Home | History | Annotate | Download | only in PathSensitive
      1 // SValBuilder.h - Construction of SVals from evaluating expressions -*- C++ -*-
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines SValBuilder, a class that defines the interface for
     11 //  "symbolical evaluators" which construct an SVal from an expression.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
     16 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
     17 
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
     22 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
     23 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
     24 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
     25 
     26 namespace clang {
     27 
     28 class CXXBoolLiteralExpr;
     29 
     30 namespace ento {
     31 
     32 class SValBuilder {
     33   virtual void anchor();
     34 protected:
     35   ASTContext &Context;
     36 
     37   /// Manager of APSInt values.
     38   BasicValueFactory BasicVals;
     39 
     40   /// Manages the creation of symbols.
     41   SymbolManager SymMgr;
     42 
     43   /// Manages the creation of memory regions.
     44   MemRegionManager MemMgr;
     45 
     46   ProgramStateManager &StateMgr;
     47 
     48   /// The scalar type to use for array indices.
     49   const QualType ArrayIndexTy;
     50 
     51   /// The width of the scalar type used for array indices.
     52   const unsigned ArrayIndexWidth;
     53 
     54   virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy) = 0;
     55   virtual SVal evalCastFromLoc(Loc val, QualType castTy) = 0;
     56 
     57 public:
     58   // FIXME: Make these protected again once RegionStoreManager correctly
     59   // handles loads from different bound value types.
     60   virtual SVal dispatchCast(SVal val, QualType castTy) = 0;
     61 
     62 public:
     63   SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
     64               ProgramStateManager &stateMgr)
     65     : Context(context), BasicVals(context, alloc),
     66       SymMgr(context, BasicVals, alloc),
     67       MemMgr(context, alloc),
     68       StateMgr(stateMgr),
     69       ArrayIndexTy(context.LongLongTy),
     70       ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}
     71 
     72   virtual ~SValBuilder() {}
     73 
     74   bool haveSameType(const SymExpr *Sym1, const SymExpr *Sym2) {
     75     return haveSameType(Sym1->getType(), Sym2->getType());
     76   }
     77 
     78   bool haveSameType(QualType Ty1, QualType Ty2) {
     79     // FIXME: Remove the second disjunct when we support symbolic
     80     // truncation/extension.
     81     return (Context.getCanonicalType(Ty1) == Context.getCanonicalType(Ty2) ||
     82             (Ty1->isIntegralOrEnumerationType() &&
     83              Ty2->isIntegralOrEnumerationType()));
     84   }
     85 
     86   SVal evalCast(SVal val, QualType castTy, QualType originalType);
     87 
     88   // Handles casts of type CK_IntegralCast.
     89   SVal evalIntegralCast(ProgramStateRef state, SVal val, QualType castTy,
     90                         QualType originalType);
     91 
     92   virtual SVal evalMinus(NonLoc val) = 0;
     93 
     94   virtual SVal evalComplement(NonLoc val) = 0;
     95 
     96   /// Create a new value which represents a binary expression with two non-
     97   /// location operands.
     98   virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
     99                            NonLoc lhs, NonLoc rhs, QualType resultTy) = 0;
    100 
    101   /// Create a new value which represents a binary expression with two memory
    102   /// location operands.
    103   virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
    104                            Loc lhs, Loc rhs, QualType resultTy) = 0;
    105 
    106   /// Create a new value which represents a binary expression with a memory
    107   /// location and non-location operands. For example, this would be used to
    108   /// evaluate a pointer arithmetic operation.
    109   virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
    110                            Loc lhs, NonLoc rhs, QualType resultTy) = 0;
    111 
    112   /// Evaluates a given SVal. If the SVal has only one possible (integer) value,
    113   /// that value is returned. Otherwise, returns NULL.
    114   virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal val) = 0;
    115 
    116   /// Constructs a symbolic expression for two non-location values.
    117   SVal makeSymExprValNN(ProgramStateRef state, BinaryOperator::Opcode op,
    118                       NonLoc lhs, NonLoc rhs, QualType resultTy);
    119 
    120   SVal evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
    121                  SVal lhs, SVal rhs, QualType type);
    122 
    123   DefinedOrUnknownSVal evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs,
    124                               DefinedOrUnknownSVal rhs);
    125 
    126   ASTContext &getContext() { return Context; }
    127   const ASTContext &getContext() const { return Context; }
    128 
    129   ProgramStateManager &getStateManager() { return StateMgr; }
    130 
    131   QualType getConditionType() const {
    132     return Context.getLangOpts().CPlusPlus ? Context.BoolTy : Context.IntTy;
    133   }
    134 
    135   QualType getArrayIndexType() const {
    136     return ArrayIndexTy;
    137   }
    138 
    139   BasicValueFactory &getBasicValueFactory() { return BasicVals; }
    140   const BasicValueFactory &getBasicValueFactory() const { return BasicVals; }
    141 
    142   SymbolManager &getSymbolManager() { return SymMgr; }
    143   const SymbolManager &getSymbolManager() const { return SymMgr; }
    144 
    145   MemRegionManager &getRegionManager() { return MemMgr; }
    146   const MemRegionManager &getRegionManager() const { return MemMgr; }
    147 
    148   // Forwarding methods to SymbolManager.
