Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The file defines the MachineFrameInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
     15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
     16 
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Support/DataTypes.h"
     19 #include <cassert>
     20 #include <vector>
     21 
     22 namespace llvm {
     23 class raw_ostream;
     24 class MachineFunction;
     25 class MachineBasicBlock;
     26 class BitVector;
     27 class AllocaInst;
     28 
     29 /// The CalleeSavedInfo class tracks the information need to locate where a
     30 /// callee saved register is in the current frame.
     31 class CalleeSavedInfo {
     32   unsigned Reg;
     33   int FrameIdx;
     34   /// Flag indicating whether the register is actually restored in the epilog.
     35   /// In most cases, if a register is saved, it is also restored. There are
     36   /// some situations, though, when this is not the case. For example, the
     37   /// LR register on ARM is usually saved, but on exit from the function its
     38   /// saved value may be loaded directly into PC. Since liveness tracking of
     39   /// physical registers treats callee-saved registers are live outside of
     40   /// the function, LR would be treated as live-on-exit, even though in these
     41   /// scenarios it is not. This flag is added to indicate that the saved
     42   /// register described by this object is not restored in the epilog.
     43   /// The long-term solution is to model the liveness of callee-saved registers
     44   /// by implicit uses on the return instructions, however, the required
     45   /// changes in the ARM backend would be quite extensive.
     46   bool Restored;
     47 
     48 public:
     49   explicit CalleeSavedInfo(unsigned R, int FI = 0)
     50   : Reg(R), FrameIdx(FI), Restored(true) {}
     51 
     52   // Accessors.
     53   unsigned getReg()                        const { return Reg; }
     54   int getFrameIdx()                        const { return FrameIdx; }
     55   void setFrameIdx(int FI)                       { FrameIdx = FI; }
     56   bool isRestored()                        const { return Restored; }
     57   void setRestored(bool R)                       { Restored = R; }
     58 };
     59 
     60 /// The MachineFrameInfo class represents an abstract stack frame until
     61 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
     62 /// representation optimizations, such as frame pointer elimination.  It also
     63 /// allows more mundane (but still important) optimizations, such as reordering
     64 /// of abstract objects on the stack frame.
     65 ///
     66 /// To support this, the class assigns unique integer identifiers to stack
     67 /// objects requested clients.  These identifiers are negative integers for
     68 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
     69 /// for objects that may be reordered.  Instructions which refer to stack
     70 /// objects use a special MO_FrameIndex operand to represent these frame
     71 /// indexes.
     72 ///
     73 /// Because this class keeps track of all references to the stack frame, it
     74 /// knows when a variable sized object is allocated on the stack.  This is the
     75 /// sole condition which prevents frame pointer elimination, which is an
     76 /// important optimization on register-poor architectures.  Because original
     77 /// variable sized alloca's in the source program are the only source of
     78 /// variable sized stack objects, it is safe to decide whether there will be
     79 /// any variable sized objects before all stack objects are known (for
     80 /// example, register allocator spill code never needs variable sized
     81 /// objects).
     82 ///
     83 /// When prolog/epilog code emission is performed, the final stack frame is
     84 /// built and the machine instructions are modified to refer to the actual
     85 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
     86 /// the program.
     87 ///
     88 /// @brief Abstract Stack Frame Information
     89 class MachineFrameInfo {
     90 
     91   // Represent a single object allocated on the stack.
     92   struct StackObject {
     93     // The offset of this object from the stack pointer on entry to
     94     // the function.  This field has no meaning for a variable sized element.
     95     int64_t SPOffset;
     96 
     97     // The size of this object on the stack. 0 means a variable sized object,
     98     // ~0ULL means a dead object.
     99     uint64_t Size;
    100 
    101     // The required alignment of this stack slot.
    102     unsigned Alignment;
    103 
    104     // If true, the value of the stack object is set before
    105     // entering the function and is not modified inside the function. By
    106     // default, fixed objects are immutable unless marked otherwise.
    107     bool isImmutable;
    108 
    109     // If true the stack object is used as spill slot. It
    110     // cannot alias any other memory objects.
    111     bool isSpillSlot;
    112 
    113     /// If true, this stack slot is used to spill a value (could be deopt
    114     /// and/or GC related) over a statepoint. We know that the address of the
    115     /// slot can't alias any LLVM IR value.  This is very similar to a Spill
    116     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
    117     /// register allocator.
