Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/ADT/DenseMapInfo.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/ilist.h"
     22 #include "llvm/ADT/ilist_node.h"
     23 #include "llvm/ADT/iterator_range.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/CodeGen/MachineOperand.h"
     26 #include "llvm/IR/DebugLoc.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/MC/MCInstrDesc.h"
     29 #include "llvm/Support/ArrayRecycler.h"
     30 #include "llvm/Target/TargetOpcodes.h"
     31 
     32 namespace llvm {
     33 
     34 class StringRef;
     35 template <typename T> class ArrayRef;
     36 template <typename T> class SmallVectorImpl;
     37 class DILocalVariable;
     38 class DIExpression;
     39 class TargetInstrInfo;
     40 class TargetRegisterClass;
     41 class TargetRegisterInfo;
     42 class MachineFunction;
     43 class MachineMemOperand;
     44 
     45 //===----------------------------------------------------------------------===//
     46 /// Representation of each machine instruction.
     47 ///
     48 /// This class isn't a POD type, but it must have a trivial destructor. When a
     49 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
     50 /// without having their destructor called.
     51 ///
     52 class MachineInstr
     53     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
     54                                     ilist_sentinel_tracking<true>> {
     55 public:
     56   typedef MachineMemOperand **mmo_iterator;
     57 
     58   /// Flags to specify different kinds of comments to output in
     59   /// assembly code.  These flags carry semantic information not
     60   /// otherwise easily derivable from the IR text.
     61   ///
     62   enum CommentFlag {
     63     ReloadReuse = 0x1 // higher bits are reserved for target dep comments.
     64   };
     65 
     66   enum MIFlag {
     67     NoFlags      = 0,
     68     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     69                                         // function frame setup code.
     70     FrameDestroy = 1 << 1,              // Instruction is used as a part of
     71                                         // function frame destruction code.
     72     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
     73     BundledSucc  = 1 << 3               // Instruction has bundled successors.
     74   };
     75 private:
     76   const MCInstrDesc *MCID;              // Instruction descriptor.
     77   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
     78 
     79   // Operands are allocated by an ArrayRecycler.
     80   MachineOperand *Operands;             // Pointer to the first operand.
     81   unsigned NumOperands;                 // Number of operands on instruction.
     82   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
     83   OperandCapacity CapOperands;          // Capacity of the Operands array.
     84 
     85   uint8_t Flags;                        // Various bits of additional
     86                                         // information about machine
     87                                         // instruction.
     88 
     89   uint8_t AsmPrinterFlags;              // Various bits of information used by
     90                                         // the AsmPrinter to emit helpful
     91                                         // comments.  This is *not* semantic
     92                                         // information.  Do not use this for
     93                                         // anything other than to convey comment
     94                                         // information to AsmPrinter.
     95 
     96   uint8_t NumMemRefs;                   // Information on memory references.
     97   // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
     98   // Calling code must treat missing information conservatively.  If the number
     99   // of memory operands required to be precise exceeds the maximum value of
    100   // NumMemRefs - currently 256 - we remove the operands entirely. Note also
    101   // that this is a non-owning reference to a shared copy on write buffer owned
    102   // by the MachineFunction and created via MF.allocateMemRefsArray.
    103   mmo_iterator MemRefs;
    104 
    105   DebugLoc debugLoc;                    // Source line information.
    106 
    107   MachineInstr(const MachineInstr&) = delete;
    108   void operator=(const MachineInstr&) = delete;
    109   // Use MachineFunction::DeleteMachineInstr() instead.
    110   ~MachineInstr() = delete;
    111 
    112   // Intrusive list support
    113   friend struct ilist_traits<MachineInstr>;
    114   friend struct ilist_callback_traits<MachineBasicBlock>;
    115   void setParent(MachineBasicBlock *P) { Parent = P; }
    116 
    117   /// This constructor creates a copy of the given
    118   /// MachineInstr in the given MachineFunction.
    119   MachineInstr(MachineFunction &, const MachineInstr &);
    120 
    121   /// This constructor create a MachineInstr and add the implicit operands.
    122   /// It reserves space for number of operands specified by
    123   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    124   MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
    125                bool NoImp = false);
    126 
    127   // MachineInstrs are pool-allocated and owned by MachineFunction.
    128   friend class MachineFunction;
    129 
    130 public:
    131   const MachineBasicBlock* getParent() const { return Parent; }
    132   MachineBasicBlock* getParent() { return Parent; }
    133 
    134   /// Return the asm printer flags bitvector.
    135   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    136 
    137   /// Clear the AsmPrinter bitvector.
    138   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    139 
    140   /// Return whether an AsmPrinter flag is set.
    141   bool getAsmPrinterFlag(CommentFlag Flag) const {
    142     return AsmPrinterFlags & Flag;
    143   }
    144 
    145   /// Set a flag for the AsmPrinter.
    146   void setAsmPrinterFlag(uint8_t Flag) {
    147     AsmPrinterFlags |= Flag;
    148   }
    149 
    150   /// Clear specific AsmPrinter flags.
    151   void clearAsmPrinterFlag(CommentFlag Flag) {
    152     AsmPrinterFlags &= ~Flag;
    153   }
    154 
    155   /// Return the MI flags bitvector.
    156   uint8_t getFlags() const {
    157     return Flags;
    158   }
    159 
    160   /// Return whether an MI flag is set.
    161   bool getFlag(MIFlag Flag) const {
    162     return Flags & Flag;
    163   }
    164 
    165   /// Set a MI flag.
    166   void setFlag(MIFlag Flag) {
    167     Flags |= (uint8_t)Flag;
    168   }
    169 
    170   void setFlags(unsigned flags) {
    171     // Filter out the automatically maintained flags.
    172     unsigned Mask = BundledPred | BundledSucc;
    173     Flags = (Flags & Mask) | (flags & ~Mask);
    174   }
    175 
    176   /// clearFlag - Clear a MI flag.
    177   void clearFlag(MIFlag Flag) {
    178     Flags &= ~((uint8_t)Flag);
    179   }
    180 
    181 
    182   /// Return true if MI is in a bundle (but not the first MI in a bundle).
    183   ///
    184   /// A bundle looks like this before it's finalized:
    185   ///   ----------------
    186   ///   |      MI      |
    187   ///   ----------------
    188   ///          |
    189   ///   ----------------
    190   ///   |      MI    * |
    191   ///   ----------------
    192   ///          |
    193   ///   ----------------
    194   ///   |      MI    * |
    195   ///   ----------------
    196   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    197   /// next 2 MIs are considered "inside" the bundle.
