Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Collect the sequence of machine instructions for a basic block.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
     15 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
     16 
     17 #include "llvm/ADT/GraphTraits.h"
     18 #include "llvm/ADT/iterator_range.h"
     19 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
     20 #include "llvm/CodeGen/MachineInstr.h"
     21 #include "llvm/Support/BranchProbability.h"
     22 #include "llvm/MC/LaneBitmask.h"
     23 #include "llvm/MC/MCRegisterInfo.h"
     24 #include "llvm/Support/DataTypes.h"
     25 #include <functional>
     26 
     27 namespace llvm {
     28 
     29 class Pass;
     30 class BasicBlock;
     31 class MachineFunction;
     32 class MCSymbol;
     33 class MIPrinter;
     34 class SlotIndexes;
     35 class StringRef;
     36 class raw_ostream;
     37 class MachineBranchProbabilityInfo;
     38 
     39 template <> struct ilist_traits<MachineInstr> {
     40 private:
     41   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
     42   MachineBasicBlock *Parent;
     43 
     44   typedef simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator
     45       instr_iterator;
     46 
     47 public:
     48   void addNodeToList(MachineInstr *N);
     49   void removeNodeFromList(MachineInstr *N);
     50   void transferNodesFromList(ilist_traits &OldList, instr_iterator First,
     51                              instr_iterator Last);
     52 
     53   void deleteNode(MachineInstr *MI);
     54 };
     55 
     56 class MachineBasicBlock
     57     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
     58 public:
     59   /// Pair of physical register and lane mask.
     60   /// This is not simply a std::pair typedef because the members should be named
     61   /// clearly as they both have an integer type.
     62   struct RegisterMaskPair {
     63   public:
     64     MCPhysReg PhysReg;
     65     LaneBitmask LaneMask;
     66 
     67     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
     68         : PhysReg(PhysReg), LaneMask(LaneMask) {}
     69   };
     70 
     71 private:
     72   typedef ilist<MachineInstr, ilist_sentinel_tracking<true>> Instructions;
     73   Instructions Insts;
     74   const BasicBlock *BB;
     75   int Number;
     76   MachineFunction *xParent;
     77 
     78   /// Keep track of the predecessor / successor basic blocks.
     79   std::vector<MachineBasicBlock *> Predecessors;
     80   std::vector<MachineBasicBlock *> Successors;
     81 
     82   /// Keep track of the probabilities to the successors. This vector has the
     83   /// same order as Successors, or it is empty if we don't use it (disable
     84   /// optimization).
     85   std::vector<BranchProbability> Probs;
     86   typedef std::vector<BranchProbability>::iterator probability_iterator;
     87   typedef std::vector<BranchProbability>::const_iterator
     88       const_probability_iterator;
     89 
     90   /// Keep track of the physical registers that are livein of the basicblock.
     91   typedef std::vector<RegisterMaskPair> LiveInVector;
     92   LiveInVector LiveIns;
     93 
     94   /// Alignment of the basic block. Zero if the basic block does not need to be
     95   /// aligned. The alignment is specified as log2(bytes).
     96   unsigned Alignment = 0;
     97 
     98   /// Indicate that this basic block is entered via an exception handler.
     99   bool IsEHPad = false;
    100 
    101   /// Indicate that this basic block is potentially the target of an indirect
    102   /// branch.
    103   bool AddressTaken = false;
    104 
    105   /// Indicate that this basic block is the entry block of an EH funclet.
    106   bool IsEHFuncletEntry = false;
    107 
    108   /// Indicate that this basic block is the entry block of a cleanup funclet.
    109   bool IsCleanupFuncletEntry = false;
    110 
    111   /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
    112   /// is only computed once and is cached.
    113   mutable MCSymbol *CachedMCSymbol = nullptr;
    114 
    115   // Intrusive list support
    116   MachineBasicBlock() {}
    117 
    118   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
    119 
    120   ~MachineBasicBlock();
    121 
    122   // MachineBasicBlocks are allocated and owned by MachineFunction.
    123   friend class MachineFunction;
    124 
    125 public:
    126   /// Return the LLVM basic block that this instance corresponded to originally.
    127   /// Note that this may be NULL if this instance does not correspond directly
    128   /// to an LLVM basic block.
