Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetFrameLowering.h ---------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Interface to describe the layout of a stack frame on the target machine.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETFRAMELOWERING_H
     15 #define LLVM_TARGET_TARGETFRAMELOWERING_H
     16 
     17 #include "llvm/CodeGen/MachineBasicBlock.h"
     18 #include <utility>
     19 #include <vector>
     20 
     21 namespace llvm {
     22   class BitVector;
     23   class CalleeSavedInfo;
     24   class MachineFunction;
     25   class RegScavenger;
     26 
     27 /// Information about stack frame layout on the target.  It holds the direction
     28 /// of stack growth, the known stack alignment on entry to each function, and
     29 /// the offset to the locals area.
     30 ///
     31 /// The offset to the local area is the offset from the stack pointer on
     32 /// function entry to the first location where function data (local variables,
     33 /// spill locations) can be stored.
     34 class TargetFrameLowering {
     35 public:
     36   enum StackDirection {
     37     StackGrowsUp,        // Adding to the stack increases the stack address
     38     StackGrowsDown       // Adding to the stack decreases the stack address
     39   };
     40 
     41   // Maps a callee saved register to a stack slot with a fixed offset.
     42   struct SpillSlot {
     43     unsigned Reg;
     44     int Offset; // Offset relative to stack pointer on function entry.
     45   };
     46 private:
     47   StackDirection StackDir;
     48   unsigned StackAlignment;
     49   unsigned TransientStackAlignment;
     50   int LocalAreaOffset;
     51   bool StackRealignable;
     52 public:
     53   TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO,
     54                       unsigned TransAl = 1, bool StackReal = true)
     55     : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl),
     56       LocalAreaOffset(LAO), StackRealignable(StackReal) {}
     57 
     58   virtual ~TargetFrameLowering();
     59 
     60   // These methods return information that describes the abstract stack layout
     61   // of the target machine.
     62 
     63   /// getStackGrowthDirection - Return the direction the stack grows
     64   ///
     65   StackDirection getStackGrowthDirection() const { return StackDir; }
     66 
     67   /// getStackAlignment - This method returns the number of bytes to which the
     68   /// stack pointer must be aligned on entry to a function.  Typically, this
     69   /// is the largest alignment for any data object in the target.
     70   ///
     71   unsigned getStackAlignment() const { return StackAlignment; }
     72 
     73   /// alignSPAdjust - This method aligns the stack adjustment to the correct
     74   /// alignment.
     75   ///
     76   int alignSPAdjust(int SPAdj) const {
     77     if (SPAdj < 0) {
     78       SPAdj = -alignTo(-SPAdj, StackAlignment);
     79     } else {
     80       SPAdj = alignTo(SPAdj, StackAlignment);
     81     }
     82     return SPAdj;
     83   }
     84 
     85   /// getTransientStackAlignment - This method returns the number of bytes to
     86   /// which the stack pointer must be aligned at all times, even between
     87   /// calls.
     88   ///
     89   unsigned getTransientStackAlignment() const {
     90     return TransientStackAlignment;
     91   }
     92 
     93   /// isStackRealignable - This method returns whether the stack can be
     94   /// realigned.
     95   bool isStackRealignable() const {
     96     return StackRealignable;
     97   }
     98 
     99   /// Return the skew that has to be applied to stack alignment under
    100   /// certain conditions (e.g. stack was adjusted before function \p MF
    101   /// was called).
    102   virtual unsigned getStackAlignmentSkew(const MachineFunction &MF) const;
    103 
    104   /// getOffsetOfLocalArea - This method returns the offset of the local area
    105   /// from the stack pointer on entrance to a function.
    106   ///
    107   int getOffsetOfLocalArea() const { return LocalAreaOffset; }
    108 
    109   /// isFPCloseToIncomingSP - Return true if the frame pointer is close to
    110   /// the incoming stack pointer, false if it is close to the post-prologue
    111   /// stack pointer.
    112   virtual bool isFPCloseToIncomingSP() const { return true; }
    113 
    114   /// assignCalleeSavedSpillSlots - Allows target to override spill slot
    115   /// assignment logic.  If implemented, assignCalleeSavedSpillSlots() should
    116   /// assign frame slots to all CSI entries and return true.  If this method
    117   /// returns false, spill slots will be assigned using generic implementation.
    118   /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of
    119   /// CSI.
    120   virtual bool
    121   assignCalleeSavedSpillSlots(MachineFunction &MF,
    122                               const TargetRegisterInfo *TRI,
    123                               std::vector<CalleeSavedInfo> &CSI) const {
    124     return false;
    125   }
    126 
    127   /// getCalleeSavedSpillSlots - This method returns a pointer to an array of
    128   /// pairs, that contains an entry for each callee saved register that must be
    129   /// spilled to a particular stack location if it is spilled.
