Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The file defines the MachineFrameInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
     15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
     16 
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Support/DataTypes.h"
     19 #include <cassert>
     20 #include <vector>
     21 
     22 namespace llvm {
     23 class raw_ostream;
     24 class MachineFunction;
     25 class MachineBasicBlock;
     26 class BitVector;
     27 class AllocaInst;
     28 
     29 /// The CalleeSavedInfo class tracks the information need to locate where a
     30 /// callee saved register is in the current frame.
     31 class CalleeSavedInfo {
     32   unsigned Reg;
     33   int FrameIdx;
     34 
     35 public:
     36   explicit CalleeSavedInfo(unsigned R, int FI = 0)
     37   : Reg(R), FrameIdx(FI) {}
     38 
     39   // Accessors.
     40   unsigned getReg()                        const { return Reg; }
     41   int getFrameIdx()                        const { return FrameIdx; }
     42   void setFrameIdx(int FI)                       { FrameIdx = FI; }
     43 };
     44 
     45 /// The MachineFrameInfo class represents an abstract stack frame until
     46 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
     47 /// representation optimizations, such as frame pointer elimination.  It also
     48 /// allows more mundane (but still important) optimizations, such as reordering
     49 /// of abstract objects on the stack frame.
     50 ///
     51 /// To support this, the class assigns unique integer identifiers to stack
     52 /// objects requested clients.  These identifiers are negative integers for
     53 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
     54 /// for objects that may be reordered.  Instructions which refer to stack
     55 /// objects use a special MO_FrameIndex operand to represent these frame
     56 /// indexes.
     57 ///
     58 /// Because this class keeps track of all references to the stack frame, it
     59 /// knows when a variable sized object is allocated on the stack.  This is the
     60 /// sole condition which prevents frame pointer elimination, which is an
     61 /// important optimization on register-poor architectures.  Because original
     62 /// variable sized alloca's in the source program are the only source of
     63 /// variable sized stack objects, it is safe to decide whether there will be
     64 /// any variable sized objects before all stack objects are known (for
     65 /// example, register allocator spill code never needs variable sized
     66 /// objects).
     67 ///
     68 /// When prolog/epilog code emission is performed, the final stack frame is
     69 /// built and the machine instructions are modified to refer to the actual
     70 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
     71 /// the program.
     72 ///
     73 /// @brief Abstract Stack Frame Information
     74 class MachineFrameInfo {
     75 
     76   // Represent a single object allocated on the stack.
     77   struct StackObject {
     78     // The offset of this object from the stack pointer on entry to
     79     // the function.  This field has no meaning for a variable sized element.
     80     int64_t SPOffset;
     81 
     82     // The size of this object on the stack. 0 means a variable sized object,
     83     // ~0ULL means a dead object.
     84     uint64_t Size;
     85 
     86     // The required alignment of this stack slot.
     87     unsigned Alignment;
     88 
     89     // If true, the value of the stack object is set before
     90     // entering the function and is not modified inside the function. By
     91     // default, fixed objects are immutable unless marked otherwise.
     92     bool isImmutable;
     93 
     94     // If true the stack object is used as spill slot. It
     95     // cannot alias any other memory objects.
     96     bool isSpillSlot;
     97 
     98     /// If true, this stack slot is used to spill a value (could be deopt
     99     /// and/or GC related) over a statepoint. We know that the address of the
    100     /// slot can't alias any LLVM IR value.  This is very similar to a Spill
    101     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
    102     /// register allocator.
    103     bool isStatepointSpillSlot;
    104 
    105     /// If this stack object is originated from an Alloca instruction
    106     /// this value saves the original IR allocation. Can be NULL.
    107     const AllocaInst *Alloca;
    108 
    109     // If true, the object was mapped into the local frame
    110     // block and doesn't need additional handling for allocation beyond that.
    111     bool PreAllocated;
    112 
    113     // If true, an LLVM IR value might point to this object.
    114     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
    115     // objects, but there are exceptions (on PowerPC, for example, some byval
    116     // arguments have ABI-prescribed offsets).
    117     bool isAliased;
    118 
    119     /// If true, the object has been zero-extended.
    120     bool isZExt;
    121 
    122     /// If true, the object has been zero-extended.