    129   const BasicBlock *getBasicBlock() const { return BB; }
    130 
    131   /// Return the name of the corresponding LLVM basic block, or an empty string.
    132   StringRef getName() const;
    133 
    134   /// Return a formatted string to identify this block and its parent function.
    135   std::string getFullName() const;
    136 
    137   /// Test whether this block is potentially the target of an indirect branch.
    138   bool hasAddressTaken() const { return AddressTaken; }
    139 
    140   /// Set this block to reflect that it potentially is the target of an indirect
    141   /// branch.
    142   void setHasAddressTaken() { AddressTaken = true; }
    143 
    144   /// Return the MachineFunction containing this basic block.
    145   const MachineFunction *getParent() const { return xParent; }
    146   MachineFunction *getParent() { return xParent; }
    147 
    148   typedef Instructions::iterator                                 instr_iterator;
    149   typedef Instructions::const_iterator                     const_instr_iterator;
    150   typedef Instructions::reverse_iterator reverse_instr_iterator;
    151   typedef Instructions::const_reverse_iterator const_reverse_instr_iterator;
    152 
    153   typedef MachineInstrBundleIterator<MachineInstr> iterator;
    154   typedef MachineInstrBundleIterator<const MachineInstr> const_iterator;
    155   typedef MachineInstrBundleIterator<MachineInstr, true> reverse_iterator;
    156   typedef MachineInstrBundleIterator<const MachineInstr, true>
    157       const_reverse_iterator;
    158 
    159   unsigned size() const { return (unsigned)Insts.size(); }
    160   bool empty() const { return Insts.empty(); }
    161 
    162   MachineInstr       &instr_front()       { return Insts.front(); }
    163   MachineInstr       &instr_back()        { return Insts.back();  }
    164   const MachineInstr &instr_front() const { return Insts.front(); }
    165   const MachineInstr &instr_back()  const { return Insts.back();  }
    166 
    167   MachineInstr       &front()             { return Insts.front(); }
    168   MachineInstr       &back()              { return *--end();      }
    169   const MachineInstr &front()       const { return Insts.front(); }
    170   const MachineInstr &back()        const { return *--end();      }
    171 
    172   instr_iterator                instr_begin()       { return Insts.begin();  }
    173   const_instr_iterator          instr_begin() const { return Insts.begin();  }
    174   instr_iterator                  instr_end()       { return Insts.end();    }
    175   const_instr_iterator            instr_end() const { return Insts.end();    }
    176   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
    177   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
    178   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
    179   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
    180 
    181   typedef iterator_range<instr_iterator> instr_range;
    182   typedef iterator_range<const_instr_iterator> const_instr_range;
    183   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
    184   const_instr_range instrs() const {
    185     return const_instr_range(instr_begin(), instr_end());
    186   }
    187 
    188   iterator                begin()       { return instr_begin();  }
    189   const_iterator          begin() const { return instr_begin();  }
    190   iterator                end  ()       { return instr_end();    }
    191   const_iterator          end  () const { return instr_end();    }
    192   reverse_iterator rbegin() {
    193     return reverse_iterator::getAtBundleBegin(instr_rbegin());
    194   }
    195   const_reverse_iterator rbegin() const {
    196     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
    197   }
    198   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
    199   const_reverse_iterator rend() const {
    200     return const_reverse_iterator(instr_rend());
    201   }
    202 
    203   /// Support for MachineInstr::getNextNode().