    149 
    150   const SymbolConjured* conjureSymbol(const Stmt *stmt,
    151                                       const LocationContext *LCtx,
    152                                       QualType type,
    153                                       unsigned visitCount,
    154                                       const void *symbolTag = nullptr) {
    155     return SymMgr.conjureSymbol(stmt, LCtx, type, visitCount, symbolTag);
    156   }
    157 
    158   const SymbolConjured* conjureSymbol(const Expr *expr,
    159                                       const LocationContext *LCtx,
    160                                       unsigned visitCount,
    161                                       const void *symbolTag = nullptr) {
    162     return SymMgr.conjureSymbol(expr, LCtx, visitCount, symbolTag);
    163   }
    164 
    165   /// Construct an SVal representing '0' for the specified type.
    166   DefinedOrUnknownSVal makeZeroVal(QualType type);
    167 
    168   /// Make a unique symbol for value of region.
    169   DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region);
    170 
    171   /// \brief Create a new symbol with a unique 'name'.
    172   ///
    173   /// We resort to conjured symbols when we cannot construct a derived symbol.
    174   /// The advantage of symbols derived/built from other symbols is that we
    175   /// preserve the relation between related(or even equivalent) expressions, so
    176   /// conjured symbols should be used sparingly.
    177   DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
    178                                         const Expr *expr,
    179                                         const LocationContext *LCtx,
    180                                         unsigned count);
    181   DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
    182                                         const Expr *expr,
    183                                         const LocationContext *LCtx,
    184                                         QualType type,
    185                                         unsigned count);
    186 
    187   DefinedOrUnknownSVal conjureSymbolVal(const Stmt *stmt,
    188                                         const LocationContext *LCtx,
    189                                         QualType type,
    190                                         unsigned visitCount);
    191   /// \brief Conjure a symbol representing heap allocated memory region.
    192   ///
    193   /// Note, the expression should represent a location.
    194   DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E,
    195                                                 const LocationContext *LCtx,
    196                                                 unsigned Count);
    197 
    198   DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(
    199       SymbolRef parentSymbol, const TypedValueRegion *region);
    200 
    201   DefinedSVal getMetadataSymbolVal(const void *symbolTag,
    202                                    const MemRegion *region,
    203                                    const Expr *expr, QualType type,
    204                                    const LocationContext *LCtx,
    205                                    unsigned count);
    206 
    207   DefinedSVal getMemberPointer(const DeclaratorDecl *DD);
    208 
    209   DefinedSVal getFunctionPointer(const FunctionDecl *func);
    210 
    211   DefinedSVal getBlockPointer(const BlockDecl *block, CanQualType locTy,
    212                               const LocationContext *locContext,
    213                               unsigned blockCount);
    214 
    215   /// Returns the value of \p E, if it can be determined in a non-path-sensitive
    216   /// manner.
    217   ///
    218   /// If \p E is not a constant or cannot be modeled, returns \c None.
