Home | History | Annotate | Download | only in Analysis
      1 //===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file provides helpers for the implementation of
     11 /// a TargetTransformInfo-conforming class.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
     16 #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
     17 
     18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     19 #include "llvm/Analysis/TargetTransformInfo.h"
     20 #include "llvm/Analysis/VectorUtils.h"
     21 #include "llvm/IR/CallSite.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/GetElementPtrTypeIterator.h"
     25 #include "llvm/IR/Operator.h"
     26 #include "llvm/IR/Type.h"
     27 
     28 namespace llvm {
     29 
     30 /// \brief Base class for use as a mix-in that aids implementing
     31 /// a TargetTransformInfo-compatible class.
     32 class TargetTransformInfoImplBase {
     33 protected:
     34   typedef TargetTransformInfo TTI;
     35 
     36   const DataLayout &DL;
     37 
     38   explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
     39 
     40 public:
     41   // Provide value semantics. MSVC requires that we spell all of these out.
     42   TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
     43       : DL(Arg.DL) {}
     44   TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
     45 
     46   const DataLayout &getDataLayout() const { return DL; }
     47 
     48   unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
     49     switch (Opcode) {
     50     default:
     51       // By default, just classify everything as 'basic'.
     52       return TTI::TCC_Basic;
     53 
     54     case Instruction::GetElementPtr:
     55       llvm_unreachable("Use getGEPCost for GEP operations!");
     56 
     57     case Instruction::BitCast:
     58       assert(OpTy && "Cast instructions must provide the operand type");
     59       if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
     60         // Identity and pointer-to-pointer casts are free.
     61         return TTI::TCC_Free;
     62 
     63       // Otherwise, the default basic cost is used.
     64       return TTI::TCC_Basic;
     65 
     66     case Instruction::FDiv:
     67     case Instruction::FRem:
     68     case Instruction::SDiv:
     69     case Instruction::SRem:
     70     case Instruction::UDiv:
     71     case Instruction::URem:
     72       return TTI::TCC_Expensive;
     73 
     74     case Instruction::IntToPtr: {
     75       // An inttoptr cast is free so long as the input is a legal integer type
     76       // which doesn't contain values outside the range of a pointer.
     77       unsigned OpSize = OpTy->getScalarSizeInBits();
     78       if (DL.isLegalInteger(OpSize) &&
     79           OpSize <= DL.getPointerTypeSizeInBits(Ty))
     80         return TTI::TCC_Free;
     81 
     82       // Otherwise it's not a no-op.
     83       return TTI::TCC_Basic;
     84     }
     85     case Instruction::PtrToInt: {
     86       // A ptrtoint cast is free so long as the result is large enough to store
     87       // the pointer, and a legal integer type.
     88       unsigned DestSize = Ty->getScalarSizeInBits();
     89       if (DL.isLegalInteger(DestSize) &&
     90           DestSize >= DL.getPointerTypeSizeInBits(OpTy))
     91         return TTI::TCC_Free;
     92 
     93       // Otherwise it's not a no-op.
     94       return TTI::TCC_Basic;
     95     }
     96     case Instruction::Trunc:
     97       // trunc to a native type is free (assuming the target has compare and
     98       // shift-right of the same width).
     99       if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
    100         return TTI::TCC_Free;
    101 
    102       return TTI::TCC_Basic;
    103     }
    104   }
    105 
    106   int getGEPCost(Type *PointeeType, const Value *Ptr,
    107                  ArrayRef<const Value *> Operands) {
    108     // In the basic model, we just assume that all-constant GEPs will be folded
    109     // into their uses via addressing modes.
    110     for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
    111       if (!isa<Constant>(Operands[Idx]))
    112         return TTI::TCC_Basic;
    113 
    114     return TTI::TCC_Free;
    115   }
    116 
    117   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
    118                                             unsigned &JTSize) {
    119     JTSize = 0;
    120     return SI.getNumCases();
    121   }
    122 
    123   int getExtCost(const Instruction *I, const Value *Src) {
    124     return TTI::TCC_Basic;
    125   }
    126 
    127   unsigned getCallCost(FunctionType *FTy, int NumArgs) {
    128     assert(FTy && "FunctionType must be provided to this routine.");
    129 
    130     // The target-independent implementation just measures the size of the
    131     // function by approximating that each argument will take on average one
    132     // instruction to prepare.