    204   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
    205     return &MachineBasicBlock::Insts;
    206   }
    207 
    208   inline iterator_range<iterator> terminators() {
    209     return make_range(getFirstTerminator(), end());
    210   }
    211   inline iterator_range<const_iterator> terminators() const {
    212     return make_range(getFirstTerminator(), end());
    213   }
    214 
    215   // Machine-CFG iterators
    216   typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
    217   typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
    218   typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
    219   typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
    220   typedef std::vector<MachineBasicBlock *>::reverse_iterator
    221                                                          pred_reverse_iterator;
    222   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
    223                                                    const_pred_reverse_iterator;
    224   typedef std::vector<MachineBasicBlock *>::reverse_iterator
    225                                                          succ_reverse_iterator;
    226   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
    227                                                    const_succ_reverse_iterator;
    228   pred_iterator        pred_begin()       { return Predecessors.begin(); }
    229   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
    230   pred_iterator        pred_end()         { return Predecessors.end();   }
    231   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
    232   pred_reverse_iterator        pred_rbegin()
    233                                           { return Predecessors.rbegin();}
    234   const_pred_reverse_iterator  pred_rbegin() const
    235                                           { return Predecessors.rbegin();}
    236   pred_reverse_iterator        pred_rend()
    237                                           { return Predecessors.rend();  }
    238   const_pred_reverse_iterator  pred_rend()   const
    239                                           { return Predecessors.rend();  }
    240   unsigned             pred_size()  const {
    241     return (unsigned)Predecessors.size();
    242   }
    243   bool                 pred_empty() const { return Predecessors.empty(); }
    244   succ_iterator        succ_begin()       { return Successors.begin();   }
    245   const_succ_iterator  succ_begin() const { return Successors.begin();   }
    246   succ_iterator        succ_end()         { return Successors.end();     }
    247   const_succ_iterator  succ_end()   const { return Successors.end();     }
    248   succ_reverse_iterator        succ_rbegin()
    249                                           { return Successors.rbegin();  }
    250   const_succ_reverse_iterator  succ_rbegin() const
    251                                           { return Successors.rbegin();  }
    252   succ_reverse_iterator        succ_rend()
    253                                           { return Successors.rend();    }
    254   const_succ_reverse_iterator  succ_rend()   const
    255                                           { return Successors.rend();    }
    256   unsigned             succ_size()  const {
    257     return (unsigned)Successors.size();
    258   }
    259   bool                 succ_empty() const { return Successors.empty();   }
    260 
    261   inline iterator_range<pred_iterator> predecessors() {
    262     return make_range(pred_begin(), pred_end());
    263   }
    264   inline iterator_range<const_pred_iterator> predecessors() const {
    265     return make_range(pred_begin(), pred_end());
    266   }
    267   inline iterator_range<succ_iterator> successors() {
    268     return make_range(succ_begin(), succ_end());
    269   }
    270   inline iterator_range<const_succ_iterator> successors() const {
    271     return make_range(succ_begin(), succ_end());
    272   }
    273 
    274   // LiveIn management methods.
    275 
    276   /// Adds the specified register as a live in. Note that it is an error to add
    277   /// the same register to the same set more than once unless the intention is
    278   /// to call sortUniqueLiveIns after all registers are added.
    279   void addLiveIn(MCPhysReg PhysReg,
    280                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
    281     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
    282   }
    283   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
    284     LiveIns.push_back(RegMaskPair);
    285   }
    286 
    287   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
    288   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
    289   /// LiveIn insertion.
    290   void sortUniqueLiveIns();
    291 
    292   /// Clear live in list.
    293   void clearLiveIns();
    294 
    295   /// Add PhysReg as live in to this block, and ensure that there is a copy of
    296   /// PhysReg to a virtual register of class RC. Return the virtual register
    297   /// that is a copy of the live in PhysReg.
    298   unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
    299 
    300   /// Remove the specified register from the live in set.
    301   void removeLiveIn(MCPhysReg Reg,
    302                     LaneBitmask LaneMask = LaneBitmask::getAll());
    303 
    304   /// Return true if the specified register is in the live in set.
    305   bool isLiveIn(MCPhysReg Reg,
    306                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
    307 
    308   // Iteration support for live in sets.  These sets are kept in sorted
    309   // order by their register number.
    310   typedef LiveInVector::const_iterator livein_iterator;
    311 #ifndef NDEBUG
    312   /// Unlike livein_begin, this method does not check that the liveness
    313   /// information is accurate. Still for debug purposes it may be useful
    314   /// to have iterators that won't assert if the liveness information
    315   /// is not current.
    316   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
    317   iterator_range<livein_iterator> liveins_dbg() const {
    318     return make_range(livein_begin_dbg(), livein_end());
    319   }
    320 #endif
    321   livein_iterator livein_begin() const;
    322   livein_iterator livein_end()   const { return LiveIns.end(); }
    323   bool            livein_empty() const { return LiveIns.empty(); }
    324   iterator_range<livein_iterator> liveins() const {
    325     return make_range(livein_begin(), livein_end());
    326   }
    327 
    328   /// Get the clobber mask for the start of this basic block. Funclets use this
    329   /// to prevent register allocation across funclet transitions.
