   1667   __ SmiTag(result_);
   1668   __ bind(&exit_);
   1669 }
   1670 
   1671 
   1672 void StringCharCodeAtGenerator::GenerateSlow(
   1673     MacroAssembler* masm, EmbedMode embed_mode,
   1674     const RuntimeCallHelper& call_helper) {
   1675   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   1676 
   1677   // Index is not a smi.
   1678   __ bind(&index_not_smi_);
   1679   // If index is a heap number, try converting it to an integer.
   1680   __ CheckMap(index_,
   1681               masm->isolate()->factory()->heap_number_map(),
   1682               index_not_number_,
   1683               DONT_DO_SMI_CHECK);
   1684   call_helper.BeforeCall(masm);
   1685   if (embed_mode == PART_OF_IC_HANDLER) {
   1686     __ push(LoadWithVectorDescriptor::VectorRegister());
   1687     __ push(LoadDescriptor::SlotRegister());
   1688   }
   1689   __ push(object_);
   1690   __ push(index_);  // Consumed by runtime conversion function.
   1691   __ CallRuntime(Runtime::kNumberToSmi);
   1692   if (!index_.is(eax)) {
   1693     // Save the conversion result before the pop instructions below
   1694     // have a chance to overwrite it.
   1695     __ mov(index_, eax);
   1696   }
   1697   __ pop(object_);
   1698   if (embed_mode == PART_OF_IC_HANDLER) {
   1699     __ pop(LoadDescriptor::SlotRegister());
   1700     __ pop(LoadWithVectorDescriptor::VectorRegister());
   1701   }
   1702   // Reload the instance type.
   1703   __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   1704   __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   1705   call_helper.AfterCall(masm);
   1706   // If index is still not a smi, it must be out of range.
   1707   STATIC_ASSERT(kSmiTag == 0);
   1708   __ JumpIfNotSmi(index_, index_out_of_range_);
   1709   // Otherwise, return to the fast path.
   1710   __ jmp(&got_smi_index_);
   1711 
   1712   // Call runtime. We get here when the receiver is a string and the
   1713   // index is a number, but the code of getting the actual character
   1714   // is too complex (e.g., when the string needs to be flattened).
   1715   __ bind(&call_runtime_);
   1716   call_helper.BeforeCall(masm);
   1717   __ push(object_);
   1718   __ SmiTag(index_);
   1719   __ push(index_);
   1720   __ CallRuntime(Runtime::kStringCharCodeAtRT);
   1721   if (!result_.is(eax)) {
   1722     __ mov(result_, eax);
   1723   }
   1724   call_helper.AfterCall(masm);
   1725   __ jmp(&exit_);
   1726 
   1727   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   1728 }
   1729 
   1730 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
   1731                                                    Register left,
   1732                                                    Register right,
   1733                                                    Register scratch1,
   1734                                                    Register scratch2) {
   1735   Register length = scratch1;
   1736 
   1737   // Compare lengths.
   1738   Label strings_not_equal, check_zero_length;
   1739   __ mov(length, FieldOperand(left, String::kLengthOffset));
   1740   __ cmp(length, FieldOperand(right, String::kLengthOffset));
   1741   __ j(equal, &check_zero_length, Label::kNear);
   1742   __ bind(&strings_not_equal);
   1743   __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
   1744   __ ret(0);
   1745 
   1746   // Check if the length is zero.
   1747   Label compare_chars;
   1748   __ bind(&check_zero_length);
   1749   STATIC_ASSERT(kSmiTag == 0);
   1750   __ test(length, length);
   1751   __ j(not_zero, &compare_chars, Label::kNear);
   1752   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   1753   __ ret(0);
   1754 
   1755   // Compare characters.
   1756   __ bind(&compare_chars);
   1757   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
   1758                                   &strings_not_equal, Label::kNear);
   1759 
   1760   // Characters are equal.
   1761   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   1762   __ ret(0);
   1763 }
   1764 
   1765 
   1766 void StringHelper::GenerateCompareFlatOneByteStrings(
   1767     MacroAssembler* masm, Register left, Register right, Register scratch1,
   1768     Register scratch2, Register scratch3) {
   1769   Counters* counters = masm->isolate()->counters();
   1770   __ IncrementCounter(counters->string_compare_native(), 1);
   1771 
   1772   // Find minimum length.
   1773   Label left_shorter;
   1774   __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
   1775   __ mov(scratch3, scratch1);
   1776   __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
   1777 
   1778   Register length_delta = scratch3;
   1779 
   1780   __ j(less_equal, &left_shorter, Label::kNear);
   1781   // Right string is shorter. Change scratch1 to be length of right string.
   1782   __ sub(scratch1, length_delta);
   1783   __ bind(&left_shorter);
   1784 
   1785   Register min_length = scratch1;
   1786 
   1787   // If either length is zero, just compare lengths.
   1788   Label compare_lengths;
   1789   __ test(min_length, min_length);
   1790   __ j(zero, &compare_lengths, Label::kNear);
   1791 
   1792   // Compare characters.
   1793   Label result_not_equal;
   1794   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   1795                                   &result_not_equal, Label::kNear);
   1796 
   1797   // Compare lengths -  strings up to min-length are equal.
   1798   __ bind(&compare_lengths);
   1799   __ test(length_delta, length_delta);
   1800   Label length_not_equal;
   1801   __ j(not_zero, &length_not_equal, Label::kNear);
   1802 
   1803   // Result is EQUAL.
   1804   STATIC_ASSERT(EQUAL == 0);
   1805   STATIC_ASSERT(kSmiTag == 0);
   1806   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   1807   __ ret(0);
   1808 
   1809   Label result_greater;
   1810   Label result_less;
   1811   __ bind(&length_not_equal);
   1812   __ j(greater, &result_greater, Label::kNear);
   1813   __ jmp(&result_less, Label::kNear);
   1814   __ bind(&result_not_equal);
   1815   __ j(above, &result_greater, Label::kNear);
   1816   __ bind(&result_less);
   1817 
   1818   // Result is LESS.
   1819   __ Move(eax, Immediate(Smi::FromInt(LESS)));
   1820   __ ret(0);
   1821 
   1822   // Result is GREATER.
   1823   __ bind(&result_greater);
   1824   __ Move(eax, Immediate(Smi::FromInt(GREATER)));
   1825   __ ret(0);
   1826 }
   1827 
   1828 
   1829 void StringHelper::GenerateOneByteCharsCompareLoop(
   1830     MacroAssembler* masm, Register left, Register right, Register length,
   1831     Register scratch, Label* chars_not_equal,
   1832     Label::Distance chars_not_equal_near) {
   1833   // Change index to run from -length to -1 by adding length to string
   1834   // start. This means that loop ends when index reaches zero, which
   1835   // doesn't need an additional compare.
   1836   __ SmiUntag(length);
   1837   __ lea(left,
   1838          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
   1839   __ lea(right,
   1840          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
   1841   __ neg(length);
   1842   Register index = length;  // index = -length;
   1843 
   1844   // Compare loop.
   1845   Label loop;
   1846   __ bind(&loop);
   1847   __ mov_b(scratch, Operand(left, index, times_1, 0));
   1848   __ cmpb(scratch, Operand(right, index, times_1, 0));
   1849   __ j(not_equal, chars_not_equal, chars_not_equal_near);
   1850   __ inc(index);
   1851   __ j(not_zero, &loop);
   1852 }
   1853 
   1854 
   1855 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   1856   // ----------- S t a t e -------------
   1857   //  -- edx    : left
   1858   //  -- eax    : right
   1859   //  -- esp[0] : return address
   1860   // -----------------------------------
   1861 
   1862   // Load ecx with the allocation site.  We stick an undefined dummy value here
   1863   // and replace it with the real allocation site later when we instantiate this
   1864   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   1865   __ mov(ecx, isolate()->factory()->undefined_value());
   1866 
   1867   // Make sure that we actually patched the allocation site.