    198   ///
    199   /// After a bundle is finalized, it looks like this:
    200   ///   ----------------
    201   ///   |    Bundle    |
    202   ///   ----------------
    203   ///          |
    204   ///   ----------------
    205   ///   |      MI    * |
    206   ///   ----------------
    207   ///          |
    208   ///   ----------------
    209   ///   |      MI    * |
    210   ///   ----------------
    211   ///          |
    212   ///   ----------------
    213   ///   |      MI    * |
    214   ///   ----------------
    215   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    216   /// a bundle, but the next three MIs are.
    217   bool isInsideBundle() const {
    218     return getFlag(BundledPred);
    219   }
    220 
    221   /// Return true if this instruction part of a bundle. This is true
    222   /// if either itself or its following instruction is marked "InsideBundle".
    223   bool isBundled() const {
    224     return isBundledWithPred() || isBundledWithSucc();
    225   }
    226 
    227   /// Return true if this instruction is part of a bundle, and it is not the
    228   /// first instruction in the bundle.
    229   bool isBundledWithPred() const { return getFlag(BundledPred); }
    230 
    231   /// Return true if this instruction is part of a bundle, and it is not the
    232   /// last instruction in the bundle.
    233   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
    234 
    235   /// Bundle this instruction with its predecessor. This can be an unbundled
    236   /// instruction, or it can be the first instruction in a bundle.
    237   void bundleWithPred();
    238 
    239   /// Bundle this instruction with its successor. This can be an unbundled
    240   /// instruction, or it can be the last instruction in a bundle.
    241   void bundleWithSucc();
    242 
    243   /// Break bundle above this instruction.
    244   void unbundleFromPred();
    245 
    246   /// Break bundle below this instruction.
    247   void unbundleFromSucc();
    248 
    249   /// Returns the debug location id of this MachineInstr.
    250   const DebugLoc &getDebugLoc() const { return debugLoc; }
    251 
    252   /// Return the debug variable referenced by
    253   /// this DBG_VALUE instruction.
    254   const DILocalVariable *getDebugVariable() const;
    255 
    256   /// Return the complex address expression referenced by
    257   /// this DBG_VALUE instruction.
    258   const DIExpression *getDebugExpression() const;
    259 
    260   /// Emit an error referring to the source location of this instruction.
    261   /// This should only be used for inline assembly that is somehow
    262   /// impossible to compile. Other errors should have been handled much
    263   /// earlier.
    264   ///
    265   /// If this method returns, the caller should try to recover from the error.
    266   ///
    267   void emitError(StringRef Msg) const;
    268 
    269   /// Returns the target instruction descriptor of this MachineInstr.
    270   const MCInstrDesc &getDesc() const { return *MCID; }
    271 
    272   /// Returns the opcode of this MachineInstr.
    273   unsigned getOpcode() const { return MCID->Opcode; }
    274 
    275   /// Access to explicit operands of the instruction.
    276   ///
    277   unsigned getNumOperands() const { return NumOperands; }
    278 
    279   const MachineOperand& getOperand(unsigned i) const {
    280     assert(i < getNumOperands() && "getOperand() out of range!");
    281     return Operands[i];
    282   }
    283   MachineOperand& getOperand(unsigned i) {
    284     assert(i < getNumOperands() && "getOperand() out of range!");
    285     return Operands[i];
    286   }
    287 
    288   /// Returns the number of non-implicit operands.
    289   unsigned getNumExplicitOperands() const;
    290 
    291   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    292   typedef MachineOperand *mop_iterator;
    293   typedef const MachineOperand *const_mop_iterator;
    294 
    295   mop_iterator operands_begin() { return Operands; }
    296   mop_iterator operands_end() { return Operands + NumOperands; }
    297 
    298   const_mop_iterator operands_begin() const { return Operands; }
    299   const_mop_iterator operands_end() const { return Operands + NumOperands; }
    300 
    301   iterator_range<mop_iterator> operands() {
    302     return make_range(operands_begin(), operands_end());
    303   }
    304   iterator_range<const_mop_iterator> operands() const {
    305     return make_range(operands_begin(), operands_end());
    306   }
    307   iterator_range<mop_iterator> explicit_operands() {
    308     return make_range(operands_begin(),
    309                       operands_begin() + getNumExplicitOperands());
    310   }
    311   iterator_range<const_mop_iterator> explicit_operands() const {
    312     return make_range(operands_begin(),
    313                       operands_begin() + getNumExplicitOperands());
    314   }
    315   iterator_range<mop_iterator> implicit_operands() {
    316     return make_range(explicit_operands().end(), operands_end());
    317   }
    318   iterator_range<const_mop_iterator> implicit_operands() const {
    319     return make_range(explicit_operands().end(), operands_end());
    320   }
    321   /// Returns a range over all explicit operands that are register definitions.
    322   /// Implicit definition are not included!
    323   iterator_range<mop_iterator> defs() {
    324     return make_range(operands_begin(),
    325                       operands_begin() + getDesc().getNumDefs());
    326   }
    327   /// \copydoc defs()
    328   iterator_range<const_mop_iterator> defs() const {
    329     return make_range(operands_begin(),
    330                       operands_begin() + getDesc().getNumDefs());
    331   }
    332   /// Returns a range that includes all operands that are register uses.
    333   /// This may include unrelated operands which are not register uses.
    334   iterator_range<mop_iterator> uses() {
    335     return make_range(operands_begin() + getDesc().getNumDefs(),
    336                       operands_end());
    337   }
    338   /// \copydoc uses()
    339   iterator_range<const_mop_iterator> uses() const {
    340     return make_range(operands_begin() + getDesc().getNumDefs(),
    341                       operands_end());
    342   }
    343   iterator_range<mop_iterator> explicit_uses() {
    344     return make_range(operands_begin() + getDesc().getNumDefs(),
    345                       operands_begin() + getNumExplicitOperands() );
    346   }
    347   iterator_range<const_mop_iterator> explicit_uses() const {
    348     return make_range(operands_begin() + getDesc().getNumDefs(),
    349                       operands_begin() + getNumExplicitOperands() );
    350   }
    351 
    352   /// Returns the number of the operand iterator \p I points to.
