Home | History | Annotate | Download | only in Analysis
      1 //===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file provides helpers for the implementation of
     11 /// a TargetTransformInfo-conforming class.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
     16 #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
     17 
     18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     19 #include "llvm/Analysis/TargetTransformInfo.h"
     20 #include "llvm/Analysis/VectorUtils.h"
     21 #include "llvm/IR/CallSite.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/GetElementPtrTypeIterator.h"
     25 #include "llvm/IR/Operator.h"
     26 #include "llvm/IR/Type.h"
     27 
     28 namespace llvm {
     29 
     30 /// \brief Base class for use as a mix-in that aids implementing
     31 /// a TargetTransformInfo-compatible class.
     32 class TargetTransformInfoImplBase {
     33 protected:
     34   typedef TargetTransformInfo TTI;
     35 
     36   const DataLayout &DL;
     37 
     38   explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
     39 
     40 public:
     41   // Provide value semantics. MSVC requires that we spell all of these out.
     42   TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
     43       : DL(Arg.DL) {}
     44   TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
     45 
     46   const DataLayout &getDataLayout() const { return DL; }
     47 
     48   unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
     49     switch (Opcode) {
     50     default:
     51       // By default, just classify everything as 'basic'.
     52       return TTI::TCC_Basic;
     53 
     54     case Instruction::GetElementPtr:
     55       llvm_unreachable("Use getGEPCost for GEP operations!");
     56 
     57     case Instruction::BitCast:
     58       assert(OpTy && "Cast instructions must provide the operand type");
     59       if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
     60         // Identity and pointer-to-pointer casts are free.
     61         return TTI::TCC_Free;
     62 
     63       // Otherwise, the default basic cost is used.
     64       return TTI::TCC_Basic;
     65 
     66     case Instruction::FDiv:
     67     case Instruction::FRem:
     68     case Instruction::SDiv:
     69     case Instruction::SRem:
     70     case Instruction::UDiv:
     71     case Instruction::URem:
     72       return TTI::TCC_Expensive;
     73 
     74     case Instruction::IntToPtr: {
     75       // An inttoptr cast is free so long as the input is a legal integer type
     76       // which doesn't contain values outside the range of a pointer.
     77       unsigned OpSize = OpTy->getScalarSizeInBits();
     78       if (DL.isLegalInteger(OpSize) &&
     79           OpSize <= DL.getPointerTypeSizeInBits(Ty))
     80         return TTI::TCC_Free;
     81 
     82       // Otherwise it's not a no-op.
     83       return TTI::TCC_Basic;
     84     }
     85     case Instruction::PtrToInt: {
     86       // A ptrtoint cast is free so long as the result is large enough to store
     87       // the pointer, and a legal integer type.
     88       unsigned DestSize = Ty->getScalarSizeInBits();
     89       if (DL.isLegalInteger(DestSize) &&
     90           DestSize >= DL.getPointerTypeSizeInBits(OpTy))
     91         return TTI::TCC_Free;
     92 
     93       // Otherwise it's not a no-op.
     94       return TTI::TCC_Basic;
     95     }
     96     case Instruction::Trunc:
     97       // trunc to a native type is free (assuming the target has compare and
     98       // shift-right of the same width).
     99       if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
    100         return TTI::TCC_Free;
    101 
    102       return TTI::TCC_Basic;
    103     }
    104   }
    105 
    106   int getGEPCost(Type *PointeeType, const Value *Ptr,
    107                  ArrayRef<const Value *> Operands) {
    108     // In the basic model, we just assume that all-constant GEPs will be folded
    109     // into their uses via addressing modes.
    110     for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
    111       if (!isa<Constant>(Operands[Idx]))
    112         return TTI::TCC_Basic;
    113 
    114     return TTI::TCC_Free;
    115   }
    116 
    117   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
    118                                             unsigned &JTSize) {
    119     JTSize = 0;
    120     return SI.getNumCases();
    121   }
    122 
    123   unsigned getCallCost(FunctionType *FTy, int NumArgs) {
    124     assert(FTy && "FunctionType must be provided to this routine.");
    125 
    126     // The target-independent implementation just measures the size of the
    127     // function by approximating that each argument will take on average one
    128     // instruction to prepare.
    129 
    130     if (NumArgs < 0)
    131       // Set the argument number to the number of explicit arguments in the
    132       // function.
    133       NumArgs = FTy->getNumParams();
    134 
    135     return TTI::TCC_Basic * (NumArgs + 1);
    136   }
    137 
    138   unsigned getInliningThresholdMultiplier() { return 1; }
    139 
    140   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    141                             ArrayRef<Type *> ParamTys) {
    142     switch (IID) {
    143     default:
    144       // Intrinsics rarely (if ever) have normal argument setup constraints.