   1868   if (FLAG_debug_code) {
   1869     __ test(ecx, Immediate(kSmiTagMask));
   1870     __ Assert(not_equal, kExpectedAllocationSite);
   1871     __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
   1872            isolate()->factory()->allocation_site_map());
   1873     __ Assert(equal, kExpectedAllocationSite);
   1874   }
   1875 
   1876   // Tail call into the stub that handles binary operations with allocation
   1877   // sites.
   1878   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   1879   __ TailCallStub(&stub);
   1880 }
   1881 
   1882 
   1883 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
   1884   DCHECK_EQ(CompareICState::BOOLEAN, state());
   1885   Label miss;
   1886   Label::Distance const miss_distance =
   1887       masm->emit_debug_code() ? Label::kFar : Label::kNear;
   1888 
   1889   __ JumpIfSmi(edx, &miss, miss_distance);
   1890   __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
   1891   __ JumpIfSmi(eax, &miss, miss_distance);
   1892   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   1893   __ JumpIfNotRoot(ecx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
   1894   __ JumpIfNotRoot(ebx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
   1895   if (!Token::IsEqualityOp(op())) {
   1896     __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
   1897     __ AssertSmi(eax);
   1898     __ mov(edx, FieldOperand(edx, Oddball::kToNumberOffset));
   1899     __ AssertSmi(edx);
   1900     __ push(eax);
   1901     __ mov(eax, edx);
   1902     __ pop(edx);
   1903   }
   1904   __ sub(eax, edx);
   1905   __ Ret();
   1906 
   1907   __ bind(&miss);
   1908   GenerateMiss(masm);
   1909 }
   1910 
   1911 
   1912 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   1913   DCHECK(state() == CompareICState::SMI);
   1914   Label miss;
   1915   __ mov(ecx, edx);
   1916   __ or_(ecx, eax);
   1917   __ JumpIfNotSmi(ecx, &miss, Label::kNear);
   1918 
   1919   if (GetCondition() == equal) {
   1920     // For equality we do not care about the sign of the result.
   1921     __ sub(eax, edx);
   1922   } else {
   1923     Label done;
   1924     __ sub(edx, eax);
   1925     __ j(no_overflow, &done, Label::kNear);
   1926     // Correct sign of result in case of overflow.
   1927     __ not_(edx);
   1928     __ bind(&done);
   1929     __ mov(eax, edx);
   1930   }
   1931   __ ret(0);
   1932 
   1933   __ bind(&miss);
   1934   GenerateMiss(masm);
   1935 }
   1936 
   1937 
   1938 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   1939   DCHECK(state() == CompareICState::NUMBER);
   1940 
   1941   Label generic_stub;
   1942   Label unordered, maybe_undefined1, maybe_undefined2;
   1943   Label miss;
   1944 
   1945   if (left() == CompareICState::SMI) {
   1946     __ JumpIfNotSmi(edx, &miss);
   1947   }
   1948   if (right() == CompareICState::SMI) {
   1949     __ JumpIfNotSmi(eax, &miss);
   1950   }
   1951 
   1952   // Load left and right operand.
   1953   Label done, left, left_smi, right_smi;
   1954   __ JumpIfSmi(eax, &right_smi, Label::kNear);
   1955   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   1956          isolate()->factory()->heap_number_map());
   1957   __ j(not_equal, &maybe_undefined1, Label::kNear);
   1958   __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
   1959   __ jmp(&left, Label::kNear);
   1960   __ bind(&right_smi);
   1961   __ mov(ecx, eax);  // Can't clobber eax because we can still jump away.
   1962   __ SmiUntag(ecx);
   1963   __ Cvtsi2sd(xmm1, ecx);
   1964 
   1965   __ bind(&left);
   1966   __ JumpIfSmi(edx, &left_smi, Label::kNear);
   1967   __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
   1968          isolate()->factory()->heap_number_map());
   1969   __ j(not_equal, &maybe_undefined2, Label::kNear);
   1970   __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
   1971   __ jmp(&done);
   1972   __ bind(&left_smi);
   1973   __ mov(ecx, edx);  // Can't clobber edx because we can still jump away.
   1974   __ SmiUntag(ecx);
   1975   __ Cvtsi2sd(xmm0, ecx);
   1976 
   1977   __ bind(&done);
   1978   // Compare operands.
   1979   __ ucomisd(xmm0, xmm1);
   1980 
   1981   // Don't base result on EFLAGS when a NaN is involved.
   1982   __ j(parity_even, &unordered, Label::kNear);
   1983 
   1984   // Return a result of -1, 0, or 1, based on EFLAGS.
   1985   // Performing mov, because xor would destroy the flag register.
   1986   __ mov(eax, 0);  // equal
   1987   __ mov(ecx, Immediate(Smi::FromInt(1)));
   1988   __ cmov(above, eax, ecx);
   1989   __ mov(ecx, Immediate(Smi::FromInt(-1)));
   1990   __ cmov(below, eax, ecx);
   1991   __ ret(0);
   1992 
   1993   __ bind(&unordered);
   1994   __ bind(&generic_stub);
   1995   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   1996                      CompareICState::GENERIC, CompareICState::GENERIC);
   1997   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   1998 
   1999   __ bind(&maybe_undefined1);
   2000   if (Token::IsOrderedRelationalCompareOp(op())) {
   2001     __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
   2002     __ j(not_equal, &miss);
   2003     __ JumpIfSmi(edx, &unordered);
   2004     __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
   2005     __ j(not_equal, &maybe_undefined2, Label::kNear);
   2006     __ jmp(&unordered);
   2007   }
   2008 
   2009   __ bind(&maybe_undefined2);
   2010   if (Token::IsOrderedRelationalCompareOp(op())) {
   2011     __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
   2012     __ j(equal, &unordered);
   2013   }
   2014 
   2015   __ bind(&miss);
   2016   GenerateMiss(masm);
   2017 }
   2018 
   2019 
   2020 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   2021   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   2022   DCHECK(GetCondition() == equal);
   2023 
   2024   // Registers containing left and right operands respectively.
   2025   Register left = edx;
   2026   Register right = eax;
   2027   Register tmp1 = ecx;
   2028   Register tmp2 = ebx;
   2029 
   2030   // Check that both operands are heap objects.
   2031   Label miss;
   2032   __ mov(tmp1, left);
   2033   STATIC_ASSERT(kSmiTag == 0);
   2034   __ and_(tmp1, right);
   2035   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   2036 
   2037   // Check that both operands are internalized strings.
   2038   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2039   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2040   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2041   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2042   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   2043   __ or_(tmp1, tmp2);
   2044   __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   2045   __ j(not_zero, &miss, Label::kNear);
   2046 
   2047   // Internalized strings are compared by identity.
   2048   Label done;
   2049   __ cmp(left, right);
   2050   // Make sure eax is non-zero. At this point input operands are
   2051   // guaranteed to be non-zero.
   2052   DCHECK(right.is(eax));
   2053   __ j(not_equal, &done, Label::kNear);
   2054   STATIC_ASSERT(EQUAL == 0);
   2055   STATIC_ASSERT(kSmiTag == 0);
   2056   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2057   __ bind(&done);
   2058   __ ret(0);
   2059 
   2060   __ bind(&miss);
   2061   GenerateMiss(masm);
   2062 }
   2063 
   2064 
   2065 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   2066   DCHECK(state() == CompareICState::UNIQUE_NAME);
   2067   DCHECK(GetCondition() == equal);
   2068 
   2069   // Registers containing left and right operands respectively.
   2070   Register left = edx;
   2071   Register right = eax;
   2072   Register tmp1 = ecx;
   2073   Register tmp2 = ebx;
   2074 
   2075   // Check that both operands are heap objects.