    353   unsigned getOperandNo(const_mop_iterator I) const {
    354     return I - operands_begin();
    355   }
    356 
    357   /// Access to memory operands of the instruction
    358   mmo_iterator memoperands_begin() const { return MemRefs; }
    359   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    360   /// Return true if we don't have any memory operands which described the the
    361   /// memory access done by this instruction.  If this is true, calling code
    362   /// must be conservative.
    363   bool memoperands_empty() const { return NumMemRefs == 0; }
    364 
    365   iterator_range<mmo_iterator>  memoperands() {
    366     return make_range(memoperands_begin(), memoperands_end());
    367   }
    368   iterator_range<mmo_iterator> memoperands() const {
    369     return make_range(memoperands_begin(), memoperands_end());
    370   }
    371 
    372   /// Return true if this instruction has exactly one MachineMemOperand.
    373   bool hasOneMemOperand() const {
    374     return NumMemRefs == 1;
    375   }
    376 
    377   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    378   /// queries but they are bundle aware.
    379 
    380   enum QueryType {
    381     IgnoreBundle,    // Ignore bundles
    382     AnyInBundle,     // Return true if any instruction in bundle has property
    383     AllInBundle      // Return true if all instructions in bundle have property
    384   };
    385 
    386   /// Return true if the instruction (or in the case of a bundle,
    387   /// the instructions inside the bundle) has the specified property.
    388   /// The first argument is the property being queried.
    389   /// The second argument indicates whether the query should look inside
    390   /// instruction bundles.
    391   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    392     // Inline the fast path for unbundled or bundle-internal instructions.
    393     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
    394       return getDesc().getFlags() & (1ULL << MCFlag);
    395 
    396     // If this is the first instruction in a bundle, take the slow path.
    397     return hasPropertyInBundle(1ULL << MCFlag, Type);
    398   }
    399 
    400   /// Return true if this instruction can have a variable number of operands.
    401   /// In this case, the variable operands will be after the normal
    402   /// operands but before the implicit definitions and uses (if any are
    403   /// present).
    404   bool isVariadic(QueryType Type = IgnoreBundle) const {
    405     return hasProperty(MCID::Variadic, Type);
    406   }
    407 
    408   /// Set if this instruction has an optional definition, e.g.
    409   /// ARM instructions which can set condition code if 's' bit is set.
    410   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    411     return hasProperty(MCID::HasOptionalDef, Type);
    412   }
    413 
    414   /// Return true if this is a pseudo instruction that doesn't
    415   /// correspond to a real machine instruction.
    416   bool isPseudo(QueryType Type = IgnoreBundle) const {
    417     return hasProperty(MCID::Pseudo, Type);
    418   }
    419 
    420   bool isReturn(QueryType Type = AnyInBundle) const {
    421     return hasProperty(MCID::Return, Type);
    422   }
    423 
    424   bool isCall(QueryType Type = AnyInBundle) const {
    425     return hasProperty(MCID::Call, Type);
    426   }
    427 
    428   /// Returns true if the specified instruction stops control flow
    429   /// from executing the instruction immediately following it.  Examples include
    430   /// unconditional branches and return instructions.
    431   bool isBarrier(QueryType Type = AnyInBundle) const {
    432     return hasProperty(MCID::Barrier, Type);
    433   }
    434 
    435   /// Returns true if this instruction part of the terminator for a basic block.
    436   /// Typically this is things like return and branch instructions.
    437   ///
    438   /// Various passes use this to insert code into the bottom of a basic block,
    439   /// but before control flow occurs.
    440   bool isTerminator(QueryType Type = AnyInBundle) const {
    441     return hasProperty(MCID::Terminator, Type);
    442   }
    443 
    444   /// Returns true if this is a conditional, unconditional, or indirect branch.
    445   /// Predicates below can be used to discriminate between
    446   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    447   /// get more information.
    448   bool isBranch(QueryType Type = AnyInBundle) const {
    449     return hasProperty(MCID::Branch, Type);
    450   }
    451 
    452   /// Return true if this is an indirect branch, such as a
    453   /// branch through a register.
    454   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    455     return hasProperty(MCID::IndirectBranch, Type);
    456   }
    457 
    458   /// Return true if this is a branch which may fall
    459   /// through to the next instruction or may transfer control flow to some other
    460   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    461   /// information about this branch.
    462   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    463     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    464   }
    465 
    466   /// Return true if this is a branch which always
    467   /// transfers control flow to some other block.  The
    468   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    469   /// about this branch.
    470   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    471     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    472   }
    473 
    474   /// Return true if this instruction has a predicate operand that
    475   /// controls execution.  It may be set to 'always', or may be set to other
    476   /// values.   There are various methods in TargetInstrInfo that can be used to
    477   /// control and modify the predicate in this instruction.
    478   bool isPredicable(QueryType Type = AllInBundle) const {
    479     // If it's a bundle than all bundled instructions must be predicable for this
    480     // to return true.
    481     return hasProperty(MCID::Predicable, Type);
    482   }
    483 
    484   /// Return true if this instruction is a comparison.
    485   bool isCompare(QueryType Type = IgnoreBundle) const {
    486     return hasProperty(MCID::Compare, Type);
    487   }
    488 
    489   /// Return true if this instruction is a move immediate
    490   /// (including conditional moves) instruction.
    491   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    492     return hasProperty(MCID::MoveImm, Type);
    493   }
    494 
    495   /// Return true if this instruction is a bitcast instruction.
    496   bool isBitcast(QueryType Type = IgnoreBundle) const {
    497     return hasProperty(MCID::Bitcast, Type);
    498   }
    499 
    500   /// Return true if this instruction is a select instruction.
    501   bool isSelect(QueryType Type = IgnoreBundle) const {
    502     return hasProperty(MCID::Select, Type);
    503   }
    504 
    505   /// Return true if this instruction cannot be safely duplicated.
    506   /// For example, if the instruction has a unique labels attached
    507   /// to it, duplicating it would cause multiple definition errors.
    508   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    509     return hasProperty(MCID::NotDuplicable, Type);
    510   }
    511 
    512   /// Return true if this instruction is convergent.
    513   /// Convergent instructions can not be made control-dependent on any
    514   /// additional values.
    515   bool isConvergent(QueryType Type = AnyInBundle) const {
    516     if (isInlineAsm()) {
    517       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    518       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
    519         return true;
    520     }
    521     return hasProperty(MCID::Convergent, Type);
    522   }
    523 
    524   /// Returns true if the specified instruction has a delay slot
    525   /// which must be filled by the code generator.