    145       // Model them as having a basic instruction cost.
    146       // FIXME: This is wrong for libc intrinsics.
    147       return TTI::TCC_Basic;
    148 
    149     case Intrinsic::annotation:
    150     case Intrinsic::assume:
    151     case Intrinsic::dbg_declare:
    152     case Intrinsic::dbg_value:
    153     case Intrinsic::invariant_start:
    154     case Intrinsic::invariant_end:
    155     case Intrinsic::lifetime_start:
    156     case Intrinsic::lifetime_end:
    157     case Intrinsic::objectsize:
    158     case Intrinsic::ptr_annotation:
    159     case Intrinsic::var_annotation:
    160     case Intrinsic::experimental_gc_result:
    161     case Intrinsic::experimental_gc_relocate:
    162     case Intrinsic::coro_alloc:
    163     case Intrinsic::coro_begin:
    164     case Intrinsic::coro_free:
    165     case Intrinsic::coro_end:
    166     case Intrinsic::coro_frame:
    167     case Intrinsic::coro_size:
    168     case Intrinsic::coro_suspend:
    169     case Intrinsic::coro_param:
    170     case Intrinsic::coro_subfn_addr:
    171       // These intrinsics don't actually represent code after lowering.
    172       return TTI::TCC_Free;
    173     }
    174   }
    175 
    176   bool hasBranchDivergence() { return false; }
    177 
    178   bool isSourceOfDivergence(const Value *V) { return false; }
    179 
    180   bool isAlwaysUniform(const Value *V) { return false; }
    181 
    182   unsigned getFlatAddressSpace () {
    183     return -1;
    184   }
    185 
    186   bool isLoweredToCall(const Function *F) {
    187     // FIXME: These should almost certainly not be handled here, and instead
    188     // handled with the help of TLI or the target itself. This was largely
    189     // ported from existing analysis heuristics here so that such refactorings
    190     // can take place in the future.
    191 
    192     if (F->isIntrinsic())
    193       return false;
    194 
    195     if (F->hasLocalLinkage() || !F->hasName())
    196       return true;
    197 
    198     StringRef Name = F->getName();
    199 
    200     // These will all likely lower to a single selection DAG node.
    201     if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
    202         Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
    203         Name == "fmin" || Name == "fminf" || Name == "fminl" ||
    204         Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
    205         Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
    206         Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
    207       return false;
    208 
    209     // These are all likely to be optimized into something smaller.
    210     if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
    211         Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
    212         Name == "floorf" || Name == "ceil" || Name == "round" ||
    213         Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
    214         Name == "llabs")
    215       return false;
    216 
    217     return true;
    218   }
    219 
    220   void getUnrollingPreferences(Loop *, TTI::UnrollingPreferences &) {}
    221 
    222   bool isLegalAddImmediate(int64_t Imm) { return false; }
    223 
    224   bool isLegalICmpImmediate(int64_t Imm) { return false; }
    225 
    226   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    227                              bool HasBaseReg, int64_t Scale,
    228                              unsigned AddrSpace) {
    229     // Guess that only reg and reg+reg addressing is allowed. This heuristic is
    230     // taken from the implementation of LSR.
    231     return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
    232   }
    233 
    234   bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
    235     return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
    236                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
    237            std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
    238                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
    239   }
    240 
    241   bool isLegalMaskedStore(Type *DataType) { return false; }
    242 
    243   bool isLegalMaskedLoad(Type *DataType) { return false; }
    244 
    245   bool isLegalMaskedScatter(Type *DataType) { return false; }
    246 
    247   bool isLegalMaskedGather(Type *DataType) { return false; }
    248 
    249   bool prefersVectorizedAddressing() { return true; }
    250 
    251   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    252                            bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
    253     // Guess that all legal addressing mode are free.