    330   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
    331 
    332   /// Get the clobber mask for the end of the basic block.
    333   /// \see getBeginClobberMask()
    334   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
    335 
    336   /// Return alignment of the basic block. The alignment is specified as
    337   /// log2(bytes).
    338   unsigned getAlignment() const { return Alignment; }
    339 
    340   /// Set alignment of the basic block. The alignment is specified as
    341   /// log2(bytes).
    342   void setAlignment(unsigned Align) { Alignment = Align; }
    343 
    344   /// Returns true if the block is a landing pad. That is this basic block is
    345   /// entered via an exception handler.
    346   bool isEHPad() const { return IsEHPad; }
    347 
    348   /// Indicates the block is a landing pad.  That is this basic block is entered
    349   /// via an exception handler.
    350   void setIsEHPad(bool V = true) { IsEHPad = V; }
    351 
    352   bool hasEHPadSuccessor() const;
    353 
    354   /// Returns true if this is the entry block of an EH funclet.
    355   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
    356 
    357   /// Indicates if this is the entry block of an EH funclet.
    358   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
    359 
    360   /// Returns true if this is the entry block of a cleanup funclet.
    361   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
    362 
    363   /// Indicates if this is the entry block of a cleanup funclet.
    364   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
    365 
    366   // Code Layout methods.
    367 
    368   /// Move 'this' block before or after the specified block.  This only moves
    369   /// the block, it does not modify the CFG or adjust potential fall-throughs at
    370   /// the end of the block.
    371   void moveBefore(MachineBasicBlock *NewAfter);
    372   void moveAfter(MachineBasicBlock *NewBefore);
    373 
    374   /// Update the terminator instructions in block to account for changes to the
    375   /// layout. If the block previously used a fallthrough, it may now need a
    376   /// branch, and if it previously used branching it may now be able to use a
    377   /// fallthrough.
    378   void updateTerminator();
    379 
    380   // Machine-CFG mutators
    381 
    382   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
    383   /// of Succ is automatically updated. PROB parameter is stored in
    384   /// Probabilities list. The default probability is set as unknown. Mixing
    385   /// known and unknown probabilities in successor list is not allowed. When all
    386   /// successors have unknown probabilities, 1 / N is returned as the
    387   /// probability for each successor, where N is the number of successors.
    388   ///
    389   /// Note that duplicate Machine CFG edges are not allowed.
    390   void addSuccessor(MachineBasicBlock *Succ,
    391                     BranchProbability Prob = BranchProbability::getUnknown());
    392 
    393   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
    394   /// of Succ is automatically updated. The probability is not provided because
    395   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
    396   /// won't be used. Using this interface can save some space.
    397   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
    398 
    399   /// Set successor probability of a given iterator.
    400   void setSuccProbability(succ_iterator I, BranchProbability Prob);
    401 
    402   /// Normalize probabilities of all successors so that the sum of them becomes
    403   /// one. This is usually done when the current update on this MBB is done, and
    404   /// the sum of its successors' probabilities is not guaranteed to be one. The
    405   /// user is responsible for the correct use of this function.
    406   /// MBB::removeSuccessor() has an option to do this automatically.
    407   void normalizeSuccProbs() {
    408     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
    409   }
    410 
    411   /// Validate successors' probabilities and check if the sum of them is
    412   /// approximate one. This only works in DEBUG mode.
    413   void validateSuccProbs() const;
    414 
    415   /// Remove successor from the successors list of this MachineBasicBlock. The
    416   /// Predecessors list of Succ is automatically updated.
    417   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
    418   /// after the successor is removed.
    419   void removeSuccessor(MachineBasicBlock *Succ,
    420                        bool NormalizeSuccProbs = false);
    421 
    422   /// Remove specified successor from the successors list of this
    423   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
    424   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
    425   /// after the successor is removed.
    426   /// Return the iterator to the element after the one removed.
    427   succ_iterator removeSuccessor(succ_iterator I,
    428                                 bool NormalizeSuccProbs = false);
    429 
    430   /// Replace successor OLD with NEW and update probability info.