    526   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    527     return hasProperty(MCID::DelaySlot, Type);
    528   }
    529 
    530   /// Return true for instructions that can be folded as
    531   /// memory operands in other instructions. The most common use for this
    532   /// is instructions that are simple loads from memory that don't modify
    533   /// the loaded value in any way, but it can also be used for instructions
    534   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    535   /// on x86, to allow them to be folded when it is beneficial.
    536   /// This should only be set on instructions that return a value in their
    537   /// only virtual register definition.
    538   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    539     return hasProperty(MCID::FoldableAsLoad, Type);
    540   }
    541 
    542   /// \brief Return true if this instruction behaves
    543   /// the same way as the generic REG_SEQUENCE instructions.
    544   /// E.g., on ARM,
    545   /// dX VMOVDRR rY, rZ
    546   /// is equivalent to
    547   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
    548   ///
    549   /// Note that for the optimizers to be able to take advantage of
    550   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
    551   /// override accordingly.
    552   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
    553     return hasProperty(MCID::RegSequence, Type);
    554   }
    555 
    556   /// \brief Return true if this instruction behaves
    557   /// the same way as the generic EXTRACT_SUBREG instructions.
    558   /// E.g., on ARM,
    559   /// rX, rY VMOVRRD dZ
    560   /// is equivalent to two EXTRACT_SUBREG:
    561   /// rX = EXTRACT_SUBREG dZ, ssub_0
    562   /// rY = EXTRACT_SUBREG dZ, ssub_1
    563   ///
    564   /// Note that for the optimizers to be able to take advantage of
    565   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
    566   /// override accordingly.
    567   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
    568     return hasProperty(MCID::ExtractSubreg, Type);
    569   }
    570 
    571   /// \brief Return true if this instruction behaves
    572   /// the same way as the generic INSERT_SUBREG instructions.
    573   /// E.g., on ARM,
    574   /// dX = VSETLNi32 dY, rZ, Imm
    575   /// is equivalent to a INSERT_SUBREG:
    576   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
    577   ///
    578   /// Note that for the optimizers to be able to take advantage of
    579   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
    580   /// override accordingly.
    581   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
    582     return hasProperty(MCID::InsertSubreg, Type);
    583   }
    584 
    585   //===--------------------------------------------------------------------===//
    586   // Side Effect Analysis
    587   //===--------------------------------------------------------------------===//
    588 
    589   /// Return true if this instruction could possibly read memory.
    590   /// Instructions with this flag set are not necessarily simple load
    591   /// instructions, they may load a value and modify it, for example.
    592   bool mayLoad(QueryType Type = AnyInBundle) const {
    593     if (isInlineAsm()) {
    594       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    595       if (ExtraInfo & InlineAsm::Extra_MayLoad)
    596         return true;
    597     }
    598     return hasProperty(MCID::MayLoad, Type);
    599   }
    600 
    601   /// Return true if this instruction could possibly modify memory.
    602   /// Instructions with this flag set are not necessarily simple store
    603   /// instructions, they may store a modified value based on their operands, or
    604   /// may not actually modify anything, for example.
    605   bool mayStore(QueryType Type = AnyInBundle) const {
    606     if (isInlineAsm()) {
    607       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    608       if (ExtraInfo & InlineAsm::Extra_MayStore)
    609         return true;
    610     }
    611     return hasProperty(MCID::MayStore, Type);
    612   }
    613 
    614   /// Return true if this instruction could possibly read or modify memory.
    615   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
    616     return mayLoad(Type) || mayStore(Type);
    617   }
    618 
    619   //===--------------------------------------------------------------------===//
    620   // Flags that indicate whether an instruction can be modified by a method.
    621   //===--------------------------------------------------------------------===//
    622 
    623   /// Return true if this may be a 2- or 3-address
    624   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    625   /// result if Y and Z are exchanged.  If this flag is set, then the
    626   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    627   /// instruction.
    628   ///
    629   /// Note that this flag may be set on instructions that are only commutable
    630   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    631   /// Also note that some instructions require non-trivial modification to
    632   /// commute them.
    633   bool isCommutable(QueryType Type = IgnoreBundle) const {
    634     return hasProperty(MCID::Commutable, Type);
    635   }
    636 
    637   /// Return true if this is a 2-address instruction
    638   /// which can be changed into a 3-address instruction if needed.  Doing this
    639   /// transformation can be profitable in the register allocator, because it
    640   /// means that the instruction can use a 2-address form if possible, but
    641   /// degrade into a less efficient form if the source and dest register cannot
    642   /// be assigned to the same register.  For example, this allows the x86
    643   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    644   /// is the same speed as the shift but has bigger code size.
    645   ///
    646   /// If this returns true, then the target must implement the
    647   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    648   /// is allowed to fail if the transformation isn't valid for this specific
    649   /// instruction (e.g. shl reg, 4 on x86).
    650   ///
    651   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    652     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    653   }
    654 
    655   /// Return true if this instruction requires
    656   /// custom insertion support when the DAG scheduler is inserting it into a
    657   /// machine basic block.  If this is true for the instruction, it basically
    658   /// means that it is a pseudo instruction used at SelectionDAG time that is
    659   /// expanded out into magic code by the target when MachineInstrs are formed.
    660   ///
    661   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    662   /// is used to insert this into the MachineBasicBlock.
    663   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    664     return hasProperty(MCID::UsesCustomInserter, Type);
    665   }
    666 
    667   /// Return true if this instruction requires *adjustment*
    668   /// after instruction selection by calling a target hook. For example, this
    669   /// can be used to fill in ARM 's' optional operand depending on whether
    670   /// the conditional flag register is used.
    671   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    672     return hasProperty(MCID::HasPostISelHook, Type);
    673   }
    674 
    675   /// Returns true if this instruction is a candidate for remat.
    676   /// This flag is deprecated, please don't use it anymore.  If this
    677   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    678   /// verify the instruction is really rematable.
    679   bool isRematerializable(QueryType Type = AllInBundle) const {
    680     // It's only possible to re-mat a bundle if all bundled instructions are
    681     // re-materializable.
