Home | History | Annotate | Download | only in Analysis
      1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the classes used to generate code from scalar expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
     15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
     16 
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/DenseSet.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     21 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
     22 #include "llvm/Analysis/TargetFolder.h"
     23 #include "llvm/IR/IRBuilder.h"
     24 #include "llvm/IR/ValueHandle.h"
     25 
     26 namespace llvm {
     27   class TargetTransformInfo;
     28 
     29   /// Return true if the given expression is safe to expand in the sense that
     30   /// all materialized values are safe to speculate.
     31   bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
     32 
     33   /// This class uses information about analyze scalars to rewrite expressions
     34   /// in canonical form.
     35   ///
     36   /// Clients should create an instance of this class when rewriting is needed,
     37   /// and destroy it when finished to allow the release of the associated
     38   /// memory.
     39   class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
     40     ScalarEvolution &SE;
     41     const DataLayout &DL;
     42 
     43     // New instructions receive a name to identifies them with the current pass.
     44     const char* IVName;
     45 
     46     // InsertedExpressions caches Values for reuse, so must track RAUW.
     47     DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
     48         InsertedExpressions;
     49 
     50     // InsertedValues only flags inserted instructions so needs no RAUW.
     51     DenseSet<AssertingVH<Value>> InsertedValues;
     52     DenseSet<AssertingVH<Value>> InsertedPostIncValues;
     53 
     54     /// A memoization of the "relevant" loop for a given SCEV.
     55     DenseMap<const SCEV *, const Loop *> RelevantLoops;
     56 
     57     /// Addrecs referring to any of the given loops are expanded in post-inc
     58     /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
     59     /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
     60     /// phi starting at 1. This is only supported in non-canonical mode.
     61     PostIncLoopSet PostIncLoops;
     62 
     63     /// When this is non-null, addrecs expanded in the loop it indicates should
     64     /// be inserted with increments at IVIncInsertPos.
     65     const Loop *IVIncInsertLoop;
     66 
     67     /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
     68     /// increment at this position.
     69     Instruction *IVIncInsertPos;
     70 
     71     /// Phis that complete an IV chain. Reuse
     72     DenseSet<AssertingVH<PHINode>> ChainedPhis;
     73 
     74     /// When true, expressions are expanded in "canonical" form. In particular,
     75     /// addrecs are expanded as arithmetic based on a canonical induction
     76     /// variable. When false, expression are expanded in a more literal form.
     77     bool CanonicalMode;
     78 
     79     /// When invoked from LSR, the expander is in "strength reduction" mode. The
     80     /// only difference is that phi's are only reused if they are already in
     81     /// "expanded" form.
     82     bool LSRMode;
     83 
     84     typedef IRBuilder<TargetFolder> BuilderType;
     85     BuilderType Builder;
     86 
     87     // RAII object that stores the current insertion point and restores it when
     88     // the object is destroyed. This includes the debug location.  Duplicated
     89     // from InsertPointGuard to add SetInsertPoint() which is used to updated
     90     // InsertPointGuards stack when insert points are moved during SCEV
     91     // expansion.
     92     class SCEVInsertPointGuard {
     93       IRBuilderBase &Builder;
     94       AssertingVH<BasicBlock> Block;
     95       BasicBlock::iterator Point;
     96       DebugLoc DbgLoc;
     97       SCEVExpander *SE;
     98 
     99       SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
    100       SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
    101 
    102     public:
    103       SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
    104           : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
    105             DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
    106         SE->InsertPointGuards.push_back(this);
    107       }
    108 
    109       ~SCEVInsertPointGuard() {
    110         // These guards should always created/destroyed in FIFO order since they
    111         // are used to guard lexically scoped blocks of code in
    112         // ScalarEvolutionExpander.
    113         assert(SE->InsertPointGuards.back() == this);
    114         SE->InsertPointGuards.pop_back();
    115         Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
    116         Builder.SetCurrentDebugLocation(DbgLoc);
    117       }
    118 
    119       BasicBlock::iterator GetInsertPoint() const { return Point; }
    120       void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
    121     };
    122 
    123     /// Stack of pointers to saved insert points, used to keep insert points
    124     /// consistent when instructions are moved.
    125     SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
    126 
    127 #ifndef NDEBUG
    128     const char *DebugType;
    129 #endif
    130 
    131     friend struct SCEVVisitor<SCEVExpander, Value*>;
    132 
    133   public:
    134     /// Construct a SCEVExpander in "canonical" mode.
    135     explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
    136                           const char *name)
    137         : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
    138           IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
    139           Builder(se.getContext(), TargetFolder(DL)) {
    140 #ifndef NDEBUG
    141       DebugType = "";
    142 #endif
    143     }
    144 
    145     ~SCEVExpander() {
    146       // Make sure the insert point guard stack is consistent.