   2076   Label miss;
   2077   __ mov(tmp1, left);
   2078   STATIC_ASSERT(kSmiTag == 0);
   2079   __ and_(tmp1, right);
   2080   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   2081 
   2082   // Check that both operands are unique names. This leaves the instance
   2083   // types loaded in tmp1 and tmp2.
   2084   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2085   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2086   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2087   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2088 
   2089   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
   2090   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
   2091 
   2092   // Unique names are compared by identity.
   2093   Label done;
   2094   __ cmp(left, right);
   2095   // Make sure eax is non-zero. At this point input operands are
   2096   // guaranteed to be non-zero.
   2097   DCHECK(right.is(eax));
   2098   __ j(not_equal, &done, Label::kNear);
   2099   STATIC_ASSERT(EQUAL == 0);
   2100   STATIC_ASSERT(kSmiTag == 0);
   2101   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2102   __ bind(&done);
   2103   __ ret(0);
   2104 
   2105   __ bind(&miss);
   2106   GenerateMiss(masm);
   2107 }
   2108 
   2109 
   2110 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   2111   DCHECK(state() == CompareICState::STRING);
   2112   Label miss;
   2113 
   2114   bool equality = Token::IsEqualityOp(op());
   2115 
   2116   // Registers containing left and right operands respectively.
   2117   Register left = edx;
   2118   Register right = eax;
   2119   Register tmp1 = ecx;
   2120   Register tmp2 = ebx;
   2121   Register tmp3 = edi;
   2122 
   2123   // Check that both operands are heap objects.
   2124   __ mov(tmp1, left);
   2125   STATIC_ASSERT(kSmiTag == 0);
   2126   __ and_(tmp1, right);
   2127   __ JumpIfSmi(tmp1, &miss);
   2128 
   2129   // Check that both operands are strings. This leaves the instance
   2130   // types loaded in tmp1 and tmp2.
   2131   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2132   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2133   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2134   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2135   __ mov(tmp3, tmp1);
   2136   STATIC_ASSERT(kNotStringTag != 0);
   2137   __ or_(tmp3, tmp2);
   2138   __ test(tmp3, Immediate(kIsNotStringMask));
   2139   __ j(not_zero, &miss);
   2140 
   2141   // Fast check for identical strings.
   2142   Label not_same;
   2143   __ cmp(left, right);
   2144   __ j(not_equal, &not_same, Label::kNear);
   2145   STATIC_ASSERT(EQUAL == 0);
   2146   STATIC_ASSERT(kSmiTag == 0);
   2147   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2148   __ ret(0);
   2149 
   2150   // Handle not identical strings.
   2151   __ bind(&not_same);
   2152 
   2153   // Check that both strings are internalized. If they are, we're done
   2154   // because we already know they are not identical.  But in the case of
   2155   // non-equality compare, we still need to determine the order. We
   2156   // also know they are both strings.
   2157   if (equality) {
   2158     Label do_compare;
   2159     STATIC_ASSERT(kInternalizedTag == 0);
   2160     __ or_(tmp1, tmp2);
   2161     __ test(tmp1, Immediate(kIsNotInternalizedMask));
   2162     __ j(not_zero, &do_compare, Label::kNear);
   2163     // Make sure eax is non-zero. At this point input operands are
   2164     // guaranteed to be non-zero.
   2165     DCHECK(right.is(eax));
   2166     __ ret(0);
   2167     __ bind(&do_compare);
   2168   }
   2169 
   2170   // Check that both strings are sequential one-byte.
   2171   Label runtime;
   2172   __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
   2173 
   2174   // Compare flat one byte strings. Returns when done.
   2175   if (equality) {
   2176     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
   2177                                                   tmp2);
   2178   } else {
   2179     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   2180                                                     tmp2, tmp3);
   2181   }
   2182 
   2183   // Handle more complex cases in runtime.
   2184   __ bind(&runtime);
   2185   if (equality) {
   2186     {
   2187       FrameScope scope(masm, StackFrame::INTERNAL);
   2188       __ Push(left);
   2189       __ Push(right);
   2190       __ CallRuntime(Runtime::kStringEqual);
   2191     }
   2192     __ sub(eax, Immediate(masm->isolate()->factory()->true_value()));
   2193     __ Ret();
   2194   } else {
   2195     __ pop(tmp1);  // Return address.
   2196     __ push(left);
   2197     __ push(right);
   2198     __ push(tmp1);
   2199     __ TailCallRuntime(Runtime::kStringCompare);
   2200   }
   2201 
   2202   __ bind(&miss);
   2203   GenerateMiss(masm);
   2204 }
   2205 
   2206 
   2207 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
   2208   DCHECK_EQ(CompareICState::RECEIVER, state());
   2209   Label miss;
   2210   __ mov(ecx, edx);
   2211   __ and_(ecx, eax);
   2212   __ JumpIfSmi(ecx, &miss, Label::kNear);
   2213 
   2214   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   2215   __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
   2216   __ j(below, &miss, Label::kNear);
   2217   __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
   2218   __ j(below, &miss, Label::kNear);
   2219 
   2220   DCHECK_EQ(equal, GetCondition());
   2221   __ sub(eax, edx);
   2222   __ ret(0);
   2223 
   2224   __ bind(&miss);
   2225   GenerateMiss(masm);
   2226 }
   2227 
   2228 
   2229 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
   2230   Label miss;
   2231   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
   2232   __ mov(ecx, edx);
   2233   __ and_(ecx, eax);
   2234   __ JumpIfSmi(ecx, &miss, Label::kNear);
   2235 
   2236   __ GetWeakValue(edi, cell);
   2237   __ cmp(edi, FieldOperand(eax, HeapObject::kMapOffset));
   2238   __ j(not_equal, &miss, Label::kNear);
   2239   __ cmp(edi, FieldOperand(edx, HeapObject::kMapOffset));
   2240   __ j(not_equal, &miss, Label::kNear);
   2241 
   2242   if (Token::IsEqualityOp(op())) {
   2243     __ sub(eax, edx);
   2244     __ ret(0);
   2245   } else {
   2246     __ PopReturnAddressTo(ecx);
   2247     __ Push(edx);
   2248     __ Push(eax);
   2249     __ Push(Immediate(Smi::FromInt(NegativeComparisonResult(GetCondition()))));
   2250     __ PushReturnAddressFrom(ecx);
   2251     __ TailCallRuntime(Runtime::kCompare);
   2252   }
   2253 
   2254   __ bind(&miss);
   2255   GenerateMiss(masm);
   2256 }
   2257 
   2258 
   2259 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   2260   {
   2261     // Call the runtime system in a fresh internal frame.
   2262     FrameScope scope(masm, StackFrame::INTERNAL);
   2263     __ push(edx);  // Preserve edx and eax.
   2264     __ push(eax);
   2265     __ push(edx);  // And also use them as the arguments.
   2266     __ push(eax);
   2267     __ push(Immediate(Smi::FromInt(op())));
   2268     __ CallRuntime(Runtime::kCompareIC_Miss);
   2269     // Compute the entry point of the rewritten stub.
   2270     __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
   2271     __ pop(eax);
   2272     __ pop(edx);
   2273   }
   2274 
   2275   // Do a tail call to the rewritten stub.
   2276   __ jmp(edi);
   2277 }
   2278 
   2279 
   2280 // Helper function used to check that the dictionary doesn't contain
   2281 // the property. This function may return false negatives, so miss_label
   2282 // must always call a backup property check that is complete.
   2283 // This function is safe to call if the receiver has fast properties.
   2284 // Name must be a unique name and receiver must be a heap object.