    682     return hasProperty(MCID::Rematerializable, Type);
    683   }
    684 
    685   /// Returns true if this instruction has the same cost (or less) than a move
    686   /// instruction. This is useful during certain types of optimizations
    687   /// (e.g., remat during two-address conversion or machine licm)
    688   /// where we would like to remat or hoist the instruction, but not if it costs
    689   /// more than moving the instruction into the appropriate register. Note, we
    690   /// are not marking copies from and to the same register class with this flag.
    691   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    692     // Only returns true for a bundle if all bundled instructions are cheap.
    693     return hasProperty(MCID::CheapAsAMove, Type);
    694   }
    695 
    696   /// Returns true if this instruction source operands
    697   /// have special register allocation requirements that are not captured by the
    698   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    699   /// even / odd pair, ARM::STM registers have to be in ascending order.
    700   /// Post-register allocation passes should not attempt to change allocations
    701   /// for sources of instructions with this flag.
    702   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    703     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    704   }
    705 
    706   /// Returns true if this instruction def operands
    707   /// have special register allocation requirements that are not captured by the
    708   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    709   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    710   /// Post-register allocation passes should not attempt to change allocations
    711   /// for definitions of instructions with this flag.
    712   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    713     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    714   }
    715 
    716 
    717   enum MICheckType {
    718     CheckDefs,      // Check all operands for equality
    719     CheckKillDead,  // Check all operands including kill / dead markers
    720     IgnoreDefs,     // Ignore all definitions
    721     IgnoreVRegDefs  // Ignore virtual register definitions
    722   };
    723 
    724   /// Return true if this instruction is identical to \p Other.
    725   /// Two instructions are identical if they have the same opcode and all their
    726   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
    727   /// Note that this means liveness related flags (dead, undef, kill) do not
    728   /// affect the notion of identical.
    729   bool isIdenticalTo(const MachineInstr &Other,
    730                      MICheckType Check = CheckDefs) const;
    731 
    732   /// Unlink 'this' from the containing basic block, and return it without
    733   /// deleting it.
    734   ///
    735   /// This function can not be used on bundled instructions, use
    736   /// removeFromBundle() to remove individual instructions from a bundle.
    737   MachineInstr *removeFromParent();
    738 
    739   /// Unlink this instruction from its basic block and return it without
    740   /// deleting it.
    741   ///
    742   /// If the instruction is part of a bundle, the other instructions in the
    743   /// bundle remain bundled.
    744   MachineInstr *removeFromBundle();
    745 
    746   /// Unlink 'this' from the containing basic block and delete it.
    747   ///
    748   /// If this instruction is the header of a bundle, the whole bundle is erased.
    749   /// This function can not be used for instructions inside a bundle, use
    750   /// eraseFromBundle() to erase individual bundled instructions.
    751   void eraseFromParent();
    752 
    753   /// Unlink 'this' from the containing basic block and delete it.
    754   ///
    755   /// For all definitions mark their uses in DBG_VALUE nodes
    756   /// as undefined. Otherwise like eraseFromParent().
    757   void eraseFromParentAndMarkDBGValuesForRemoval();
    758 
    759   /// Unlink 'this' form its basic block and delete it.
    760   ///
    761   /// If the instruction is part of a bundle, the other instructions in the
    762   /// bundle remain bundled.
    763   void eraseFromBundle();
    764 
    765   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    766   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    767 
    768   /// Returns true if the MachineInstr represents a label.
    769   bool isLabel() const { return isEHLabel() || isGCLabel(); }
    770   bool isCFIInstruction() const {
    771     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
    772   }
    773 
    774   // True if the instruction represents a position in the function.
    775   bool isPosition() const { return isLabel() || isCFIInstruction(); }
    776 
    777   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    778   /// A DBG_VALUE is indirect iff the first operand is a register and
    779   /// the second operand is an immediate.
    780   bool isIndirectDebugValue() const {
    781     return isDebugValue()
    782       && getOperand(0).isReg()
    783       && getOperand(1).isImm();
    784   }
    785 
    786   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
    787   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    788   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    789   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    790   bool isMSInlineAsm() const {
    791     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    792   }
    793   bool isStackAligningInlineAsm() const;
    794   InlineAsm::AsmDialect getInlineAsmDialect() const;
    795   bool isInsertSubreg() const {
    796     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    797   }
    798   bool isSubregToReg() const {
    799     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    800   }
    801   bool isRegSequence() const {
    802     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    803   }
    804   bool isBundle() const {
    805     return getOpcode() == TargetOpcode::BUNDLE;
    806   }
    807   bool isCopy() const {
    808     return getOpcode() == TargetOpcode::COPY;
    809   }
    810   bool isFullCopy() const {
    811     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    812   }
    813   bool isExtractSubreg() const {
    814     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
    815   }
    816 
    817   /// Return true if the instruction behaves like a copy.
    818   /// This does not include native copy instructions.
    819   bool isCopyLike() const {
    820     return isCopy() || isSubregToReg();
    821   }
    822 
    823   /// Return true is the instruction is an identity copy.
    824   bool isIdentityCopy() const {
    825     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    826       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    827   }
    828 
    829   /// Return true if this is a transient instruction that is
    830   /// either very likely to be eliminated during register allocation (such as
    831   /// copy-like instructions), or if this instruction doesn't have an
    832   /// execution-time cost.
    833   bool isTransient() const {
    834     switch(getOpcode()) {
    835     default: return false;
    836     // Copy-like instructions are usually eliminated during register allocation.
    837     case TargetOpcode::PHI:
    838     case TargetOpcode::COPY:
    839     case TargetOpcode::INSERT_SUBREG:
    840     case TargetOpcode::SUBREG_TO_REG:
    841     case TargetOpcode::REG_SEQUENCE:
    842     // Pseudo-instructions that don't produce any real output.
    843     case TargetOpcode::IMPLICIT_DEF:
    844     case TargetOpcode::KILL:
    845     case TargetOpcode::CFI_INSTRUCTION:
    846     case TargetOpcode::EH_LABEL:
    847     case TargetOpcode::GC_LABEL:
    848     case TargetOpcode::DBG_VALUE:
    849       return true;
    850     }
    851   }
    852 
    853   /// Return the number of instructions inside the MI bundle, excluding the
    854   /// bundle header.
    855   ///
    856   /// This is the number of instructions that MachineBasicBlock::iterator
    857   /// skips, 0 for unbundled instructions.
    858   unsigned getBundleSize() const;
    859 
    860   /// Return true if the MachineInstr reads the specified register.