    133 
    134     if (NumArgs < 0)
    135       // Set the argument number to the number of explicit arguments in the
    136       // function.
    137       NumArgs = FTy->getNumParams();
    138 
    139     return TTI::TCC_Basic * (NumArgs + 1);
    140   }
    141 
    142   unsigned getInliningThresholdMultiplier() { return 1; }
    143 
    144   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    145                             ArrayRef<Type *> ParamTys) {
    146     switch (IID) {
    147     default:
    148       // Intrinsics rarely (if ever) have normal argument setup constraints.
    149       // Model them as having a basic instruction cost.
    150       // FIXME: This is wrong for libc intrinsics.
    151       return TTI::TCC_Basic;
    152 
    153     case Intrinsic::annotation:
    154     case Intrinsic::assume:
    155     case Intrinsic::dbg_declare:
    156     case Intrinsic::dbg_value:
    157     case Intrinsic::invariant_start:
    158     case Intrinsic::invariant_end:
    159     case Intrinsic::lifetime_start:
    160     case Intrinsic::lifetime_end:
    161     case Intrinsic::objectsize:
    162     case Intrinsic::ptr_annotation:
    163     case Intrinsic::var_annotation:
    164     case Intrinsic::experimental_gc_result:
    165     case Intrinsic::experimental_gc_relocate:
    166     case Intrinsic::coro_alloc:
    167     case Intrinsic::coro_begin:
    168     case Intrinsic::coro_free:
    169     case Intrinsic::coro_end:
    170     case Intrinsic::coro_frame:
    171     case Intrinsic::coro_size:
    172     case Intrinsic::coro_suspend:
    173     case Intrinsic::coro_param:
    174     case Intrinsic::coro_subfn_addr:
    175       // These intrinsics don't actually represent code after lowering.
    176       return TTI::TCC_Free;
    177     }
    178   }
    179 
    180   bool hasBranchDivergence() { return false; }
    181 
    182   bool isSourceOfDivergence(const Value *V) { return false; }
    183 
    184   bool isAlwaysUniform(const Value *V) { return false; }
    185 
    186   unsigned getFlatAddressSpace () {
    187     return -1;
    188   }
    189 
    190   bool isLoweredToCall(const Function *F) {
    191     assert(F && "A concrete function must be provided to this routine.");
    192 
    193     // FIXME: These should almost certainly not be handled here, and instead
    194     // handled with the help of TLI or the target itself. This was largely
    195     // ported from existing analysis heuristics here so that such refactorings
    196     // can take place in the future.
    197 
    198     if (F->isIntrinsic())
    199       return false;
    200 
    201     if (F->hasLocalLinkage() || !F->hasName())
    202       return true;
    203 
    204     StringRef Name = F->getName();
    205 
    206     // These will all likely lower to a single selection DAG node.
    207     if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
    208         Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
    209         Name == "fmin" || Name == "fminf" || Name == "fminl" ||
    210         Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
    211         Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
    212         Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
    213       return false;
    214 
    215     // These are all likely to be optimized into something smaller.
    216     if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
    217         Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
    218         Name == "floorf" || Name == "ceil" || Name == "round" ||
    219         Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
    220         Name == "llabs")
    221       return false;
    222 
    223     return true;
    224   }
    225 
    226   void getUnrollingPreferences(Loop *, ScalarEvolution &,
    227                                TTI::UnrollingPreferences &) {}
    228 
    229   bool isLegalAddImmediate(int64_t Imm) { return false; }
    230 
    231   bool isLegalICmpImmediate(int64_t Imm) { return false; }
    232 
    233   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    234                              bool HasBaseReg, int64_t Scale,
    235                              unsigned AddrSpace, Instruction *I = nullptr) {
    236     // Guess that only reg and reg+reg addressing is allowed. This heuristic is
    237     // taken from the implementation of LSR.
    238     return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
    239   }
    240 
    241   bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
    242     return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
    243                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
    244            std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
    245                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
    246   }
    247 
    248   bool isLegalMaskedStore(Type *DataType) { return false; }
    249 
    250   bool isLegalMaskedLoad(Type *DataType) { return false; }
    251 
    252   bool isLegalMaskedScatter(Type *DataType) { return false; }
    253 
    254   bool isLegalMaskedGather(Type *DataType) { return false; }
    255 
    256   bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
    257 
    258   bool prefersVectorizedAddressing() { return true; }
    259 
    260   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    261                            bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
    262     // Guess that all legal addressing mode are free.
