Home | History | Annotate | Download | only in CodeGen
      1 //===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file Implements the ScheduleDAGInstrs class, which implements scheduling
     11 /// for a MachineInstr-based dependency graph.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
     16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/PointerIntPair.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/SparseMultiSet.h"
     23 #include "llvm/ADT/SparseSet.h"
     24 #include "llvm/CodeGen/LivePhysRegs.h"
     25 #include "llvm/CodeGen/MachineBasicBlock.h"
     26 #include "llvm/CodeGen/ScheduleDAG.h"
     27 #include "llvm/CodeGen/TargetSchedule.h"
     28 #include "llvm/MC/LaneBitmask.h"
     29 #include "llvm/Target/TargetRegisterInfo.h"
     30 #include <cassert>
     31 #include <cstdint>
     32 #include <list>
     33 #include <utility>
     34 #include <vector>
     35 
     36 namespace llvm {
     37 
     38   class LiveIntervals;
     39   class MachineFrameInfo;
     40   class MachineFunction;
     41   class MachineInstr;
     42   class MachineLoopInfo;
     43   class MachineOperand;
     44   struct MCSchedClassDesc;
     45   class PressureDiffs;
     46   class PseudoSourceValue;
     47   class RegPressureTracker;
     48   class UndefValue;
     49   class Value;
     50 
     51   /// An individual mapping from virtual register number to SUnit.
     52   struct VReg2SUnit {
     53     unsigned VirtReg;
     54     LaneBitmask LaneMask;
     55     SUnit *SU;
     56 
     57     VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
     58       : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
     59 
     60     unsigned getSparseSetIndex() const {
     61       return TargetRegisterInfo::virtReg2Index(VirtReg);
     62     }
     63   };
     64 
     65   /// Mapping from virtual register to SUnit including an operand index.
     66   struct VReg2SUnitOperIdx : public VReg2SUnit {
     67     unsigned OperandIndex;
     68 
     69     VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
     70                       unsigned OperandIndex, SUnit *SU)
     71       : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
     72   };
     73 
     74   /// Record a physical register access.
     75   /// For non-data-dependent uses, OpIdx == -1.
     76   struct PhysRegSUOper {
     77     SUnit *SU;
     78     int OpIdx;
     79     unsigned Reg;
     80 
     81     PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
     82 
     83     unsigned getSparseSetIndex() const { return Reg; }
     84   };
     85 
     86   /// Use a SparseMultiSet to track physical registers. Storage is only
     87   /// allocated once for the pass. It can be cleared in constant time and reused
     88   /// without any frees.
     89   using Reg2SUnitsMap =
     90       SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
     91 
     92   /// Use SparseSet as a SparseMap by relying on the fact that it never
     93   /// compares ValueT's, only unsigned keys. This allows the set to be cleared
     94   /// between scheduling regions in constant time as long as ValueT does not
     95   /// require a destructor.
     96   using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>;
     97 
     98   /// Track local uses of virtual registers. These uses are gathered by the DAG
     99   /// builder and may be consulted by the scheduler to avoid iterating an entire
    100   /// vreg use list.
    101   using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
    102 
    103   using VReg2SUnitOperIdxMultiMap =
    104       SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
    105 
    106   using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
    107 
    108   struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> {
    109     UnderlyingObject(ValueType V, bool MayAlias)
    110         : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
    111 
    112     ValueType getValue() const { return getPointer(); }
    113     bool mayAlias() const { return getInt(); }
    114   };
    115 
    116   using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
    117 
    118   /// A ScheduleDAG for scheduling lists of MachineInstr.
    119   class ScheduleDAGInstrs : public ScheduleDAG {
    120   protected:
    121     const MachineLoopInfo *MLI;
    122     const MachineFrameInfo &MFI;
    123 
    124     /// TargetSchedModel provides an interface to the machine model.
    125     TargetSchedModel SchedModel;
    126 
    127     /// True if the DAG builder should remove kill flags (in preparation for
    128     /// rescheduling).
    129     bool RemoveKillFlags;
    130 
    131     /// The standard DAG builder does not normally include terminators as DAG
    132     /// nodes because it does not create the necessary dependencies to prevent
    133     /// reordering. A specialized scheduler can override
    134     /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
    135     /// it has taken responsibility for scheduling the terminator correctly.
    136     bool CanHandleTerminators = false;
    137 
    138     /// Whether lane masks should get tracked.
    139     bool TrackLaneMasks = false;
    140 
    141     // State specific to the current scheduling region.
    142     // ------------------------------------------------
    143 
    144     /// The block in which to insert instructions
    145     MachineBasicBlock *BB;
    146 
    147     /// The beginning of the range to be scheduled.
    148     MachineBasicBlock::iterator RegionBegin;
    149 
    150     /// The end of the range to be scheduled.
