Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/ADT/DenseMapInfo.h"
     20 #include "llvm/ADT/ilist.h"
     21 #include "llvm/ADT/ilist_node.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/CodeGen/MachineOperand.h"
     25 #include "llvm/IR/DebugLoc.h"
     26 #include "llvm/IR/InlineAsm.h"
     27 #include "llvm/MC/MCInstrDesc.h"
     28 #include "llvm/Support/ArrayRecycler.h"
     29 #include "llvm/Target/TargetOpcodes.h"
     30 #include <algorithm>
     31 #include <cassert>
     32 #include <cstdint>
     33 #include <utility>
     34 
     35 namespace llvm {
     36 
     37 template <typename T> class ArrayRef;
     38 class DIExpression;
     39 class DILocalVariable;
     40 class MachineBasicBlock;
     41 class MachineFunction;
     42 class MachineMemOperand;
     43 class MachineRegisterInfo;
     44 class ModuleSlotTracker;
     45 class raw_ostream;
     46 template <typename T> class SmallVectorImpl;
     47 class StringRef;
     48 class TargetInstrInfo;
     49 class TargetRegisterClass;
     50 class TargetRegisterInfo;
     51 
     52 //===----------------------------------------------------------------------===//
     53 /// Representation of each machine instruction.
     54 ///
     55 /// This class isn't a POD type, but it must have a trivial destructor. When a
     56 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
     57 /// without having their destructor called.
     58 ///
     59 class MachineInstr
     60     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
     61                                     ilist_sentinel_tracking<true>> {
     62 public:
     63   using mmo_iterator = MachineMemOperand **;
     64 
     65   /// Flags to specify different kinds of comments to output in
     66   /// assembly code.  These flags carry semantic information not
     67   /// otherwise easily derivable from the IR text.
     68   ///
     69   enum CommentFlag {
     70     ReloadReuse = 0x1 // higher bits are reserved for target dep comments.
     71   };
     72 
     73   enum MIFlag {
     74     NoFlags      = 0,
     75     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     76                                         // function frame setup code.
     77     FrameDestroy = 1 << 1,              // Instruction is used as a part of
     78                                         // function frame destruction code.
     79     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
     80     BundledSucc  = 1 << 3               // Instruction has bundled successors.
     81   };
     82 
     83 private:
     84   const MCInstrDesc *MCID;              // Instruction descriptor.
     85   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
     86 
     87   // Operands are allocated by an ArrayRecycler.
     88   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
     89   unsigned NumOperands = 0;             // Number of operands on instruction.
     90   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
     91   OperandCapacity CapOperands;          // Capacity of the Operands array.
     92 
     93   uint8_t Flags = 0;                    // Various bits of additional
     94                                         // information about machine
     95                                         // instruction.
     96 
     97   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
     98                                         // the AsmPrinter to emit helpful
     99                                         // comments.  This is *not* semantic
    100                                         // information.  Do not use this for
    101                                         // anything other than to convey comment
    102                                         // information to AsmPrinter.
    103 
    104   uint8_t NumMemRefs = 0;               // Information on memory references.
    105   // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
    106   // Calling code must treat missing information conservatively.  If the number
    107   // of memory operands required to be precise exceeds the maximum value of
    108   // NumMemRefs - currently 256 - we remove the operands entirely. Note also
    109   // that this is a non-owning reference to a shared copy on write buffer owned
    110   // by the MachineFunction and created via MF.allocateMemRefsArray.
    111   mmo_iterator MemRefs = nullptr;
    112 
    113   DebugLoc debugLoc;                    // Source line information.
    114 
    115   // Intrusive list support
    116   friend struct ilist_traits<MachineInstr>;
    117   friend struct ilist_callback_traits<MachineBasicBlock>;
    118   void setParent(MachineBasicBlock *P) { Parent = P; }
    119 
    120   /// This constructor creates a copy of the given
    121   /// MachineInstr in the given MachineFunction.
    122   MachineInstr(MachineFunction &, const MachineInstr &);
    123 
    124   /// This constructor create a MachineInstr and add the implicit operands.
    125   /// It reserves space for number of operands specified by
    126   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    127   MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
    128                bool NoImp = false);
    129 
    130   // MachineInstrs are pool-allocated and owned by MachineFunction.
    131   friend class MachineFunction;
    132 
    133 public:
    134   MachineInstr(const MachineInstr &) = delete;
    135   MachineInstr &operator=(const MachineInstr &) = delete;
    136   // Use MachineFunction::DeleteMachineInstr() instead.
    137   ~MachineInstr() = delete;
    138 
    139   const MachineBasicBlock* getParent() const { return Parent; }
    140   MachineBasicBlock* getParent() { return Parent; }
    141 
    142   /// Return the function that contains the basic block that this instruction
    143   /// belongs to.
    144   ///
    145   /// Note: this is undefined behaviour if the instruction does not have a
    146   /// parent.
    147   const MachineFunction *getMF() const;
    148   MachineFunction *getMF() {
    149     return const_cast<MachineFunction *>(
    150         static_cast<const MachineInstr *>(this)->getMF());
    151   }
    152 
    153   /// Return the asm printer flags bitvector.
    154   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    155 
    156   /// Clear the AsmPrinter bitvector.
    157   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    158 
    159   /// Return whether an AsmPrinter flag is set.
    160   bool getAsmPrinterFlag(CommentFlag Flag) const {
    161     return AsmPrinterFlags & Flag;
    162   }
    163 
    164   /// Set a flag for the AsmPrinter.
    165   void setAsmPrinterFlag(uint8_t Flag) {
    166     AsmPrinterFlags |= Flag;
    167   }
    168 
    169   /// Clear specific AsmPrinter flags.
    170   void clearAsmPrinterFlag(CommentFlag Flag) {
    171     AsmPrinterFlags &= ~Flag;
    172   }
    173 
    174   /// Return the MI flags bitvector.
    175   uint8_t getFlags() const {
    176     return Flags;
    177   }
    178 
    179   /// Return whether an MI flag is set.
    180   bool getFlag(MIFlag Flag) const {
    181     return Flags & Flag;
    182   }
    183 
    184   /// Set a MI flag.
    185   void setFlag(MIFlag Flag) {
    186     Flags |= (uint8_t)Flag;
    187   }
    188 
    189   void setFlags(unsigned flags) {
    190     // Filter out the automatically maintained flags.
    191     unsigned Mask = BundledPred | BundledSucc;
    192     Flags = (Flags & Mask) | (flags & ~Mask);
    193   }
    194 
    195   /// clearFlag - Clear a MI flag.