   2285 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   2286                                                       Label* miss,
   2287                                                       Label* done,
   2288                                                       Register properties,
   2289                                                       Handle<Name> name,
   2290                                                       Register r0) {
   2291   DCHECK(name->IsUniqueName());
   2292 
   2293   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   2294   // not equal to the name and kProbes-th slot is not used (its name is the
   2295   // undefined value), it guarantees the hash table doesn't contain the
   2296   // property. It's true even if some slots represent deleted properties
   2297   // (their names are the hole value).
   2298   for (int i = 0; i < kInlinedProbes; i++) {
   2299     // Compute the masked index: (hash + i + i * i) & mask.
   2300     Register index = r0;
   2301     // Capacity is smi 2^n.
   2302     __ mov(index, FieldOperand(properties, kCapacityOffset));
   2303     __ dec(index);
   2304     __ and_(index,
   2305             Immediate(Smi::FromInt(name->Hash() +
   2306                                    NameDictionary::GetProbeOffset(i))));
   2307 
   2308     // Scale the index by multiplying by the entry size.
   2309     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2310     __ lea(index, Operand(index, index, times_2, 0));  // index *= 3.
   2311     Register entity_name = r0;
   2312     // Having undefined at this place means the name is not contained.
   2313     STATIC_ASSERT(kSmiTagSize == 1);
   2314     __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
   2315                                 kElementsStartOffset - kHeapObjectTag));
   2316     __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
   2317     __ j(equal, done);
   2318 
   2319     // Stop if found the property.
   2320     __ cmp(entity_name, Handle<Name>(name));
   2321     __ j(equal, miss);
   2322 
   2323     Label good;
   2324     // Check for the hole and skip.
   2325     __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
   2326     __ j(equal, &good, Label::kNear);
   2327 
   2328     // Check if the entry name is not a unique name.
   2329     __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
   2330     __ JumpIfNotUniqueNameInstanceType(
   2331         FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
   2332     __ bind(&good);
   2333   }
   2334 
   2335   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
   2336                                 NEGATIVE_LOOKUP);
   2337   __ push(Immediate(Handle<Object>(name)));
   2338   __ push(Immediate(name->Hash()));
   2339   __ CallStub(&stub);
   2340   __ test(r0, r0);
   2341   __ j(not_zero, miss);
   2342   __ jmp(done);
   2343 }
   2344 
   2345 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   2346   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   2347   // we cannot call anything that could cause a GC from this stub.
   2348   // Stack frame on entry:
   2349   //  esp[0 * kPointerSize]: return address.
   2350   //  esp[1 * kPointerSize]: key's hash.
   2351   //  esp[2 * kPointerSize]: key.
   2352   // Registers:
   2353   //  dictionary_: NameDictionary to probe.
   2354   //  result_: used as scratch.
   2355   //  index_: will hold an index of entry if lookup is successful.
   2356   //          might alias with result_.
   2357   // Returns:
   2358   //  result_ is zero if lookup failed, non zero otherwise.
   2359 
   2360   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   2361 
   2362   Register scratch = result();
   2363 
   2364   __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
   2365   __ dec(scratch);
   2366   __ SmiUntag(scratch);
   2367   __ push(scratch);
   2368 
   2369   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   2370   // not equal to the name and kProbes-th slot is not used (its name is the
   2371   // undefined value), it guarantees the hash table doesn't contain the
   2372   // property. It's true even if some slots represent deleted properties
   2373   // (their names are the null value).
   2374   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   2375     // Compute the masked index: (hash + i + i * i) & mask.
   2376     __ mov(scratch, Operand(esp, 2 * kPointerSize));
   2377     if (i > 0) {
   2378       __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
   2379     }
   2380     __ and_(scratch, Operand(esp, 0));
   2381 
   2382     // Scale the index by multiplying by the entry size.
   2383     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2384     __ lea(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.
   2385 
   2386     // Having undefined at this place means the name is not contained.
   2387     STATIC_ASSERT(kSmiTagSize == 1);
   2388     __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
   2389                             kElementsStartOffset - kHeapObjectTag));
   2390     __ cmp(scratch, isolate()->factory()->undefined_value());
   2391     __ j(equal, &not_in_dictionary);
   2392 
   2393     // Stop if found the property.
   2394     __ cmp(scratch, Operand(esp, 3 * kPointerSize));
   2395     __ j(equal, &in_dictionary);
   2396 
   2397     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   2398       // If we hit a key that is not a unique name during negative
   2399       // lookup we have to bailout as this key might be equal to the
   2400       // key we are looking for.
   2401 
   2402       // Check if the entry name is not a unique name.
   2403       __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   2404       __ JumpIfNotUniqueNameInstanceType(
   2405           FieldOperand(scratch, Map::kInstanceTypeOffset),
   2406           &maybe_in_dictionary);
   2407     }
   2408   }
   2409 
   2410   __ bind(&maybe_in_dictionary);
   2411   // If we are doing negative lookup then probing failure should be
   2412   // treated as a lookup success. For positive lookup probing failure
   2413   // should be treated as lookup failure.
   2414   if (mode() == POSITIVE_LOOKUP) {
   2415     __ mov(result(), Immediate(0));
   2416     __ Drop(1);
   2417     __ ret(2 * kPointerSize);
   2418   }
   2419 
   2420   __ bind(&in_dictionary);
   2421   __ mov(result(), Immediate(1));
   2422   __ Drop(1);
   2423   __ ret(2 * kPointerSize);
   2424 
   2425   __ bind(&not_in_dictionary);
   2426   __ mov(result(), Immediate(0));
   2427   __ Drop(1);
   2428   __ ret(2 * kPointerSize);
   2429 }
   2430 
   2431 
   2432 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   2433     Isolate* isolate) {
   2434   StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
   2435   stub.GetCode();
   2436   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   2437   stub2.GetCode();
   2438 }
   2439 
   2440 
   2441 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   2442 // the value has just been written into the object, now this stub makes sure
   2443 // we keep the GC informed.  The word in the object where the value has been
   2444 // written is in the address register.
   2445 void RecordWriteStub::Generate(MacroAssembler* masm) {
   2446   Label skip_to_incremental_noncompacting;
   2447   Label skip_to_incremental_compacting;
   2448 
   2449   // The first two instructions are generated with labels so as to get the
   2450   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   2451   // forth between a compare instructions (a nop in this position) and the
   2452   // real branch when we start and stop incremental heap marking.
   2453   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
   2454   __ jmp(&skip_to_incremental_compacting, Label::kFar);
   2455 
   2456   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   2457     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2458                            MacroAssembler::kReturnAtEnd);
   2459   } else {
   2460     __ ret(0);
   2461   }
   2462 
   2463   __ bind(&skip_to_incremental_noncompacting);
   2464   GenerateIncremental(masm, INCREMENTAL);
   2465 
   2466   __ bind(&skip_to_incremental_compacting);
   2467   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   2468 
   2469   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   2470   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   2471   masm->set_byte_at(0, kTwoByteNopInstruction);
   2472   masm->set_byte_at(2, kFiveByteNopInstruction);
   2473 }
   2474 
   2475 
   2476 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   2477   regs_.Save(masm);
   2478 
   2479   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   2480     Label dont_need_remembered_set;
   2481 
   2482     __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   2483     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   2484                            regs_.scratch0(),
   2485                            &dont_need_remembered_set);
   2486 
   2487     __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
   2488                         &dont_need_remembered_set);
   2489 
   2490     // First notify the incremental marker if necessary, then update the
   2491     // remembered set.