    254     if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
    255                               Scale, AddrSpace))
    256       return 0;
    257     return -1;
    258   }
    259 
    260   bool isFoldableMemAccessOffset(Instruction *I, int64_t Offset) { return true; }
    261 
    262   bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
    263 
    264   bool isProfitableToHoist(Instruction *I) { return true; }
    265 
    266   bool isTypeLegal(Type *Ty) { return false; }
    267 
    268   unsigned getJumpBufAlignment() { return 0; }
    269 
    270   unsigned getJumpBufSize() { return 0; }
    271 
    272   bool shouldBuildLookupTables() { return true; }
    273   bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
    274 
    275   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
    276     return 0;
    277   }
    278 
    279   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
    280                                             unsigned VF) { return 0; }
    281 
    282   bool supportsEfficientVectorElementLoadStore() { return false; }
    283 
    284   bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
    285 
    286   bool expandMemCmp(Instruction *I, unsigned &MaxLoadSize) { return false; }
    287 
    288   bool enableInterleavedAccessVectorization() { return false; }
    289 
    290   bool isFPVectorizationPotentiallyUnsafe() { return false; }
    291 
    292   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
    293                                       unsigned BitWidth,
    294                                       unsigned AddressSpace,
    295                                       unsigned Alignment,
    296                                       bool *Fast) { return false; }
    297 
    298   TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
    299     return TTI::PSK_Software;
    300   }
    301 
    302   bool haveFastSqrt(Type *Ty) { return false; }
    303 
    304   unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
    305 
    306   int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
    307                             Type *Ty) {
    308     return 0;
    309   }
    310 
    311   unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
    312 
    313   unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
    314                          Type *Ty) {
    315     return TTI::TCC_Free;
    316   }
    317 
    318   unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    319                          Type *Ty) {
    320     return TTI::TCC_Free;
    321   }
    322 
    323   unsigned getNumberOfRegisters(bool Vector) { return 8; }
    324 
    325   unsigned getRegisterBitWidth(bool Vector) const { return 32; }
    326 
    327   unsigned getMinVectorRegisterBitWidth() { return 128; }
    328 
    329   bool
    330   shouldConsiderAddressTypePromotion(const Instruction &I,
    331                                      bool &AllowPromotionWithoutCommonHeader) {
    332     AllowPromotionWithoutCommonHeader = false;
    333     return false;
    334   }
    335 
    336   unsigned getCacheLineSize() { return 0; }
    337 
    338   unsigned getPrefetchDistance() { return 0; }
    339 
    340   unsigned getMinPrefetchStride() { return 1; }
    341 
    342   unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
    343 
    344   unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
    345 
    346   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
    347                                   TTI::OperandValueKind Opd1Info,
    348                                   TTI::OperandValueKind Opd2Info,
    349                                   TTI::OperandValueProperties Opd1PropInfo,
    350                                   TTI::OperandValueProperties Opd2PropInfo,
    351                                   ArrayRef<const Value *> Args) {
    352     return 1;
    353   }
    354 
    355   unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
    356                           Type *SubTp) {
    357     return 1;
    358   }
    359 
    360   unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
    361                             const Instruction *I) { return 1; }
    362 
    363   unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
    364                                     VectorType *VecTy, unsigned Index) {
    365     return 1;
    366   }
    367 
    368   unsigned getCFInstrCost(unsigned Opcode) { return 1; }
    369 
    370   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
    371                               const Instruction *I) {
    372     return 1;
    373   }
    374 
    375   unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
    376     return 1;
    377   }
    378 
    379   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    380                            unsigned AddressSpace, const Instruction *I) {
    381     return 1;
    382   }
    383 
    384   unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    385                                  unsigned AddressSpace) {
    386     return 1;
    387   }
    388 
    389   unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
    390                                   bool VariableMask,
    391                                   unsigned Alignment) {
    392     return 1;
    393   }
    394 
    395   unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
    396                                       unsigned Factor,
    397                                       ArrayRef<unsigned> Indices,
    398                                       unsigned Alignment,
    399                                       unsigned AddressSpace) {
    400     return 1;
    401   }
    402 
    403   unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    404                                  ArrayRef<Type *> Tys, FastMathFlags FMF,
    405                                  unsigned ScalarizationCostPassed) {
    406     return 1;
    407   }
    408   unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    409             ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
    410     return 1;
    411   }
    412 
    413   unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
    414     return 1;
    415   }
    416 
    417   unsigned getNumberOfParts(Type *Tp) { return 0; }
    418 
    419   unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
    420                                      const SCEV *) {
    421     return 0;
    422   }
    423 
    424   unsigned getReductionCost(unsigned, Type *, bool) { return 1; }
    425 
    426   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
    427 
    428   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
    429     return false;
    430   }
    431 
    432   unsigned getAtomicMemIntrinsicMaxElementSize() const {
    433     // Note for overrides: You must ensure for all element unordered-atomic
    434     // memory intrinsics that all power-of-2 element sizes up to, and
    435     // including, the return value of this method have a corresponding
    436     // runtime lib call. These runtime lib call definitions can be found
    437     // in RuntimeLibcalls.h
    438     return 0;
    439   }
    440 
    441   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    442                                            Type *ExpectedType) {
    443     return nullptr;
    444   }
    445 
    446   bool areInlineCompatible(const Function *Caller,
    447                            const Function *Callee) const {
    448     return (Caller->getFnAttribute("target-cpu") ==
    449             Callee->getFnAttribute("target-cpu")) &&
    450            (Caller->getFnAttribute("target-features") ==
    451             Callee->getFnAttribute("target-features"));
    452   }
    453 
    454   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
    455 
    456   bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
    457 
    458   bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
    459 
    460   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
    461                                    unsigned Alignment,
    462                                    unsigned AddrSpace) const {
    463     return true;
    464   }
    465 
    466   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
    467                                     unsigned Alignment,
    468                                     unsigned AddrSpace) const {
    469     return true;
    470   }
    471 
    472   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
    473                                unsigned ChainSizeInBytes,
    474                                VectorType *VecTy) const {
    475     return VF;
    476   }
    477 
    478   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
    479                                 unsigned ChainSizeInBytes,
    480                                 VectorType *VecTy) const {
    481     return VF;
    482   }
    483 
    484   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
    485                              TTI::ReductionFlags Flags) const {
    486     return false;
    487   }
    488 
    489   bool shouldExpandReduction(const IntrinsicInst *II) const {
    490     return true;
    491   }
    492 
    493 protected:
    494   // Obtain the minimum required size to hold the value (without the sign)
    495   // In case of a vector it returns the min required size for one element.