    196   void clearFlag(MIFlag Flag) {
    197     Flags &= ~((uint8_t)Flag);
    198   }
    199 
    200   /// Return true if MI is in a bundle (but not the first MI in a bundle).
    201   ///
    202   /// A bundle looks like this before it's finalized:
    203   ///   ----------------
    204   ///   |      MI      |
    205   ///   ----------------
    206   ///          |
    207   ///   ----------------
    208   ///   |      MI    * |
    209   ///   ----------------
    210   ///          |
    211   ///   ----------------
    212   ///   |      MI    * |
    213   ///   ----------------
    214   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    215   /// next 2 MIs are considered "inside" the bundle.
    216   ///
    217   /// After a bundle is finalized, it looks like this:
    218   ///   ----------------
    219   ///   |    Bundle    |
    220   ///   ----------------
    221   ///          |
    222   ///   ----------------
    223   ///   |      MI    * |
    224   ///   ----------------
    225   ///          |
    226   ///   ----------------
    227   ///   |      MI    * |
    228   ///   ----------------
    229   ///          |
    230   ///   ----------------
    231   ///   |      MI    * |
    232   ///   ----------------
    233   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    234   /// a bundle, but the next three MIs are.
    235   bool isInsideBundle() const {
    236     return getFlag(BundledPred);
    237   }
    238 
    239   /// Return true if this instruction part of a bundle. This is true
    240   /// if either itself or its following instruction is marked "InsideBundle".
    241   bool isBundled() const {
    242     return isBundledWithPred() || isBundledWithSucc();
    243   }
    244 
    245   /// Return true if this instruction is part of a bundle, and it is not the
    246   /// first instruction in the bundle.
    247   bool isBundledWithPred() const { return getFlag(BundledPred); }
    248 
    249   /// Return true if this instruction is part of a bundle, and it is not the
    250   /// last instruction in the bundle.
    251   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
    252 
    253   /// Bundle this instruction with its predecessor. This can be an unbundled
    254   /// instruction, or it can be the first instruction in a bundle.
    255   void bundleWithPred();
    256 
    257   /// Bundle this instruction with its successor. This can be an unbundled
    258   /// instruction, or it can be the last instruction in a bundle.
    259   void bundleWithSucc();
    260 
    261   /// Break bundle above this instruction.
    262   void unbundleFromPred();
    263 
    264   /// Break bundle below this instruction.
    265   void unbundleFromSucc();
    266 
    267   /// Returns the debug location id of this MachineInstr.
    268   const DebugLoc &getDebugLoc() const { return debugLoc; }
    269 
    270   /// Return the debug variable referenced by
    271   /// this DBG_VALUE instruction.
    272   const DILocalVariable *getDebugVariable() const;
    273 
    274   /// Return the complex address expression referenced by
    275   /// this DBG_VALUE instruction.
    276   const DIExpression *getDebugExpression() const;
    277 
    278   /// Emit an error referring to the source location of this instruction.
    279   /// This should only be used for inline assembly that is somehow
    280   /// impossible to compile. Other errors should have been handled much
    281   /// earlier.
    282   ///
    283   /// If this method returns, the caller should try to recover from the error.
    284   void emitError(StringRef Msg) const;
    285 
    286   /// Returns the target instruction descriptor of this MachineInstr.
    287   const MCInstrDesc &getDesc() const { return *MCID; }
    288 
    289   /// Returns the opcode of this MachineInstr.
    290   unsigned getOpcode() const { return MCID->Opcode; }
    291 
    292   /// Access to explicit operands of the instruction.
    293   unsigned getNumOperands() const { return NumOperands; }
    294 
    295   const MachineOperand& getOperand(unsigned i) const {
    296     assert(i < getNumOperands() && "getOperand() out of range!");
    297     return Operands[i];
    298   }
    299   MachineOperand& getOperand(unsigned i) {
    300     assert(i < getNumOperands() && "getOperand() out of range!");
    301     return Operands[i];
    302   }
    303 
    304   /// Returns the number of non-implicit operands.
    305   unsigned getNumExplicitOperands() const;
    306 
    307   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    308   using mop_iterator = MachineOperand *;
    309   using const_mop_iterator = const MachineOperand *;
    310 
    311   mop_iterator operands_begin() { return Operands; }
    312   mop_iterator operands_end() { return Operands + NumOperands; }
    313 
    314   const_mop_iterator operands_begin() const { return Operands; }
    315   const_mop_iterator operands_end() const { return Operands + NumOperands; }
    316 
    317   iterator_range<mop_iterator> operands() {
    318     return make_range(operands_begin(), operands_end());
    319   }
    320   iterator_range<const_mop_iterator> operands() const {
    321     return make_range(operands_begin(), operands_end());
    322   }
    323   iterator_range<mop_iterator> explicit_operands() {
    324     return make_range(operands_begin(),
    325                       operands_begin() + getNumExplicitOperands());
    326   }
    327   iterator_range<const_mop_iterator> explicit_operands() const {
    328     return make_range(operands_begin(),
    329                       operands_begin() + getNumExplicitOperands());
    330   }
    331   iterator_range<mop_iterator> implicit_operands() {
    332     return make_range(explicit_operands().end(), operands_end());
    333   }
    334   iterator_range<const_mop_iterator> implicit_operands() const {
    335     return make_range(explicit_operands().end(), operands_end());
    336   }
    337   /// Returns a range over all explicit operands that are register definitions.
    338   /// Implicit definition are not included!
    339   iterator_range<mop_iterator> defs() {
    340     return make_range(operands_begin(),
    341                       operands_begin() + getDesc().getNumDefs());
    342   }
    343   /// \copydoc defs()
    344   iterator_range<const_mop_iterator> defs() const {
    345     return make_range(operands_begin(),
    346                       operands_begin() + getDesc().getNumDefs());
    347   }
    348   /// Returns a range that includes all operands that are register uses.
    349   /// This may include unrelated operands which are not register uses.
    350   iterator_range<mop_iterator> uses() {
    351     return make_range(operands_begin() + getDesc().getNumDefs(),
    352                       operands_end());
    353   }
    354   /// \copydoc uses()
    355   iterator_range<const_mop_iterator> uses() const {
    356     return make_range(operands_begin() + getDesc().getNumDefs(),
    357                       operands_end());
    358   }
    359   iterator_range<mop_iterator> explicit_uses() {
    360     return make_range(operands_begin() + getDesc().getNumDefs(),
    361                       operands_begin() + getNumExplicitOperands() );
    362   }
    363   iterator_range<const_mop_iterator> explicit_uses() const {
    364     return make_range(operands_begin() + getDesc().getNumDefs(),
    365                       operands_begin() + getNumExplicitOperands() );
    366   }
    367 
    368   /// Returns the number of the operand iterator \p I points to.