   2492     CheckNeedsToInformIncrementalMarker(
   2493         masm,
   2494         kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
   2495         mode);
   2496     InformIncrementalMarker(masm);
   2497     regs_.Restore(masm);
   2498     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2499                            MacroAssembler::kReturnAtEnd);
   2500 
   2501     __ bind(&dont_need_remembered_set);
   2502   }
   2503 
   2504   CheckNeedsToInformIncrementalMarker(
   2505       masm,
   2506       kReturnOnNoNeedToInformIncrementalMarker,
   2507       mode);
   2508   InformIncrementalMarker(masm);
   2509   regs_.Restore(masm);
   2510   __ ret(0);
   2511 }
   2512 
   2513 
   2514 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   2515   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   2516   int argument_count = 3;
   2517   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   2518   __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
   2519   __ mov(Operand(esp, 1 * kPointerSize), regs_.address());  // Slot.
   2520   __ mov(Operand(esp, 2 * kPointerSize),
   2521          Immediate(ExternalReference::isolate_address(isolate())));
   2522 
   2523   AllowExternalCallThatCantCauseGC scope(masm);
   2524   __ CallCFunction(
   2525       ExternalReference::incremental_marking_record_write_function(isolate()),
   2526       argument_count);
   2527 
   2528   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   2529 }
   2530 
   2531 
   2532 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   2533     MacroAssembler* masm,
   2534     OnNoNeedToInformIncrementalMarker on_no_need,
   2535     Mode mode) {
   2536   Label object_is_black, need_incremental, need_incremental_pop_object;
   2537 
   2538   // Let's look at the color of the object:  If it is not black we don't have
   2539   // to inform the incremental marker.
   2540   __ JumpIfBlack(regs_.object(),
   2541                  regs_.scratch0(),
   2542                  regs_.scratch1(),
   2543                  &object_is_black,
   2544                  Label::kNear);
   2545 
   2546   regs_.Restore(masm);
   2547   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   2548     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2549                            MacroAssembler::kReturnAtEnd);
   2550   } else {
   2551     __ ret(0);
   2552   }
   2553 
   2554   __ bind(&object_is_black);
   2555 
   2556   // Get the value from the slot.
   2557   __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   2558 
   2559   if (mode == INCREMENTAL_COMPACTION) {
   2560     Label ensure_not_white;
   2561 
   2562     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   2563                      regs_.scratch1(),  // Scratch.
   2564                      MemoryChunk::kEvacuationCandidateMask,
   2565                      zero,
   2566                      &ensure_not_white,
   2567                      Label::kNear);
   2568 
   2569     __ CheckPageFlag(regs_.object(),
   2570                      regs_.scratch1(),  // Scratch.
   2571                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   2572                      not_zero,
   2573                      &ensure_not_white,
   2574                      Label::kNear);
   2575 
   2576     __ jmp(&need_incremental);
   2577 
   2578     __ bind(&ensure_not_white);
   2579   }
   2580 
   2581   // We need an extra register for this, so we push the object register
   2582   // temporarily.
   2583   __ push(regs_.object());
   2584   __ JumpIfWhite(regs_.scratch0(),  // The value.
   2585                  regs_.scratch1(),  // Scratch.
   2586                  regs_.object(),    // Scratch.
   2587                  &need_incremental_pop_object, Label::kNear);
   2588   __ pop(regs_.object());
   2589 
   2590   regs_.Restore(masm);
   2591   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   2592     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2593                            MacroAssembler::kReturnAtEnd);
   2594   } else {
   2595     __ ret(0);
   2596   }
   2597 
   2598   __ bind(&need_incremental_pop_object);
   2599   __ pop(regs_.object());
   2600 
   2601   __ bind(&need_incremental);
   2602 
   2603   // Fall through when we need to inform the incremental marker.
   2604 }
   2605 
   2606 
   2607 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   2608   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   2609   __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
   2610   int parameter_count_offset =
   2611       StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
   2612   __ mov(ebx, MemOperand(ebp, parameter_count_offset));
   2613   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   2614   __ pop(ecx);
   2615   int additional_offset =
   2616       function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
   2617   __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
   2618   __ jmp(ecx);  // Return to IC Miss stub, continuation still on stack.
   2619 }
   2620 
   2621 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   2622   if (masm->isolate()->function_entry_hook() != NULL) {
   2623     ProfileEntryHookStub stub(masm->isolate());
   2624     masm->CallStub(&stub);
   2625   }
   2626 }
   2627 
   2628 
   2629 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   2630   // Save volatile registers.
   2631   const int kNumSavedRegisters = 3;
   2632   __ push(eax);
   2633   __ push(ecx);
   2634   __ push(edx);
   2635 
   2636   // Calculate and push the original stack pointer.
   2637   __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   2638   __ push(eax);
   2639 
   2640   // Retrieve our return address and use it to calculate the calling
   2641   // function's address.
   2642   __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   2643   __ sub(eax, Immediate(Assembler::kCallInstructionLength));
   2644   __ push(eax);
   2645 
   2646   // Call the entry hook.
   2647   DCHECK(isolate()->function_entry_hook() != NULL);
   2648   __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
   2649           RelocInfo::RUNTIME_ENTRY);
   2650   __ add(esp, Immediate(2 * kPointerSize));
   2651 
   2652   // Restore ecx.
   2653   __ pop(edx);
   2654   __ pop(ecx);
   2655   __ pop(eax);
   2656 
   2657   __ ret(0);
   2658 }
   2659 
   2660 
   2661 template<class T>
   2662 static void CreateArrayDispatch(MacroAssembler* masm,
   2663                                 AllocationSiteOverrideMode mode) {
   2664   if (mode == DISABLE_ALLOCATION_SITES) {
   2665     T stub(masm->isolate(),
   2666            GetInitialFastElementsKind(),
   2667            mode);
   2668     __ TailCallStub(&stub);
   2669   } else if (mode == DONT_OVERRIDE) {
   2670     int last_index = GetSequenceIndexFromFastElementsKind(
   2671         TERMINAL_FAST_ELEMENTS_KIND);
   2672     for (int i = 0; i <= last_index; ++i) {
   2673       Label next;
   2674       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   2675       __ cmp(edx, kind);
   2676       __ j(not_equal, &next);
   2677       T stub(masm->isolate(), kind);
   2678       __ TailCallStub(&stub);
   2679       __ bind(&next);
   2680     }
   2681 
   2682     // If we reached this point there is a problem.
   2683     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   2684   } else {
   2685     UNREACHABLE();
   2686   }
   2687 }
   2688 
   2689 
   2690 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   2691                                            AllocationSiteOverrideMode mode) {
   2692   // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   2693   // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
   2694   // eax - number of arguments
   2695   // edi - constructor?
   2696   // esp[0] - return address
   2697   // esp[4] - last argument
   2698   Label normal_sequence;
   2699   if (mode == DONT_OVERRIDE) {
   2700     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   2701     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   2702     STATIC_ASSERT(FAST_ELEMENTS == 2);
   2703     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   2704     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
   2705     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   2706 
   2707     // is the low bit set? If so, we are holey and that is good.
   2708     __ test_b(edx, Immediate(1));
   2709     __ j(not_zero, &normal_sequence);
   2710   }
   2711 
   2712   // look at the first argument
   2713   __ mov(ecx, Operand(esp, kPointerSize));
   2714   __ test(ecx, ecx);
   2715   __ j(zero, &normal_sequence);
   2716 
   2717   if (mode == DISABLE_ALLOCATION_SITES) {
   2718     ElementsKind initial = GetInitialFastElementsKind();
   2719     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   2720 
   2721     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   2722                                                   holey_initial,
   2723                                                   DISABLE_ALLOCATION_SITES);
   2724     __ TailCallStub(&stub_holey);
   2725 
   2726     __ bind(&normal_sequence);
   2727     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   2728                                             initial,
   2729                                             DISABLE_ALLOCATION_SITES);
   2730     __ TailCallStub(&stub);
   2731   } else if (mode == DONT_OVERRIDE) {
   2732     // We are going to create a holey array, but our kind is non-holey.
   2733     // Fix kind and retry.