    496   unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
    497     if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
    498       const auto* VectorValue = cast<Constant>(Val);
    499 
    500       // In case of a vector need to pick the max between the min
    501       // required size for each element
    502       auto *VT = cast<VectorType>(Val->getType());
    503 
    504       // Assume unsigned elements
    505       isSigned = false;
    506 
    507       // The max required size is the total vector width divided by num
    508       // of elements in the vector
    509       unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
    510 
    511       unsigned MinRequiredSize = 0;
    512       for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
    513         if (auto* IntElement =
    514               dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
    515           bool signedElement = IntElement->getValue().isNegative();
    516           // Get the element min required size.
    517           unsigned ElementMinRequiredSize =
    518             IntElement->getValue().getMinSignedBits() - 1;
    519           // In case one element is signed then all the vector is signed.
    520           isSigned |= signedElement;
    521           // Save the max required bit size between all the elements.
    522           MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
    523         }
    524         else {
    525           // not an int constant element
    526           return MaxRequiredSize;
    527         }
    528       }
    529       return MinRequiredSize;
    530     }
    531 
    532     if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
    533       isSigned = CI->getValue().isNegative();
    534       return CI->getValue().getMinSignedBits() - 1;
    535     }
    536 
    537     if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
    538       isSigned = true;
    539       return Cast->getSrcTy()->getScalarSizeInBits() - 1;
    540     }
    541 
    542     if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
    543       isSigned = false;
    544       return Cast->getSrcTy()->getScalarSizeInBits();
    545     }
    546 
    547     isSigned = false;
    548     return Val->getType()->getScalarSizeInBits();
    549   }
    550 
    551   bool isStridedAccess(const SCEV *Ptr) {
    552     return Ptr && isa<SCEVAddRecExpr>(Ptr);
    553   }
    554 
    555   const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
    556                                             const SCEV *Ptr) {
    557     if (!isStridedAccess(Ptr))
    558       return nullptr;
    559     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
    560     return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
    561   }
    562 
    563   bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
    564                                        int64_t MergeDistance) {
    565     const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
    566     if (!Step)
    567       return false;
    568     APInt StrideVal = Step->getAPInt();
    569     if (StrideVal.getBitWidth() > 64)
    570       return false;
    571     // FIXME: need to take absolute value for negtive stride case
    572     return StrideVal.getSExtValue() < MergeDistance;
    573   }
    574 };
    575 
    576 /// \brief CRTP base class for use as a mix-in that aids implementing
    577 /// a TargetTransformInfo-compatible class.
    578 template <typename T>
    579 class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
    580 private:
    581   typedef TargetTransformInfoImplBase BaseT;
    582 
    583 protected:
    584   explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
    585 
    586 public:
    587   using BaseT::getCallCost;
    588 
    589   unsigned getCallCost(const Function *F, int NumArgs) {
    590     assert(F && "A concrete function must be provided to this routine.");
    591 
    592     if (NumArgs < 0)
    593       // Set the argument number to the number of explicit arguments in the
    594       // function.
    595       NumArgs = F->arg_size();
    596 
    597     if (Intrinsic::ID IID = F->getIntrinsicID()) {
    598       FunctionType *FTy = F->getFunctionType();
    599       SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
    600       return static_cast<T *>(this)
    601           ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
    602     }
    603 
    604     if (!static_cast<T *>(this)->isLoweredToCall(F))
    605       return TTI::TCC_Basic; // Give a basic cost if it will be lowered
    606                              // directly.