    219   Optional<SVal> getConstantVal(const Expr *E);
    220 
    221   NonLoc makeCompoundVal(QualType type, llvm::ImmutableList<SVal> vals) {
    222     return nonloc::CompoundVal(BasicVals.getCompoundValData(type, vals));
    223   }
    224 
    225   NonLoc makeLazyCompoundVal(const StoreRef &store,
    226                              const TypedValueRegion *region) {
    227     return nonloc::LazyCompoundVal(
    228         BasicVals.getLazyCompoundValData(store, region));
    229   }
    230 
    231   NonLoc makePointerToMember(const DeclaratorDecl *DD) {
    232     return nonloc::PointerToMember(DD);
    233   }
    234 
    235   NonLoc makePointerToMember(const PointerToMemberData *PTMD) {
    236     return nonloc::PointerToMember(PTMD);
    237   }
    238 
    239   NonLoc makeZeroArrayIndex() {
    240     return nonloc::ConcreteInt(BasicVals.getValue(0, ArrayIndexTy));
    241   }
    242 
    243   NonLoc makeArrayIndex(uint64_t idx) {
    244     return nonloc::ConcreteInt(BasicVals.getValue(idx, ArrayIndexTy));
    245   }
    246 
    247   SVal convertToArrayIndex(SVal val);
    248 
    249   nonloc::ConcreteInt makeIntVal(const IntegerLiteral* integer) {
    250     return nonloc::ConcreteInt(
    251         BasicVals.getValue(integer->getValue(),
    252                      integer->getType()->isUnsignedIntegerOrEnumerationType()));
    253   }
    254 
    255   nonloc::ConcreteInt makeBoolVal(const ObjCBoolLiteralExpr *boolean) {
    256     return makeTruthVal(boolean->getValue(), boolean->getType());
    257   }
    258 
    259   nonloc::ConcreteInt makeBoolVal(const CXXBoolLiteralExpr *boolean);
    260 
    261   nonloc::ConcreteInt makeIntVal(const llvm::APSInt& integer) {
    262     return nonloc::ConcreteInt(BasicVals.getValue(integer));
    263   }
    264 
    265   loc::ConcreteInt makeIntLocVal(const llvm::APSInt &integer) {
    266     return loc::ConcreteInt(BasicVals.getValue(integer));
    267   }
    268 
    269   NonLoc makeIntVal(const llvm::APInt& integer, bool isUnsigned) {
    270     return nonloc::ConcreteInt(BasicVals.getValue(integer, isUnsigned));
    271   }
    272 
    273   DefinedSVal makeIntVal(uint64_t integer, QualType type) {
    274     if (Loc::isLocType(type))
    275       return loc::ConcreteInt(BasicVals.getValue(integer, type));
    276 
    277     return nonloc::ConcreteInt(BasicVals.getValue(integer, type));
    278   }
    279 
    280   NonLoc makeIntVal(uint64_t integer, bool isUnsigned) {
    281     return nonloc::ConcreteInt(BasicVals.getIntValue(integer, isUnsigned));
    282   }
    283 
    284   NonLoc makeIntValWithPtrWidth(uint64_t integer, bool isUnsigned) {
    285     return nonloc::ConcreteInt(
    286         BasicVals.getIntWithPtrWidth(integer, isUnsigned));
    287   }
    288 
    289   NonLoc makeLocAsInteger(Loc loc, unsigned bits) {
    290     return nonloc::LocAsInteger(BasicVals.getPersistentSValWithData(loc, bits));
    291   }
    292 
    293   NonLoc makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
    294                     const llvm::APSInt& rhs, QualType type);
    295 
    296   NonLoc makeNonLoc(const llvm::APSInt& rhs, BinaryOperator::Opcode op,
    297                     const SymExpr *lhs, QualType type);
    298 
    299   NonLoc makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
    300                     const SymExpr *rhs, QualType type);
    301 
    302   /// \brief Create a NonLoc value for cast.
    303   NonLoc makeNonLoc(const SymExpr *operand, QualType fromTy, QualType toTy);
    304 
    305   nonloc::ConcreteInt makeTruthVal(bool b, QualType type) {
    306     return nonloc::ConcreteInt(BasicVals.getTruthValue(b, type));
    307   }
    308 
    309   nonloc::ConcreteInt makeTruthVal(bool b) {
    310     return nonloc::ConcreteInt(BasicVals.getTruthValue(b));
    311   }
    312 
    313   Loc makeNull() {
    314     return loc::ConcreteInt(BasicVals.getZeroWithPtrWidth());
    315   }
    316 
    317   Loc makeLoc(SymbolRef sym) {
    318     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
    319   }
    320 
    321   Loc makeLoc(const MemRegion* region) {
    322     return loc::MemRegionVal(region);
    323   }
    324 
    325   Loc makeLoc(const AddrLabelExpr *expr) {
    326     return loc::GotoLabel(expr->getLabel());
    327   }
    328 
    329   Loc makeLoc(const llvm::APSInt& integer) {
    330     return loc::ConcreteInt(BasicVals.getValue(integer));
    331   }
    332 
    333   /// Return a memory region for the 'this' object reference.
    334   loc::MemRegionVal getCXXThis(const CXXMethodDecl *D,
    335                                const StackFrameContext *SFC);
    336 
    337   /// Return a memory region for the 'this' object reference.
    338   loc::MemRegionVal getCXXThis(const CXXRecordDecl *D,
    339                                const StackFrameContext *SFC);
    340 };
    341 
    342 SValBuilder* createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
    343                                      ASTContext &context,
    344                                      ProgramStateManager &stateMgr);
    345 
    346 } // end GR namespace
    347 
    348 } // end clang namespace
    349 
    350 #endif
    351