    369   unsigned getOperandNo(const_mop_iterator I) const {
    370     return I - operands_begin();
    371   }
    372 
    373   /// Access to memory operands of the instruction
    374   mmo_iterator memoperands_begin() const { return MemRefs; }
    375   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    376   /// Return true if we don't have any memory operands which described the the
    377   /// memory access done by this instruction.  If this is true, calling code
    378   /// must be conservative.
    379   bool memoperands_empty() const { return NumMemRefs == 0; }
    380 
    381   iterator_range<mmo_iterator>  memoperands() {
    382     return make_range(memoperands_begin(), memoperands_end());
    383   }
    384   iterator_range<mmo_iterator> memoperands() const {
    385     return make_range(memoperands_begin(), memoperands_end());
    386   }
    387 
    388   /// Return true if this instruction has exactly one MachineMemOperand.
    389   bool hasOneMemOperand() const {
    390     return NumMemRefs == 1;
    391   }
    392 
    393   /// Return the number of memory operands.
    394   unsigned getNumMemOperands() const { return NumMemRefs; }
    395 
    396   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    397   /// queries but they are bundle aware.
    398 
    399   enum QueryType {
    400     IgnoreBundle,    // Ignore bundles
    401     AnyInBundle,     // Return true if any instruction in bundle has property
    402     AllInBundle      // Return true if all instructions in bundle have property
    403   };
    404 
    405   /// Return true if the instruction (or in the case of a bundle,
    406   /// the instructions inside the bundle) has the specified property.
    407   /// The first argument is the property being queried.
    408   /// The second argument indicates whether the query should look inside
    409   /// instruction bundles.
    410   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    411     // Inline the fast path for unbundled or bundle-internal instructions.
    412     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
    413       return getDesc().getFlags() & (1ULL << MCFlag);
    414 
    415     // If this is the first instruction in a bundle, take the slow path.
    416     return hasPropertyInBundle(1ULL << MCFlag, Type);
    417   }
    418 
    419   /// Return true if this instruction can have a variable number of operands.
    420   /// In this case, the variable operands will be after the normal
    421   /// operands but before the implicit definitions and uses (if any are
    422   /// present).
    423   bool isVariadic(QueryType Type = IgnoreBundle) const {
    424     return hasProperty(MCID::Variadic, Type);
    425   }
    426 
    427   /// Set if this instruction has an optional definition, e.g.
    428   /// ARM instructions which can set condition code if 's' bit is set.
    429   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    430     return hasProperty(MCID::HasOptionalDef, Type);
    431   }
    432 
    433   /// Return true if this is a pseudo instruction that doesn't
    434   /// correspond to a real machine instruction.
    435   bool isPseudo(QueryType Type = IgnoreBundle) const {
    436     return hasProperty(MCID::Pseudo, Type);
    437   }
    438 
    439   bool isReturn(QueryType Type = AnyInBundle) const {
    440     return hasProperty(MCID::Return, Type);
    441   }
    442 
    443   bool isCall(QueryType Type = AnyInBundle) const {
    444     return hasProperty(MCID::Call, Type);
    445   }
    446 
    447   /// Returns true if the specified instruction stops control flow
    448   /// from executing the instruction immediately following it.  Examples include
    449   /// unconditional branches and return instructions.
    450   bool isBarrier(QueryType Type = AnyInBundle) const {
    451     return hasProperty(MCID::Barrier, Type);
    452   }
    453 
    454   /// Returns true if this instruction part of the terminator for a basic block.
    455   /// Typically this is things like return and branch instructions.
    456   ///
    457   /// Various passes use this to insert code into the bottom of a basic block,
    458   /// but before control flow occurs.
    459   bool isTerminator(QueryType Type = AnyInBundle) const {
    460     return hasProperty(MCID::Terminator, Type);
    461   }
    462 
    463   /// Returns true if this is a conditional, unconditional, or indirect branch.
    464   /// Predicates below can be used to discriminate between
    465   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    466   /// get more information.
    467   bool isBranch(QueryType Type = AnyInBundle) const {
    468     return hasProperty(MCID::Branch, Type);
    469   }
    470 
    471   /// Return true if this is an indirect branch, such as a
    472   /// branch through a register.
    473   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    474     return hasProperty(MCID::IndirectBranch, Type);
    475   }
    476 
    477   /// Return true if this is a branch which may fall
    478   /// through to the next instruction or may transfer control flow to some other
    479   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    480   /// information about this branch.
    481   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    482     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    483   }
    484 
    485   /// Return true if this is a branch which always
    486   /// transfers control flow to some other block.  The
    487   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    488   /// about this branch.
    489   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    490     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    491   }
    492 
    493   /// Return true if this instruction has a predicate operand that
    494   /// controls execution.  It may be set to 'always', or may be set to other
    495   /// values.   There are various methods in TargetInstrInfo that can be used to
    496   /// control and modify the predicate in this instruction.
    497   bool isPredicable(QueryType Type = AllInBundle) const {
    498     // If it's a bundle than all bundled instructions must be predicable for this
    499     // to return true.
    500     return hasProperty(MCID::Predicable, Type);
    501   }
    502 
    503   /// Return true if this instruction is a comparison.
    504   bool isCompare(QueryType Type = IgnoreBundle) const {
    505     return hasProperty(MCID::Compare, Type);
    506   }
    507 
    508   /// Return true if this instruction is a move immediate
    509   /// (including conditional moves) instruction.
    510   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    511     return hasProperty(MCID::MoveImm, Type);
    512   }
    513 
    514   /// Return true if this instruction is a bitcast instruction.
    515   bool isBitcast(QueryType Type = IgnoreBundle) const {
    516     return hasProperty(MCID::Bitcast, Type);
    517   }
    518 
    519   /// Return true if this instruction is a select instruction.
    520   bool isSelect(QueryType Type = IgnoreBundle) const {
    521     return hasProperty(MCID::Select, Type);
    522   }
    523 
    524   /// Return true if this instruction cannot be safely duplicated.
    525   /// For example, if the instruction has a unique labels attached
    526   /// to it, duplicating it would cause multiple definition errors.
    527   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    528     return hasProperty(MCID::NotDuplicable, Type);
    529   }
    530 
    531   /// Return true if this instruction is convergent.
    532   /// Convergent instructions can not be made control-dependent on any
    533   /// additional values.