    263     if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
    264                               Scale, AddrSpace))
    265       return 0;
    266     return -1;
    267   }
    268 
    269   bool LSRWithInstrQueries() { return false; }
    270 
    271   bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
    272 
    273   bool isProfitableToHoist(Instruction *I) { return true; }
    274 
    275   bool isTypeLegal(Type *Ty) { return false; }
    276 
    277   unsigned getJumpBufAlignment() { return 0; }
    278 
    279   unsigned getJumpBufSize() { return 0; }
    280 
    281   bool shouldBuildLookupTables() { return true; }
    282   bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
    283 
    284   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
    285     return 0;
    286   }
    287 
    288   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
    289                                             unsigned VF) { return 0; }
    290 
    291   bool supportsEfficientVectorElementLoadStore() { return false; }
    292 
    293   bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
    294 
    295   bool enableMemCmpExpansion(unsigned &MaxLoadSize) { return false; }
    296 
    297   bool enableInterleavedAccessVectorization() { return false; }
    298 
    299   bool isFPVectorizationPotentiallyUnsafe() { return false; }
    300 
    301   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
    302                                       unsigned BitWidth,
    303                                       unsigned AddressSpace,
    304                                       unsigned Alignment,
    305                                       bool *Fast) { return false; }
    306 
    307   TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
    308     return TTI::PSK_Software;
    309   }
    310 
    311   bool haveFastSqrt(Type *Ty) { return false; }
    312 
    313   unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
    314 
    315   int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
    316                             Type *Ty) {
    317     return 0;
    318   }
    319 
    320   unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
    321 
    322   unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
    323                          Type *Ty) {
    324     return TTI::TCC_Free;
    325   }
    326 
    327   unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    328                          Type *Ty) {
    329     return TTI::TCC_Free;
    330   }
    331 
    332   unsigned getNumberOfRegisters(bool Vector) { return 8; }
    333 
    334   unsigned getRegisterBitWidth(bool Vector) const { return 32; }
    335 
    336   unsigned getMinVectorRegisterBitWidth() { return 128; }
    337 
    338   bool
    339   shouldConsiderAddressTypePromotion(const Instruction &I,
    340                                      bool &AllowPromotionWithoutCommonHeader) {
    341     AllowPromotionWithoutCommonHeader = false;
    342     return false;
    343   }
    344 
    345   unsigned getCacheLineSize() { return 0; }
    346 
    347   llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) {
    348     switch (Level) {
    349     case TargetTransformInfo::CacheLevel::L1D:
    350       LLVM_FALLTHROUGH;
    351     case TargetTransformInfo::CacheLevel::L2D:
    352       return llvm::Optional<unsigned>();
    353     }
    354 
    355     llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
    356   }
    357 
    358   llvm::Optional<unsigned> getCacheAssociativity(
    359     TargetTransformInfo::CacheLevel Level) {
    360     switch (Level) {
    361     case TargetTransformInfo::CacheLevel::L1D:
    362       LLVM_FALLTHROUGH;
    363     case TargetTransformInfo::CacheLevel::L2D:
    364       return llvm::Optional<unsigned>();
    365     }
    366 
    367     llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
    368   }
    369 
    370   unsigned getPrefetchDistance() { return 0; }
    371 
    372   unsigned getMinPrefetchStride() { return 1; }
    373 
    374   unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
    375 
    376   unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
    377 
    378   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
    379                                   TTI::OperandValueKind Opd1Info,
    380                                   TTI::OperandValueKind Opd2Info,
    381                                   TTI::OperandValueProperties Opd1PropInfo,
    382                                   TTI::OperandValueProperties Opd2PropInfo,
    383                                   ArrayRef<const Value *> Args) {
    384     return 1;
    385   }
    386 
    387   unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
    388                           Type *SubTp) {
    389     return 1;
    390   }
    391 
    392   unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
    393                             const Instruction *I) { return 1; }
    394 
    395   unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
    396                                     VectorType *VecTy, unsigned Index) {
    397     return 1;
    398   }
    399 
    400   unsigned getCFInstrCost(unsigned Opcode) { return 1; }
    401 
    402   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
    403                               const Instruction *I) {
    404     return 1;
    405   }
    406 
    407   unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
    408     return 1;
    409   }
    410 
    411   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    412                            unsigned AddressSpace, const Instruction *I) {
    413     return 1;
    414   }
    415 
    416   unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    417                                  unsigned AddressSpace) {
    418     return 1;
    419   }
    420 
    421   unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
    422                                   bool VariableMask,
    423                                   unsigned Alignment) {
    424     return 1;
    425   }