    130   ///
    131   /// Each entry in this array contains a <register,offset> pair, indicating the
    132   /// fixed offset from the incoming stack pointer that each register should be
    133   /// spilled at. If a register is not listed here, the code generator is
    134   /// allowed to spill it anywhere it chooses.
    135   ///
    136   virtual const SpillSlot *
    137   getCalleeSavedSpillSlots(unsigned &NumEntries) const {
    138     NumEntries = 0;
    139     return nullptr;
    140   }
    141 
    142   /// targetHandlesStackFrameRounding - Returns true if the target is
    143   /// responsible for rounding up the stack frame (probably at emitPrologue
    144   /// time).
    145   virtual bool targetHandlesStackFrameRounding() const {
    146     return false;
    147   }
    148 
    149   /// Returns true if the target will correctly handle shrink wrapping.
    150   virtual bool enableShrinkWrapping(const MachineFunction &MF) const {
    151     return false;
    152   }
    153 
    154   /// Returns true if the stack slot holes in the fixed and callee-save stack
    155   /// area should be used when allocating other stack locations to reduce stack
    156   /// size.
    157   virtual bool enableStackSlotScavenging(const MachineFunction &MF) const {
    158     return false;
    159   }
    160 
    161   /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
    162   /// the function.
    163   virtual void emitPrologue(MachineFunction &MF,
    164                             MachineBasicBlock &MBB) const = 0;
    165   virtual void emitEpilogue(MachineFunction &MF,
    166                             MachineBasicBlock &MBB) const = 0;
    167 
    168   /// Replace a StackProbe stub (if any) with the actual probe code inline
    169   virtual void inlineStackProbe(MachineFunction &MF,
    170                                 MachineBasicBlock &PrologueMBB) const {}
    171 
    172   /// Adjust the prologue to have the function use segmented stacks. This works
    173   /// by adding a check even before the "normal" function prologue.
    174   virtual void adjustForSegmentedStacks(MachineFunction &MF,
    175                                         MachineBasicBlock &PrologueMBB) const {}
    176 
    177   /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
    178   /// the assembly prologue to explicitly handle the stack.
    179   virtual void adjustForHiPEPrologue(MachineFunction &MF,
    180                                      MachineBasicBlock &PrologueMBB) const {}
    181 
    182   /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
    183   /// saved registers and returns true if it isn't possible / profitable to do
    184   /// so by issuing a series of store instructions via
    185   /// storeRegToStackSlot(). Returns false otherwise.
    186   virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
    187                                          MachineBasicBlock::iterator MI,
    188                                         const std::vector<CalleeSavedInfo> &CSI,
    189                                          const TargetRegisterInfo *TRI) const {
    190     return false;
    191   }
    192 
    193   /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
    194   /// saved registers and returns true if it isn't possible / profitable to do
    195   /// so by issuing a series of load instructions via loadRegToStackSlot().
    196   /// Returns false otherwise.
    197   virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
    198                                            MachineBasicBlock::iterator MI,
    199                                         const std::vector<CalleeSavedInfo> &CSI,
    200                                         const TargetRegisterInfo *TRI) const {
    201     return false;
    202   }
    203 
    204   /// Return true if the target needs to disable frame pointer elimination.
    205   virtual bool noFramePointerElim(const MachineFunction &MF) const;
    206 
    207   /// hasFP - Return true if the specified function should have a dedicated
    208   /// frame pointer register. For most targets this is true only if the function
    209   /// has variable sized allocas or if frame pointer elimination is disabled.
    210   virtual bool hasFP(const MachineFunction &MF) const = 0;
    211 
    212   /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
    213   /// not required, we reserve argument space for call sites in the function
    214   /// immediately on entry to the current function. This eliminates the need for
    215   /// add/sub sp brackets around call sites. Returns true if the call frame is
    216   /// included as part of the stack frame.
    217   virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
    218     return !hasFP(MF);
    219   }
    220 
    221   /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
    222   /// call frame pseudo ops before doing frame index elimination. This is
    223   /// possible only when frame index references between the pseudos won't
    224   /// need adjusting for the call frame adjustments. Normally, that's true
    225   /// if the function has a reserved call frame or a frame pointer. Some
    226   /// targets (Thumb2, for example) may have more complicated criteria,
    227   /// however, and can override this behavior.
    228   virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
    229     return hasReservedCallFrame(MF) || hasFP(MF);
    230   }
    231 
    232   // needsFrameIndexResolution - Do we need to perform FI resolution for
    233   // this function. Normally, this is required only when the function
    234   // has any stack objects. However, targets may want to override this.