    431   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
    432 
    433   /// Transfers all the successors from MBB to this machine basic block (i.e.,
    434   /// copies all the successors FromMBB and remove all the successors from
    435   /// FromMBB).
    436   void transferSuccessors(MachineBasicBlock *FromMBB);
    437 
    438   /// Transfers all the successors, as in transferSuccessors, and update PHI
    439   /// operands in the successor blocks which refer to FromMBB to refer to this.
    440   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
    441 
    442   /// Return true if any of the successors have probabilities attached to them.
    443   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
    444 
    445   /// Return true if the specified MBB is a predecessor of this block.
    446   bool isPredecessor(const MachineBasicBlock *MBB) const;
    447 
    448   /// Return true if the specified MBB is a successor of this block.
    449   bool isSuccessor(const MachineBasicBlock *MBB) const;
    450 
    451   /// Return true if the specified MBB will be emitted immediately after this
    452   /// block, such that if this block exits by falling through, control will
    453   /// transfer to the specified MBB. Note that MBB need not be a successor at
    454   /// all, for example if this block ends with an unconditional branch to some
    455   /// other block.
    456   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
    457 
    458 
    459   /// Return the fallthrough block if the block can implicitly
    460   /// transfer control to the block after it by falling off the end of
    461   /// it.  This should return null if it can reach the block after
    462   /// it, but it uses an explicit branch to do so (e.g., a table
    463   /// jump).  Non-null return  is a conservative answer.
    464   MachineBasicBlock *getFallThrough();
    465 
    466   /// Return true if the block can implicitly transfer control to the
    467   /// block after it by falling off the end of it.  This should return
    468   /// false if it can reach the block after it, but it uses an
    469   /// explicit branch to do so (e.g., a table jump).  True is a
    470   /// conservative answer.
    471   bool canFallThrough();
    472 
    473   /// Returns a pointer to the first instruction in this block that is not a
    474   /// PHINode instruction. When adding instructions to the beginning of the
    475   /// basic block, they should be added before the returned value, not before
    476   /// the first instruction, which might be PHI.
    477   /// Returns end() is there's no non-PHI instruction.
    478   iterator getFirstNonPHI();
    479 
    480   /// Return the first instruction in MBB after I that is not a PHI or a label.
    481   /// This is the correct point to insert lowered copies at the beginning of a
    482   /// basic block that must be before any debugging information.
    483   iterator SkipPHIsAndLabels(iterator I);
    484 
    485   /// Return the first instruction in MBB after I that is not a PHI, label or
    486   /// debug.  This is the correct point to insert copies at the beginning of a
    487   /// basic block.
    488   iterator SkipPHIsLabelsAndDebug(iterator I);
    489 
    490   /// Returns an iterator to the first terminator instruction of this basic
    491   /// block. If a terminator does not exist, it returns end().
    492   iterator getFirstTerminator();
    493   const_iterator getFirstTerminator() const {
    494     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
    495   }
    496 
    497   /// Same getFirstTerminator but it ignores bundles and return an
    498   /// instr_iterator instead.
    499   instr_iterator getFirstInstrTerminator();
    500 
    501   /// Returns an iterator to the first non-debug instruction in the basic block,
    502   /// or end().
    503   iterator getFirstNonDebugInstr();
    504   const_iterator getFirstNonDebugInstr() const {
    505     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
    506   }
    507 
    508   /// Returns an iterator to the last non-debug instruction in the basic block,
    509   /// or end().
    510   iterator getLastNonDebugInstr();
    511   const_iterator getLastNonDebugInstr() const {
    512     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
    513   }
    514 
    515   /// Convenience function that returns true if the block ends in a return
    516   /// instruction.
    517   bool isReturnBlock() const {
    518     return !empty() && back().isReturn();
    519   }
    520 
    521   /// Split the critical edge from this block to the given successor block, and
    522   /// return the newly created block, or null if splitting is not possible.
    523   ///
    524   /// This function updates LiveVariables, MachineDominatorTree, and
    525   /// MachineLoopInfo, as applicable.