    861   /// If TargetRegisterInfo is passed, then it also checks if there
    862   /// is a read of a super-register.
    863   /// This does not count partial redefines of virtual registers as reads:
    864   ///   %reg1024:6 = OP.
    865   bool readsRegister(unsigned Reg,
    866                      const TargetRegisterInfo *TRI = nullptr) const {
    867     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    868   }
    869 
    870   /// Return true if the MachineInstr reads the specified virtual register.
    871   /// Take into account that a partial define is a
    872   /// read-modify-write operation.
    873   bool readsVirtualRegister(unsigned Reg) const {
    874     return readsWritesVirtualRegister(Reg).first;
    875   }
    876 
    877   /// Return a pair of bools (reads, writes) indicating if this instruction
    878   /// reads or writes Reg. This also considers partial defines.
    879   /// If Ops is not null, all operand indices for Reg are added.
    880   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    881                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
    882 
    883   /// Return true if the MachineInstr kills the specified register.
    884   /// If TargetRegisterInfo is passed, then it also checks if there is
    885   /// a kill of a super-register.
    886   bool killsRegister(unsigned Reg,
    887                      const TargetRegisterInfo *TRI = nullptr) const {
    888     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    889   }
    890 
    891   /// Return true if the MachineInstr fully defines the specified register.
    892   /// If TargetRegisterInfo is passed, then it also checks
    893   /// if there is a def of a super-register.
    894   /// NOTE: It's ignoring subreg indices on virtual registers.
    895   bool definesRegister(unsigned Reg,
    896                        const TargetRegisterInfo *TRI = nullptr) const {
    897     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    898   }
    899 
    900   /// Return true if the MachineInstr modifies (fully define or partially
    901   /// define) the specified register.
    902   /// NOTE: It's ignoring subreg indices on virtual registers.
    903   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    904     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    905   }
    906 
    907   /// Returns true if the register is dead in this machine instruction.
    908   /// If TargetRegisterInfo is passed, then it also checks
    909   /// if there is a dead def of a super-register.
    910   bool registerDefIsDead(unsigned Reg,
    911                          const TargetRegisterInfo *TRI = nullptr) const {
    912     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    913   }
    914 
    915   /// Returns true if the MachineInstr has an implicit-use operand of exactly
    916   /// the given register (not considering sub/super-registers).
    917   bool hasRegisterImplicitUseOperand(unsigned Reg) const;
    918 
    919   /// Returns the operand index that is a use of the specific register or -1
    920   /// if it is not found. It further tightens the search criteria to a use
    921   /// that kills the register if isKill is true.
    922   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    923                                 const TargetRegisterInfo *TRI = nullptr) const;
    924 
    925   /// Wrapper for findRegisterUseOperandIdx, it returns
    926   /// a pointer to the MachineOperand rather than an index.
    927   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    928                                       const TargetRegisterInfo *TRI = nullptr) {
    929     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    930     return (Idx == -1) ? nullptr : &getOperand(Idx);
    931   }
    932 
    933   const MachineOperand *findRegisterUseOperand(
    934     unsigned Reg, bool isKill = false,
    935     const TargetRegisterInfo *TRI = nullptr) const {
    936     return const_cast<MachineInstr *>(this)->
    937       findRegisterUseOperand(Reg, isKill, TRI);
    938   }
    939 
    940   /// Returns the operand index that is a def of the specified register or
    941   /// -1 if it is not found. If isDead is true, defs that are not dead are
    942   /// skipped. If Overlap is true, then it also looks for defs that merely
    943   /// overlap the specified register. If TargetRegisterInfo is non-null,
    944   /// then it also checks if there is a def of a super-register.
    945   /// This may also return a register mask operand when Overlap is true.
    946   int findRegisterDefOperandIdx(unsigned Reg,
    947                                 bool isDead = false, bool Overlap = false,
    948                                 const TargetRegisterInfo *TRI = nullptr) const;
    949 
    950   /// Wrapper for findRegisterDefOperandIdx, it returns
    951   /// a pointer to the MachineOperand rather than an index.
    952   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    953                                       const TargetRegisterInfo *TRI = nullptr) {
    954     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    955     return (Idx == -1) ? nullptr : &getOperand(Idx);
    956   }
    957 
    958   /// Find the index of the first operand in the
    959   /// operand list that is used to represent the predicate. It returns -1 if
    960   /// none is found.
    961   int findFirstPredOperandIdx() const;
    962 
    963   /// Find the index of the flag word operand that
    964   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
    965   /// getOperand(OpIdx) does not belong to an inline asm operand group.
    966   ///
    967   /// If GroupNo is not NULL, it will receive the number of the operand group
    968   /// containing OpIdx.
    969   ///
    970   /// The flag operand is an immediate that can be decoded with methods like
    971   /// InlineAsm::hasRegClassConstraint().
    972   ///
    973   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
    974 
    975   /// Compute the static register class constraint for operand OpIdx.
    976   /// For normal instructions, this is derived from the MCInstrDesc.
    977   /// For inline assembly it is derived from the flag words.
    978   ///
    979   /// Returns NULL if the static register class constraint cannot be
    980   /// determined.
    981   ///
    982   const TargetRegisterClass*
    983   getRegClassConstraint(unsigned OpIdx,
    984                         const TargetInstrInfo *TII,
    985                         const TargetRegisterInfo *TRI) const;
    986 
    987   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
    988   /// the given \p CurRC.
    989   /// If \p ExploreBundle is set and MI is part of a bundle, all the
    990   /// instructions inside the bundle will be taken into account. In other words,
    991   /// this method accumulates all the constraints of the operand of this MI and
    992   /// the related bundle if MI is a bundle or inside a bundle.
    993   ///
    994   /// Returns the register class that satisfies both \p CurRC and the
    995   /// constraints set by MI. Returns NULL if such a register class does not
    996   /// exist.
    997   ///
    998   /// \pre CurRC must not be NULL.
    999   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
   1000       unsigned Reg, const TargetRegisterClass *CurRC,
   1001       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
   1002       bool ExploreBundle = false) const;
   1003 
   1004   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
   1005   /// to the given \p CurRC.
   1006   ///
   1007   /// Returns the register class that satisfies both \p CurRC and the
   1008   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
   1009   /// does not exist.
   1010   ///
   1011   /// \pre CurRC must not be NULL.
   1012   /// \pre The operand at \p OpIdx must be a register.