    123     bool isSExt;
    124 
    125     StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
    126                 bool isSS, const AllocaInst *Val, bool A)
    127       : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
    128         isSpillSlot(isSS), isStatepointSpillSlot(false), Alloca(Val),
    129         PreAllocated(false), isAliased(A), isZExt(false), isSExt(false) {}
    130   };
    131 
    132   /// The alignment of the stack.
    133   unsigned StackAlignment;
    134 
    135   /// Can the stack be realigned. This can be false if the target does not
    136   /// support stack realignment, or if the user asks us not to realign the
    137   /// stack. In this situation, overaligned allocas are all treated as dynamic
    138   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
    139   /// lowering. All non-alloca stack objects have their alignment clamped to the
    140   /// base ABI stack alignment.
    141   /// FIXME: There is room for improvement in this case, in terms of
    142   /// grouping overaligned allocas into a "secondary stack frame" and
    143   /// then only use a single alloca to allocate this frame and only a
    144   /// single virtual register to access it. Currently, without such an
    145   /// optimization, each such alloca gets its own dynamic realignment.
    146   bool StackRealignable;
    147 
    148   /// Whether the function has the \c alignstack attribute.
    149   bool ForcedRealign;
    150 
    151   /// The list of stack objects allocated.
    152   std::vector<StackObject> Objects;
    153 
    154   /// This contains the number of fixed objects contained on
    155   /// the stack.  Because fixed objects are stored at a negative index in the
    156   /// Objects list, this is also the index to the 0th object in the list.
    157   unsigned NumFixedObjects = 0;
    158 
    159   /// This boolean keeps track of whether any variable
    160   /// sized objects have been allocated yet.
    161   bool HasVarSizedObjects = false;
    162 
    163   /// This boolean keeps track of whether there is a call
    164   /// to builtin \@llvm.frameaddress.
    165   bool FrameAddressTaken = false;
    166 
    167   /// This boolean keeps track of whether there is a call
    168   /// to builtin \@llvm.returnaddress.
    169   bool ReturnAddressTaken = false;
    170 
    171   /// This boolean keeps track of whether there is a call
    172   /// to builtin \@llvm.experimental.stackmap.
    173   bool HasStackMap = false;
    174 
    175   /// This boolean keeps track of whether there is a call
    176   /// to builtin \@llvm.experimental.patchpoint.
    177   bool HasPatchPoint = false;
    178 
    179   /// The prolog/epilog code inserter calculates the final stack
    180   /// offsets for all of the fixed size objects, updating the Objects list
    181   /// above.  It then updates StackSize to contain the number of bytes that need
    182   /// to be allocated on entry to the function.
    183   uint64_t StackSize = 0;
    184 
    185   /// The amount that a frame offset needs to be adjusted to
    186   /// have the actual offset from the stack/frame pointer.  The exact usage of
    187   /// this is target-dependent, but it is typically used to adjust between
    188   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
    189   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
    190   /// to the distance between the initial SP and the value in FP.  For many
    191   /// targets, this value is only used when generating debug info (via
    192   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
    193   /// corresponding adjustments are performed directly.
    194   int OffsetAdjustment = 0;
    195 
    196   /// The prolog/epilog code inserter may process objects that require greater
    197   /// alignment than the default alignment the target provides.
    198   /// To handle this, MaxAlignment is set to the maximum alignment
    199   /// needed by the objects on the current frame.  If this is greater than the
    200   /// native alignment maintained by the compiler, dynamic alignment code will
    201   /// be needed.
    202   ///
    203   unsigned MaxAlignment = 0;
    204 
    205   /// Set to true if this function adjusts the stack -- e.g.,
    206   /// when calling another function. This is only valid during and after
    207   /// prolog/epilog code insertion.
    208   bool AdjustsStack = false;
    209 
    210   /// Set to true if this function has any function calls.
    211   bool HasCalls = false;
    212 
    213   /// The frame index for the stack protector.
    214   int StackProtectorIdx = -1;
    215 
    216   /// The frame index for the function context. Used for SjLj exceptions.
    217   int FunctionContextIdx = -1;
    218 
    219   /// This contains the size of the largest call frame if the target uses frame
    220   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
    221   /// class).  This information is important for frame pointer elimination.