    147       assert(InsertPointGuards.empty());
    148     }
    149 
    150 #ifndef NDEBUG
    151     void setDebugType(const char* s) { DebugType = s; }
    152 #endif
    153 
    154     /// Erase the contents of the InsertedExpressions map so that users trying
    155     /// to expand the same expression into multiple BasicBlocks or different
    156     /// places within the same BasicBlock can do so.
    157     void clear() {
    158       InsertedExpressions.clear();
    159       InsertedValues.clear();
    160       InsertedPostIncValues.clear();
    161       ChainedPhis.clear();
    162     }
    163 
    164     /// Return true for expressions that may incur non-trivial cost to evaluate
    165     /// at runtime.
    166     ///
    167     /// At is an optional parameter which specifies point in code where user is
    168     /// going to expand this expression. Sometimes this knowledge can lead to a
    169     /// more accurate cost estimation.
    170     bool isHighCostExpansion(const SCEV *Expr, Loop *L,
    171                              const Instruction *At = nullptr) {
    172       SmallPtrSet<const SCEV *, 8> Processed;
    173       return isHighCostExpansionHelper(Expr, L, At, Processed);
    174     }
    175 
    176     /// This method returns the canonical induction variable of the specified
    177     /// type for the specified loop (inserting one if there is none).  A
    178     /// canonical induction variable starts at zero and steps by one on each
    179     /// iteration.
    180     PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
    181 
    182     /// Return the induction variable increment's IV operand.
    183     Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
    184                                  bool allowScale);
    185 
    186     /// Utility for hoisting an IV increment.
    187     bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
    188 
    189     /// replace congruent phis with their most canonical representative. Return
    190     /// the number of phis eliminated.
    191     unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
    192                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts,
    193                                  const TargetTransformInfo *TTI = nullptr);
    194 
    195     /// Insert code to directly compute the specified SCEV expression into the
    196     /// program.  The inserted code is inserted into the specified block.
    197     Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
    198 
    199     /// Insert code to directly compute the specified SCEV expression into the
    200     /// program.  The inserted code is inserted into the SCEVExpander's current
    201     /// insertion point. If a type is specified, the result will be expanded to
    202     /// have that type, with a cast if necessary.
    203     Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
    204 
    205 
    206     /// Generates a code sequence that evaluates this predicate.  The inserted
    207     /// instructions will be at position \p Loc.  The result will be of type i1
    208     /// and will have a value of 0 when the predicate is false and 1 otherwise.
    209     Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
    210 
    211     /// A specialized variant of expandCodeForPredicate, handling the case when
    212     /// we are expanding code for a SCEVEqualPredicate.
    213     Value *expandEqualPredicate(const SCEVEqualPredicate *Pred,
    214                                 Instruction *Loc);
    215 
    216     /// Generates code that evaluates if the \p AR expression will overflow.
    217     Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
    218                                  bool Signed);
    219 
    220     /// A specialized variant of expandCodeForPredicate, handling the case when
    221     /// we are expanding code for a SCEVWrapPredicate.
    222     Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
    223 
    224     /// A specialized variant of expandCodeForPredicate, handling the case when
    225     /// we are expanding code for a SCEVUnionPredicate.
    226     Value *expandUnionPredicate(const SCEVUnionPredicate *Pred,
    227                                 Instruction *Loc);
    228 
    229     /// Set the current IV increment loop and position.
    230     void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
    231       assert(!CanonicalMode &&
    232              "IV increment positions are not supported in CanonicalMode");
    233       IVIncInsertLoop = L;
    234       IVIncInsertPos = Pos;
    235     }
    236 
    237     /// Enable post-inc expansion for addrecs referring to the given
    238     /// loops. Post-inc expansion is only supported in non-canonical mode.
    239     void setPostInc(const PostIncLoopSet &L) {
    240       assert(!CanonicalMode &&
    241              "Post-inc expansion is not supported in CanonicalMode");
    242       PostIncLoops = L;
    243     }
    244 
    245     /// Disable all post-inc expansion.
    246     void clearPostInc() {
    247       PostIncLoops.clear();
    248 
    249       // When we change the post-inc loop set, cached expansions may no
    250       // longer be valid.
    251       InsertedPostIncValues.clear();
    252     }
    253 
    254     /// Disable the behavior of expanding expressions in canonical form rather
    255     /// than in a more literal form. Non-canonical mode is useful for late
    256     /// optimization passes.
    257     void disableCanonicalMode() { CanonicalMode = false; }
    258 
    259     void enableLSRMode() { LSRMode = true; }
    260 
    261     /// Set the current insertion point. This is useful if multiple calls to
    262     /// expandCodeFor() are going to be made with the same insert point and the
    263     /// insert point may be moved during one of the expansions (e.g. if the
    264     /// insert point is not a block terminator).
