Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/ADT/DenseMapInfo.h"
     20 #include "llvm/ADT/ilist.h"
     21 #include "llvm/ADT/ilist_node.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/CodeGen/MachineOperand.h"
     25 #include "llvm/IR/DebugLoc.h"
     26 #include "llvm/IR/InlineAsm.h"
     27 #include "llvm/MC/MCInstrDesc.h"
     28 #include "llvm/Support/ArrayRecycler.h"
     29 #include "llvm/Target/TargetOpcodes.h"
     30 #include <algorithm>
     31 #include <cassert>
     32 #include <cstdint>
     33 #include <utility>
     34 
     35 namespace llvm {
     36 
     37 template <typename T> class ArrayRef;
     38 class DIExpression;
     39 class DILocalVariable;
     40 class MachineBasicBlock;
     41 class MachineFunction;
     42 class MachineMemOperand;
     43 class MachineRegisterInfo;
     44 class ModuleSlotTracker;
     45 class raw_ostream;
     46 template <typename T> class SmallVectorImpl;
     47 class StringRef;
     48 class TargetInstrInfo;
     49 class TargetRegisterClass;
     50 class TargetRegisterInfo;
     51 
     52 //===----------------------------------------------------------------------===//
     53 /// Representation of each machine instruction.
     54 ///
     55 /// This class isn't a POD type, but it must have a trivial destructor. When a
     56 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
     57 /// without having their destructor called.
     58 ///
     59 class MachineInstr
     60     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
     61                                     ilist_sentinel_tracking<true>> {
     62 public:
     63   using mmo_iterator = MachineMemOperand **;
     64 
     65   /// Flags to specify different kinds of comments to output in
     66   /// assembly code.  These flags carry semantic information not
     67   /// otherwise easily derivable from the IR text.
     68   ///
     69   enum CommentFlag {
     70     ReloadReuse = 0x1 // higher bits are reserved for target dep comments.
     71   };
     72 
     73   enum MIFlag {
     74     NoFlags      = 0,
     75     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     76                                         // function frame setup code.
     77     FrameDestroy = 1 << 1,              // Instruction is used as a part of
     78                                         // function frame destruction code.
     79     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
     80     BundledSucc  = 1 << 3               // Instruction has bundled successors.
     81   };
     82 
     83 private:
     84   const MCInstrDesc *MCID;              // Instruction descriptor.
     85   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
     86 
     87   // Operands are allocated by an ArrayRecycler.
     88   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
     89   unsigned NumOperands = 0;             // Number of operands on instruction.
     90   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
     91   OperandCapacity CapOperands;          // Capacity of the Operands array.
     92 
     93   uint8_t Flags = 0;                    // Various bits of additional
     94                                         // information about machine
     95                                         // instruction.
     96 
     97   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
     98                                         // the AsmPrinter to emit helpful
     99                                         // comments.  This is *not* semantic
    100                                         // information.  Do not use this for
    101                                         // anything other than to convey comment
    102                                         // information to AsmPrinter.
    103 
    104   uint8_t NumMemRefs = 0;               // Information on memory references.
    105   // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
    106   // Calling code must treat missing information conservatively.  If the number
    107   // of memory operands required to be precise exceeds the maximum value of
    108   // NumMemRefs - currently 256 - we remove the operands entirely. Note also
    109   // that this is a non-owning reference to a shared copy on write buffer owned
    110   // by the MachineFunction and created via MF.allocateMemRefsArray.
    111   mmo_iterator MemRefs = nullptr;
    112 
    113   DebugLoc debugLoc;                    // Source line information.
    114 
    115   // Intrusive list support
    116   friend struct ilist_traits<MachineInstr>;
    117   friend struct ilist_callback_traits<MachineBasicBlock>;
    118   void setParent(MachineBasicBlock *P) { Parent = P; }
    119 
    120   /// This constructor creates a copy of the given
    121   /// MachineInstr in the given MachineFunction.
    122   MachineInstr(MachineFunction &, const MachineInstr &);
    123 
    124   /// This constructor create a MachineInstr and add the implicit operands.
    125   /// It reserves space for number of operands specified by
    126   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    127   MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
    128                bool NoImp = false);
    129 
    130   // MachineInstrs are pool-allocated and owned by MachineFunction.
    131   friend class MachineFunction;
    132 
    133 public:
    134   MachineInstr(const MachineInstr &) = delete;
    135   MachineInstr &operator=(const MachineInstr &) = delete;
    136   // Use MachineFunction::DeleteMachineInstr() instead.
    137   ~MachineInstr() = delete;
    138 
    139   const MachineBasicBlock* getParent() const { return Parent; }
    140   MachineBasicBlock* getParent() { return Parent; }
    141 
    142   /// Return the asm printer flags bitvector.
    143   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    144 
    145   /// Clear the AsmPrinter bitvector.
    146   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    147 
    148   /// Return whether an AsmPrinter flag is set.
    149   bool getAsmPrinterFlag(CommentFlag Flag) const {
    150     return AsmPrinterFlags & Flag;
    151   }
    152 
    153   /// Set a flag for the AsmPrinter.
    154   void setAsmPrinterFlag(uint8_t Flag) {
    155     AsmPrinterFlags |= Flag;
    156   }
    157 
    158   /// Clear specific AsmPrinter flags.
    159   void clearAsmPrinterFlag(CommentFlag Flag) {
    160     AsmPrinterFlags &= ~Flag;
    161   }
    162 
    163   /// Return the MI flags bitvector.
    164   uint8_t getFlags() const {
    165     return Flags;
    166   }
    167 
    168   /// Return whether an MI flag is set.
    169   bool getFlag(MIFlag Flag) const {
    170     return Flags & Flag;
    171   }
    172 
    173   /// Set a MI flag.
    174   void setFlag(MIFlag Flag) {
    175     Flags |= (uint8_t)Flag;
    176   }
    177 
    178   void setFlags(unsigned flags) {
    179     // Filter out the automatically maintained flags.
    180     unsigned Mask = BundledPred | BundledSucc;
    181     Flags = (Flags & Mask) | (flags & ~Mask);
    182   }
    183 
    184   /// clearFlag - Clear a MI flag.
    185   void clearFlag(MIFlag Flag) {
    186     Flags &= ~((uint8_t)Flag);
    187   }
    188 
    189   /// Return true if MI is in a bundle (but not the first MI in a bundle).
