Home | History | Annotate | Download | only in ExecutionEngine
      1 //===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Interface for the runtime dynamic linker facilities of the MC-JIT.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
     15 #define LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
     16 
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/StringRef.h"
     19 #include "llvm/DebugInfo/DIContext.h"
     20 #include "llvm/ExecutionEngine/JITSymbol.h"
     21 #include "llvm/Object/ObjectFile.h"
     22 #include "llvm/Support/Error.h"
     23 #include <algorithm>
     24 #include <cassert>
     25 #include <cstddef>
     26 #include <cstdint>
     27 #include <map>
     28 #include <memory>
     29 #include <string>
     30 #include <system_error>
     31 
     32 namespace llvm {
     33 
     34 namespace object {
     35   template <typename T> class OwningBinary;
     36 } // end namespace object
     37 
     38 /// Base class for errors originating in RuntimeDyld, e.g. missing relocation
     39 /// support.
     40 class RuntimeDyldError : public ErrorInfo<RuntimeDyldError> {
     41 public:
     42   static char ID;
     43 
     44   RuntimeDyldError(std::string ErrMsg) : ErrMsg(std::move(ErrMsg)) {}
     45 
     46   void log(raw_ostream &OS) const override;
     47   const std::string &getErrorMessage() const { return ErrMsg; }
     48   std::error_code convertToErrorCode() const override;
     49 
     50 private:
     51   std::string ErrMsg;
     52 };
     53 
     54 class RuntimeDyldImpl;
     55 class RuntimeDyldCheckerImpl;
     56 
     57 class RuntimeDyld {
     58   friend class RuntimeDyldCheckerImpl;
     59 
     60 protected:
     61   // Change the address associated with a section when resolving relocations.
     62   // Any relocations already associated with the symbol will be re-resolved.
     63   void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
     64 
     65 public:
     66   /// \brief Information about the loaded object.
     67   class LoadedObjectInfo : public llvm::LoadedObjectInfo {
     68     friend class RuntimeDyldImpl;
     69 
     70   public:
     71     typedef std::map<object::SectionRef, unsigned> ObjSectionToIDMap;
     72 
     73     LoadedObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
     74         : RTDyld(RTDyld), ObjSecToIDMap(std::move(ObjSecToIDMap)) {}
     75 
     76     virtual object::OwningBinary<object::ObjectFile>
     77     getObjectForDebug(const object::ObjectFile &Obj) const = 0;
     78 
     79     uint64_t
     80     getSectionLoadAddress(const object::SectionRef &Sec) const override;
     81 
     82   protected:
     83     virtual void anchor();
     84 
     85     RuntimeDyldImpl &RTDyld;
     86     ObjSectionToIDMap ObjSecToIDMap;
     87   };
     88 
     89   template <typename Derived> struct LoadedObjectInfoHelper : LoadedObjectInfo {
     90   protected:
     91     LoadedObjectInfoHelper(const LoadedObjectInfoHelper &) = default;
     92     LoadedObjectInfoHelper() = default;
     93 
     94   public:
     95     LoadedObjectInfoHelper(RuntimeDyldImpl &RTDyld,
     96                            LoadedObjectInfo::ObjSectionToIDMap ObjSecToIDMap)
     97         : LoadedObjectInfo(RTDyld, std::move(ObjSecToIDMap)) {}
     98 
     99     std::unique_ptr<llvm::LoadedObjectInfo> clone() const override {
    100       return llvm::make_unique<Derived>(static_cast<const Derived &>(*this));
    101     }
    102   };
    103 
    104   /// \brief Memory Management.
    105   class MemoryManager {
    106     friend class RuntimeDyld;
    107 
    108   public:
    109     MemoryManager() = default;
    110     virtual ~MemoryManager() = default;
    111 
    112     /// Allocate a memory block of (at least) the given size suitable for
    113     /// executable code. The SectionID is a unique identifier assigned by the
    114     /// RuntimeDyld instance, and optionally recorded by the memory manager to
    115     /// access a loaded section.
    116     virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
    117                                          unsigned SectionID,
    118                                          StringRef SectionName) = 0;
    119 
    120     /// Allocate a memory block of (at least) the given size suitable for data.
    121     /// The SectionID is a unique identifier assigned by the JIT engine, and
    122     /// optionally recorded by the memory manager to access a loaded section.
    123     virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
    124                                          unsigned SectionID,
    125                                          StringRef SectionName,
    126                                          bool IsReadOnly) = 0;
    127 
    128     /// Inform the memory manager about the total amount of memory required to
    129     /// allocate all sections to be loaded:
    130     /// \p CodeSize - the total size of all code sections
    131     /// \p DataSizeRO - the total size of all read-only data sections
    132     /// \p DataSizeRW - the total size of all read-write data sections
    133     ///
    134     /// Note that by default the callback is disabled. To enable it
    135     /// redefine the method needsToReserveAllocationSpace to return true.
    136     virtual void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
    137                                         uintptr_t RODataSize,
    138                                         uint32_t RODataAlign,
    139                                         uintptr_t RWDataSize,
    140                                         uint32_t RWDataAlign) {}
    141 
    142     /// Override to return true to enable the reserveAllocationSpace callback.
    143     virtual bool needsToReserveAllocationSpace() { return false; }
    144 
    145     /// Register the EH frames with the runtime so that c++ exceptions work.