   1013   const TargetRegisterClass *
   1014   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
   1015                               const TargetInstrInfo *TII,
   1016                               const TargetRegisterInfo *TRI) const;
   1017 
   1018   /// Add a tie between the register operands at DefIdx and UseIdx.
   1019   /// The tie will cause the register allocator to ensure that the two
   1020   /// operands are assigned the same physical register.
   1021   ///
   1022   /// Tied operands are managed automatically for explicit operands in the
   1023   /// MCInstrDesc. This method is for exceptional cases like inline asm.
   1024   void tieOperands(unsigned DefIdx, unsigned UseIdx);
   1025 
   1026   /// Given the index of a tied register operand, find the
   1027   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
   1028   /// index of the tied operand which must exist.
   1029   unsigned findTiedOperandIdx(unsigned OpIdx) const;
   1030 
   1031   /// Given the index of a register def operand,
   1032   /// check if the register def is tied to a source operand, due to either
   1033   /// two-address elimination or inline assembly constraints. Returns the
   1034   /// first tied use operand index by reference if UseOpIdx is not null.
   1035   bool isRegTiedToUseOperand(unsigned DefOpIdx,
   1036                              unsigned *UseOpIdx = nullptr) const {
   1037     const MachineOperand &MO = getOperand(DefOpIdx);
   1038     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
   1039       return false;
   1040     if (UseOpIdx)
   1041       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
   1042     return true;
   1043   }
   1044 
   1045   /// Return true if the use operand of the specified index is tied to a def
   1046   /// operand. It also returns the def operand index by reference if DefOpIdx
   1047   /// is not null.
   1048   bool isRegTiedToDefOperand(unsigned UseOpIdx,
   1049                              unsigned *DefOpIdx = nullptr) const {
   1050     const MachineOperand &MO = getOperand(UseOpIdx);
   1051     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
   1052       return false;
   1053     if (DefOpIdx)
   1054       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
   1055     return true;
   1056   }
   1057 
   1058   /// Clears kill flags on all operands.
   1059   void clearKillInfo();
   1060 
   1061   /// Replace all occurrences of FromReg with ToReg:SubIdx,
   1062   /// properly composing subreg indices where necessary.
   1063   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
   1064                           const TargetRegisterInfo &RegInfo);
   1065 
   1066   /// We have determined MI kills a register. Look for the
   1067   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
   1068   /// add a implicit operand if it's not found. Returns true if the operand
   1069   /// exists / is added.
   1070   bool addRegisterKilled(unsigned IncomingReg,
   1071                          const TargetRegisterInfo *RegInfo,
   1072                          bool AddIfNotFound = false);
   1073 
   1074   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
   1075   /// all aliasing registers.
   1076   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
   1077 
   1078   /// We have determined MI defined a register without a use.
   1079   /// Look for the operand that defines it and mark it as IsDead. If
   1080   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
   1081   /// true if the operand exists / is added.
   1082   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
   1083                        bool AddIfNotFound = false);
   1084 
   1085   /// Clear all dead flags on operands defining register @p Reg.
   1086   void clearRegisterDeads(unsigned Reg);
   1087 
   1088   /// Mark all subregister defs of register @p Reg with the undef flag.
   1089   /// This function is used when we determined to have a subregister def in an
   1090   /// otherwise undefined super register.
   1091   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
   1092 
   1093   /// We have determined MI defines a register. Make sure there is an operand
   1094   /// defining Reg.
   1095   void addRegisterDefined(unsigned Reg,
   1096                           const TargetRegisterInfo *RegInfo = nullptr);
   1097 
   1098   /// Mark every physreg used by this instruction as
   1099   /// dead except those in the UsedRegs list.
   1100   ///
   1101   /// On instructions with register mask operands, also add implicit-def
   1102   /// operands for all registers in UsedRegs.
   1103   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1104                              const TargetRegisterInfo &TRI);
   1105 
   1106   /// Return true if it is safe to move this instruction. If
   1107   /// SawStore is set to true, it means that there is a store (or call) between
   1108   /// the instruction's location and its intended destination.
   1109   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
   1110 
   1111   /// Returns true if this instruction's memory access aliases the memory
   1112   /// access of Other.
   1113   //
   1114   /// Assumes any physical registers used to compute addresses
   1115   /// have the same value for both instructions.  Returns false if neither
   1116   /// instruction writes to memory.
   1117   ///
   1118   /// @param AA Optional alias analysis, used to compare memory operands.
   1119   /// @param Other MachineInstr to check aliasing against.
   1120   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
   1121   bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
   1122 
   1123   /// Return true if this instruction may have an ordered
   1124   /// or volatile memory reference, or if the information describing the memory
   1125   /// reference is not available. Return false if it is known to have no
   1126   /// ordered or volatile memory references.
   1127   bool hasOrderedMemoryRef() const;
   1128 
   1129   /// Return true if this load instruction never traps and points to a memory
   1130   /// location whose value doesn't change during the execution of this function.
   1131   ///
   1132   /// Examples include loading a value from the constant pool or from the
   1133   /// argument area of a function (if it does not change).  If the instruction
   1134   /// does multiple loads, this returns true only if all of the loads are
   1135   /// dereferenceable and invariant.
   1136   bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
   1137 
   1138   /// If the specified instruction is a PHI that always merges together the
   1139   /// same virtual register, return the register, otherwise return 0.
   1140   unsigned isConstantValuePHI() const;
   1141 
   1142   /// Return true if this instruction has side effects that are not modeled
   1143   /// by mayLoad / mayStore, etc.
   1144   /// For all instructions, the property is encoded in MCInstrDesc::Flags
   1145   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
   1146   /// INLINEASM instruction, in which case the side effect property is encoded
   1147   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
   1148   ///
   1149   bool hasUnmodeledSideEffects() const;
   1150 
   1151   /// Returns true if it is illegal to fold a load across this instruction.
   1152   bool isLoadFoldBarrier() const;
   1153 
   1154   /// Return true if all the defs of this instruction are dead.
   1155   bool allDefsAreDead() const;
   1156 
   1157   /// Copy implicit register operands from specified
   1158   /// instruction to this instruction.
   1159   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
   1160 
   1161   /// Debugging support
   1162   /// @{
   1163   /// Print this MI to \p OS.
   1164   /// Only print the defs and the opcode if \p SkipOpers is true.
   1165   /// Otherwise, also print operands if \p SkipDebugLoc is true.