    426 
    427   unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
    428                                       unsigned Factor,
    429                                       ArrayRef<unsigned> Indices,
    430                                       unsigned Alignment,
    431                                       unsigned AddressSpace) {
    432     return 1;
    433   }
    434 
    435   unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    436                                  ArrayRef<Type *> Tys, FastMathFlags FMF,
    437                                  unsigned ScalarizationCostPassed) {
    438     return 1;
    439   }
    440   unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    441             ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
    442     return 1;
    443   }
    444 
    445   unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
    446     return 1;
    447   }
    448 
    449   unsigned getNumberOfParts(Type *Tp) { return 0; }
    450 
    451   unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
    452                                      const SCEV *) {
    453     return 0;
    454   }
    455 
    456   unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
    457 
    458   unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
    459 
    460   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
    461 
    462   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
    463     return false;
    464   }
    465 
    466   unsigned getAtomicMemIntrinsicMaxElementSize() const {
    467     // Note for overrides: You must ensure for all element unordered-atomic
    468     // memory intrinsics that all power-of-2 element sizes up to, and
    469     // including, the return value of this method have a corresponding
    470     // runtime lib call. These runtime lib call definitions can be found
    471     // in RuntimeLibcalls.h
    472     return 0;
    473   }
    474 
    475   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    476                                            Type *ExpectedType) {
    477     return nullptr;
    478   }
    479 
    480   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
    481                                   unsigned SrcAlign, unsigned DestAlign) const {
    482     return Type::getInt8Ty(Context);
    483   }
    484 
    485   void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
    486                                          LLVMContext &Context,
    487                                          unsigned RemainingBytes,
    488                                          unsigned SrcAlign,
    489                                          unsigned DestAlign) const {
    490     for (unsigned i = 0; i != RemainingBytes; ++i)
    491       OpsOut.push_back(Type::getInt8Ty(Context));
    492   }
    493 
    494   bool areInlineCompatible(const Function *Caller,
    495                            const Function *Callee) const {
    496     return (Caller->getFnAttribute("target-cpu") ==
    497             Callee->getFnAttribute("target-cpu")) &&
    498            (Caller->getFnAttribute("target-features") ==
    499             Callee->getFnAttribute("target-features"));
    500   }
    501 
    502   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
    503 
    504   bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
    505 
    506   bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
    507 
    508   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
    509                                    unsigned Alignment,
    510                                    unsigned AddrSpace) const {
    511     return true;
    512   }
    513 
    514   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
    515                                     unsigned Alignment,
    516                                     unsigned AddrSpace) const {
    517     return true;
    518   }
    519 
    520   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
    521                                unsigned ChainSizeInBytes,
    522                                VectorType *VecTy) const {
    523     return VF;
    524   }
    525 
    526   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
    527                                 unsigned ChainSizeInBytes,
    528                                 VectorType *VecTy) const {
    529     return VF;
    530   }
    531 
    532   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
    533                              TTI::ReductionFlags Flags) const {
    534     return false;
    535   }
    536 
    537   bool shouldExpandReduction(const IntrinsicInst *II) const {
    538     return true;
    539   }
    540 
    541 protected:
    542   // Obtain the minimum required size to hold the value (without the sign)
    543   // In case of a vector it returns the min required size for one element.
    544   unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
    545     if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
    546       const auto* VectorValue = cast<Constant>(Val);
    547 
    548       // In case of a vector need to pick the max between the min
    549       // required size for each element
    550       auto *VT = cast<VectorType>(Val->getType());
    551 
    552       // Assume unsigned elements
    553       isSigned = false;
    554 
    555       // The max required size is the total vector width divided by num
    556       // of elements in the vector
    557       unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
    558 
    559       unsigned MinRequiredSize = 0;
    560       for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
    561         if (auto* IntElement =
    562               dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
    563           bool signedElement = IntElement->getValue().isNegative();
    564           // Get the element min required size.
    565           unsigned ElementMinRequiredSize =
    566             IntElement->getValue().getMinSignedBits() - 1;
    567           // In case one element is signed then all the vector is signed.