   2734     __ inc(edx);
   2735 
   2736     if (FLAG_debug_code) {
   2737       Handle<Map> allocation_site_map =
   2738           masm->isolate()->factory()->allocation_site_map();
   2739       __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   2740       __ Assert(equal, kExpectedAllocationSite);
   2741     }
   2742 
   2743     // Save the resulting elements kind in type info. We can't just store r3
   2744     // in the AllocationSite::transition_info field because elements kind is
   2745     // restricted to a portion of the field...upper bits need to be left alone.
   2746     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   2747     __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
   2748            Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
   2749 
   2750     __ bind(&normal_sequence);
   2751     int last_index = GetSequenceIndexFromFastElementsKind(
   2752         TERMINAL_FAST_ELEMENTS_KIND);
   2753     for (int i = 0; i <= last_index; ++i) {
   2754       Label next;
   2755       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   2756       __ cmp(edx, kind);
   2757       __ j(not_equal, &next);
   2758       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   2759       __ TailCallStub(&stub);
   2760       __ bind(&next);
   2761     }
   2762 
   2763     // If we reached this point there is a problem.
   2764     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   2765   } else {
   2766     UNREACHABLE();
   2767   }
   2768 }
   2769 
   2770 
   2771 template<class T>
   2772 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   2773   int to_index = GetSequenceIndexFromFastElementsKind(
   2774       TERMINAL_FAST_ELEMENTS_KIND);
   2775   for (int i = 0; i <= to_index; ++i) {
   2776     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   2777     T stub(isolate, kind);
   2778     stub.GetCode();
   2779     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   2780       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   2781       stub1.GetCode();
   2782     }
   2783   }
   2784 }
   2785 
   2786 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   2787   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   2788       isolate);
   2789   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   2790       isolate);
   2791   ArrayNArgumentsConstructorStub stub(isolate);
   2792   stub.GetCode();
   2793 
   2794   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   2795   for (int i = 0; i < 2; i++) {
   2796     // For internal arrays we only need a few things
   2797     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   2798     stubh1.GetCode();
   2799     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   2800     stubh2.GetCode();
   2801   }
   2802 }
   2803 
   2804 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   2805     MacroAssembler* masm, AllocationSiteOverrideMode mode) {
   2806   Label not_zero_case, not_one_case;
   2807   __ test(eax, eax);
   2808   __ j(not_zero, &not_zero_case);
   2809   CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   2810 
   2811   __ bind(&not_zero_case);
   2812   __ cmp(eax, 1);
   2813   __ j(greater, &not_one_case);
   2814   CreateArrayDispatchOneArgument(masm, mode);
   2815 
   2816   __ bind(&not_one_case);
   2817   ArrayNArgumentsConstructorStub stub(masm->isolate());
   2818   __ TailCallStub(&stub);
   2819 }
   2820 
   2821 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   2822   // ----------- S t a t e -------------
   2823   //  -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
   2824   //  -- ebx : AllocationSite or undefined
   2825   //  -- edi : constructor
   2826   //  -- edx : Original constructor
   2827   //  -- esp[0] : return address
   2828   //  -- esp[4] : last argument
   2829   // -----------------------------------
   2830   if (FLAG_debug_code) {
   2831     // The array construct code is only set for the global and natives
   2832     // builtin Array functions which always have maps.
   2833 
   2834     // Initial map for the builtin Array function should be a map.
   2835     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   2836     // Will both indicate a NULL and a Smi.
   2837     __ test(ecx, Immediate(kSmiTagMask));
   2838     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   2839     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   2840     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   2841 
   2842     // We should either have undefined in ebx or a valid AllocationSite
   2843     __ AssertUndefinedOrAllocationSite(ebx);
   2844   }
   2845 
   2846   Label subclassing;
   2847 
   2848   // Enter the context of the Array function.
   2849   __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
   2850 
   2851   __ cmp(edx, edi);
   2852   __ j(not_equal, &subclassing);
   2853 
   2854   Label no_info;
   2855   // If the feedback vector is the undefined value call an array constructor
   2856   // that doesn't use AllocationSites.
   2857   __ cmp(ebx, isolate()->factory()->undefined_value());
   2858   __ j(equal, &no_info);
   2859 
   2860   // Only look at the lower 16 bits of the transition info.
   2861   __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
   2862   __ SmiUntag(edx);
   2863   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   2864   __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
   2865   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   2866 
   2867   __ bind(&no_info);
   2868   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   2869 
   2870   // Subclassing.
   2871   __ bind(&subclassing);
   2872   __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
   2873   __ add(eax, Immediate(3));
   2874   __ PopReturnAddressTo(ecx);
   2875   __ Push(edx);
   2876   __ Push(ebx);
   2877   __ PushReturnAddressFrom(ecx);
   2878   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
   2879 }
   2880 
   2881 
   2882 void InternalArrayConstructorStub::GenerateCase(
   2883     MacroAssembler* masm, ElementsKind kind) {
   2884   Label not_zero_case, not_one_case;
   2885   Label normal_sequence;
   2886 
   2887   __ test(eax, eax);
   2888   __ j(not_zero, &not_zero_case);
   2889   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   2890   __ TailCallStub(&stub0);
   2891 
   2892   __ bind(&not_zero_case);
   2893   __ cmp(eax, 1);
   2894   __ j(greater, &not_one_case);
   2895 
   2896   if (IsFastPackedElementsKind(kind)) {
   2897     // We might need to create a holey array
   2898     // look at the first argument
   2899     __ mov(ecx, Operand(esp, kPointerSize));
   2900     __ test(ecx, ecx);
   2901     __ j(zero, &normal_sequence);
   2902 
   2903     InternalArraySingleArgumentConstructorStub
   2904         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   2905     __ TailCallStub(&stub1_holey);
   2906   }
   2907 
   2908   __ bind(&normal_sequence);
   2909   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   2910   __ TailCallStub(&stub1);
   2911 
   2912   __ bind(&not_one_case);
   2913   ArrayNArgumentsConstructorStub stubN(isolate());
   2914   __ TailCallStub(&stubN);
   2915 }
   2916 
   2917 
   2918 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   2919   // ----------- S t a t e -------------
   2920   //  -- eax : argc
   2921   //  -- edi : constructor
   2922   //  -- esp[0] : return address
   2923   //  -- esp[4] : last argument
   2924   // -----------------------------------
   2925 
   2926   if (FLAG_debug_code) {
   2927     // The array construct code is only set for the global and natives
   2928     // builtin Array functions which always have maps.
   2929 
   2930     // Initial map for the builtin Array function should be a map.
   2931     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   2932     // Will both indicate a NULL and a Smi.
   2933     __ test(ecx, Immediate(kSmiTagMask));
   2934     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   2935     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   2936     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   2937   }
   2938 
   2939   // Figure out the right elements kind
   2940   __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   2941 
   2942   // Load the map's "bit field 2" into |result|. We only need the first byte,
   2943   // but the following masking takes care of that anyway.
   2944   __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
   2945   // Retrieve elements_kind from bit field 2.
   2946   __ DecodeField<Map::ElementsKindBits>(ecx);
   2947 
   2948   if (FLAG_debug_code) {
   2949     Label done;
   2950     __ cmp(ecx, Immediate(FAST_ELEMENTS));
   2951     __ j(equal, &done);
   2952     __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
   2953     __ Assert(equal,
   2954               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   2955     __ bind(&done);
   2956   }
   2957 
   2958   Label fast_elements_case;
   2959   __ cmp(ecx, Immediate(FAST_ELEMENTS));
   2960   __ j(equal, &fast_elements_case);
   2961   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   2962 
   2963   __ bind(&fast_elements_case);
   2964   GenerateCase(masm, FAST_ELEMENTS);
   2965 }
   2966 
   2967 // Generates an Operand for saving parameters after PrepareCallApiFunction.