    146     ///
    147     /// \p Addr parameter provides the local address of the EH frame section
    148     /// data, while \p LoadAddr provides the address of the data in the target
    149     /// address space.  If the section has not been remapped (which will usually
    150     /// be the case for local execution) these two values will be the same.
    151     virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
    152                                   size_t Size) = 0;
    153     virtual void deregisterEHFrames() = 0;
    154 
    155     /// This method is called when object loading is complete and section page
    156     /// permissions can be applied.  It is up to the memory manager implementation
    157     /// to decide whether or not to act on this method.  The memory manager will
    158     /// typically allocate all sections as read-write and then apply specific
    159     /// permissions when this method is called.  Code sections cannot be executed
    160     /// until this function has been called.  In addition, any cache coherency
    161     /// operations needed to reliably use the memory are also performed.
    162     ///
    163     /// Returns true if an error occurred, false otherwise.
    164     virtual bool finalizeMemory(std::string *ErrMsg = nullptr) = 0;
    165 
    166     /// This method is called after an object has been loaded into memory but
    167     /// before relocations are applied to the loaded sections.
    168     ///
    169     /// Memory managers which are preparing code for execution in an external
    170     /// address space can use this call to remap the section addresses for the
    171     /// newly loaded object.
    172     ///
    173     /// For clients that do not need access to an ExecutionEngine instance this
    174     /// method should be preferred to its cousin
    175     /// MCJITMemoryManager::notifyObjectLoaded as this method is compatible with
    176     /// ORC JIT stacks.
    177     virtual void notifyObjectLoaded(RuntimeDyld &RTDyld,
    178                                     const object::ObjectFile &Obj) {}
    179 
    180   private:
    181     virtual void anchor();
    182 
    183     bool FinalizationLocked = false;
    184   };
    185 
    186   /// \brief Construct a RuntimeDyld instance.
    187   RuntimeDyld(MemoryManager &MemMgr, JITSymbolResolver &Resolver);
    188   RuntimeDyld(const RuntimeDyld &) = delete;
    189   void operator=(const RuntimeDyld &) = delete;
    190   ~RuntimeDyld();
    191 
    192   /// Add the referenced object file to the list of objects to be loaded and
    193   /// relocated.
    194   std::unique_ptr<LoadedObjectInfo> loadObject(const object::ObjectFile &O);
    195 
    196   /// Get the address of our local copy of the symbol. This may or may not
    197   /// be the address used for relocation (clients can copy the data around
    198   /// and resolve relocatons based on where they put it).
    199   void *getSymbolLocalAddress(StringRef Name) const;
    200 
    201   /// Get the target address and flags for the named symbol.
    202   /// This address is the one used for relocation.
    203   JITEvaluatedSymbol getSymbol(StringRef Name) const;
    204 
    205   /// Resolve the relocations for all symbols we currently know about.
    206   void resolveRelocations();
    207 
    208   /// Map a section to its target address space value.
    209   /// Map the address of a JIT section as returned from the memory manager
    210   /// to the address in the target process as the running code will see it.
    211   /// This is the address which will be used for relocation resolution.
    212   void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
    213 
    214   /// Register any EH frame sections that have been loaded but not previously
    215   /// registered with the memory manager.  Note, RuntimeDyld is responsible
    216   /// for identifying the EH frame and calling the memory manager with the
    217   /// EH frame section data.  However, the memory manager itself will handle
    218   /// the actual target-specific EH frame registration.
    219   void registerEHFrames();
    220 
    221   void deregisterEHFrames();
    222 
    223   bool hasError();
    224   StringRef getErrorString();
    225 
    226   /// By default, only sections that are "required for execution" are passed to
    227   /// the RTDyldMemoryManager, and other sections are discarded. Passing 'true'
    228   /// to this method will cause RuntimeDyld to pass all sections to its
    229   /// memory manager regardless of whether they are "required to execute" in the
    230   /// usual sense. This is useful for inspecting metadata sections that may not
    231   /// contain relocations, E.g. Debug info, stackmaps.
    232   ///
    233   /// Must be called before the first object file is loaded.
    234   void setProcessAllSections(bool ProcessAllSections) {
    235     assert(!Dyld && "setProcessAllSections must be called before loadObject.");
    236     this->ProcessAllSections = ProcessAllSections;
    237   }
    238 
    239   /// Perform all actions needed to make the code owned by this RuntimeDyld
    240   /// instance executable:
    241   ///
    242   /// 1) Apply relocations.
    243   /// 2) Register EH frames.
    244   /// 3) Update memory permissions*.
    245   ///
    246   /// * Finalization is potentially recursive**, and the 3rd step will only be
    247   ///   applied by the outermost call to finalize. This allows different
    248   ///   RuntimeDyld instances to share a memory manager without the innermost
    249   ///   finalization locking the memory and causing relocation fixup errors in
    250   ///   outer instances.
    251   ///
    252   /// ** Recursive finalization occurs when one RuntimeDyld instances needs the
    253   ///   address of a symbol owned by some other instance in order to apply
    254   ///   relocations.
    255   ///
    256   void finalizeWithMemoryManagerLocking();
    257 
    258 private:
    259   // RuntimeDyldImpl is the actual class. RuntimeDyld is just the public
    260   // interface.
    261   std::unique_ptr<RuntimeDyldImpl> Dyld;
    262   MemoryManager &MemMgr;
    263   JITSymbolResolver &Resolver;
    264   bool ProcessAllSections;
    265   RuntimeDyldCheckerImpl *Checker;
    266 };
    267 
    268 } // end namespace llvm
    269 
    270 #endif // LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
    271