    222   /// It is only valid during and after prolog/epilog code insertion.
    223   unsigned MaxCallFrameSize = ~0u;
    224 
    225   /// The prolog/epilog code inserter fills in this vector with each
    226   /// callee saved register saved in the frame.  Beyond its use by the prolog/
    227   /// epilog code inserter, this data used for debug info and exception
    228   /// handling.
    229   std::vector<CalleeSavedInfo> CSInfo;
    230 
    231   /// Has CSInfo been set yet?
    232   bool CSIValid = false;
    233 
    234   /// References to frame indices which are mapped
    235   /// into the local frame allocation block. <FrameIdx, LocalOffset>
    236   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
    237 
    238   /// Size of the pre-allocated local frame block.
    239   int64_t LocalFrameSize = 0;
    240 
    241   /// Required alignment of the local object blob, which is the strictest
    242   /// alignment of any object in it.
    243   unsigned LocalFrameMaxAlign = 0;
    244 
    245   /// Whether the local object blob needs to be allocated together. If not,
    246   /// PEI should ignore the isPreAllocated flags on the stack objects and
    247   /// just allocate them normally.
    248   bool UseLocalStackAllocationBlock = false;
    249 
    250   /// True if the function dynamically adjusts the stack pointer through some
    251   /// opaque mechanism like inline assembly or Win32 EH.
    252   bool HasOpaqueSPAdjustment = false;
    253 
    254   /// True if the function contains operations which will lower down to
    255   /// instructions which manipulate the stack pointer.
    256   bool HasCopyImplyingStackAdjustment = false;
    257 
    258   /// True if the function contains a call to the llvm.vastart intrinsic.
    259   bool HasVAStart = false;
    260 
    261   /// True if this is a varargs function that contains a musttail call.
    262   bool HasMustTailInVarArgFunc = false;
    263 
    264   /// True if this function contains a tail call. If so immutable objects like
    265   /// function arguments are no longer so. A tail call *can* override fixed
    266   /// stack objects like arguments so we can't treat them as immutable.
    267   bool HasTailCall = false;
    268 
    269   /// Not null, if shrink-wrapping found a better place for the prologue.
    270   MachineBasicBlock *Save = nullptr;
    271   /// Not null, if shrink-wrapping found a better place for the epilogue.
    272   MachineBasicBlock *Restore = nullptr;
    273 
    274 public:
    275   explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
    276                             bool ForcedRealign)
    277       : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
    278         ForcedRealign(ForcedRealign) {}
    279 
    280   /// Return true if there are any stack objects in this function.
    281   bool hasStackObjects() const { return !Objects.empty(); }
    282 
    283   /// This method may be called any time after instruction
    284   /// selection is complete to determine if the stack frame for this function
    285   /// contains any variable sized objects.
    286   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
    287 
    288   /// Return the index for the stack protector object.
    289   int getStackProtectorIndex() const { return StackProtectorIdx; }
    290   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
    291   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
    292 
    293   /// Return the index for the function context object.
    294   /// This object is used for SjLj exceptions.
    295   int getFunctionContextIndex() const { return FunctionContextIdx; }
    296   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
    297 
    298   /// This method may be called any time after instruction
    299   /// selection is complete to determine if there is a call to
    300   /// \@llvm.frameaddress in this function.
    301   bool isFrameAddressTaken() const { return FrameAddressTaken; }
    302   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
    303 
    304   /// This method may be called any time after
    305   /// instruction selection is complete to determine if there is a call to
    306   /// \@llvm.returnaddress in this function.
    307   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
    308   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
    309 
    310   /// This method may be called any time after instruction
    311   /// selection is complete to determine if there is a call to builtin
    312   /// \@llvm.experimental.stackmap.
    313   bool hasStackMap() const { return HasStackMap; }
    314   void setHasStackMap(bool s = true) { HasStackMap = s; }
    315 
    316   /// This method may be called any time after instruction
    317   /// selection is complete to determine if there is a call to builtin
    318   /// \@llvm.experimental.patchpoint.
    319   bool hasPatchPoint() const { return HasPatchPoint; }
    320   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
    321 
    322   /// Return the minimum frame object index.
    323   int getObjectIndexBegin() const { return -NumFixedObjects; }
    324 
    325   /// Return one past the maximum frame object index.