    534   bool isConvergent(QueryType Type = AnyInBundle) const {
    535     if (isInlineAsm()) {
    536       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    537       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
    538         return true;
    539     }
    540     return hasProperty(MCID::Convergent, Type);
    541   }
    542 
    543   /// Returns true if the specified instruction has a delay slot
    544   /// which must be filled by the code generator.
    545   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    546     return hasProperty(MCID::DelaySlot, Type);
    547   }
    548 
    549   /// Return true for instructions that can be folded as
    550   /// memory operands in other instructions. The most common use for this
    551   /// is instructions that are simple loads from memory that don't modify
    552   /// the loaded value in any way, but it can also be used for instructions
    553   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    554   /// on x86, to allow them to be folded when it is beneficial.
    555   /// This should only be set on instructions that return a value in their
    556   /// only virtual register definition.
    557   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    558     return hasProperty(MCID::FoldableAsLoad, Type);
    559   }
    560 
    561   /// \brief Return true if this instruction behaves
    562   /// the same way as the generic REG_SEQUENCE instructions.
    563   /// E.g., on ARM,
    564   /// dX VMOVDRR rY, rZ
    565   /// is equivalent to
    566   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
    567   ///
    568   /// Note that for the optimizers to be able to take advantage of
    569   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
    570   /// override accordingly.
    571   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
    572     return hasProperty(MCID::RegSequence, Type);
    573   }
    574 
    575   /// \brief Return true if this instruction behaves
    576   /// the same way as the generic EXTRACT_SUBREG instructions.
    577   /// E.g., on ARM,
    578   /// rX, rY VMOVRRD dZ
    579   /// is equivalent to two EXTRACT_SUBREG:
    580   /// rX = EXTRACT_SUBREG dZ, ssub_0
    581   /// rY = EXTRACT_SUBREG dZ, ssub_1
    582   ///
    583   /// Note that for the optimizers to be able to take advantage of
    584   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
    585   /// override accordingly.
    586   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
    587     return hasProperty(MCID::ExtractSubreg, Type);
    588   }
    589 
    590   /// \brief Return true if this instruction behaves
    591   /// the same way as the generic INSERT_SUBREG instructions.
    592   /// E.g., on ARM,
    593   /// dX = VSETLNi32 dY, rZ, Imm
    594   /// is equivalent to a INSERT_SUBREG:
    595   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
    596   ///
    597   /// Note that for the optimizers to be able to take advantage of
    598   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
    599   /// override accordingly.
    600   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
    601     return hasProperty(MCID::InsertSubreg, Type);
    602   }
    603 
    604   //===--------------------------------------------------------------------===//
    605   // Side Effect Analysis
    606   //===--------------------------------------------------------------------===//
    607 
    608   /// Return true if this instruction could possibly read memory.
    609   /// Instructions with this flag set are not necessarily simple load
    610   /// instructions, they may load a value and modify it, for example.
    611   bool mayLoad(QueryType Type = AnyInBundle) const {
    612     if (isInlineAsm()) {
    613       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    614       if (ExtraInfo & InlineAsm::Extra_MayLoad)
    615         return true;
    616     }
    617     return hasProperty(MCID::MayLoad, Type);
    618   }
    619 
    620   /// Return true if this instruction could possibly modify memory.
    621   /// Instructions with this flag set are not necessarily simple store
    622   /// instructions, they may store a modified value based on their operands, or
    623   /// may not actually modify anything, for example.
    624   bool mayStore(QueryType Type = AnyInBundle) const {
    625     if (isInlineAsm()) {
    626       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    627       if (ExtraInfo & InlineAsm::Extra_MayStore)
    628         return true;
    629     }
    630     return hasProperty(MCID::MayStore, Type);
    631   }
    632 
    633   /// Return true if this instruction could possibly read or modify memory.
    634   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
    635     return mayLoad(Type) || mayStore(Type);
    636   }
    637 
    638   //===--------------------------------------------------------------------===//
    639   // Flags that indicate whether an instruction can be modified by a method.
    640   //===--------------------------------------------------------------------===//
    641 
    642   /// Return true if this may be a 2- or 3-address
    643   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    644   /// result if Y and Z are exchanged.  If this flag is set, then the
    645   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    646   /// instruction.
    647   ///
    648   /// Note that this flag may be set on instructions that are only commutable
    649   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    650   /// Also note that some instructions require non-trivial modification to
    651   /// commute them.
    652   bool isCommutable(QueryType Type = IgnoreBundle) const {
    653     return hasProperty(MCID::Commutable, Type);
    654   }
    655 
    656   /// Return true if this is a 2-address instruction
    657   /// which can be changed into a 3-address instruction if needed.  Doing this
    658   /// transformation can be profitable in the register allocator, because it
    659   /// means that the instruction can use a 2-address form if possible, but
    660   /// degrade into a less efficient form if the source and dest register cannot
    661   /// be assigned to the same register.  For example, this allows the x86
    662   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    663   /// is the same speed as the shift but has bigger code size.
    664   ///
    665   /// If this returns true, then the target must implement the
    666   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    667   /// is allowed to fail if the transformation isn't valid for this specific
    668   /// instruction (e.g. shl reg, 4 on x86).
    669   ///
    670   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    671     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    672   }
    673 
    674   /// Return true if this instruction requires
    675   /// custom insertion support when the DAG scheduler is inserting it into a
    676   /// machine basic block.  If this is true for the instruction, it basically
    677   /// means that it is a pseudo instruction used at SelectionDAG time that is
    678   /// expanded out into magic code by the target when MachineInstrs are formed.
    679   ///
    680   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    681   /// is used to insert this into the MachineBasicBlock.
    682   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    683     return hasProperty(MCID::UsesCustomInserter, Type);
    684   }
    685 
    686   /// Return true if this instruction requires *adjustment*
    687   /// after instruction selection by calling a target hook. For example, this
    688   /// can be used to fill in ARM 's' optional operand depending on whether
    689   /// the conditional flag register is used.
    690   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    691     return hasProperty(MCID::HasPostISelHook, Type);
    692   }
    693 
    694   /// Returns true if this instruction is a candidate for remat.
    695   /// This flag is deprecated, please don't use it anymore.  If this
    696   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    697   /// verify the instruction is really rematable.
    698   bool isRematerializable(QueryType Type = AllInBundle) const {
    699     // It's only possible to re-mat a bundle if all bundled instructions are
    700     // re-materializable.