    151     MachineBasicBlock::iterator RegionEnd;
    152 
    153     /// Instructions in this region (distance(RegionBegin, RegionEnd)).
    154     unsigned NumRegionInstrs;
    155 
    156     /// After calling BuildSchedGraph, each machine instruction in the current
    157     /// scheduling region is mapped to an SUnit.
    158     DenseMap<MachineInstr*, SUnit*> MISUnitMap;
    159 
    160     // State internal to DAG building.
    161     // -------------------------------
    162 
    163     /// Defs, Uses - Remember where defs and uses of each register are as we
    164     /// iterate upward through the instructions. This is allocated here instead
    165     /// of inside BuildSchedGraph to avoid the need for it to be initialized and
    166     /// destructed for each block.
    167     Reg2SUnitsMap Defs;
    168     Reg2SUnitsMap Uses;
    169 
    170     /// Tracks the last instruction(s) in this region defining each virtual
    171     /// register. There may be multiple current definitions for a register with
    172     /// disjunct lanemasks.
    173     VReg2SUnitMultiMap CurrentVRegDefs;
    174     /// Tracks the last instructions in this region using each virtual register.
    175     VReg2SUnitOperIdxMultiMap CurrentVRegUses;
    176 
    177     AliasAnalysis *AAForDep = nullptr;
    178 
    179     /// Remember a generic side-effecting instruction as we proceed.
    180     /// No other SU ever gets scheduled around it (except in the special
    181     /// case of a huge region that gets reduced).
    182     SUnit *BarrierChain = nullptr;
    183 
    184   public:
    185     /// A list of SUnits, used in Value2SUsMap, during DAG construction.
    186     /// Note: to gain speed it might be worth investigating an optimized
    187     /// implementation of this data structure, such as a singly linked list
    188     /// with a memory pool (SmallVector was tried but slow and SparseSet is not
    189     /// applicable).
    190     using SUList = std::list<SUnit *>;
    191 
    192   protected:
    193     /// \brief A map from ValueType to SUList, used during DAG construction, as
    194     /// a means of remembering which SUs depend on which memory locations.
    195     class Value2SUsMap;
    196 
    197     /// Reduces maps in FIFO order, by N SUs. This is better than turning
    198     /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
    199     /// it avoids unnecessary edges between seen SUs above the new BarrierChain,
    200     /// and those below it.
    201     void reduceHugeMemNodeMaps(Value2SUsMap &stores,
    202                                Value2SUsMap &loads, unsigned N);
    203 
    204     /// \brief Adds a chain edge between SUa and SUb, but only if both
    205     /// AliasAnalysis and Target fail to deny the dependency.
    206     void addChainDependency(SUnit *SUa, SUnit *SUb,
    207                             unsigned Latency = 0);
    208 
    209     /// Adds dependencies as needed from all SUs in list to SU.
    210     void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) {
    211       for (SUnit *Entry : SUs)
    212         addChainDependency(SU, Entry, Latency);
    213     }
    214 
    215     /// Adds dependencies as needed from all SUs in map, to SU.
    216     void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
    217 
    218     /// Adds dependencies as needed to SU, from all SUs mapped to V.
    219     void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap,
    220                               ValueType V);
    221 
    222     /// Adds barrier chain edges from all SUs in map, and then clear the map.
    223     /// This is equivalent to insertBarrierChain(), but optimized for the common
    224     /// case where the new BarrierChain (a global memory object) has a higher
    225     /// NodeNum than all SUs in map. It is assumed BarrierChain has been set
    226     /// before calling this.
    227     void addBarrierChain(Value2SUsMap &map);
    228 
    229     /// Inserts a barrier chain in a huge region, far below current SU.
    230     /// Adds barrier chain edges from all SUs in map with higher NodeNums than
    231     /// this new BarrierChain, and remove them from map. It is assumed
    232     /// BarrierChain has been set before calling this.
    233     void insertBarrierChain(Value2SUsMap &map);
    234 
    235     /// For an unanalyzable memory access, this Value is used in maps.
    236     UndefValue *UnknownValue;
    237 
    238     using DbgValueVector =
    239         std::vector<std::pair<MachineInstr *, MachineInstr *>>;
    240     /// Remember instruction that precedes DBG_VALUE.
    241     /// These are generated by buildSchedGraph but persist so they can be
    242     /// referenced when emitting the final schedule.
    243     DbgValueVector DbgValues;
    244     MachineInstr *FirstDbgValue = nullptr;
    245 
    246     /// Set of live physical registers for updating kill flags.
    247     LivePhysRegs LiveRegs;
    248 
    249   public:
    250     explicit ScheduleDAGInstrs(MachineFunction &mf,
    251                                const MachineLoopInfo *mli,
    252                                bool RemoveKillFlags = false);
    253 
    254     ~ScheduleDAGInstrs() override = default;
    255 
    256     /// Gets the machine model for instruction scheduling.