    190   ///
    191   /// A bundle looks like this before it's finalized:
    192   ///   ----------------
    193   ///   |      MI      |
    194   ///   ----------------
    195   ///          |
    196   ///   ----------------
    197   ///   |      MI    * |
    198   ///   ----------------
    199   ///          |
    200   ///   ----------------
    201   ///   |      MI    * |
    202   ///   ----------------
    203   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    204   /// next 2 MIs are considered "inside" the bundle.
    205   ///
    206   /// After a bundle is finalized, it looks like this:
    207   ///   ----------------
    208   ///   |    Bundle    |
    209   ///   ----------------
    210   ///          |
    211   ///   ----------------
    212   ///   |      MI    * |
    213   ///   ----------------
    214   ///          |
    215   ///   ----------------
    216   ///   |      MI    * |
    217   ///   ----------------
    218   ///          |
    219   ///   ----------------
    220   ///   |      MI    * |
    221   ///   ----------------
    222   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    223   /// a bundle, but the next three MIs are.
    224   bool isInsideBundle() const {
    225     return getFlag(BundledPred);
    226   }
    227 
    228   /// Return true if this instruction part of a bundle. This is true
    229   /// if either itself or its following instruction is marked "InsideBundle".
    230   bool isBundled() const {
    231     return isBundledWithPred() || isBundledWithSucc();
    232   }
    233 
    234   /// Return true if this instruction is part of a bundle, and it is not the
    235   /// first instruction in the bundle.
    236   bool isBundledWithPred() const { return getFlag(BundledPred); }
    237 
    238   /// Return true if this instruction is part of a bundle, and it is not the
    239   /// last instruction in the bundle.
    240   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
    241 
    242   /// Bundle this instruction with its predecessor. This can be an unbundled
    243   /// instruction, or it can be the first instruction in a bundle.
    244   void bundleWithPred();
    245 
    246   /// Bundle this instruction with its successor. This can be an unbundled
    247   /// instruction, or it can be the last instruction in a bundle.
    248   void bundleWithSucc();
    249 
    250   /// Break bundle above this instruction.
    251   void unbundleFromPred();
    252 
    253   /// Break bundle below this instruction.
    254   void unbundleFromSucc();
    255 
    256   /// Returns the debug location id of this MachineInstr.
    257   const DebugLoc &getDebugLoc() const { return debugLoc; }
    258 
    259   /// Return the debug variable referenced by
    260   /// this DBG_VALUE instruction.
    261   const DILocalVariable *getDebugVariable() const;
    262 
    263   /// Return the complex address expression referenced by
    264   /// this DBG_VALUE instruction.
    265   const DIExpression *getDebugExpression() const;
    266 
    267   /// Emit an error referring to the source location of this instruction.
    268   /// This should only be used for inline assembly that is somehow
    269   /// impossible to compile. Other errors should have been handled much
    270   /// earlier.
    271   ///
    272   /// If this method returns, the caller should try to recover from the error.
    273   void emitError(StringRef Msg) const;
    274 
    275   /// Returns the target instruction descriptor of this MachineInstr.
    276   const MCInstrDesc &getDesc() const { return *MCID; }
    277 
    278   /// Returns the opcode of this MachineInstr.
    279   unsigned getOpcode() const { return MCID->Opcode; }
    280 
    281   /// Access to explicit operands of the instruction.
    282   unsigned getNumOperands() const { return NumOperands; }
    283 
    284   const MachineOperand& getOperand(unsigned i) const {
    285     assert(i < getNumOperands() && "getOperand() out of range!");
    286     return Operands[i];
    287   }
    288   MachineOperand& getOperand(unsigned i) {
    289     assert(i < getNumOperands() && "getOperand() out of range!");
    290     return Operands[i];
    291   }
    292 
    293   /// Returns the number of non-implicit operands.
    294   unsigned getNumExplicitOperands() const;
    295 
    296   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    297   using mop_iterator = MachineOperand *;
    298   using const_mop_iterator = const MachineOperand *;
    299 
    300   mop_iterator operands_begin() { return Operands; }
    301   mop_iterator operands_end() { return Operands + NumOperands; }
    302 
    303   const_mop_iterator operands_begin() const { return Operands; }
    304   const_mop_iterator operands_end() const { return Operands + NumOperands; }
    305 
    306   iterator_range<mop_iterator> operands() {
    307     return make_range(operands_begin(), operands_end());
    308   }
    309   iterator_range<const_mop_iterator> operands() const {
    310     return make_range(operands_begin(), operands_end());
    311   }
    312   iterator_range<mop_iterator> explicit_operands() {
    313     return make_range(operands_begin(),
    314                       operands_begin() + getNumExplicitOperands());
    315   }
    316   iterator_range<const_mop_iterator> explicit_operands() const {
    317     return make_range(operands_begin(),
    318                       operands_begin() + getNumExplicitOperands());
    319   }
    320   iterator_range<mop_iterator> implicit_operands() {
    321     return make_range(explicit_operands().end(), operands_end());
    322   }
    323   iterator_range<const_mop_iterator> implicit_operands() const {
    324     return make_range(explicit_operands().end(), operands_end());
    325   }
    326   /// Returns a range over all explicit operands that are register definitions.
    327   /// Implicit definition are not included!
    328   iterator_range<mop_iterator> defs() {
    329     return make_range(operands_begin(),
    330                       operands_begin() + getDesc().getNumDefs());
    331   }
    332   /// \copydoc defs()
    333   iterator_range<const_mop_iterator> defs() const {
    334     return make_range(operands_begin(),
    335                       operands_begin() + getDesc().getNumDefs());
    336   }
    337   /// Returns a range that includes all operands that are register uses.
    338   /// This may include unrelated operands which are not register uses.
    339   iterator_range<mop_iterator> uses() {
    340     return make_range(operands_begin() + getDesc().getNumDefs(),
    341                       operands_end());
    342   }
    343   /// \copydoc uses()
    344   iterator_range<const_mop_iterator> uses() const {
    345     return make_range(operands_begin() + getDesc().getNumDefs(),
    346                       operands_end());
    347   }
    348   iterator_range<mop_iterator> explicit_uses() {
    349     return make_range(operands_begin() + getDesc().getNumDefs(),
    350                       operands_begin() + getNumExplicitOperands() );
    351   }
    352   iterator_range<const_mop_iterator> explicit_uses() const {
    353     return make_range(operands_begin() + getDesc().getNumDefs(),
    354                       operands_begin() + getNumExplicitOperands() );
    355   }
    356 
    357   /// Returns the number of the operand iterator \p I points to.