    701     return hasProperty(MCID::Rematerializable, Type);
    702   }
    703 
    704   /// Returns true if this instruction has the same cost (or less) than a move
    705   /// instruction. This is useful during certain types of optimizations
    706   /// (e.g., remat during two-address conversion or machine licm)
    707   /// where we would like to remat or hoist the instruction, but not if it costs
    708   /// more than moving the instruction into the appropriate register. Note, we
    709   /// are not marking copies from and to the same register class with this flag.
    710   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    711     // Only returns true for a bundle if all bundled instructions are cheap.
    712     return hasProperty(MCID::CheapAsAMove, Type);
    713   }
    714 
    715   /// Returns true if this instruction source operands
    716   /// have special register allocation requirements that are not captured by the
    717   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    718   /// even / odd pair, ARM::STM registers have to be in ascending order.
    719   /// Post-register allocation passes should not attempt to change allocations
    720   /// for sources of instructions with this flag.
    721   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    722     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    723   }
    724 
    725   /// Returns true if this instruction def operands
    726   /// have special register allocation requirements that are not captured by the
    727   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    728   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    729   /// Post-register allocation passes should not attempt to change allocations
    730   /// for definitions of instructions with this flag.
    731   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    732     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    733   }
    734 
    735   enum MICheckType {
    736     CheckDefs,      // Check all operands for equality
    737     CheckKillDead,  // Check all operands including kill / dead markers
    738     IgnoreDefs,     // Ignore all definitions
    739     IgnoreVRegDefs  // Ignore virtual register definitions
    740   };
    741 
    742   /// Return true if this instruction is identical to \p Other.
    743   /// Two instructions are identical if they have the same opcode and all their
    744   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
    745   /// Note that this means liveness related flags (dead, undef, kill) do not
    746   /// affect the notion of identical.
    747   bool isIdenticalTo(const MachineInstr &Other,
    748                      MICheckType Check = CheckDefs) const;
    749 
    750   /// Unlink 'this' from the containing basic block, and return it without
    751   /// deleting it.
    752   ///
    753   /// This function can not be used on bundled instructions, use
    754   /// removeFromBundle() to remove individual instructions from a bundle.
    755   MachineInstr *removeFromParent();
    756 
    757   /// Unlink this instruction from its basic block and return it without
    758   /// deleting it.
    759   ///
    760   /// If the instruction is part of a bundle, the other instructions in the
    761   /// bundle remain bundled.
    762   MachineInstr *removeFromBundle();
    763 
    764   /// Unlink 'this' from the containing basic block and delete it.
    765   ///
    766   /// If this instruction is the header of a bundle, the whole bundle is erased.
    767   /// This function can not be used for instructions inside a bundle, use
    768   /// eraseFromBundle() to erase individual bundled instructions.
    769   void eraseFromParent();
    770 
    771   /// Unlink 'this' from the containing basic block and delete it.
    772   ///
    773   /// For all definitions mark their uses in DBG_VALUE nodes
    774   /// as undefined. Otherwise like eraseFromParent().
    775   void eraseFromParentAndMarkDBGValuesForRemoval();
    776 
    777   /// Unlink 'this' form its basic block and delete it.
    778   ///
    779   /// If the instruction is part of a bundle, the other instructions in the
    780   /// bundle remain bundled.
    781   void eraseFromBundle();
    782 
    783   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    784   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    785 
    786   /// Returns true if the MachineInstr represents a label.
    787   bool isLabel() const { return isEHLabel() || isGCLabel(); }
    788 
    789   bool isCFIInstruction() const {
    790     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
    791   }
    792 
    793   // True if the instruction represents a position in the function.
    794   bool isPosition() const { return isLabel() || isCFIInstruction(); }
    795 
    796   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    797 
    798   /// A DBG_VALUE is indirect iff the first operand is a register and
    799   /// the second operand is an immediate.
    800   bool isIndirectDebugValue() const {
    801     return isDebugValue()
    802       && getOperand(0).isReg()
    803       && getOperand(1).isImm();
    804   }
    805 
    806   bool isPHI() const {
    807     return getOpcode() == TargetOpcode::PHI ||
    808            getOpcode() == TargetOpcode::G_PHI;
    809   }
    810   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    811   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    812   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    813 
    814   bool isMSInlineAsm() const {
    815     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    816   }
    817 
    818   bool isStackAligningInlineAsm() const;
    819   InlineAsm::AsmDialect getInlineAsmDialect() const;
    820 
    821   bool isInsertSubreg() const {
    822     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    823   }
    824 
    825   bool isSubregToReg() const {
    826     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    827   }
    828 
    829   bool isRegSequence() const {
    830     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    831   }
    832 
    833   bool isBundle() const {
    834     return getOpcode() == TargetOpcode::BUNDLE;
    835   }
    836 
    837   bool isCopy() const {
    838     return getOpcode() == TargetOpcode::COPY;
    839   }
    840 
    841   bool isFullCopy() const {
    842     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    843   }
    844 
    845   bool isExtractSubreg() const {
    846     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
    847   }
    848 
    849   /// Return true if the instruction behaves like a copy.
    850   /// This does not include native copy instructions.
    851   bool isCopyLike() const {
    852     return isCopy() || isSubregToReg();
    853   }
    854 
    855   /// Return true is the instruction is an identity copy.
    856   bool isIdentityCopy() const {
    857     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    858       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    859   }
    860 
    861   /// Return true if this instruction doesn't produce any output in the form of
    862   /// executable instructions.
    863   bool isMetaInstruction() const {
    864     switch (getOpcode()) {
    865     default:
    866       return false;
    867     case TargetOpcode::IMPLICIT_DEF:
    868     case TargetOpcode::KILL:
    869     case TargetOpcode::CFI_INSTRUCTION:
    870     case TargetOpcode::EH_LABEL:
    871     case TargetOpcode::GC_LABEL:
    872     case TargetOpcode::DBG_VALUE:
    873       return true;
    874     }
    875   }
    876 
    877   /// Return true if this is a transient instruction that is either very likely
    878   /// to be eliminated during register allocation (such as copy-like
    879   /// instructions), or if this instruction doesn't have an execution-time cost.
    880   bool isTransient() const {
    881     switch (getOpcode()) {
    882     default:
    883       return isMetaInstruction();
    884     // Copy-like instructions are usually eliminated during register allocation.
    885     case TargetOpcode::PHI:
    886     case TargetOpcode::G_PHI:
    887     case TargetOpcode::COPY:
    888     case TargetOpcode::INSERT_SUBREG:
    889     case TargetOpcode::SUBREG_TO_REG:
    890     case TargetOpcode::REG_SEQUENCE:
    891       return true;
    892     }
    893   }
    894 
    895   /// Return the number of instructions inside the MI bundle, excluding the
    896   /// bundle header.