    526   MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
    527 
    528   /// Check if the edge between this block and the given successor \p
    529   /// Succ, can be split. If this returns true a subsequent call to
    530   /// SplitCriticalEdge is guaranteed to return a valid basic block if
    531   /// no changes occured in the meantime.
    532   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
    533 
    534   void pop_front() { Insts.pop_front(); }
    535   void pop_back() { Insts.pop_back(); }
    536   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
    537 
    538   /// Insert MI into the instruction list before I, possibly inside a bundle.
    539   ///
    540   /// If the insertion point is inside a bundle, MI will be added to the bundle,
    541   /// otherwise MI will not be added to any bundle. That means this function
    542   /// alone can't be used to prepend or append instructions to bundles. See
    543   /// MIBundleBuilder::insert() for a more reliable way of doing that.
    544   instr_iterator insert(instr_iterator I, MachineInstr *M);
    545 
    546   /// Insert a range of instructions into the instruction list before I.
    547   template<typename IT>
    548   void insert(iterator I, IT S, IT E) {
    549     assert((I == end() || I->getParent() == this) &&
    550            "iterator points outside of basic block");
    551     Insts.insert(I.getInstrIterator(), S, E);
    552   }
    553 
    554   /// Insert MI into the instruction list before I.
    555   iterator insert(iterator I, MachineInstr *MI) {
    556     assert((I == end() || I->getParent() == this) &&
    557            "iterator points outside of basic block");
    558     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    559            "Cannot insert instruction with bundle flags");
    560     return Insts.insert(I.getInstrIterator(), MI);
    561   }
    562 
    563   /// Insert MI into the instruction list after I.
    564   iterator insertAfter(iterator I, MachineInstr *MI) {
    565     assert((I == end() || I->getParent() == this) &&
    566            "iterator points outside of basic block");
    567     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    568            "Cannot insert instruction with bundle flags");
    569     return Insts.insertAfter(I.getInstrIterator(), MI);
    570   }
    571 
    572   /// Remove an instruction from the instruction list and delete it.
    573   ///
    574   /// If the instruction is part of a bundle, the other instructions in the
    575   /// bundle will still be bundled after removing the single instruction.
    576   instr_iterator erase(instr_iterator I);
    577 
    578   /// Remove an instruction from the instruction list and delete it.
    579   ///
    580   /// If the instruction is part of a bundle, the other instructions in the
    581   /// bundle will still be bundled after removing the single instruction.
    582   instr_iterator erase_instr(MachineInstr *I) {
    583     return erase(instr_iterator(I));
    584   }
    585 
    586   /// Remove a range of instructions from the instruction list and delete them.
    587   iterator erase(iterator I, iterator E) {
    588     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
    589   }
    590 
    591   /// Remove an instruction or bundle from the instruction list and delete it.
    592   ///
    593   /// If I points to a bundle of instructions, they are all erased.
    594   iterator erase(iterator I) {
    595     return erase(I, std::next(I));
    596   }
    597 
    598   /// Remove an instruction from the instruction list and delete it.
    599   ///
    600   /// If I is the head of a bundle of instructions, the whole bundle will be
    601   /// erased.
    602   iterator erase(MachineInstr *I) {
    603     return erase(iterator(I));
    604   }
    605 
    606   /// Remove the unbundled instruction from the instruction list without
    607   /// deleting it.
    608   ///
    609   /// This function can not be used to remove bundled instructions, use
    610   /// remove_instr to remove individual instructions from a bundle.
    611   MachineInstr *remove(MachineInstr *I) {
    612     assert(!I->isBundled() && "Cannot remove bundled instructions");
    613     return Insts.remove(instr_iterator(I));
    614   }
    615 
    616   /// Remove the possibly bundled instruction from the instruction list
    617   /// without deleting it.
    618   ///
    619   /// If the instruction is part of a bundle, the other instructions in the
    620   /// bundle will still be bundled after removing the single instruction.
    621   MachineInstr *remove_instr(MachineInstr *I);
    622 
    623   void clear() {
    624     Insts.clear();
    625   }
    626 
    627   /// Take an instruction from MBB 'Other' at the position From, and insert it
    628   /// into this MBB right before 'Where'.
    629   ///
    630   /// If From points to a bundle of instructions, the whole bundle is moved.
    631   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
    632     // The range splice() doesn't allow noop moves, but this one does.