    326   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
    327 
    328   /// Return the number of fixed objects.
    329   unsigned getNumFixedObjects() const { return NumFixedObjects; }
    330 
    331   /// Return the number of objects.
    332   unsigned getNumObjects() const { return Objects.size(); }
    333 
    334   /// Map a frame index into the local object block
    335   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
    336     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
    337     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
    338   }
    339 
    340   /// Get the local offset mapping for a for an object.
    341   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
    342     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
    343             "Invalid local object reference!");
    344     return LocalFrameObjects[i];
    345   }
    346 
    347   /// Return the number of objects allocated into the local object block.
    348   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
    349 
    350   /// Set the size of the local object blob.
    351   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
    352 
    353   /// Get the size of the local object blob.
    354   int64_t getLocalFrameSize() const { return LocalFrameSize; }
    355 
    356   /// Required alignment of the local object blob,
    357   /// which is the strictest alignment of any object in it.
    358   void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
    359 
    360   /// Return the required alignment of the local object blob.
    361   unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
    362 
    363   /// Get whether the local allocation blob should be allocated together or
    364   /// let PEI allocate the locals in it directly.
    365   bool getUseLocalStackAllocationBlock() const {
    366     return UseLocalStackAllocationBlock;
    367   }
    368 
    369   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
    370   /// should be allocated together or let PEI allocate the locals in it
    371   /// directly.
    372   void setUseLocalStackAllocationBlock(bool v) {
    373     UseLocalStackAllocationBlock = v;
    374   }
    375 
    376   /// Return true if the object was pre-allocated into the local block.
    377   bool isObjectPreAllocated(int ObjectIdx) const {
    378     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    379            "Invalid Object Idx!");
    380     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
    381   }
    382 
    383   /// Return the size of the specified object.
    384   int64_t getObjectSize(int ObjectIdx) const {
    385     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    386            "Invalid Object Idx!");
    387     return Objects[ObjectIdx+NumFixedObjects].Size;
    388   }
    389 
    390   /// Change the size of the specified stack object.
    391   void setObjectSize(int ObjectIdx, int64_t Size) {
    392     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    393            "Invalid Object Idx!");
    394     Objects[ObjectIdx+NumFixedObjects].Size = Size;
    395   }
    396 
    397   /// Return the alignment of the specified stack object.
    398   unsigned getObjectAlignment(int ObjectIdx) const {
    399     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    400            "Invalid Object Idx!");
    401     return Objects[ObjectIdx+NumFixedObjects].Alignment;
    402   }
    403 
    404   /// setObjectAlignment - Change the alignment of the specified stack object.
    405   void setObjectAlignment(int ObjectIdx, unsigned Align) {
    406     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    407            "Invalid Object Idx!");
    408     Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
    409     ensureMaxAlignment(Align);
    410   }
    411 
    412   /// Return the underlying Alloca of the specified
    413   /// stack object if it exists. Returns 0 if none exists.
    414   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
    415     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    416            "Invalid Object Idx!");
    417     return Objects[ObjectIdx+NumFixedObjects].Alloca;
    418   }
    419 
    420   /// Return the assigned stack offset of the specified object
    421   /// from the incoming stack pointer.
    422   int64_t getObjectOffset(int ObjectIdx) const {
    423     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    424            "Invalid Object Idx!");
    425     assert(!isDeadObjectIndex(ObjectIdx) &&
    426            "Getting frame offset for a dead object?");
    427     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
    428   }
    429 
    430   bool isObjectZExt(int ObjectIdx) const {
    431     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    432            "Invalid Object Idx!");
    433     return Objects[ObjectIdx+NumFixedObjects].isZExt;
    434   }
    435 
    436   void setObjectZExt(int ObjectIdx, bool IsZExt) {
    437     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    438            "Invalid Object Idx!");
    439     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
    440   }
    441 
    442   bool isObjectSExt(int ObjectIdx) const {
    443     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    444            "Invalid Object Idx!");
    445     return Objects[ObjectIdx+NumFixedObjects].isSExt;
    446   }
    447 
    448   void setObjectSExt(int ObjectIdx, bool IsSExt) {
    449     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    450            "Invalid Object Idx!");
    451     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
    452   }
    453 
    454   /// Set the stack frame offset of the specified object. The
    455   /// offset is relative to the stack pointer on entry to the function.