    358   unsigned getOperandNo(const_mop_iterator I) const {
    359     return I - operands_begin();
    360   }
    361 
    362   /// Access to memory operands of the instruction
    363   mmo_iterator memoperands_begin() const { return MemRefs; }
    364   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    365   /// Return true if we don't have any memory operands which described the the
    366   /// memory access done by this instruction.  If this is true, calling code
    367   /// must be conservative.
    368   bool memoperands_empty() const { return NumMemRefs == 0; }
    369 
    370   iterator_range<mmo_iterator>  memoperands() {
    371     return make_range(memoperands_begin(), memoperands_end());
    372   }
    373   iterator_range<mmo_iterator> memoperands() const {
    374     return make_range(memoperands_begin(), memoperands_end());
    375   }
    376 
    377   /// Return true if this instruction has exactly one MachineMemOperand.
    378   bool hasOneMemOperand() const {
    379     return NumMemRefs == 1;
    380   }
    381 
    382   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    383   /// queries but they are bundle aware.
    384 
    385   enum QueryType {
    386     IgnoreBundle,    // Ignore bundles
    387     AnyInBundle,     // Return true if any instruction in bundle has property
    388     AllInBundle      // Return true if all instructions in bundle have property
    389   };
    390 
    391   /// Return true if the instruction (or in the case of a bundle,
    392   /// the instructions inside the bundle) has the specified property.
    393   /// The first argument is the property being queried.
    394   /// The second argument indicates whether the query should look inside
    395   /// instruction bundles.
    396   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    397     // Inline the fast path for unbundled or bundle-internal instructions.
    398     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
    399       return getDesc().getFlags() & (1ULL << MCFlag);
    400 
    401     // If this is the first instruction in a bundle, take the slow path.
    402     return hasPropertyInBundle(1ULL << MCFlag, Type);
    403   }
    404 
    405   /// Return true if this instruction can have a variable number of operands.
    406   /// In this case, the variable operands will be after the normal
    407   /// operands but before the implicit definitions and uses (if any are
    408   /// present).
    409   bool isVariadic(QueryType Type = IgnoreBundle) const {
    410     return hasProperty(MCID::Variadic, Type);
    411   }
    412 
    413   /// Set if this instruction has an optional definition, e.g.
    414   /// ARM instructions which can set condition code if 's' bit is set.
    415   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    416     return hasProperty(MCID::HasOptionalDef, Type);
    417   }
    418 
    419   /// Return true if this is a pseudo instruction that doesn't
    420   /// correspond to a real machine instruction.
    421   bool isPseudo(QueryType Type = IgnoreBundle) const {
    422     return hasProperty(MCID::Pseudo, Type);
    423   }
    424 
    425   bool isReturn(QueryType Type = AnyInBundle) const {
    426     return hasProperty(MCID::Return, Type);
    427   }
    428 
    429   bool isCall(QueryType Type = AnyInBundle) const {
    430     return hasProperty(MCID::Call, Type);
    431   }
    432 
    433   /// Returns true if the specified instruction stops control flow
    434   /// from executing the instruction immediately following it.  Examples include
    435   /// unconditional branches and return instructions.
    436   bool isBarrier(QueryType Type = AnyInBundle) const {
    437     return hasProperty(MCID::Barrier, Type);
    438   }
    439 
    440   /// Returns true if this instruction part of the terminator for a basic block.
    441   /// Typically this is things like return and branch instructions.
    442   ///
    443   /// Various passes use this to insert code into the bottom of a basic block,
    444   /// but before control flow occurs.
    445   bool isTerminator(QueryType Type = AnyInBundle) const {
    446     return hasProperty(MCID::Terminator, Type);
    447   }
    448 
    449   /// Returns true if this is a conditional, unconditional, or indirect branch.
    450   /// Predicates below can be used to discriminate between
    451   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    452   /// get more information.
    453   bool isBranch(QueryType Type = AnyInBundle) const {
    454     return hasProperty(MCID::Branch, Type);
    455   }
    456 
    457   /// Return true if this is an indirect branch, such as a
    458   /// branch through a register.
    459   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    460     return hasProperty(MCID::IndirectBranch, Type);
    461   }
    462 
    463   /// Return true if this is a branch which may fall
    464   /// through to the next instruction or may transfer control flow to some other
    465   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    466   /// information about this branch.
    467   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    468     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    469   }
    470 
    471   /// Return true if this is a branch which always
    472   /// transfers control flow to some other block.  The
    473   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    474   /// about this branch.
    475   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    476     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    477   }
    478 
    479   /// Return true if this instruction has a predicate operand that
    480   /// controls execution.  It may be set to 'always', or may be set to other
    481   /// values.   There are various methods in TargetInstrInfo that can be used to
    482   /// control and modify the predicate in this instruction.
    483   bool isPredicable(QueryType Type = AllInBundle) const {
    484     // If it's a bundle than all bundled instructions must be predicable for this
    485     // to return true.
    486     return hasProperty(MCID::Predicable, Type);
    487   }
    488 
    489   /// Return true if this instruction is a comparison.
    490   bool isCompare(QueryType Type = IgnoreBundle) const {
    491     return hasProperty(MCID::Compare, Type);
    492   }
    493 
    494   /// Return true if this instruction is a move immediate
    495   /// (including conditional moves) instruction.
    496   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    497     return hasProperty(MCID::MoveImm, Type);
    498   }
    499 
    500   /// Return true if this instruction is a bitcast instruction.
    501   bool isBitcast(QueryType Type = IgnoreBundle) const {
    502     return hasProperty(MCID::Bitcast, Type);
    503   }
    504 
    505   /// Return true if this instruction is a select instruction.
    506   bool isSelect(QueryType Type = IgnoreBundle) const {
    507     return hasProperty(MCID::Select, Type);
    508   }
    509 
    510   /// Return true if this instruction cannot be safely duplicated.
    511   /// For example, if the instruction has a unique labels attached
    512   /// to it, duplicating it would cause multiple definition errors.
    513   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    514     return hasProperty(MCID::NotDuplicable, Type);
    515   }
    516 
    517   /// Return true if this instruction is convergent.
    518   /// Convergent instructions can not be made control-dependent on any
    519   /// additional values.
    520   bool isConvergent(QueryType Type = AnyInBundle) const {
    521     if (isInlineAsm()) {
    522       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    523       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
    524         return true;
    525     }
    526     return hasProperty(MCID::Convergent, Type);
    527   }
    528 
    529   /// Returns true if the specified instruction has a delay slot
    530   /// which must be filled by the code generator.