    897   ///
    898   /// This is the number of instructions that MachineBasicBlock::iterator
    899   /// skips, 0 for unbundled instructions.
    900   unsigned getBundleSize() const;
    901 
    902   /// Return true if the MachineInstr reads the specified register.
    903   /// If TargetRegisterInfo is passed, then it also checks if there
    904   /// is a read of a super-register.
    905   /// This does not count partial redefines of virtual registers as reads:
    906   ///   %reg1024:6 = OP.
    907   bool readsRegister(unsigned Reg,
    908                      const TargetRegisterInfo *TRI = nullptr) const {
    909     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    910   }
    911 
    912   /// Return true if the MachineInstr reads the specified virtual register.
    913   /// Take into account that a partial define is a
    914   /// read-modify-write operation.
    915   bool readsVirtualRegister(unsigned Reg) const {
    916     return readsWritesVirtualRegister(Reg).first;
    917   }
    918 
    919   /// Return a pair of bools (reads, writes) indicating if this instruction
    920   /// reads or writes Reg. This also considers partial defines.
    921   /// If Ops is not null, all operand indices for Reg are added.
    922   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    923                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
    924 
    925   /// Return true if the MachineInstr kills the specified register.
    926   /// If TargetRegisterInfo is passed, then it also checks if there is
    927   /// a kill of a super-register.
    928   bool killsRegister(unsigned Reg,
    929                      const TargetRegisterInfo *TRI = nullptr) const {
    930     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    931   }
    932 
    933   /// Return true if the MachineInstr fully defines the specified register.
    934   /// If TargetRegisterInfo is passed, then it also checks
    935   /// if there is a def of a super-register.
    936   /// NOTE: It's ignoring subreg indices on virtual registers.
    937   bool definesRegister(unsigned Reg,
    938                        const TargetRegisterInfo *TRI = nullptr) const {
    939     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    940   }
    941 
    942   /// Return true if the MachineInstr modifies (fully define or partially
    943   /// define) the specified register.
    944   /// NOTE: It's ignoring subreg indices on virtual registers.
    945   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    946     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    947   }
    948 
    949   /// Returns true if the register is dead in this machine instruction.
    950   /// If TargetRegisterInfo is passed, then it also checks
    951   /// if there is a dead def of a super-register.
    952   bool registerDefIsDead(unsigned Reg,
    953                          const TargetRegisterInfo *TRI = nullptr) const {
    954     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    955   }
    956 
    957   /// Returns true if the MachineInstr has an implicit-use operand of exactly
    958   /// the given register (not considering sub/super-registers).
    959   bool hasRegisterImplicitUseOperand(unsigned Reg) const;
    960 
    961   /// Returns the operand index that is a use of the specific register or -1
    962   /// if it is not found. It further tightens the search criteria to a use
    963   /// that kills the register if isKill is true.
    964   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    965                                 const TargetRegisterInfo *TRI = nullptr) const;
    966 
    967   /// Wrapper for findRegisterUseOperandIdx, it returns
    968   /// a pointer to the MachineOperand rather than an index.
    969   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    970                                       const TargetRegisterInfo *TRI = nullptr) {
    971     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    972     return (Idx == -1) ? nullptr : &getOperand(Idx);
    973   }
    974 
    975   const MachineOperand *findRegisterUseOperand(
    976     unsigned Reg, bool isKill = false,
    977     const TargetRegisterInfo *TRI = nullptr) const {
    978     return const_cast<MachineInstr *>(this)->
    979       findRegisterUseOperand(Reg, isKill, TRI);
    980   }
    981 
    982   /// Returns the operand index that is a def of the specified register or
    983   /// -1 if it is not found. If isDead is true, defs that are not dead are
    984   /// skipped. If Overlap is true, then it also looks for defs that merely
    985   /// overlap the specified register. If TargetRegisterInfo is non-null,
    986   /// then it also checks if there is a def of a super-register.
    987   /// This may also return a register mask operand when Overlap is true.
    988   int findRegisterDefOperandIdx(unsigned Reg,
    989                                 bool isDead = false, bool Overlap = false,
    990                                 const TargetRegisterInfo *TRI = nullptr) const;
    991 
    992   /// Wrapper for findRegisterDefOperandIdx, it returns
    993   /// a pointer to the MachineOperand rather than an index.
    994   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    995                                       const TargetRegisterInfo *TRI = nullptr) {
    996     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    997     return (Idx == -1) ? nullptr : &getOperand(Idx);
    998   }
    999 
   1000   /// Find the index of the first operand in the
   1001   /// operand list that is used to represent the predicate. It returns -1 if
   1002   /// none is found.
   1003   int findFirstPredOperandIdx() const;
   1004 
   1005   /// Find the index of the flag word operand that
   1006   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
   1007   /// getOperand(OpIdx) does not belong to an inline asm operand group.
   1008   ///
   1009   /// If GroupNo is not NULL, it will receive the number of the operand group
   1010   /// containing OpIdx.
   1011   ///
   1012   /// The flag operand is an immediate that can be decoded with methods like
   1013   /// InlineAsm::hasRegClassConstraint().
   1014   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
   1015 
   1016   /// Compute the static register class constraint for operand OpIdx.
   1017   /// For normal instructions, this is derived from the MCInstrDesc.
   1018   /// For inline assembly it is derived from the flag words.
   1019   ///
   1020   /// Returns NULL if the static register class constraint cannot be
   1021   /// determined.
   1022   const TargetRegisterClass*
   1023   getRegClassConstraint(unsigned OpIdx,
   1024                         const TargetInstrInfo *TII,
   1025                         const TargetRegisterInfo *TRI) const;
   1026 
   1027   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
   1028   /// the given \p CurRC.
   1029   /// If \p ExploreBundle is set and MI is part of a bundle, all the
   1030   /// instructions inside the bundle will be taken into account. In other words,
   1031   /// this method accumulates all the constraints of the operand of this MI and
   1032   /// the related bundle if MI is a bundle or inside a bundle.
   1033   ///
   1034   /// Returns the register class that satisfies both \p CurRC and the
   1035   /// constraints set by MI. Returns NULL if such a register class does not
   1036   /// exist.
   1037   ///
   1038   /// \pre CurRC must not be NULL.
   1039   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
   1040       unsigned Reg, const TargetRegisterClass *CurRC,
   1041       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
   1042       bool ExploreBundle = false) const;
   1043 
   1044   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
   1045   /// to the given \p CurRC.