    456   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
    457     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    458            "Invalid Object Idx!");
    459     assert(!isDeadObjectIndex(ObjectIdx) &&
    460            "Setting frame offset for a dead object?");
    461     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
    462   }
    463 
    464   /// Return the number of bytes that must be allocated to hold
    465   /// all of the fixed size frame objects.  This is only valid after
    466   /// Prolog/Epilog code insertion has finalized the stack frame layout.
    467   uint64_t getStackSize() const { return StackSize; }
    468 
    469   /// Set the size of the stack.
    470   void setStackSize(uint64_t Size) { StackSize = Size; }
    471 
    472   /// Estimate and return the size of the stack frame.
    473   unsigned estimateStackSize(const MachineFunction &MF) const;
    474 
    475   /// Return the correction for frame offsets.
    476   int getOffsetAdjustment() const { return OffsetAdjustment; }
    477 
    478   /// Set the correction for frame offsets.
    479   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
    480 
    481   /// Return the alignment in bytes that this function must be aligned to,
    482   /// which is greater than the default stack alignment provided by the target.
    483   unsigned getMaxAlignment() const { return MaxAlignment; }
    484 
    485   /// Make sure the function is at least Align bytes aligned.
    486   void ensureMaxAlignment(unsigned Align);
    487 
    488   /// Return true if this function adjusts the stack -- e.g.,
    489   /// when calling another function. This is only valid during and after
    490   /// prolog/epilog code insertion.
    491   bool adjustsStack() const { return AdjustsStack; }
    492   void setAdjustsStack(bool V) { AdjustsStack = V; }
    493 
    494   /// Return true if the current function has any function calls.
    495   bool hasCalls() const { return HasCalls; }
    496   void setHasCalls(bool V) { HasCalls = V; }
    497 
    498   /// Returns true if the function contains opaque dynamic stack adjustments.
    499   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
    500   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
    501 
    502   /// Returns true if the function contains operations which will lower down to
    503   /// instructions which manipulate the stack pointer.
    504   bool hasCopyImplyingStackAdjustment() const {
    505     return HasCopyImplyingStackAdjustment;
    506   }
    507   void setHasCopyImplyingStackAdjustment(bool B) {
    508     HasCopyImplyingStackAdjustment = B;
    509   }
    510 
    511   /// Returns true if the function calls the llvm.va_start intrinsic.
    512   bool hasVAStart() const { return HasVAStart; }
    513   void setHasVAStart(bool B) { HasVAStart = B; }
    514 
    515   /// Returns true if the function is variadic and contains a musttail call.
    516   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
    517   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
    518 
    519   /// Returns true if the function contains a tail call.
    520   bool hasTailCall() const { return HasTailCall; }
    521   void setHasTailCall() { HasTailCall = true; }
    522 
    523   /// Computes the maximum size of a callframe and the AdjustsStack property.
    524   /// This only works for targets defining
    525   /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
    526   /// and getFrameSize().
    527   /// This is usually computed by the prologue epilogue inserter but some
    528   /// targets may call this to compute it earlier.
    529   void computeMaxCallFrameSize(const MachineFunction &MF);
    530 
    531   /// Return the maximum size of a call frame that must be
    532   /// allocated for an outgoing function call.  This is only available if
    533   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
    534   /// then only during or after prolog/epilog code insertion.
    535   ///
    536   unsigned getMaxCallFrameSize() const {
    537     // TODO: Enable this assert when targets are fixed.
    538     //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
    539     if (!isMaxCallFrameSizeComputed())
    540       return 0;
    541     return MaxCallFrameSize;
    542   }
    543   bool isMaxCallFrameSizeComputed() const {
    544     return MaxCallFrameSize != ~0u;
    545   }
    546   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
    547 
    548   /// Create a new object at a fixed location on the stack.
    549   /// All fixed objects should be created before other objects are created for
    550   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
    551   /// values. This returns an index with a negative value.
    552   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable,
    553                         bool isAliased = false);
    554 
    555   /// Create a spill slot at a fixed location on the stack.
    556   /// Returns an index with a negative value.