    531   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    532     return hasProperty(MCID::DelaySlot, Type);
    533   }
    534 
    535   /// Return true for instructions that can be folded as
    536   /// memory operands in other instructions. The most common use for this
    537   /// is instructions that are simple loads from memory that don't modify
    538   /// the loaded value in any way, but it can also be used for instructions
    539   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    540   /// on x86, to allow them to be folded when it is beneficial.
    541   /// This should only be set on instructions that return a value in their
    542   /// only virtual register definition.
    543   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    544     return hasProperty(MCID::FoldableAsLoad, Type);
    545   }
    546 
    547   /// \brief Return true if this instruction behaves
    548   /// the same way as the generic REG_SEQUENCE instructions.
    549   /// E.g., on ARM,
    550   /// dX VMOVDRR rY, rZ
    551   /// is equivalent to
    552   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
    553   ///
    554   /// Note that for the optimizers to be able to take advantage of
    555   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
    556   /// override accordingly.
    557   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
    558     return hasProperty(MCID::RegSequence, Type);
    559   }
    560 
    561   /// \brief Return true if this instruction behaves
    562   /// the same way as the generic EXTRACT_SUBREG instructions.
    563   /// E.g., on ARM,
    564   /// rX, rY VMOVRRD dZ
    565   /// is equivalent to two EXTRACT_SUBREG:
    566   /// rX = EXTRACT_SUBREG dZ, ssub_0
    567   /// rY = EXTRACT_SUBREG dZ, ssub_1
    568   ///
    569   /// Note that for the optimizers to be able to take advantage of
    570   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
    571   /// override accordingly.
    572   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
    573     return hasProperty(MCID::ExtractSubreg, Type);
    574   }
    575 
    576   /// \brief Return true if this instruction behaves
    577   /// the same way as the generic INSERT_SUBREG instructions.
    578   /// E.g., on ARM,
    579   /// dX = VSETLNi32 dY, rZ, Imm
    580   /// is equivalent to a INSERT_SUBREG:
    581   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
    582   ///
    583   /// Note that for the optimizers to be able to take advantage of
    584   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
    585   /// override accordingly.
    586   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
    587     return hasProperty(MCID::InsertSubreg, Type);
    588   }
    589 
    590   //===--------------------------------------------------------------------===//
    591   // Side Effect Analysis
    592   //===--------------------------------------------------------------------===//
    593 
    594   /// Return true if this instruction could possibly read memory.
    595   /// Instructions with this flag set are not necessarily simple load
    596   /// instructions, they may load a value and modify it, for example.
    597   bool mayLoad(QueryType Type = AnyInBundle) const {
    598     if (isInlineAsm()) {
    599       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    600       if (ExtraInfo & InlineAsm::Extra_MayLoad)
    601         return true;
    602     }
    603     return hasProperty(MCID::MayLoad, Type);
    604   }
    605 
    606   /// Return true if this instruction could possibly modify memory.
    607   /// Instructions with this flag set are not necessarily simple store
    608   /// instructions, they may store a modified value based on their operands, or
    609   /// may not actually modify anything, for example.
    610   bool mayStore(QueryType Type = AnyInBundle) const {
    611     if (isInlineAsm()) {
    612       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    613       if (ExtraInfo & InlineAsm::Extra_MayStore)
    614         return true;
    615     }
    616     return hasProperty(MCID::MayStore, Type);
    617   }
    618 
    619   /// Return true if this instruction could possibly read or modify memory.
    620   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
    621     return mayLoad(Type) || mayStore(Type);
    622   }
    623 
    624   //===--------------------------------------------------------------------===//
    625   // Flags that indicate whether an instruction can be modified by a method.
    626   //===--------------------------------------------------------------------===//
    627 
    628   /// Return true if this may be a 2- or 3-address
    629   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    630   /// result if Y and Z are exchanged.  If this flag is set, then the
    631   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    632   /// instruction.
    633   ///
    634   /// Note that this flag may be set on instructions that are only commutable
    635   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    636   /// Also note that some instructions require non-trivial modification to
    637   /// commute them.
    638   bool isCommutable(QueryType Type = IgnoreBundle) const {
    639     return hasProperty(MCID::Commutable, Type);
    640   }
    641 
    642   /// Return true if this is a 2-address instruction
    643   /// which can be changed into a 3-address instruction if needed.  Doing this
    644   /// transformation can be profitable in the register allocator, because it
    645   /// means that the instruction can use a 2-address form if possible, but
    646   /// degrade into a less efficient form if the source and dest register cannot
    647   /// be assigned to the same register.  For example, this allows the x86
    648   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    649   /// is the same speed as the shift but has bigger code size.
    650   ///
    651   /// If this returns true, then the target must implement the
    652   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    653   /// is allowed to fail if the transformation isn't valid for this specific
    654   /// instruction (e.g. shl reg, 4 on x86).
    655   ///
    656   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    657     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    658   }
    659 
    660   /// Return true if this instruction requires
    661   /// custom insertion support when the DAG scheduler is inserting it into a
    662   /// machine basic block.  If this is true for the instruction, it basically
    663   /// means that it is a pseudo instruction used at SelectionDAG time that is
    664   /// expanded out into magic code by the target when MachineInstrs are formed.
    665   ///
    666   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    667   /// is used to insert this into the MachineBasicBlock.
    668   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    669     return hasProperty(MCID::UsesCustomInserter, Type);
    670   }
    671 
    672   /// Return true if this instruction requires *adjustment*
    673   /// after instruction selection by calling a target hook. For example, this
    674   /// can be used to fill in ARM 's' optional operand depending on whether
    675   /// the conditional flag register is used.
    676   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    677     return hasProperty(MCID::HasPostISelHook, Type);
    678   }
    679 
    680   /// Returns true if this instruction is a candidate for remat.
    681   /// This flag is deprecated, please don't use it anymore.  If this
    682   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    683   /// verify the instruction is really rematable.
    684   bool isRematerializable(QueryType Type = AllInBundle) const {
    685     // It's only possible to re-mat a bundle if all bundled instructions are
    686     // re-materializable.
    687     return hasProperty(MCID::Rematerializable, Type);
    688   }
    689 
    690   /// Returns true if this instruction has the same cost (or less) than a move
    691   /// instruction. This is useful during certain types of optimizations
    692   /// (e.g., remat during two-address conversion or machine licm)
    693   /// where we would like to remat or hoist the instruction, but not if it costs
    694   /// more than moving the instruction into the appropriate register. Note, we
    695   /// are not marking copies from and to the same register class with this flag.