    257     const TargetSchedModel *getSchedModel() const { return &SchedModel; }
    258 
    259     /// Resolves and cache a resolved scheduling class for an SUnit.
    260     const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
    261       if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
    262         SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
    263       return SU->SchedClass;
    264     }
    265 
    266     /// Returns an iterator to the top of the current scheduling region.
    267     MachineBasicBlock::iterator begin() const { return RegionBegin; }
    268 
    269     /// Returns an iterator to the bottom of the current scheduling region.
    270     MachineBasicBlock::iterator end() const { return RegionEnd; }
    271 
    272     /// Creates a new SUnit and return a ptr to it.
    273     SUnit *newSUnit(MachineInstr *MI);
    274 
    275     /// Returns an existing SUnit for this MI, or nullptr.
    276     SUnit *getSUnit(MachineInstr *MI) const;
    277 
    278     /// Prepares to perform scheduling in the given block.
    279     virtual void startBlock(MachineBasicBlock *BB);
    280 
    281     /// Cleans up after scheduling in the given block.
    282     virtual void finishBlock();
    283 
    284     /// \brief Initialize the DAG and common scheduler state for a new
    285     /// scheduling region. This does not actually create the DAG, only clears
    286     /// it. The scheduling driver may call BuildSchedGraph multiple times per
    287     /// scheduling region.
    288     virtual void enterRegion(MachineBasicBlock *bb,
    289                              MachineBasicBlock::iterator begin,
    290                              MachineBasicBlock::iterator end,
    291                              unsigned regioninstrs);
    292 
    293     /// Called when the scheduler has finished scheduling the current region.
    294     virtual void exitRegion();
    295 
    296     /// Builds SUnits for the current region.
    297     /// If \p RPTracker is non-null, compute register pressure as a side effect.
    298     /// The DAG builder is an efficient place to do it because it already visits
    299     /// operands.
    300     void buildSchedGraph(AliasAnalysis *AA,
    301                          RegPressureTracker *RPTracker = nullptr,
    302                          PressureDiffs *PDiffs = nullptr,
    303                          LiveIntervals *LIS = nullptr,
    304                          bool TrackLaneMasks = false);
    305 
    306     /// \brief Adds dependencies from instructions in the current list of
    307     /// instructions being scheduled to scheduling barrier. We want to make sure
    308     /// instructions which define registers that are either used by the
    309     /// terminator or are live-out are properly scheduled. This is especially
    310     /// important when the definition latency of the return value(s) are too
    311     /// high to be hidden by the branch or when the liveout registers used by
    312     /// instructions in the fallthrough block.
    313     void addSchedBarrierDeps();
    314 
    315     /// Orders nodes according to selected style.
    316     ///
    317     /// Typically, a scheduling algorithm will implement schedule() without
    318     /// overriding enterRegion() or exitRegion().
    319     virtual void schedule() = 0;
    320 
    321     /// Allow targets to perform final scheduling actions at the level of the
    322     /// whole MachineFunction. By default does nothing.
    323     virtual void finalizeSchedule() {}
    324 
    325     void dumpNode(const SUnit *SU) const override;
    326 
    327     /// Returns a label for a DAG node that points to an instruction.
    328     std::string getGraphNodeLabel(const SUnit *SU) const override;
    329 
    330     /// Returns a label for the region of code covered by the DAG.
    331     std::string getDAGName() const override;
    332 
    333     /// Fixes register kill flags that scheduling has made invalid.
    334     void fixupKills(MachineBasicBlock &MBB);
    335 
    336   protected:
    337     void initSUnits();
    338     void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
    339     void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
    340     void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
    341     void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
    342 
    343     /// Initializes register live-range state for updating kills.
    344     /// PostRA helper for rewriting kill flags.
    345     void startBlockForKills(MachineBasicBlock *BB);
    346 
    347     /// Toggles a register operand kill flag.
    348     ///
    349     /// Other adjustments may be made to the instruction if necessary. Return
    350     /// true if the operand has been deleted, false if not.
    351     void toggleKillFlag(MachineInstr &MI, MachineOperand &MO);
    352 
    353     /// Returns a mask for which lanes get read/written by the given (register)
    354     /// machine operand.
    355     LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
    356   };
    357 
    358   /// Creates a new SUnit and return a ptr to it.
    359   inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
    360 #ifndef NDEBUG
    361     const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
    362 #endif
    363     SUnits.emplace_back(MI, (unsigned)SUnits.size());
    364     assert((Addr == nullptr || Addr == &SUnits[0]) &&
    365            "SUnits std::vector reallocated on the fly!");
    366     return &SUnits.back();
    367   }
    368 
    369   /// Returns an existing SUnit for this MI, or nullptr.
    370   inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
    371     DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
    372     if (I == MISUnitMap.end())
    373       return nullptr;
    374     return I->second;
    375   }
    376 
    377 } // end namespace llvm
    378 
    379 #endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
    380