    633     if (Where != From)
    634       splice(Where, Other, From, std::next(From));
    635   }
    636 
    637   /// Take a block of instructions from MBB 'Other' in the range [From, To),
    638   /// and insert them into this MBB right before 'Where'.
    639   ///
    640   /// The instruction at 'Where' must not be included in the range of
    641   /// instructions to move.
    642   void splice(iterator Where, MachineBasicBlock *Other,
    643               iterator From, iterator To) {
    644     Insts.splice(Where.getInstrIterator(), Other->Insts,
    645                  From.getInstrIterator(), To.getInstrIterator());
    646   }
    647 
    648   /// This method unlinks 'this' from the containing function, and returns it,
    649   /// but does not delete it.
    650   MachineBasicBlock *removeFromParent();
    651 
    652   /// This method unlinks 'this' from the containing function and deletes it.
    653   void eraseFromParent();
    654 
    655   /// Given a machine basic block that branched to 'Old', change the code and
    656   /// CFG so that it branches to 'New' instead.
    657   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
    658 
    659   /// Various pieces of code can cause excess edges in the CFG to be inserted.
    660   /// If we have proven that MBB can only branch to DestA and DestB, remove any
    661   /// other MBB successors from the CFG. DestA and DestB can be null. Besides
    662   /// DestA and DestB, retain other edges leading to LandingPads (currently
    663   /// there can be only one; we don't check or require that here). Note it is
    664   /// possible that DestA and/or DestB are LandingPads.
    665   bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
    666                             MachineBasicBlock *DestB,
    667                             bool IsCond);
    668 
    669   /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
    670   /// instructions.  Return UnknownLoc if there is none.
    671   DebugLoc findDebugLoc(instr_iterator MBBI);
    672   DebugLoc findDebugLoc(iterator MBBI) {
    673     return findDebugLoc(MBBI.getInstrIterator());
    674   }
    675 
    676   /// Find and return the merged DebugLoc of the branch instructions of the
    677   /// block. Return UnknownLoc if there is none.
    678   DebugLoc findBranchDebugLoc();
    679 
    680   /// Possible outcome of a register liveness query to computeRegisterLiveness()
    681   enum LivenessQueryResult {
    682     LQR_Live,   ///< Register is known to be (at least partially) live.
    683     LQR_Dead,   ///< Register is known to be fully dead.
    684     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
    685   };
    686 
    687   /// Return whether (physical) register \p Reg has been <def>ined and not
    688   /// <kill>ed as of just before \p Before.
    689   ///
    690   /// Search is localised to a neighborhood of \p Neighborhood instructions
    691   /// before (searching for defs or kills) and \p Neighborhood instructions
    692   /// after (searching just for defs) \p Before.
    693   ///
    694   /// \p Reg must be a physical register.
    695   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
    696                                               unsigned Reg,
    697                                               const_iterator Before,
    698                                               unsigned Neighborhood=10) const;
    699 
    700   // Debugging methods.
    701   void dump() const;
    702   void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
    703   void print(raw_ostream &OS, ModuleSlotTracker &MST,
    704              const SlotIndexes* = nullptr) const;
    705 
    706   // Printing method used by LoopInfo.
    707   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
    708 
    709   /// MachineBasicBlocks are uniquely numbered at the function level, unless
    710   /// they're not in a MachineFunction yet, in which case this will return -1.
    711   int getNumber() const { return Number; }
    712   void setNumber(int N) { Number = N; }
    713 
    714   /// Return the MCSymbol for this basic block.
    715   MCSymbol *getSymbol() const;
    716 
    717 
    718 private:
    719   /// Return probability iterator corresponding to the I successor iterator.
    720   probability_iterator getProbabilityIterator(succ_iterator I);
    721   const_probability_iterator
    722   getProbabilityIterator(const_succ_iterator I) const;
    723 
    724   friend class MachineBranchProbabilityInfo;
    725   friend class MIPrinter;
    726 
    727   /// Return probability of the edge from this block to MBB. This method should
    728   /// NOT be called directly, but by using getEdgeProbability method from
    729   /// MachineBranchProbabilityInfo class.
    730   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
    731 
    732   // Methods used to maintain doubly linked list of blocks...