    557   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
    558                                   bool Immutable = false);
    559 
    560   /// Returns true if the specified index corresponds to a fixed stack object.
    561   bool isFixedObjectIndex(int ObjectIdx) const {
    562     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
    563   }
    564 
    565   /// Returns true if the specified index corresponds
    566   /// to an object that might be pointed to by an LLVM IR value.
    567   bool isAliasedObjectIndex(int ObjectIdx) const {
    568     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    569            "Invalid Object Idx!");
    570     return Objects[ObjectIdx+NumFixedObjects].isAliased;
    571   }
    572 
    573   /// Returns true if the specified index corresponds to an immutable object.
    574   bool isImmutableObjectIndex(int ObjectIdx) const {
    575     // Tail calling functions can clobber their function arguments.
    576     if (HasTailCall)
    577       return false;
    578     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    579            "Invalid Object Idx!");
    580     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
    581   }
    582 
    583   /// Marks the immutability of an object.
    584   void setIsImmutableObjectIndex(int ObjectIdx, bool Immutable) {
    585     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    586            "Invalid Object Idx!");
    587     Objects[ObjectIdx+NumFixedObjects].isImmutable = Immutable;
    588   }
    589 
    590   /// Returns true if the specified index corresponds to a spill slot.
    591   bool isSpillSlotObjectIndex(int ObjectIdx) const {
    592     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    593            "Invalid Object Idx!");
    594     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
    595   }
    596 
    597   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
    598     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    599            "Invalid Object Idx!");
    600     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
    601   }
    602 
    603   /// Returns true if the specified index corresponds to a dead object.
    604   bool isDeadObjectIndex(int ObjectIdx) const {
    605     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    606            "Invalid Object Idx!");
    607     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
    608   }
    609 
    610   /// Returns true if the specified index corresponds to a variable sized
    611   /// object.
    612   bool isVariableSizedObjectIndex(int ObjectIdx) const {
    613     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
    614            "Invalid Object Idx!");
    615     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
    616   }
    617 
    618   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
    619     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    620            "Invalid Object Idx!");
    621     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
    622     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
    623   }
    624 
    625   /// Create a new statically sized stack object, returning
    626   /// a nonnegative identifier to represent it.
    627   int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
    628                         const AllocaInst *Alloca = nullptr);
    629 
    630   /// Create a new statically sized stack object that represents a spill slot,
    631   /// returning a nonnegative identifier to represent it.
    632   int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
    633 
    634   /// Remove or mark dead a statically sized stack object.
    635   void RemoveStackObject(int ObjectIdx) {
    636     // Mark it dead.
    637     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
    638   }
    639 
    640   /// Notify the MachineFrameInfo object that a variable sized object has been
    641   /// created.  This must be created whenever a variable sized object is
    642   /// created, whether or not the index returned is actually used.
    643   int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
    644 
    645   /// Returns a reference to call saved info vector for the current function.
    646   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
    647     return CSInfo;
    648   }
    649 
    650   /// Used by prolog/epilog inserter to set the function's callee saved
    651   /// information.
    652   void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
    653     CSInfo = CSI;
    654   }
    655 
    656   /// Has the callee saved info been calculated yet?
    657   bool isCalleeSavedInfoValid() const { return CSIValid; }
    658 
    659   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
    660 
    661   MachineBasicBlock *getSavePoint() const { return Save; }
    662   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
    663   MachineBasicBlock *getRestorePoint() const { return Restore; }
    664   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
    665 
    666   /// Return a set of physical registers that are pristine.
    667   ///
    668   /// Pristine registers hold a value that is useless to the current function,
    669   /// but that must be preserved - they are callee saved registers that are not
    670   /// saved.
    671   ///
    672   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
    673   /// method always returns an empty set.
    674   BitVector getPristineRegs(const MachineFunction &MF) const;
    675 
    676   /// Used by the MachineFunction printer to print information about
    677   /// stack objects. Implemented in MachineFunction.cpp.
    678   void print(const MachineFunction &MF, raw_ostream &OS) const;
    679 
    680   /// dump - Print the function to stderr.
    681   void dump(const MachineFunction &MF) const;
    682 };
    683 
    684 } // End llvm namespace
    685 
    686 #endif
    687