    696   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    697     // Only returns true for a bundle if all bundled instructions are cheap.
    698     return hasProperty(MCID::CheapAsAMove, Type);
    699   }
    700 
    701   /// Returns true if this instruction source operands
    702   /// have special register allocation requirements that are not captured by the
    703   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    704   /// even / odd pair, ARM::STM registers have to be in ascending order.
    705   /// Post-register allocation passes should not attempt to change allocations
    706   /// for sources of instructions with this flag.
    707   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    708     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    709   }
    710 
    711   /// Returns true if this instruction def operands
    712   /// have special register allocation requirements that are not captured by the
    713   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    714   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    715   /// Post-register allocation passes should not attempt to change allocations
    716   /// for definitions of instructions with this flag.
    717   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    718     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    719   }
    720 
    721   enum MICheckType {
    722     CheckDefs,      // Check all operands for equality
    723     CheckKillDead,  // Check all operands including kill / dead markers
    724     IgnoreDefs,     // Ignore all definitions
    725     IgnoreVRegDefs  // Ignore virtual register definitions
    726   };
    727 
    728   /// Return true if this instruction is identical to \p Other.
    729   /// Two instructions are identical if they have the same opcode and all their
    730   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
    731   /// Note that this means liveness related flags (dead, undef, kill) do not
    732   /// affect the notion of identical.
    733   bool isIdenticalTo(const MachineInstr &Other,
    734                      MICheckType Check = CheckDefs) const;
    735 
    736   /// Unlink 'this' from the containing basic block, and return it without
    737   /// deleting it.
    738   ///
    739   /// This function can not be used on bundled instructions, use
    740   /// removeFromBundle() to remove individual instructions from a bundle.
    741   MachineInstr *removeFromParent();
    742 
    743   /// Unlink this instruction from its basic block and return it without
    744   /// deleting it.
    745   ///
    746   /// If the instruction is part of a bundle, the other instructions in the
    747   /// bundle remain bundled.
    748   MachineInstr *removeFromBundle();
    749 
    750   /// Unlink 'this' from the containing basic block and delete it.
    751   ///
    752   /// If this instruction is the header of a bundle, the whole bundle is erased.
    753   /// This function can not be used for instructions inside a bundle, use
    754   /// eraseFromBundle() to erase individual bundled instructions.
    755   void eraseFromParent();
    756 
    757   /// Unlink 'this' from the containing basic block and delete it.
    758   ///
    759   /// For all definitions mark their uses in DBG_VALUE nodes
    760   /// as undefined. Otherwise like eraseFromParent().
    761   void eraseFromParentAndMarkDBGValuesForRemoval();
    762 
    763   /// Unlink 'this' form its basic block and delete it.
    764   ///
    765   /// If the instruction is part of a bundle, the other instructions in the
    766   /// bundle remain bundled.
    767   void eraseFromBundle();
    768 
    769   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    770   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    771 
    772   /// Returns true if the MachineInstr represents a label.
    773   bool isLabel() const { return isEHLabel() || isGCLabel(); }
    774 
    775   bool isCFIInstruction() const {
    776     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
    777   }
    778 
    779   // True if the instruction represents a position in the function.
    780   bool isPosition() const { return isLabel() || isCFIInstruction(); }
    781 
    782   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    783 
    784   /// A DBG_VALUE is indirect iff the first operand is a register and
    785   /// the second operand is an immediate.
    786   bool isIndirectDebugValue() const {
    787     return isDebugValue()
    788       && getOperand(0).isReg()
    789       && getOperand(1).isImm();
    790   }
    791 
    792   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
    793   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    794   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    795   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    796 
    797   bool isMSInlineAsm() const {
    798     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    799   }
    800 
    801   bool isStackAligningInlineAsm() const;
    802   InlineAsm::AsmDialect getInlineAsmDialect() const;
    803 
    804   bool isInsertSubreg() const {
    805     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    806   }
    807 
    808   bool isSubregToReg() const {
    809     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    810   }
    811 
    812   bool isRegSequence() const {
    813     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    814   }
    815 
    816   bool isBundle() const {
    817     return getOpcode() == TargetOpcode::BUNDLE;
    818   }
    819 
    820   bool isCopy() const {
    821     return getOpcode() == TargetOpcode::COPY;
    822   }
    823 
    824   bool isFullCopy() const {
    825     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    826   }
    827 
    828   bool isExtractSubreg() const {
    829     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
    830   }
    831 
    832   /// Return true if the instruction behaves like a copy.
    833   /// This does not include native copy instructions.
    834   bool isCopyLike() const {
    835     return isCopy() || isSubregToReg();
    836   }
    837 
    838   /// Return true is the instruction is an identity copy.
    839   bool isIdentityCopy() const {
    840     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    841       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    842   }
    843 
    844   /// Return true if this instruction doesn't produce any output in the form of
    845   /// executable instructions.
    846   bool isMetaInstruction() const {
    847     switch (getOpcode()) {
    848     default:
    849       return false;
    850     case TargetOpcode::IMPLICIT_DEF:
    851     case TargetOpcode::KILL:
    852     case TargetOpcode::CFI_INSTRUCTION:
    853     case TargetOpcode::EH_LABEL:
    854     case TargetOpcode::GC_LABEL:
    855     case TargetOpcode::DBG_VALUE:
    856       return true;
    857     }
    858   }
    859 
    860   /// Return true if this is a transient instruction that is either very likely
    861   /// to be eliminated during register allocation (such as copy-like
    862   /// instructions), or if this instruction doesn't have an execution-time cost.
    863   bool isTransient() const {
    864     switch (getOpcode()) {
    865     default:
    866       return isMetaInstruction();
    867     // Copy-like instructions are usually eliminated during register allocation.
    868     case TargetOpcode::PHI:
    869     case TargetOpcode::COPY:
    870     case TargetOpcode::INSERT_SUBREG:
    871     case TargetOpcode::SUBREG_TO_REG:
    872     case TargetOpcode::REG_SEQUENCE:
    873       return true;
    874     }
    875   }
    876 
    877   /// Return the number of instructions inside the MI bundle, excluding the
    878   /// bundle header.
    879   ///
    880   /// This is the number of instructions that MachineBasicBlock::iterator
    881   /// skips, 0 for unbundled instructions.