    235   virtual bool needsFrameIndexResolution(const MachineFunction &MF) const;
    236 
    237   /// getFrameIndexReference - This method should return the base register
    238   /// and offset used to reference a frame index location. The offset is
    239   /// returned directly, and the base register is returned via FrameReg.
    240   virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
    241                                      unsigned &FrameReg) const;
    242 
    243   /// Same as \c getFrameIndexReference, except that the stack pointer (as
    244   /// opposed to the frame pointer) will be the preferred value for \p
    245   /// FrameReg. This is generally used for emitting statepoint or EH tables that
    246   /// use offsets from RSP.  If \p IgnoreSPUpdates is true, the returned
    247   /// offset is only guaranteed to be valid with respect to the value of SP at
    248   /// the end of the prologue.
    249   virtual int getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI,
    250                                              unsigned &FrameReg,
    251                                              bool IgnoreSPUpdates) const {
    252     // Always safe to dispatch to getFrameIndexReference.
    253     return getFrameIndexReference(MF, FI, FrameReg);
    254   }
    255 
    256   /// This method determines which of the registers reported by
    257   /// TargetRegisterInfo::getCalleeSavedRegs() should actually get saved.
    258   /// The default implementation checks populates the \p SavedRegs bitset with
    259   /// all registers which are modified in the function, targets may override
    260   /// this function to save additional registers.
    261   /// This method also sets up the register scavenger ensuring there is a free
    262   /// register or a frameindex available.
    263   virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs,
    264                                     RegScavenger *RS = nullptr) const;
    265 
    266   /// processFunctionBeforeFrameFinalized - This method is called immediately
    267   /// before the specified function's frame layout (MF.getFrameInfo()) is
    268   /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
    269   /// replaced with direct constants.  This method is optional.
    270   ///
    271   virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF,
    272                                              RegScavenger *RS = nullptr) const {
    273   }
    274 
    275   virtual unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const {
    276     report_fatal_error("WinEH not implemented for this target");
    277   }
    278 
    279   /// This method is called during prolog/epilog code insertion to eliminate
    280   /// call frame setup and destroy pseudo instructions (but only if the Target
    281   /// is using them).  It is responsible for eliminating these instructions,
    282   /// replacing them with concrete instructions.  This method need only be
    283   /// implemented if using call frame setup/destroy pseudo instructions.
    284   /// Returns an iterator pointing to the instruction after the replaced one.
    285   virtual MachineBasicBlock::iterator
    286   eliminateCallFramePseudoInstr(MachineFunction &MF,
    287                                 MachineBasicBlock &MBB,
    288                                 MachineBasicBlock::iterator MI) const {
    289     llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
    290                      "target!");
    291   }
    292 
    293 
    294   /// Order the symbols in the local stack frame.
    295   /// The list of objects that we want to order is in \p objectsToAllocate as
    296   /// indices into the MachineFrameInfo. The array can be reordered in any way
    297   /// upon return. The contents of the array, however, may not be modified (i.e.
    298   /// only their order may be changed).
    299   /// By default, just maintain the original order.
    300   virtual void
    301   orderFrameObjects(const MachineFunction &MF,
    302                     SmallVectorImpl<int> &objectsToAllocate) const {
    303   }
    304 
    305   /// Check whether or not the given \p MBB can be used as a prologue
    306   /// for the target.
    307   /// The prologue will be inserted first in this basic block.
    308   /// This method is used by the shrink-wrapping pass to decide if
    309   /// \p MBB will be correctly handled by the target.
    310   /// As soon as the target enable shrink-wrapping without overriding
    311   /// this method, we assume that each basic block is a valid
    312   /// prologue.
    313   virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const {
    314     return true;
    315   }
    316 
    317   /// Check whether or not the given \p MBB can be used as a epilogue
    318   /// for the target.
    319   /// The epilogue will be inserted before the first terminator of that block.
    320   /// This method is used by the shrink-wrapping pass to decide if
    321   /// \p MBB will be correctly handled by the target.
    322   /// As soon as the target enable shrink-wrapping without overriding
    323   /// this method, we assume that each basic block is a valid
    324   /// epilogue.
    325   virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const {
    326     return true;
    327   }
    328 
    329   /// Check if given function is safe for not having callee saved registers.
    330   /// This is used when interprocedural register allocation is enabled.
    331   static bool isSafeForNoCSROpt(const Function *F) {
    332     if (!F->hasLocalLinkage() || F->hasAddressTaken() ||
    333         !F->hasFnAttribute(Attribute::NoRecurse))
    334       return false;
    335     // Function should not be optimized as tail call.
    336     for (const User *U : F->users())
    337       if (auto CS = ImmutableCallSite(U))
    338         if (CS.isTailCall())
    339           return false;
    340     return true;
    341   }
    342 };
    343 
    344 } // End llvm namespace
    345 
    346 #endif
    347