    568           isSigned |= signedElement;
    569           // Save the max required bit size between all the elements.
    570           MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
    571         }
    572         else {
    573           // not an int constant element
    574           return MaxRequiredSize;
    575         }
    576       }
    577       return MinRequiredSize;
    578     }
    579 
    580     if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
    581       isSigned = CI->getValue().isNegative();
    582       return CI->getValue().getMinSignedBits() - 1;
    583     }
    584 
    585     if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
    586       isSigned = true;
    587       return Cast->getSrcTy()->getScalarSizeInBits() - 1;
    588     }
    589 
    590     if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
    591       isSigned = false;
    592       return Cast->getSrcTy()->getScalarSizeInBits();
    593     }
    594 
    595     isSigned = false;
    596     return Val->getType()->getScalarSizeInBits();
    597   }
    598 
    599   bool isStridedAccess(const SCEV *Ptr) {
    600     return Ptr && isa<SCEVAddRecExpr>(Ptr);
    601   }
    602 
    603   const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
    604                                             const SCEV *Ptr) {
    605     if (!isStridedAccess(Ptr))
    606       return nullptr;
    607     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
    608     return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
    609   }
    610 
    611   bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
    612                                        int64_t MergeDistance) {
    613     const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
    614     if (!Step)
    615       return false;
    616     APInt StrideVal = Step->getAPInt();
    617     if (StrideVal.getBitWidth() > 64)
    618       return false;
    619     // FIXME: Need to take absolute value for negative stride case.
    620     return StrideVal.getSExtValue() < MergeDistance;
    621   }
    622 };
    623 
    624 /// \brief CRTP base class for use as a mix-in that aids implementing
    625 /// a TargetTransformInfo-compatible class.
    626 template <typename T>
    627 class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
    628 private:
    629   typedef TargetTransformInfoImplBase BaseT;
    630 
    631 protected:
    632   explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
    633 
    634 public:
    635   using BaseT::getCallCost;
    636 
    637   unsigned getCallCost(const Function *F, int NumArgs) {
    638     assert(F && "A concrete function must be provided to this routine.");
    639 
    640     if (NumArgs < 0)
    641       // Set the argument number to the number of explicit arguments in the
    642       // function.
    643       NumArgs = F->arg_size();
    644 
    645     if (Intrinsic::ID IID = F->getIntrinsicID()) {
    646       FunctionType *FTy = F->getFunctionType();
    647       SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
    648       return static_cast<T *>(this)
    649           ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
    650     }
    651 
    652     if (!static_cast<T *>(this)->isLoweredToCall(F))
    653       return TTI::TCC_Basic; // Give a basic cost if it will be lowered
    654                              // directly.
    655 
    656     return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
    657   }
    658 
    659   unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
    660     // Simply delegate to generic handling of the call.
    661     // FIXME: We should use instsimplify or something else to catch calls which
    662     // will constant fold with these arguments.
    663     return static_cast<T *>(this)->getCallCost(F, Arguments.size());
    664   }
    665 
    666   using BaseT::getGEPCost;
    667 
    668   int getGEPCost(Type *PointeeType, const Value *Ptr,
    669                  ArrayRef<const Value *> Operands) {
    670     const GlobalValue *BaseGV = nullptr;
    671     if (Ptr != nullptr) {
    672       // TODO: will remove this when pointers have an opaque type.
    673       assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
    674                  PointeeType &&
    675              "explicit pointee type doesn't match operand's pointee type");
    676       BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
    677     }
    678     bool HasBaseReg = (BaseGV == nullptr);
    679 
    680     auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
    681     APInt BaseOffset(PtrSizeBits, 0);
    682     int64_t Scale = 0;
    683 
    684     auto GTI = gep_type_begin(PointeeType, Operands);
    685     Type *TargetType = nullptr;
    686 
    687     // Handle the case where the GEP instruction has a single operand,
    688     // the basis, therefore TargetType is a nullptr.
    689     if (Operands.empty())
    690       return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
    691 
    692     for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
    693       TargetType = GTI.getIndexedType();
    694       // We assume that the cost of Scalar GEP with constant index and the
    695       // cost of Vector GEP with splat constant index are the same.