    882   unsigned getBundleSize() const;
    883 
    884   /// Return true if the MachineInstr reads the specified register.
    885   /// If TargetRegisterInfo is passed, then it also checks if there
    886   /// is a read of a super-register.
    887   /// This does not count partial redefines of virtual registers as reads:
    888   ///   %reg1024:6 = OP.
    889   bool readsRegister(unsigned Reg,
    890                      const TargetRegisterInfo *TRI = nullptr) const {
    891     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    892   }
    893 
    894   /// Return true if the MachineInstr reads the specified virtual register.
    895   /// Take into account that a partial define is a
    896   /// read-modify-write operation.
    897   bool readsVirtualRegister(unsigned Reg) const {
    898     return readsWritesVirtualRegister(Reg).first;
    899   }
    900 
    901   /// Return a pair of bools (reads, writes) indicating if this instruction
    902   /// reads or writes Reg. This also considers partial defines.
    903   /// If Ops is not null, all operand indices for Reg are added.
    904   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    905                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
    906 
    907   /// Return true if the MachineInstr kills the specified register.
    908   /// If TargetRegisterInfo is passed, then it also checks if there is
    909   /// a kill of a super-register.
    910   bool killsRegister(unsigned Reg,
    911                      const TargetRegisterInfo *TRI = nullptr) const {
    912     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    913   }
    914 
    915   /// Return true if the MachineInstr fully defines the specified register.
    916   /// If TargetRegisterInfo is passed, then it also checks
    917   /// if there is a def of a super-register.
    918   /// NOTE: It's ignoring subreg indices on virtual registers.
    919   bool definesRegister(unsigned Reg,
    920                        const TargetRegisterInfo *TRI = nullptr) const {
    921     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    922   }
    923 
    924   /// Return true if the MachineInstr modifies (fully define or partially
    925   /// define) the specified register.
    926   /// NOTE: It's ignoring subreg indices on virtual registers.
    927   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    928     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    929   }
    930 
    931   /// Returns true if the register is dead in this machine instruction.
    932   /// If TargetRegisterInfo is passed, then it also checks
    933   /// if there is a dead def of a super-register.
    934   bool registerDefIsDead(unsigned Reg,
    935                          const TargetRegisterInfo *TRI = nullptr) const {
    936     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    937   }
    938 
    939   /// Returns true if the MachineInstr has an implicit-use operand of exactly
    940   /// the given register (not considering sub/super-registers).
    941   bool hasRegisterImplicitUseOperand(unsigned Reg) const;
    942 
    943   /// Returns the operand index that is a use of the specific register or -1
    944   /// if it is not found. It further tightens the search criteria to a use
    945   /// that kills the register if isKill is true.
    946   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    947                                 const TargetRegisterInfo *TRI = nullptr) const;
    948 
    949   /// Wrapper for findRegisterUseOperandIdx, it returns
    950   /// a pointer to the MachineOperand rather than an index.
    951   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    952                                       const TargetRegisterInfo *TRI = nullptr) {
    953     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    954     return (Idx == -1) ? nullptr : &getOperand(Idx);
    955   }
    956 
    957   const MachineOperand *findRegisterUseOperand(
    958     unsigned Reg, bool isKill = false,
    959     const TargetRegisterInfo *TRI = nullptr) const {
    960     return const_cast<MachineInstr *>(this)->
    961       findRegisterUseOperand(Reg, isKill, TRI);
    962   }
    963 
    964   /// Returns the operand index that is a def of the specified register or
    965   /// -1 if it is not found. If isDead is true, defs that are not dead are
    966   /// skipped. If Overlap is true, then it also looks for defs that merely
    967   /// overlap the specified register. If TargetRegisterInfo is non-null,
    968   /// then it also checks if there is a def of a super-register.
    969   /// This may also return a register mask operand when Overlap is true.
    970   int findRegisterDefOperandIdx(unsigned Reg,
    971                                 bool isDead = false, bool Overlap = false,
    972                                 const TargetRegisterInfo *TRI = nullptr) const;
    973 
    974   /// Wrapper for findRegisterDefOperandIdx, it returns
    975   /// a pointer to the MachineOperand rather than an index.
    976   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    977                                       const TargetRegisterInfo *TRI = nullptr) {
    978     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    979     return (Idx == -1) ? nullptr : &getOperand(Idx);
    980   }
    981 
    982   /// Find the index of the first operand in the
    983   /// operand list that is used to represent the predicate. It returns -1 if
    984   /// none is found.
    985   int findFirstPredOperandIdx() const;
    986 
    987   /// Find the index of the flag word operand that
    988   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
    989   /// getOperand(OpIdx) does not belong to an inline asm operand group.
    990   ///
    991   /// If GroupNo is not NULL, it will receive the number of the operand group
    992   /// containing OpIdx.
    993   ///
    994   /// The flag operand is an immediate that can be decoded with methods like
    995   /// InlineAsm::hasRegClassConstraint().
    996   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
    997 
    998   /// Compute the static register class constraint for operand OpIdx.
    999   /// For normal instructions, this is derived from the MCInstrDesc.
   1000   /// For inline assembly it is derived from the flag words.
   1001   ///
   1002   /// Returns NULL if the static register class constraint cannot be
   1003   /// determined.
   1004   const TargetRegisterClass*
   1005   getRegClassConstraint(unsigned OpIdx,
   1006                         const TargetInstrInfo *TII,
   1007                         const TargetRegisterInfo *TRI) const;
   1008 
   1009   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
   1010   /// the given \p CurRC.
   1011   /// If \p ExploreBundle is set and MI is part of a bundle, all the
   1012   /// instructions inside the bundle will be taken into account. In other words,
   1013   /// this method accumulates all the constraints of the operand of this MI and
   1014   /// the related bundle if MI is a bundle or inside a bundle.
   1015   ///
   1016   /// Returns the register class that satisfies both \p CurRC and the
   1017   /// constraints set by MI. Returns NULL if such a register class does not
   1018   /// exist.
   1019   ///
   1020   /// \pre CurRC must not be NULL.
   1021   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
   1022       unsigned Reg, const TargetRegisterClass *CurRC,
   1023       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
   1024       bool ExploreBundle = false) const;
   1025 
   1026   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
   1027   /// to the given \p CurRC.
   1028   ///
   1029   /// Returns the register class that satisfies both \p CurRC and the
   1030   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
   1031   /// does not exist.
   1032   ///
   1033   /// \pre CurRC must not be NULL.
