1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/zone/zone.h" 6 7 #include <cstring> 8 9 #include "src/utils.h" 10 #include "src/v8.h" 11 12 #ifdef V8_USE_ADDRESS_SANITIZER 13 #include <sanitizer/asan_interface.h> 14 #endif // V8_USE_ADDRESS_SANITIZER 15 16 namespace v8 { 17 namespace internal { 18 19 namespace { 20 21 #if V8_USE_ADDRESS_SANITIZER 22 23 const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8. 24 25 #else 26 27 #define ASAN_POISON_MEMORY_REGION(start, size) \ 28 do { \ 29 USE(start); \ 30 USE(size); \ 31 } while (false) 32 33 #define ASAN_UNPOISON_MEMORY_REGION(start, size) \ 34 do { \ 35 USE(start); \ 36 USE(size); \ 37 } while (false) 38 39 const size_t kASanRedzoneBytes = 0; 40 41 #endif // V8_USE_ADDRESS_SANITIZER 42 43 } // namespace 44 45 Zone::Zone(AccountingAllocator* allocator, const char* name) 46 : allocation_size_(0), 47 segment_bytes_allocated_(0), 48 position_(0), 49 limit_(0), 50 allocator_(allocator), 51 segment_head_(nullptr), 52 name_(name), 53 sealed_(false) { 54 allocator_->ZoneCreation(this); 55 } 56 57 Zone::~Zone() { 58 allocator_->ZoneDestruction(this); 59 60 DeleteAll(); 61 62 DCHECK(segment_bytes_allocated_ == 0); 63 } 64 65 void* Zone::New(size_t size) { 66 CHECK(!sealed_); 67 68 // Round up the requested size to fit the alignment. 69 size = RoundUp(size, kAlignmentInBytes); 70 71 // Check if the requested size is available without expanding. 72 Address result = position_; 73 74 const size_t size_with_redzone = size + kASanRedzoneBytes; 75 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_); 76 const uintptr_t position = reinterpret_cast<uintptr_t>(position_); 77 // position_ > limit_ can be true after the alignment correction above. 78 if (limit < position || size_with_redzone > limit - position) { 79 result = NewExpand(size_with_redzone); 80 } else { 81 position_ += size_with_redzone; 82 } 83 84 Address redzone_position = result + size; 85 DCHECK(redzone_position + kASanRedzoneBytes == position_); 86 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes); 87 88 // Check that the result has the proper alignment and return it. 89 DCHECK(IsAddressAligned(result, kAlignmentInBytes, 0)); 90 allocation_size_ += size; 91 return reinterpret_cast<void*>(result); 92 } 93 94 void Zone::DeleteAll() { 95 // Traverse the chained list of segments and return them all to the allocator. 96 for (Segment* current = segment_head_; current;) { 97 Segment* next = current->next(); 98 size_t size = current->size(); 99 100 // Un-poison the segment content so we can re-use or zap it later. 101 ASAN_UNPOISON_MEMORY_REGION(current->start(), current->capacity()); 102 103 segment_bytes_allocated_ -= size; 104 allocator_->ReturnSegment(current); 105 current = next; 106 } 107 108 position_ = limit_ = 0; 109 allocation_size_ = 0; 110 segment_head_ = nullptr; 111 } 112 113 // Creates a new segment, sets it size, and pushes it to the front 114 // of the segment chain. Returns the new segment. 115 Segment* Zone::NewSegment(size_t requested_size) { 116 Segment* result = allocator_->GetSegment(requested_size); 117 if (result != nullptr) { 118 DCHECK_GE(result->size(), requested_size); 119 segment_bytes_allocated_ += result->size(); 120 result->set_zone(this); 121 result->set_next(segment_head_); 122 segment_head_ = result; 123 } 124 return result; 125 } 126 127 Address Zone::NewExpand(size_t size) { 128 // Make sure the requested size is already properly aligned and that 129 // there isn't enough room in the Zone to satisfy the request. 130 DCHECK_EQ(size, RoundDown(size, kAlignmentInBytes)); 131 DCHECK(limit_ < position_ || 132 reinterpret_cast<uintptr_t>(limit_) - 133 reinterpret_cast<uintptr_t>(position_) < 134 size); 135 136 // Compute the new segment size. We use a 'high water mark' 137 // strategy, where we increase the segment size every time we expand 138 // except that we employ a maximum segment size when we delete. This 139 // is to avoid excessive malloc() and free() overhead. 140 Segment* head = segment_head_; 141 const size_t old_size = (head == nullptr) ? 0 : head->size(); 142 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignmentInBytes; 143 const size_t new_size_no_overhead = size + (old_size << 1); 144 size_t new_size = kSegmentOverhead + new_size_no_overhead; 145 const size_t min_new_size = kSegmentOverhead + size; 146 // Guard against integer overflow. 147 if (new_size_no_overhead < size || new_size < kSegmentOverhead) { 148 V8::FatalProcessOutOfMemory("Zone"); 149 return nullptr; 150 } 151 if (new_size < kMinimumSegmentSize) { 152 new_size = kMinimumSegmentSize; 153 } else if (new_size > kMaximumSegmentSize) { 154 // Limit the size of new segments to avoid growing the segment size 155 // exponentially, thus putting pressure on contiguous virtual address space. 156 // All the while making sure to allocate a segment large enough to hold the 157 // requested size. 158 new_size = Max(min_new_size, kMaximumSegmentSize); 159 } 160 if (new_size > INT_MAX) { 161 V8::FatalProcessOutOfMemory("Zone"); 162 return nullptr; 163 } 164 Segment* segment = NewSegment(new_size); 165 if (segment == nullptr) { 166 V8::FatalProcessOutOfMemory("Zone"); 167 return nullptr; 168 } 169 170 // Recompute 'top' and 'limit' based on the new segment. 171 Address result = RoundUp(segment->start(), kAlignmentInBytes); 172 position_ = result + size; 173 // Check for address overflow. 174 // (Should not happen since the segment is guaranteed to accomodate 175 // size bytes + header and alignment padding) 176 DCHECK(reinterpret_cast<uintptr_t>(position_) >= 177 reinterpret_cast<uintptr_t>(result)); 178 limit_ = segment->end(); 179 DCHECK(position_ <= limit_); 180 return result; 181 } 182 183 } // namespace internal 184 } // namespace v8 185