   1046   ///
   1047   /// Returns the register class that satisfies both \p CurRC and the
   1048   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
   1049   /// does not exist.
   1050   ///
   1051   /// \pre CurRC must not be NULL.
   1052   /// \pre The operand at \p OpIdx must be a register.
   1053   const TargetRegisterClass *
   1054   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
   1055                               const TargetInstrInfo *TII,
   1056                               const TargetRegisterInfo *TRI) const;
   1057 
   1058   /// Add a tie between the register operands at DefIdx and UseIdx.
   1059   /// The tie will cause the register allocator to ensure that the two
   1060   /// operands are assigned the same physical register.
   1061   ///
   1062   /// Tied operands are managed automatically for explicit operands in the
   1063   /// MCInstrDesc. This method is for exceptional cases like inline asm.
   1064   void tieOperands(unsigned DefIdx, unsigned UseIdx);
   1065 
   1066   /// Given the index of a tied register operand, find the
   1067   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
   1068   /// index of the tied operand which must exist.
   1069   unsigned findTiedOperandIdx(unsigned OpIdx) const;
   1070 
   1071   /// Given the index of a register def operand,
   1072   /// check if the register def is tied to a source operand, due to either
   1073   /// two-address elimination or inline assembly constraints. Returns the
   1074   /// first tied use operand index by reference if UseOpIdx is not null.
   1075   bool isRegTiedToUseOperand(unsigned DefOpIdx,
   1076                              unsigned *UseOpIdx = nullptr) const {
   1077     const MachineOperand &MO = getOperand(DefOpIdx);
   1078     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
   1079       return false;
   1080     if (UseOpIdx)
   1081       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
   1082     return true;
   1083   }
   1084 
   1085   /// Return true if the use operand of the specified index is tied to a def
   1086   /// operand. It also returns the def operand index by reference if DefOpIdx
   1087   /// is not null.
   1088   bool isRegTiedToDefOperand(unsigned UseOpIdx,
   1089                              unsigned *DefOpIdx = nullptr) const {
   1090     const MachineOperand &MO = getOperand(UseOpIdx);
   1091     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
   1092       return false;
   1093     if (DefOpIdx)
   1094       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
   1095     return true;
   1096   }
   1097 
   1098   /// Clears kill flags on all operands.
   1099   void clearKillInfo();
   1100 
   1101   /// Replace all occurrences of FromReg with ToReg:SubIdx,
   1102   /// properly composing subreg indices where necessary.
   1103   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
   1104                           const TargetRegisterInfo &RegInfo);
   1105 
   1106   /// We have determined MI kills a register. Look for the
   1107   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
   1108   /// add a implicit operand if it's not found. Returns true if the operand
   1109   /// exists / is added.
   1110   bool addRegisterKilled(unsigned IncomingReg,
   1111                          const TargetRegisterInfo *RegInfo,
   1112                          bool AddIfNotFound = false);
   1113 
   1114   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
   1115   /// all aliasing registers.
   1116   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
   1117 
   1118   /// We have determined MI defined a register without a use.
   1119   /// Look for the operand that defines it and mark it as IsDead. If
   1120   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
   1121   /// true if the operand exists / is added.
   1122   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
   1123                        bool AddIfNotFound = false);
   1124 
   1125   /// Clear all dead flags on operands defining register @p Reg.
   1126   void clearRegisterDeads(unsigned Reg);
   1127 
   1128   /// Mark all subregister defs of register @p Reg with the undef flag.
   1129   /// This function is used when we determined to have a subregister def in an
   1130   /// otherwise undefined super register.
   1131   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
   1132 
   1133   /// We have determined MI defines a register. Make sure there is an operand
   1134   /// defining Reg.
   1135   void addRegisterDefined(unsigned Reg,
   1136                           const TargetRegisterInfo *RegInfo = nullptr);
   1137 
   1138   /// Mark every physreg used by this instruction as
   1139   /// dead except those in the UsedRegs list.
   1140   ///
   1141   /// On instructions with register mask operands, also add implicit-def
   1142   /// operands for all registers in UsedRegs.
   1143   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1144                              const TargetRegisterInfo &TRI);
   1145 
   1146   /// Return true if it is safe to move this instruction. If
   1147   /// SawStore is set to true, it means that there is a store (or call) between
   1148   /// the instruction's location and its intended destination.
   1149   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
   1150 
   1151   /// Returns true if this instruction's memory access aliases the memory
   1152   /// access of Other.
   1153   //
   1154   /// Assumes any physical registers used to compute addresses
   1155   /// have the same value for both instructions.  Returns false if neither
   1156   /// instruction writes to memory.
   1157   ///
   1158   /// @param AA Optional alias analysis, used to compare memory operands.
   1159   /// @param Other MachineInstr to check aliasing against.
   1160   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
   1161   bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
   1162 
   1163   /// Return true if this instruction may have an ordered
   1164   /// or volatile memory reference, or if the information describing the memory
   1165   /// reference is not available. Return false if it is known to have no
   1166   /// ordered or volatile memory references.
   1167   bool hasOrderedMemoryRef() const;
   1168 
   1169   /// Return true if this load instruction never traps and points to a memory
   1170   /// location whose value doesn't change during the execution of this function.
   1171   ///
   1172   /// Examples include loading a value from the constant pool or from the
   1173   /// argument area of a function (if it does not change).  If the instruction
   1174   /// does multiple loads, this returns true only if all of the loads are
   1175   /// dereferenceable and invariant.
   1176   bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
   1177 
   1178   /// If the specified instruction is a PHI that always merges together the
   1179   /// same virtual register, return the register, otherwise return 0.
   1180   unsigned isConstantValuePHI() const;
   1181 
   1182   /// Return true if this instruction has side effects that are not modeled
   1183   /// by mayLoad / mayStore, etc.
   1184   /// For all instructions, the property is encoded in MCInstrDesc::Flags
   1185   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
   1186   /// INLINEASM instruction, in which case the side effect property is encoded
   1187   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
   1188   ///
   1189   bool hasUnmodeledSideEffects() const;
   1190 
   1191   /// Returns true if it is illegal to fold a load across this instruction.
   1192   bool isLoadFoldBarrier() const;
   1193 
   1194   /// Return true if all the defs of this instruction are dead.
   1195   bool allDefsAreDead() const;
   1196 
   1197   /// Copy implicit register operands from specified
   1198   /// instruction to this instruction.
   1199   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
   1200 
   1201   /// Debugging support
   1202   /// @{
   1203   /// Print this MI to \p OS.