    607 
    608     return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
    609   }
    610 
    611   unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
    612     // Simply delegate to generic handling of the call.
    613     // FIXME: We should use instsimplify or something else to catch calls which
    614     // will constant fold with these arguments.
    615     return static_cast<T *>(this)->getCallCost(F, Arguments.size());
    616   }
    617 
    618   using BaseT::getGEPCost;
    619 
    620   int getGEPCost(Type *PointeeType, const Value *Ptr,
    621                  ArrayRef<const Value *> Operands) {
    622     const GlobalValue *BaseGV = nullptr;
    623     if (Ptr != nullptr) {
    624       // TODO: will remove this when pointers have an opaque type.
    625       assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
    626                  PointeeType &&
    627              "explicit pointee type doesn't match operand's pointee type");
    628       BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
    629     }
    630     bool HasBaseReg = (BaseGV == nullptr);
    631     int64_t BaseOffset = 0;
    632     int64_t Scale = 0;
    633 
    634     auto GTI = gep_type_begin(PointeeType, Operands);
    635     Type *TargetType;
    636     for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
    637       TargetType = GTI.getIndexedType();
    638       // We assume that the cost of Scalar GEP with constant index and the
    639       // cost of Vector GEP with splat constant index are the same.
    640       const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
    641       if (!ConstIdx)
    642         if (auto Splat = getSplatValue(*I))
    643           ConstIdx = dyn_cast<ConstantInt>(Splat);
    644       if (StructType *STy = GTI.getStructTypeOrNull()) {
    645         // For structures the index is always splat or scalar constant
    646         assert(ConstIdx && "Unexpected GEP index");
    647         uint64_t Field = ConstIdx->getZExtValue();
    648         BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
    649       } else {
    650         int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
    651         if (ConstIdx)
    652           BaseOffset += ConstIdx->getSExtValue() * ElementSize;
    653         else {
    654           // Needs scale register.
    655           if (Scale != 0)
    656             // No addressing mode takes two scale registers.
    657             return TTI::TCC_Basic;
    658           Scale = ElementSize;
    659         }
    660       }
    661     }
    662 
    663     // Assumes the address space is 0 when Ptr is nullptr.
    664     unsigned AS =
    665         (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
    666     if (static_cast<T *>(this)->isLegalAddressingMode(
    667             TargetType, const_cast<GlobalValue *>(BaseGV), BaseOffset,
    668             HasBaseReg, Scale, AS))
    669       return TTI::TCC_Free;
    670     return TTI::TCC_Basic;
    671   }
    672 
    673   using BaseT::getIntrinsicCost;
    674 
    675   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    676                             ArrayRef<const Value *> Arguments) {
    677     // Delegate to the generic intrinsic handling code. This mostly provides an
    678     // opportunity for targets to (for example) special case the cost of
    679     // certain intrinsics based on constants used as arguments.
    680     SmallVector<Type *, 8> ParamTys;
    681     ParamTys.reserve(Arguments.size());
    682     for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
    683       ParamTys.push_back(Arguments[Idx]->getType());
    684     return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
    685   }
    686 
    687   unsigned getUserCost(const User *U) {
    688     if (isa<PHINode>(U))
    689       return TTI::TCC_Free; // Model all PHI nodes as free.
    690 
    691     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
    692       SmallVector<Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end());
    693       return static_cast<T *>(this)->getGEPCost(
    694           GEP->getSourceElementType(), GEP->getPointerOperand(), Indices);
    695     }
    696 
    697     if (auto CS = ImmutableCallSite(U)) {
    698       const Function *F = CS.getCalledFunction();
    699       if (!F) {
    700         // Just use the called value type.
    701         Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
    702         return static_cast<T *>(this)
    703             ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
    704       }
    705 
    706       SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
    707       return static_cast<T *>(this)->getCallCost(F, Arguments);
    708     }
    709 
    710     if (const CastInst *CI = dyn_cast<CastInst>(U)) {
    711       // Result of a cmp instruction is often extended (to be used by other
    712       // cmp instructions, logical or return instructions). These are usually
    713       // nop on most sane targets.
    714       if (isa<CmpInst>(CI->getOperand(0)))
    715         return TTI::TCC_Free;
    716     }
    717 
    718     return static_cast<T *>(this)->getOperationCost(
    719         Operator::getOpcode(U), U->getType(),
    720         U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
    721   }
    722 };
    723 }
    724 
    725 #endif
    726