   1166   /// Otherwise, also print the debug loc, with a terminating newline.
   1167   /// \p TII is used to print the opcode name.  If it's not present, but the
   1168   /// MI is in a function, the opcode will be printed using the function's TII.
   1169   void print(raw_ostream &OS, bool SkipOpers = false, bool SkipDebugLoc = false,
   1170              const TargetInstrInfo *TII = nullptr) const;
   1171   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool SkipOpers = false,
   1172              bool SkipDebugLoc = false,
   1173              const TargetInstrInfo *TII = nullptr) const;
   1174   void dump() const;
   1175   /// @}
   1176 
   1177   //===--------------------------------------------------------------------===//
   1178   // Accessors used to build up machine instructions.
   1179 
   1180   /// Add the specified operand to the instruction.  If it is an implicit
   1181   /// operand, it is added to the end of the operand list.  If it is an
   1182   /// explicit operand it is added at the end of the explicit operand list
   1183   /// (before the first implicit operand).
   1184   ///
   1185   /// MF must be the machine function that was used to allocate this
   1186   /// instruction.
   1187   ///
   1188   /// MachineInstrBuilder provides a more convenient interface for creating
   1189   /// instructions and adding operands.
   1190   void addOperand(MachineFunction &MF, const MachineOperand &Op);
   1191 
   1192   /// Add an operand without providing an MF reference. This only works for
   1193   /// instructions that are inserted in a basic block.
   1194   ///
   1195   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
   1196   /// preferred.
   1197   void addOperand(const MachineOperand &Op);
   1198 
   1199   /// Replace the instruction descriptor (thus opcode) of
   1200   /// the current instruction with a new one.
   1201   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
   1202 
   1203   /// Replace current source information with new such.
   1204   /// Avoid using this, the constructor argument is preferable.
   1205   void setDebugLoc(DebugLoc dl) {
   1206     debugLoc = std::move(dl);
   1207     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
   1208   }
   1209 
   1210   /// Erase an operand from an instruction, leaving it with one
   1211   /// fewer operand than it started with.
   1212   void RemoveOperand(unsigned i);
   1213 
   1214   /// Add a MachineMemOperand to the machine instruction.
   1215   /// This function should be used only occasionally. The setMemRefs function
   1216   /// is the primary method for setting up a MachineInstr's MemRefs list.
   1217   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
   1218 
   1219   /// Assign this MachineInstr's memory reference descriptor list.
   1220   /// This does not transfer ownership.
   1221   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   1222     setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
   1223   }
   1224 
   1225   /// Assign this MachineInstr's memory reference descriptor list.  First
   1226   /// element in the pair is the begin iterator/pointer to the array; the
   1227   /// second is the number of MemoryOperands.  This does not transfer ownership
   1228   /// of the underlying memory.
   1229   void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
   1230     MemRefs = NewMemRefs.first;
   1231     NumMemRefs = uint8_t(NewMemRefs.second);
   1232     assert(NumMemRefs == NewMemRefs.second &&
   1233            "Too many memrefs - must drop memory operands");
   1234   }
   1235 
   1236   /// Return a set of memrefs (begin iterator, size) which conservatively
   1237   /// describe the memory behavior of both MachineInstrs.  This is appropriate
   1238   /// for use when merging two MachineInstrs into one. This routine does not
   1239   /// modify the memrefs of the this MachineInstr.
   1240   std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
   1241 
   1242   /// Clear this MachineInstr's memory reference descriptor list.  This resets
   1243   /// the memrefs to their most conservative state.  This should be used only
   1244   /// as a last resort since it greatly pessimizes our knowledge of the memory
   1245   /// access performed by the instruction.
   1246   void dropMemRefs() {
   1247     MemRefs = nullptr;
   1248     NumMemRefs = 0;
   1249   }
   1250 
   1251   /// Break any tie involving OpIdx.
   1252   void untieRegOperand(unsigned OpIdx) {
   1253     MachineOperand &MO = getOperand(OpIdx);
   1254     if (MO.isReg() && MO.isTied()) {
   1255       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
   1256       MO.TiedTo = 0;
   1257     }
   1258   }
   1259 
   1260   /// Add all implicit def and use operands to this instruction.
   1261   void addImplicitDefUseOperands(MachineFunction &MF);
   1262 
   1263 private:
   1264   /// If this instruction is embedded into a MachineFunction, return the
   1265   /// MachineRegisterInfo object for the current function, otherwise
   1266   /// return null.
   1267   MachineRegisterInfo *getRegInfo();
   1268 
   1269   /// Unlink all of the register operands in this instruction from their
   1270   /// respective use lists.  This requires that the operands already be on their
   1271   /// use lists.
   1272   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
   1273 
   1274   /// Add all of the register operands in this instruction from their
   1275   /// respective use lists.  This requires that the operands not be on their
   1276   /// use lists yet.
   1277   void AddRegOperandsToUseLists(MachineRegisterInfo&);
   1278 
   1279   /// Slow path for hasProperty when we're dealing with a bundle.
   1280   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
   1281 
   1282   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
   1283   /// this MI and the given operand index \p OpIdx.
   1284   /// If the related operand does not constrained Reg, this returns CurRC.
   1285   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
   1286       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
   1287       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
   1288 };
   1289 
   1290 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
   1291 /// instruction rather than by pointer value.
   1292 /// The hashing and equality testing functions ignore definitions so this is
   1293 /// useful for CSE, etc.
   1294 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
   1295   static inline MachineInstr *getEmptyKey() {
   1296     return nullptr;
   1297   }
   1298 
   1299   static inline MachineInstr *getTombstoneKey() {
   1300     return reinterpret_cast<MachineInstr*>(-1);
   1301   }
   1302 
   1303   static unsigned getHashValue(const MachineInstr* const &MI);
   1304 
   1305   static bool isEqual(const MachineInstr* const &LHS,
   1306                       const MachineInstr* const &RHS) {
   1307     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
   1308         LHS == getEmptyKey() || LHS == getTombstoneKey())
   1309       return LHS == RHS;
   1310     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
   1311   }
   1312 };
   1313 
   1314 //===----------------------------------------------------------------------===//
   1315 // Debugging Support
   1316 
   1317 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
   1318   MI.print(OS);
   1319   return OS;
   1320 }
   1321 
   1322 } // End llvm namespace
   1323 
   1324 #endif
   1325