   2968 static Operand ApiParameterOperand(int index) {
   2969   return Operand(esp, index * kPointerSize);
   2970 }
   2971 
   2972 
   2973 // Prepares stack to put arguments (aligns and so on). Reserves
   2974 // space for return value if needed (assumes the return value is a handle).
   2975 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
   2976 // etc. Saves context (esi). If space was reserved for return value then
   2977 // stores the pointer to the reserved slot into esi.
   2978 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
   2979   __ EnterApiExitFrame(argc);
   2980   if (__ emit_debug_code()) {
   2981     __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
   2982   }
   2983 }
   2984 
   2985 
   2986 // Calls an API function.  Allocates HandleScope, extracts returned value
   2987 // from handle and propagates exceptions.  Clobbers ebx, edi and
   2988 // caller-save registers.  Restores context.  On return removes
   2989 // stack_space * kPointerSize (GCed).
   2990 static void CallApiFunctionAndReturn(MacroAssembler* masm,
   2991                                      Register function_address,
   2992                                      ExternalReference thunk_ref,
   2993                                      Operand thunk_last_arg, int stack_space,
   2994                                      Operand* stack_space_operand,
   2995                                      Operand return_value_operand,
   2996                                      Operand* context_restore_operand) {
   2997   Isolate* isolate = masm->isolate();
   2998 
   2999   ExternalReference next_address =
   3000       ExternalReference::handle_scope_next_address(isolate);
   3001   ExternalReference limit_address =
   3002       ExternalReference::handle_scope_limit_address(isolate);
   3003   ExternalReference level_address =
   3004       ExternalReference::handle_scope_level_address(isolate);
   3005 
   3006   DCHECK(edx.is(function_address));
   3007   // Allocate HandleScope in callee-save registers.
   3008   __ mov(ebx, Operand::StaticVariable(next_address));
   3009   __ mov(edi, Operand::StaticVariable(limit_address));
   3010   __ add(Operand::StaticVariable(level_address), Immediate(1));
   3011 
   3012   if (FLAG_log_timer_events) {
   3013     FrameScope frame(masm, StackFrame::MANUAL);
   3014     __ PushSafepointRegisters();
   3015     __ PrepareCallCFunction(1, eax);
   3016     __ mov(Operand(esp, 0),
   3017            Immediate(ExternalReference::isolate_address(isolate)));
   3018     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
   3019                      1);
   3020     __ PopSafepointRegisters();
   3021   }
   3022 
   3023 
   3024   Label profiler_disabled;
   3025   Label end_profiler_check;
   3026   __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
   3027   __ cmpb(Operand(eax, 0), Immediate(0));
   3028   __ j(zero, &profiler_disabled);
   3029 
   3030   // Additional parameter is the address of the actual getter function.
   3031   __ mov(thunk_last_arg, function_address);
   3032   // Call the api function.
   3033   __ mov(eax, Immediate(thunk_ref));
   3034   __ call(eax);
   3035   __ jmp(&end_profiler_check);
   3036 
   3037   __ bind(&profiler_disabled);
   3038   // Call the api function.
   3039   __ call(function_address);
   3040   __ bind(&end_profiler_check);
   3041 
   3042   if (FLAG_log_timer_events) {
   3043     FrameScope frame(masm, StackFrame::MANUAL);
   3044     __ PushSafepointRegisters();
   3045     __ PrepareCallCFunction(1, eax);
   3046     __ mov(Operand(esp, 0),
   3047            Immediate(ExternalReference::isolate_address(isolate)));
   3048     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
   3049                      1);
   3050     __ PopSafepointRegisters();
   3051   }
   3052 
   3053   Label prologue;
   3054   // Load the value from ReturnValue
   3055   __ mov(eax, return_value_operand);
   3056 
   3057   Label promote_scheduled_exception;
   3058   Label delete_allocated_handles;
   3059   Label leave_exit_frame;
   3060 
   3061   __ bind(&prologue);
   3062   // No more valid handles (the result handle was the last one). Restore
   3063   // previous handle scope.
   3064   __ mov(Operand::StaticVariable(next_address), ebx);
   3065   __ sub(Operand::StaticVariable(level_address), Immediate(1));
   3066   __ Assert(above_equal, kInvalidHandleScopeLevel);
   3067   __ cmp(edi, Operand::StaticVariable(limit_address));
   3068   __ j(not_equal, &delete_allocated_handles);
   3069 
   3070   // Leave the API exit frame.
   3071   __ bind(&leave_exit_frame);
   3072   bool restore_context = context_restore_operand != NULL;
   3073   if (restore_context) {
   3074     __ mov(esi, *context_restore_operand);
   3075   }
   3076   if (stack_space_operand != nullptr) {
   3077     __ mov(ebx, *stack_space_operand);
   3078   }
   3079   __ LeaveApiExitFrame(!restore_context);
   3080 
   3081   // Check if the function scheduled an exception.
   3082   ExternalReference scheduled_exception_address =
   3083       ExternalReference::scheduled_exception_address(isolate);
   3084   __ cmp(Operand::StaticVariable(scheduled_exception_address),
   3085          Immediate(isolate->factory()->the_hole_value()));
   3086   __ j(not_equal, &promote_scheduled_exception);
   3087 
   3088 #if DEBUG
   3089   // Check if the function returned a valid JavaScript value.
   3090   Label ok;
   3091   Register return_value = eax;
   3092   Register map = ecx;
   3093 
   3094   __ JumpIfSmi(return_value, &ok, Label::kNear);
   3095   __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
   3096 
   3097   __ CmpInstanceType(map, LAST_NAME_TYPE);
   3098   __ j(below_equal, &ok, Label::kNear);
   3099 
   3100   __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
   3101   __ j(above_equal, &ok, Label::kNear);
   3102 
   3103   __ cmp(map, isolate->factory()->heap_number_map());
   3104   __ j(equal, &ok, Label::kNear);
   3105 
   3106   __ cmp(return_value, isolate->factory()->undefined_value());
   3107   __ j(equal, &ok, Label::kNear);
   3108 
   3109   __ cmp(return_value, isolate->factory()->true_value());
   3110   __ j(equal, &ok, Label::kNear);
   3111 
   3112   __ cmp(return_value, isolate->factory()->false_value());
   3113   __ j(equal, &ok, Label::kNear);
   3114 
   3115   __ cmp(return_value, isolate->factory()->null_value());
   3116   __ j(equal, &ok, Label::kNear);
   3117 
   3118   __ Abort(kAPICallReturnedInvalidObject);
   3119 
   3120   __ bind(&ok);
   3121 #endif
   3122 
   3123   if (stack_space_operand != nullptr) {
   3124     DCHECK_EQ(0, stack_space);
   3125     __ pop(ecx);
   3126     __ add(esp, ebx);
   3127     __ jmp(ecx);
   3128   } else {
   3129     __ ret(stack_space * kPointerSize);
   3130   }
   3131 
   3132   // Re-throw by promoting a scheduled exception.
   3133   __ bind(&promote_scheduled_exception);
   3134   __ TailCallRuntime(Runtime::kPromoteScheduledException);
   3135 
   3136   // HandleScope limit has changed. Delete allocated extensions.
   3137   ExternalReference delete_extensions =
   3138       ExternalReference::delete_handle_scope_extensions(isolate);
   3139   __ bind(&delete_allocated_handles);
   3140   __ mov(Operand::StaticVariable(limit_address), edi);
   3141   __ mov(edi, eax);
   3142   __ mov(Operand(esp, 0),
   3143          Immediate(ExternalReference::isolate_address(isolate)));
   3144   __ mov(eax, Immediate(delete_extensions));
   3145   __ call(eax);
   3146   __ mov(eax, edi);
   3147   __ jmp(&leave_exit_frame);
   3148 }
   3149 
   3150 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
   3151   // ----------- S t a t e -------------
   3152   //  -- edi                 : callee
   3153   //  -- ebx                 : call_data
   3154   //  -- ecx                 : holder
   3155   //  -- edx                 : api_function_address
   3156   //  -- esi                 : context
   3157   //  --
   3158   //  -- esp[0]              : return address
   3159   //  -- esp[4]              : last argument
   3160   //  -- ...