   1034   /// \pre The operand at \p OpIdx must be a register.
   1035   const TargetRegisterClass *
   1036   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
   1037                               const TargetInstrInfo *TII,
   1038                               const TargetRegisterInfo *TRI) const;
   1039 
   1040   /// Add a tie between the register operands at DefIdx and UseIdx.
   1041   /// The tie will cause the register allocator to ensure that the two
   1042   /// operands are assigned the same physical register.
   1043   ///
   1044   /// Tied operands are managed automatically for explicit operands in the
   1045   /// MCInstrDesc. This method is for exceptional cases like inline asm.
   1046   void tieOperands(unsigned DefIdx, unsigned UseIdx);
   1047 
   1048   /// Given the index of a tied register operand, find the
   1049   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
   1050   /// index of the tied operand which must exist.
   1051   unsigned findTiedOperandIdx(unsigned OpIdx) const;
   1052 
   1053   /// Given the index of a register def operand,
   1054   /// check if the register def is tied to a source operand, due to either
   1055   /// two-address elimination or inline assembly constraints. Returns the
   1056   /// first tied use operand index by reference if UseOpIdx is not null.
   1057   bool isRegTiedToUseOperand(unsigned DefOpIdx,
   1058                              unsigned *UseOpIdx = nullptr) const {
   1059     const MachineOperand &MO = getOperand(DefOpIdx);
   1060     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
   1061       return false;
   1062     if (UseOpIdx)
   1063       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
   1064     return true;
   1065   }
   1066 
   1067   /// Return true if the use operand of the specified index is tied to a def
   1068   /// operand. It also returns the def operand index by reference if DefOpIdx
   1069   /// is not null.
   1070   bool isRegTiedToDefOperand(unsigned UseOpIdx,
   1071                              unsigned *DefOpIdx = nullptr) const {
   1072     const MachineOperand &MO = getOperand(UseOpIdx);
   1073     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
   1074       return false;
   1075     if (DefOpIdx)
   1076       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
   1077     return true;
   1078   }
   1079 
   1080   /// Clears kill flags on all operands.
   1081   void clearKillInfo();
   1082 
   1083   /// Replace all occurrences of FromReg with ToReg:SubIdx,
   1084   /// properly composing subreg indices where necessary.
   1085   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
   1086                           const TargetRegisterInfo &RegInfo);
   1087 
   1088   /// We have determined MI kills a register. Look for the
   1089   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
   1090   /// add a implicit operand if it's not found. Returns true if the operand
   1091   /// exists / is added.
   1092   bool addRegisterKilled(unsigned IncomingReg,
   1093                          const TargetRegisterInfo *RegInfo,
   1094                          bool AddIfNotFound = false);
   1095 
   1096   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
   1097   /// all aliasing registers.
   1098   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
   1099 
   1100   /// We have determined MI defined a register without a use.
   1101   /// Look for the operand that defines it and mark it as IsDead. If
   1102   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
   1103   /// true if the operand exists / is added.
   1104   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
   1105                        bool AddIfNotFound = false);
   1106 
   1107   /// Clear all dead flags on operands defining register @p Reg.
   1108   void clearRegisterDeads(unsigned Reg);
   1109 
   1110   /// Mark all subregister defs of register @p Reg with the undef flag.
   1111   /// This function is used when we determined to have a subregister def in an
   1112   /// otherwise undefined super register.
   1113   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
   1114 
   1115   /// We have determined MI defines a register. Make sure there is an operand
   1116   /// defining Reg.
   1117   void addRegisterDefined(unsigned Reg,
   1118                           const TargetRegisterInfo *RegInfo = nullptr);
   1119 
   1120   /// Mark every physreg used by this instruction as
   1121   /// dead except those in the UsedRegs list.
   1122   ///
   1123   /// On instructions with register mask operands, also add implicit-def
   1124   /// operands for all registers in UsedRegs.
   1125   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1126                              const TargetRegisterInfo &TRI);
   1127 
   1128   /// Return true if it is safe to move this instruction. If
   1129   /// SawStore is set to true, it means that there is a store (or call) between
   1130   /// the instruction's location and its intended destination.
   1131   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
   1132 
   1133   /// Returns true if this instruction's memory access aliases the memory
   1134   /// access of Other.
   1135   //
   1136   /// Assumes any physical registers used to compute addresses
   1137   /// have the same value for both instructions.  Returns false if neither
   1138   /// instruction writes to memory.
   1139   ///
   1140   /// @param AA Optional alias analysis, used to compare memory operands.
   1141   /// @param Other MachineInstr to check aliasing against.
   1142   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
   1143   bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
   1144 
   1145   /// Return true if this instruction may have an ordered
   1146   /// or volatile memory reference, or if the information describing the memory
   1147   /// reference is not available. Return false if it is known to have no
   1148   /// ordered or volatile memory references.
   1149   bool hasOrderedMemoryRef() const;
   1150 
   1151   /// Return true if this load instruction never traps and points to a memory
   1152   /// location whose value doesn't change during the execution of this function.
   1153   ///
   1154   /// Examples include loading a value from the constant pool or from the
   1155   /// argument area of a function (if it does not change).  If the instruction
   1156   /// does multiple loads, this returns true only if all of the loads are
   1157   /// dereferenceable and invariant.
   1158   bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
   1159 
   1160   /// If the specified instruction is a PHI that always merges together the
   1161   /// same virtual register, return the register, otherwise return 0.
   1162   unsigned isConstantValuePHI() const;
   1163 
   1164   /// Return true if this instruction has side effects that are not modeled
   1165   /// by mayLoad / mayStore, etc.
   1166   /// For all instructions, the property is encoded in MCInstrDesc::Flags
   1167   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
   1168   /// INLINEASM instruction, in which case the side effect property is encoded
   1169   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
   1170   ///
   1171   bool hasUnmodeledSideEffects() const;
   1172 
   1173   /// Returns true if it is illegal to fold a load across this instruction.
   1174   bool isLoadFoldBarrier() const;
   1175 
   1176   /// Return true if all the defs of this instruction are dead.
   1177   bool allDefsAreDead() const;
   1178 
   1179   /// Copy implicit register operands from specified
   1180   /// instruction to this instruction.
   1181   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
   1182 
   1183   /// Debugging support
   1184   /// @{
   1185   /// Print this MI to \p OS.
   1186   /// Only print the defs and the opcode if \p SkipOpers is true.