    733   friend struct ilist_callback_traits<MachineBasicBlock>;
    734 
    735   // Machine-CFG mutators
    736 
    737   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
    738   /// unless you know what you're doing, because it doesn't update Pred's
    739   /// successors list. Use Pred->addSuccessor instead.
    740   void addPredecessor(MachineBasicBlock *Pred);
    741 
    742   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
    743   /// unless you know what you're doing, because it doesn't update Pred's
    744   /// successors list. Use Pred->removeSuccessor instead.
    745   void removePredecessor(MachineBasicBlock *Pred);
    746 };
    747 
    748 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
    749 
    750 // This is useful when building IndexedMaps keyed on basic block pointers.
    751 struct MBB2NumberFunctor :
    752   public std::unary_function<const MachineBasicBlock*, unsigned> {
    753   unsigned operator()(const MachineBasicBlock *MBB) const {
    754     return MBB->getNumber();
    755   }
    756 };
    757 
    758 //===--------------------------------------------------------------------===//
    759 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
    760 //===--------------------------------------------------------------------===//
    761 
    762 // Provide specializations of GraphTraits to be able to treat a
    763 // MachineFunction as a graph of MachineBasicBlocks.
    764 //
    765 
    766 template <> struct GraphTraits<MachineBasicBlock *> {
    767   typedef MachineBasicBlock *NodeRef;
    768   typedef MachineBasicBlock::succ_iterator ChildIteratorType;
    769 
    770   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
    771   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
    772   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
    773 };
    774 
    775 template <> struct GraphTraits<const MachineBasicBlock *> {
    776   typedef const MachineBasicBlock *NodeRef;
    777   typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
    778 
    779   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
    780   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
    781   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
    782 };
    783 
    784 // Provide specializations of GraphTraits to be able to treat a
    785 // MachineFunction as a graph of MachineBasicBlocks and to walk it
    786 // in inverse order.  Inverse order for a function is considered
    787 // to be when traversing the predecessor edges of a MBB
    788 // instead of the successor edges.
    789 //
    790 template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
    791   typedef MachineBasicBlock *NodeRef;
    792   typedef MachineBasicBlock::pred_iterator ChildIteratorType;
    793   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
    794     return G.Graph;
    795   }
    796   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
    797   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
    798 };
    799 
    800 template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
    801   typedef const MachineBasicBlock *NodeRef;
    802   typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
    803   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
    804     return G.Graph;
    805   }
    806   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
    807   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
    808 };
    809 
    810 
    811 
    812 /// MachineInstrSpan provides an interface to get an iteration range
    813 /// containing the instruction it was initialized with, along with all
    814 /// those instructions inserted prior to or following that instruction
    815 /// at some point after the MachineInstrSpan is constructed.
    816 class MachineInstrSpan {
    817   MachineBasicBlock &MBB;
    818   MachineBasicBlock::iterator I, B, E;
    819 public:
    820   MachineInstrSpan(MachineBasicBlock::iterator I)
    821     : MBB(*I->getParent()),
    822       I(I),
    823       B(I == MBB.begin() ? MBB.end() : std::prev(I)),
    824       E(std::next(I)) {}
    825 
    826   MachineBasicBlock::iterator begin() {
    827     return B == MBB.end() ? MBB.begin() : std::next(B);
    828   }
    829   MachineBasicBlock::iterator end() { return E; }
    830   bool empty() { return begin() == end(); }
    831 
    832   MachineBasicBlock::iterator getInitial() { return I; }
    833 };
    834 
    835 /// Increment \p It until it points to a non-debug instruction or to \p End
    836 /// and return the resulting iterator. This function should only be used
    837 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
    838 /// const_instr_iterator} and the respective reverse iterators.
    839 template<typename IterT>
    840 inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
    841   while (It != End && It->isDebugValue())
    842     It++;
    843   return It;
    844 }
    845 
    846 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
    847 /// and return the resulting iterator. This function should only be used
    848 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
    849 /// const_instr_iterator} and the respective reverse iterators.
    850 template<class IterT>
    851 inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
    852   while (It != Begin && It->isDebugValue())
    853     It--;
    854   return It;
    855 }
    856 
    857 } // End llvm namespace
    858 
    859 #endif
    860