   3161   //  -- esp[argc * 4]       : first argument
   3162   //  -- esp[(argc + 1) * 4] : receiver
   3163   // -----------------------------------
   3164 
   3165   Register callee = edi;
   3166   Register call_data = ebx;
   3167   Register holder = ecx;
   3168   Register api_function_address = edx;
   3169   Register context = esi;
   3170   Register return_address = eax;
   3171 
   3172   typedef FunctionCallbackArguments FCA;
   3173 
   3174   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   3175   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   3176   STATIC_ASSERT(FCA::kDataIndex == 4);
   3177   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   3178   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   3179   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   3180   STATIC_ASSERT(FCA::kHolderIndex == 0);
   3181   STATIC_ASSERT(FCA::kNewTargetIndex == 7);
   3182   STATIC_ASSERT(FCA::kArgsLength == 8);
   3183 
   3184   __ pop(return_address);
   3185 
   3186   // new target
   3187   __ PushRoot(Heap::kUndefinedValueRootIndex);
   3188 
   3189   // context save.
   3190   __ push(context);
   3191 
   3192   // callee
   3193   __ push(callee);
   3194 
   3195   // call data
   3196   __ push(call_data);
   3197 
   3198   Register scratch = call_data;
   3199   if (!call_data_undefined()) {
   3200     // return value
   3201     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
   3202     // return value default
   3203     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
   3204   } else {
   3205     // return value
   3206     __ push(scratch);
   3207     // return value default
   3208     __ push(scratch);
   3209   }
   3210   // isolate
   3211   __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
   3212   // holder
   3213   __ push(holder);
   3214 
   3215   __ mov(scratch, esp);
   3216 
   3217   // push return address
   3218   __ push(return_address);
   3219 
   3220   if (!is_lazy()) {
   3221     // load context from callee
   3222     __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
   3223   }
   3224 
   3225   // API function gets reference to the v8::Arguments. If CPU profiler
   3226   // is enabled wrapper function will be called and we need to pass
   3227   // address of the callback as additional parameter, always allocate
   3228   // space for it.
   3229   const int kApiArgc = 1 + 1;
   3230 
   3231   // Allocate the v8::Arguments structure in the arguments' space since
   3232   // it's not controlled by GC.
   3233   const int kApiStackSpace = 3;
   3234 
   3235   PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
   3236 
   3237   // FunctionCallbackInfo::implicit_args_.
   3238   __ mov(ApiParameterOperand(2), scratch);
   3239   __ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize));
   3240   // FunctionCallbackInfo::values_.
   3241   __ mov(ApiParameterOperand(3), scratch);
   3242   // FunctionCallbackInfo::length_.
   3243   __ Move(ApiParameterOperand(4), Immediate(argc()));
   3244 
   3245   // v8::InvocationCallback's argument.
   3246   __ lea(scratch, ApiParameterOperand(2));
   3247   __ mov(ApiParameterOperand(0), scratch);
   3248 
   3249   ExternalReference thunk_ref =
   3250       ExternalReference::invoke_function_callback(masm->isolate());
   3251 
   3252   Operand context_restore_operand(ebp,
   3253                                   (2 + FCA::kContextSaveIndex) * kPointerSize);
   3254   // Stores return the first js argument
   3255   int return_value_offset = 0;
   3256   if (is_store()) {
   3257     return_value_offset = 2 + FCA::kArgsLength;
   3258   } else {
   3259     return_value_offset = 2 + FCA::kReturnValueOffset;
   3260   }
   3261   Operand return_value_operand(ebp, return_value_offset * kPointerSize);
   3262   int stack_space = 0;
   3263   Operand length_operand = ApiParameterOperand(4);
   3264   Operand* stack_space_operand = &length_operand;
   3265   stack_space = argc() + FCA::kArgsLength + 1;
   3266   stack_space_operand = nullptr;
   3267   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
   3268                            ApiParameterOperand(1), stack_space,
   3269                            stack_space_operand, return_value_operand,
   3270                            &context_restore_operand);
   3271 }
   3272 
   3273 
   3274 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   3275   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
   3276   // name below the exit frame to make GC aware of them.
   3277   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
   3278   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
   3279   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
   3280   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
   3281   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
   3282   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
   3283   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
   3284   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
   3285 
   3286   Register receiver = ApiGetterDescriptor::ReceiverRegister();
   3287   Register holder = ApiGetterDescriptor::HolderRegister();
   3288   Register callback = ApiGetterDescriptor::CallbackRegister();
   3289   Register scratch = ebx;
   3290   DCHECK(!AreAliased(receiver, holder, callback, scratch));
   3291 
   3292   __ pop(scratch);  // Pop return address to extend the frame.
   3293   __ push(receiver);
   3294   __ push(FieldOperand(callback, AccessorInfo::kDataOffset));
   3295   __ PushRoot(Heap::kUndefinedValueRootIndex);  // ReturnValue
   3296   // ReturnValue default value
   3297   __ PushRoot(Heap::kUndefinedValueRootIndex);
   3298   __ push(Immediate(ExternalReference::isolate_address(isolate())));
   3299   __ push(holder);
   3300   __ push(Immediate(Smi::kZero));  // should_throw_on_error -> false
   3301   __ push(FieldOperand(callback, AccessorInfo::kNameOffset));
   3302   __ push(scratch);  // Restore return address.
   3303 
   3304   // v8::PropertyCallbackInfo::args_ array and name handle.
   3305   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   3306 
   3307   // Allocate v8::PropertyCallbackInfo object, arguments for callback and
   3308   // space for optional callback address parameter (in case CPU profiler is
   3309   // active) in non-GCed stack space.
   3310   const int kApiArgc = 3 + 1;
   3311 
   3312   // Load address of v8::PropertyAccessorInfo::args_ array.
   3313   __ lea(scratch, Operand(esp, 2 * kPointerSize));
   3314 
   3315   PrepareCallApiFunction(masm, kApiArgc);
   3316   // Create v8::PropertyCallbackInfo object on the stack and initialize
   3317   // it's args_ field.
   3318   Operand info_object = ApiParameterOperand(3);
   3319   __ mov(info_object, scratch);
   3320 
   3321   // Name as handle.
   3322   __ sub(scratch, Immediate(kPointerSize));
   3323   __ mov(ApiParameterOperand(0), scratch);
   3324   // Arguments pointer.
   3325   __ lea(scratch, info_object);
   3326   __ mov(ApiParameterOperand(1), scratch);
   3327   // Reserve space for optional callback address parameter.
   3328   Operand thunk_last_arg = ApiParameterOperand(2);
   3329 
   3330   ExternalReference thunk_ref =
   3331       ExternalReference::invoke_accessor_getter_callback(isolate());
   3332 
   3333   __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
   3334   Register function_address = edx;
   3335   __ mov(function_address,
   3336          FieldOperand(scratch, Foreign::kForeignAddressOffset));
   3337   // +3 is to skip prolog, return address and name handle.
   3338   Operand return_value_operand(
   3339       ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
   3340   CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
   3341                            kStackUnwindSpace, nullptr, return_value_operand,
   3342                            NULL);
   3343 }
   3344 
   3345 #undef __
   3346 
   3347 }  // namespace internal
   3348 }  // namespace v8
   3349 
   3350 #endif  // V8_TARGET_ARCH_IA32
   3351