    696       const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
    697       if (!ConstIdx)
    698         if (auto Splat = getSplatValue(*I))
    699           ConstIdx = dyn_cast<ConstantInt>(Splat);
    700       if (StructType *STy = GTI.getStructTypeOrNull()) {
    701         // For structures the index is always splat or scalar constant
    702         assert(ConstIdx && "Unexpected GEP index");
    703         uint64_t Field = ConstIdx->getZExtValue();
    704         BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
    705       } else {
    706         int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
    707         if (ConstIdx) {
    708           BaseOffset +=
    709               ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
    710         } else {
    711           // Needs scale register.
    712           if (Scale != 0)
    713             // No addressing mode takes two scale registers.
    714             return TTI::TCC_Basic;
    715           Scale = ElementSize;
    716         }
    717       }
    718     }
    719 
    720     // Assumes the address space is 0 when Ptr is nullptr.
    721     unsigned AS =
    722         (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
    723 
    724     if (static_cast<T *>(this)->isLegalAddressingMode(
    725             TargetType, const_cast<GlobalValue *>(BaseGV),
    726             BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS))
    727       return TTI::TCC_Free;
    728     return TTI::TCC_Basic;
    729   }
    730 
    731   using BaseT::getIntrinsicCost;
    732 
    733   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    734                             ArrayRef<const Value *> Arguments) {
    735     // Delegate to the generic intrinsic handling code. This mostly provides an
    736     // opportunity for targets to (for example) special case the cost of
    737     // certain intrinsics based on constants used as arguments.
    738     SmallVector<Type *, 8> ParamTys;
    739     ParamTys.reserve(Arguments.size());
    740     for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
    741       ParamTys.push_back(Arguments[Idx]->getType());
    742     return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
    743   }
    744 
    745   unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
    746     if (isa<PHINode>(U))
    747       return TTI::TCC_Free; // Model all PHI nodes as free.
    748 
    749     // Static alloca doesn't generate target instructions.
    750     if (auto *A = dyn_cast<AllocaInst>(U))
    751       if (A->isStaticAlloca())
    752         return TTI::TCC_Free;
    753 
    754     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
    755       return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
    756                                                 GEP->getPointerOperand(),
    757                                                 Operands.drop_front());
    758     }
    759 
    760     if (auto CS = ImmutableCallSite(U)) {
    761       const Function *F = CS.getCalledFunction();
    762       if (!F) {
    763         // Just use the called value type.
    764         Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
    765         return static_cast<T *>(this)
    766             ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
    767       }
    768 
    769       SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
    770       return static_cast<T *>(this)->getCallCost(F, Arguments);
    771     }
    772 
    773     if (const CastInst *CI = dyn_cast<CastInst>(U)) {
    774       // Result of a cmp instruction is often extended (to be used by other
    775       // cmp instructions, logical or return instructions). These are usually
    776       // nop on most sane targets.
    777       if (isa<CmpInst>(CI->getOperand(0)))
    778         return TTI::TCC_Free;
    779       if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
    780         return static_cast<T *>(this)->getExtCost(CI, Operands.back());
    781     }
    782 
    783     return static_cast<T *>(this)->getOperationCost(
    784         Operator::getOpcode(U), U->getType(),
    785         U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
    786   }
    787 
    788   int getInstructionLatency(const Instruction *I) {
    789     SmallVector<const Value *, 4> Operands(I->value_op_begin(),
    790                                            I->value_op_end());
    791     if (getUserCost(I, Operands) == TTI::TCC_Free)
    792       return 0;
    793 
    794     if (isa<LoadInst>(I))
    795       return 4;
    796 
    797     Type *DstTy = I->getType();
    798 
    799     // Usually an intrinsic is a simple instruction.
    800     // A real function call is much slower.
    801     if (auto *CI = dyn_cast<CallInst>(I)) {
    802       const Function *F = CI->getCalledFunction();
    803       if (!F || static_cast<T *>(this)->isLoweredToCall(F))
    804         return 40;
    805       // Some intrinsics return a value and a flag, we use the value type
    806       // to decide its latency.
    807       if (StructType* StructTy = dyn_cast<StructType>(DstTy))
    808         DstTy = StructTy->getElementType(0);
    809       // Fall through to simple instructions.
    810     }
    811 
    812     if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
    813       DstTy = VectorTy->getElementType();
    814     if (DstTy->isFloatingPointTy())
    815       return 3;
    816 
    817     return 1;
    818   }
    819 };
    820 }
    821 
    822 #endif
    823