   1187   /// Otherwise, also print operands if \p SkipDebugLoc is true.
   1188   /// Otherwise, also print the debug loc, with a terminating newline.
   1189   /// \p TII is used to print the opcode name.  If it's not present, but the
   1190   /// MI is in a function, the opcode will be printed using the function's TII.
   1191   void print(raw_ostream &OS, bool SkipOpers = false, bool SkipDebugLoc = false,
   1192              const TargetInstrInfo *TII = nullptr) const;
   1193   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool SkipOpers = false,
   1194              bool SkipDebugLoc = false,
   1195              const TargetInstrInfo *TII = nullptr) const;
   1196   void dump() const;
   1197   /// @}
   1198 
   1199   //===--------------------------------------------------------------------===//
   1200   // Accessors used to build up machine instructions.
   1201 
   1202   /// Add the specified operand to the instruction.  If it is an implicit
   1203   /// operand, it is added to the end of the operand list.  If it is an
   1204   /// explicit operand it is added at the end of the explicit operand list
   1205   /// (before the first implicit operand).
   1206   ///
   1207   /// MF must be the machine function that was used to allocate this
   1208   /// instruction.
   1209   ///
   1210   /// MachineInstrBuilder provides a more convenient interface for creating
   1211   /// instructions and adding operands.
   1212   void addOperand(MachineFunction &MF, const MachineOperand &Op);
   1213 
   1214   /// Add an operand without providing an MF reference. This only works for
   1215   /// instructions that are inserted in a basic block.
   1216   ///
   1217   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
   1218   /// preferred.
   1219   void addOperand(const MachineOperand &Op);
   1220 
   1221   /// Replace the instruction descriptor (thus opcode) of
   1222   /// the current instruction with a new one.
   1223   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
   1224 
   1225   /// Replace current source information with new such.
   1226   /// Avoid using this, the constructor argument is preferable.
   1227   void setDebugLoc(DebugLoc dl) {
   1228     debugLoc = std::move(dl);
   1229     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
   1230   }
   1231 
   1232   /// Erase an operand from an instruction, leaving it with one
   1233   /// fewer operand than it started with.
   1234   void RemoveOperand(unsigned i);
   1235 
   1236   /// Add a MachineMemOperand to the machine instruction.
   1237   /// This function should be used only occasionally. The setMemRefs function
   1238   /// is the primary method for setting up a MachineInstr's MemRefs list.
   1239   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
   1240 
   1241   /// Assign this MachineInstr's memory reference descriptor list.
   1242   /// This does not transfer ownership.
   1243   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   1244     setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
   1245   }
   1246 
   1247   /// Assign this MachineInstr's memory reference descriptor list.  First
   1248   /// element in the pair is the begin iterator/pointer to the array; the
   1249   /// second is the number of MemoryOperands.  This does not transfer ownership
   1250   /// of the underlying memory.
   1251   void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
   1252     MemRefs = NewMemRefs.first;
   1253     NumMemRefs = uint8_t(NewMemRefs.second);
   1254     assert(NumMemRefs == NewMemRefs.second &&
   1255            "Too many memrefs - must drop memory operands");
   1256   }
   1257 
   1258   /// Return a set of memrefs (begin iterator, size) which conservatively
   1259   /// describe the memory behavior of both MachineInstrs.  This is appropriate
   1260   /// for use when merging two MachineInstrs into one. This routine does not
   1261   /// modify the memrefs of the this MachineInstr.
   1262   std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
   1263 
   1264   /// Clear this MachineInstr's memory reference descriptor list.  This resets
   1265   /// the memrefs to their most conservative state.  This should be used only
   1266   /// as a last resort since it greatly pessimizes our knowledge of the memory
   1267   /// access performed by the instruction.
   1268   void dropMemRefs() {
   1269     MemRefs = nullptr;
   1270     NumMemRefs = 0;
   1271   }
   1272 
   1273   /// Break any tie involving OpIdx.
   1274   void untieRegOperand(unsigned OpIdx) {
   1275     MachineOperand &MO = getOperand(OpIdx);
   1276     if (MO.isReg() && MO.isTied()) {
   1277       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
   1278       MO.TiedTo = 0;
   1279     }
   1280   }
   1281 
   1282   /// Add all implicit def and use operands to this instruction.
   1283   void addImplicitDefUseOperands(MachineFunction &MF);
   1284 
   1285 private:
   1286   /// If this instruction is embedded into a MachineFunction, return the
   1287   /// MachineRegisterInfo object for the current function, otherwise
   1288   /// return null.
   1289   MachineRegisterInfo *getRegInfo();
   1290 
   1291   /// Unlink all of the register operands in this instruction from their
   1292   /// respective use lists.  This requires that the operands already be on their
   1293   /// use lists.
   1294   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
   1295 
   1296   /// Add all of the register operands in this instruction from their
   1297   /// respective use lists.  This requires that the operands not be on their
   1298   /// use lists yet.
   1299   void AddRegOperandsToUseLists(MachineRegisterInfo&);
   1300 
   1301   /// Slow path for hasProperty when we're dealing with a bundle.
   1302   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
   1303 
   1304   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
   1305   /// this MI and the given operand index \p OpIdx.
   1306   /// If the related operand does not constrained Reg, this returns CurRC.
   1307   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
   1308       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
   1309       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
   1310 };
   1311 
   1312 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
   1313 /// instruction rather than by pointer value.
   1314 /// The hashing and equality testing functions ignore definitions so this is
   1315 /// useful for CSE, etc.
   1316 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
   1317   static inline MachineInstr *getEmptyKey() {
   1318     return nullptr;
   1319   }
   1320 
   1321   static inline MachineInstr *getTombstoneKey() {
   1322     return reinterpret_cast<MachineInstr*>(-1);
   1323   }
   1324 
   1325   static unsigned getHashValue(const MachineInstr* const &MI);
   1326 
   1327   static bool isEqual(const MachineInstr* const &LHS,
   1328                       const MachineInstr* const &RHS) {
   1329     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
   1330         LHS == getEmptyKey() || LHS == getTombstoneKey())
   1331       return LHS == RHS;
   1332     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
   1333   }
   1334 };
   1335 
   1336 //===----------------------------------------------------------------------===//
   1337 // Debugging Support
   1338 
   1339 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
   1340   MI.print(OS);
   1341   return OS;
   1342 }
   1343 
   1344 } // end namespace llvm
   1345 
   1346 #endif // LLVM_CODEGEN_MACHINEINSTR_H
   1347