    265     void setInsertPoint(Instruction *IP) {
    266       assert(IP);
    267       Builder.SetInsertPoint(IP);
    268     }
    269 
    270     /// Clear the current insertion point. This is useful if the instruction
    271     /// that had been serving as the insertion point may have been deleted.
    272     void clearInsertPoint() {
    273       Builder.ClearInsertionPoint();
    274     }
    275 
    276     /// Return true if the specified instruction was inserted by the code
    277     /// rewriter.  If so, the client should not modify the instruction.
    278     bool isInsertedInstruction(Instruction *I) const {
    279       return InsertedValues.count(I) || InsertedPostIncValues.count(I);
    280     }
    281 
    282     void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
    283 
    284     /// Try to find existing LLVM IR value for S available at the point At.
    285     Value *getExactExistingExpansion(const SCEV *S, const Instruction *At,
    286                                      Loop *L);
    287 
    288     /// Try to find the ValueOffsetPair for S. The function is mainly used to
    289     /// check whether S can be expanded cheaply.  If this returns a non-None
    290     /// value, we know we can codegen the `ValueOffsetPair` into a suitable
    291     /// expansion identical with S so that S can be expanded cheaply.
    292     ///
    293     /// L is a hint which tells in which loop to look for the suitable value.
    294     /// On success return value which is equivalent to the expanded S at point
    295     /// At. Return nullptr if value was not found.
    296     ///
    297     /// Note that this function does not perform an exhaustive search. I.e if it
    298     /// didn't find any value it does not mean that there is no such value.
    299     ///
    300     Optional<ScalarEvolution::ValueOffsetPair>
    301     getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
    302 
    303   private:
    304     LLVMContext &getContext() const { return SE.getContext(); }
    305 
    306     /// Recursive helper function for isHighCostExpansion.
    307     bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
    308                                    const Instruction *At,
    309                                    SmallPtrSetImpl<const SCEV *> &Processed);
    310 
    311     /// Insert the specified binary operator, doing a small amount of work to
    312     /// avoid inserting an obviously redundant operation.
    313     Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
    314 
    315     /// Arrange for there to be a cast of V to Ty at IP, reusing an existing
    316     /// cast if a suitable one exists, moving an existing cast if a suitable one
    317     /// exists but isn't in the right place, or or creating a new one.
    318     Value *ReuseOrCreateCast(Value *V, Type *Ty,
    319                              Instruction::CastOps Op,
    320                              BasicBlock::iterator IP);
    321 
    322     /// Insert a cast of V to the specified type, which must be possible with a
    323     /// noop cast, doing what we can to share the casts.
    324     Value *InsertNoopCastOfTo(Value *V, Type *Ty);
    325 
    326     /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
    327     /// ptrtoint+arithmetic+inttoptr.
    328     Value *expandAddToGEP(const SCEV *const *op_begin,
    329                           const SCEV *const *op_end,
    330                           PointerType *PTy, Type *Ty, Value *V);
    331 
    332     /// Find a previous Value in ExprValueMap for expand.
    333     ScalarEvolution::ValueOffsetPair
    334     FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
    335 
    336     Value *expand(const SCEV *S);
    337 
    338     /// Determine the most "relevant" loop for the given SCEV.
    339     const Loop *getRelevantLoop(const SCEV *);
    340 
    341     Value *visitConstant(const SCEVConstant *S) {
    342       return S->getValue();
    343     }
    344 
    345     Value *visitTruncateExpr(const SCEVTruncateExpr *S);
    346 
    347     Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
    348 
    349     Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
    350 
    351     Value *visitAddExpr(const SCEVAddExpr *S);
    352 
    353     Value *visitMulExpr(const SCEVMulExpr *S);
    354 
    355     Value *visitUDivExpr(const SCEVUDivExpr *S);
    356 
    357     Value *visitAddRecExpr(const SCEVAddRecExpr *S);
    358 
    359     Value *visitSMaxExpr(const SCEVSMaxExpr *S);
    360 
    361     Value *visitUMaxExpr(const SCEVUMaxExpr *S);
    362 
    363     Value *visitUnknown(const SCEVUnknown *S) {
    364       return S->getValue();
    365     }
    366 
    367     void rememberInstruction(Value *I);
    368 
    369     bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
    370 
    371     bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
    372 
    373     Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
    374     PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
    375                                        const Loop *L,
    376                                        Type *ExpandTy,
    377                                        Type *IntTy,
    378                                        Type *&TruncTy,
    379                                        bool &InvertStep);
    380     Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
    381                        Type *ExpandTy, Type *IntTy, bool useSubtract);
    382 
    383     void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
    384                         Instruction *Pos, PHINode *LoopPhi);
    385 
    386     void fixupInsertPoints(Instruction *I);
    387   };
    388 }
    389 
    390 #endif
    391