   1204   /// Only print the defs and the opcode if \p SkipOpers is true.
   1205   /// Otherwise, also print operands if \p SkipDebugLoc is true.
   1206   /// Otherwise, also print the debug loc, with a terminating newline.
   1207   /// \p TII is used to print the opcode name.  If it's not present, but the
   1208   /// MI is in a function, the opcode will be printed using the function's TII.
   1209   void print(raw_ostream &OS, bool SkipOpers = false, bool SkipDebugLoc = false,
   1210              const TargetInstrInfo *TII = nullptr) const;
   1211   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool SkipOpers = false,
   1212              bool SkipDebugLoc = false,
   1213              const TargetInstrInfo *TII = nullptr) const;
   1214   void dump() const;
   1215   /// @}
   1216 
   1217   //===--------------------------------------------------------------------===//
   1218   // Accessors used to build up machine instructions.
   1219 
   1220   /// Add the specified operand to the instruction.  If it is an implicit
   1221   /// operand, it is added to the end of the operand list.  If it is an
   1222   /// explicit operand it is added at the end of the explicit operand list
   1223   /// (before the first implicit operand).
   1224   ///
   1225   /// MF must be the machine function that was used to allocate this
   1226   /// instruction.
   1227   ///
   1228   /// MachineInstrBuilder provides a more convenient interface for creating
   1229   /// instructions and adding operands.
   1230   void addOperand(MachineFunction &MF, const MachineOperand &Op);
   1231 
   1232   /// Add an operand without providing an MF reference. This only works for
   1233   /// instructions that are inserted in a basic block.
   1234   ///
   1235   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
   1236   /// preferred.
   1237   void addOperand(const MachineOperand &Op);
   1238 
   1239   /// Replace the instruction descriptor (thus opcode) of
   1240   /// the current instruction with a new one.
   1241   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
   1242 
   1243   /// Replace current source information with new such.
   1244   /// Avoid using this, the constructor argument is preferable.
   1245   void setDebugLoc(DebugLoc dl) {
   1246     debugLoc = std::move(dl);
   1247     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
   1248   }
   1249 
   1250   /// Erase an operand from an instruction, leaving it with one
   1251   /// fewer operand than it started with.
   1252   void RemoveOperand(unsigned i);
   1253 
   1254   /// Add a MachineMemOperand to the machine instruction.
   1255   /// This function should be used only occasionally. The setMemRefs function
   1256   /// is the primary method for setting up a MachineInstr's MemRefs list.
   1257   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
   1258 
   1259   /// Assign this MachineInstr's memory reference descriptor list.
   1260   /// This does not transfer ownership.
   1261   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   1262     setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
   1263   }
   1264 
   1265   /// Assign this MachineInstr's memory reference descriptor list.  First
   1266   /// element in the pair is the begin iterator/pointer to the array; the
   1267   /// second is the number of MemoryOperands.  This does not transfer ownership
   1268   /// of the underlying memory.
   1269   void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
   1270     MemRefs = NewMemRefs.first;
   1271     NumMemRefs = uint8_t(NewMemRefs.second);
   1272     assert(NumMemRefs == NewMemRefs.second &&
   1273            "Too many memrefs - must drop memory operands");
   1274   }
   1275 
   1276   /// Return a set of memrefs (begin iterator, size) which conservatively
   1277   /// describe the memory behavior of both MachineInstrs.  This is appropriate
   1278   /// for use when merging two MachineInstrs into one. This routine does not
   1279   /// modify the memrefs of the this MachineInstr.
   1280   std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
   1281 
   1282   /// Clear this MachineInstr's memory reference descriptor list.  This resets
   1283   /// the memrefs to their most conservative state.  This should be used only
   1284   /// as a last resort since it greatly pessimizes our knowledge of the memory
   1285   /// access performed by the instruction.
   1286   void dropMemRefs() {
   1287     MemRefs = nullptr;
   1288     NumMemRefs = 0;
   1289   }
   1290 
   1291   /// Break any tie involving OpIdx.
   1292   void untieRegOperand(unsigned OpIdx) {
   1293     MachineOperand &MO = getOperand(OpIdx);
   1294     if (MO.isReg() && MO.isTied()) {
   1295       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
   1296       MO.TiedTo = 0;
   1297     }
   1298   }
   1299 
   1300   /// Add all implicit def and use operands to this instruction.
   1301   void addImplicitDefUseOperands(MachineFunction &MF);
   1302 
   1303 private:
   1304   /// If this instruction is embedded into a MachineFunction, return the
   1305   /// MachineRegisterInfo object for the current function, otherwise
   1306   /// return null.
   1307   MachineRegisterInfo *getRegInfo();
   1308 
   1309   /// Unlink all of the register operands in this instruction from their
   1310   /// respective use lists.  This requires that the operands already be on their
   1311   /// use lists.
   1312   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
   1313 
   1314   /// Add all of the register operands in this instruction from their
   1315   /// respective use lists.  This requires that the operands not be on their
   1316   /// use lists yet.
   1317   void AddRegOperandsToUseLists(MachineRegisterInfo&);
   1318 
   1319   /// Slow path for hasProperty when we're dealing with a bundle.
   1320   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
   1321 
   1322   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
   1323   /// this MI and the given operand index \p OpIdx.
   1324   /// If the related operand does not constrained Reg, this returns CurRC.
   1325   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
   1326       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
   1327       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
   1328 };
   1329 
   1330 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
   1331 /// instruction rather than by pointer value.
   1332 /// The hashing and equality testing functions ignore definitions so this is
   1333 /// useful for CSE, etc.
   1334 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
   1335   static inline MachineInstr *getEmptyKey() {
   1336     return nullptr;
   1337   }
   1338 
   1339   static inline MachineInstr *getTombstoneKey() {
   1340     return reinterpret_cast<MachineInstr*>(-1);
   1341   }
   1342 
   1343   static unsigned getHashValue(const MachineInstr* const &MI);
   1344 
   1345   static bool isEqual(const MachineInstr* const &LHS,
   1346                       const MachineInstr* const &RHS) {
   1347     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
   1348         LHS == getEmptyKey() || LHS == getTombstoneKey())
   1349       return LHS == RHS;
   1350     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
   1351   }
   1352 };
   1353 
   1354 //===----------------------------------------------------------------------===//
   1355 // Debugging Support
   1356 
   1357 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
   1358   MI.print(OS);
   1359   return OS;
   1360 }
   1361 
   1362 } // end namespace llvm
   1363 
   1364 #endif // LLVM_CODEGEN_MACHINEINSTR_H
   1365