    118     bool isStatepointSpillSlot;
    119 
    120     /// Identifier for stack memory type analagous to address space. If this is
    121     /// non-0, the meaning is target defined. Offsets cannot be directly
    122     /// compared between objects with different stack IDs. The object may not
    123     /// necessarily reside in the same contiguous memory block as other stack
    124     /// objects. Objects with differing stack IDs should not be merged or
    125     /// replaced substituted for each other.
    126     uint8_t StackID;
    127 
    128     /// If this stack object is originated from an Alloca instruction
    129     /// this value saves the original IR allocation. Can be NULL.
    130     const AllocaInst *Alloca;
    131 
    132     // If true, the object was mapped into the local frame
    133     // block and doesn't need additional handling for allocation beyond that.
    134     bool PreAllocated;
    135 
    136     // If true, an LLVM IR value might point to this object.
    137     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
    138     // objects, but there are exceptions (on PowerPC, for example, some byval
    139     // arguments have ABI-prescribed offsets).
    140     bool isAliased;
    141 
    142     /// If true, the object has been zero-extended.
    143     bool isZExt;
    144 
    145     /// If true, the object has been zero-extended.
    146     bool isSExt;
    147 
    148     StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
    149                 bool isSS, const AllocaInst *Val, bool Aliased, uint8_t ID = 0)
    150       : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
    151         isSpillSlot(isSS), isStatepointSpillSlot(false), StackID(ID),
    152         Alloca(Val),
    153         PreAllocated(false), isAliased(Aliased), isZExt(false), isSExt(false) {}
    154   };
    155 
    156   /// The alignment of the stack.
    157   unsigned StackAlignment;
    158 
    159   /// Can the stack be realigned. This can be false if the target does not
    160   /// support stack realignment, or if the user asks us not to realign the
    161   /// stack. In this situation, overaligned allocas are all treated as dynamic
    162   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
    163   /// lowering. All non-alloca stack objects have their alignment clamped to the
    164   /// base ABI stack alignment.
    165   /// FIXME: There is room for improvement in this case, in terms of
    166   /// grouping overaligned allocas into a "secondary stack frame" and
    167   /// then only use a single alloca to allocate this frame and only a
    168   /// single virtual register to access it. Currently, without such an
    169   /// optimization, each such alloca gets its own dynamic realignment.
    170   bool StackRealignable;
    171 
    172   /// Whether the function has the \c alignstack attribute.
    173   bool ForcedRealign;
    174 
    175   /// The list of stack objects allocated.
    176   std::vector<StackObject> Objects;
    177 
    178   /// This contains the number of fixed objects contained on
    179   /// the stack.  Because fixed objects are stored at a negative index in the
    180   /// Objects list, this is also the index to the 0th object in the list.
    181   unsigned NumFixedObjects = 0;
    182 
    183   /// This boolean keeps track of whether any variable
    184   /// sized objects have been allocated yet.
    185   bool HasVarSizedObjects = false;
    186 
    187   /// This boolean keeps track of whether there is a call
    188   /// to builtin \@llvm.frameaddress.
    189   bool FrameAddressTaken = false;
    190 
    191   /// This boolean keeps track of whether there is a call
    192   /// to builtin \@llvm.returnaddress.
    193   bool ReturnAddressTaken = false;
    194 
    195   /// This boolean keeps track of whether there is a call
    196   /// to builtin \@llvm.experimental.stackmap.
    197   bool HasStackMap = false;
    198 
    199   /// This boolean keeps track of whether there is a call
    200   /// to builtin \@llvm.experimental.patchpoint.
    201   bool HasPatchPoint = false;
    202 
    203   /// The prolog/epilog code inserter calculates the final stack
    204   /// offsets for all of the fixed size objects, updating the Objects list
    205   /// above.  It then updates StackSize to contain the number of bytes that need
    206   /// to be allocated on entry to the function.
    207   uint64_t StackSize = 0;
    208 
    209   /// The amount that a frame offset needs to be adjusted to
    210   /// have the actual offset from the stack/frame pointer.  The exact usage of
    211   /// this is target-dependent, but it is typically used to adjust between
    212   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
    213   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
    214   /// to the distance between the initial SP and the value in FP.  For many
    215   /// targets, this value is only used when generating debug info (via
    216   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
    217   /// corresponding adjustments are performed directly.
    218   int OffsetAdjustment = 0;
    219 
    220   /// The prolog/epilog code inserter may process objects that require greater
    221   /// alignment than the default alignment the target provides.
    222   /// To handle this, MaxAlignment is set to the maximum alignment
    223   /// needed by the objects on the current frame.  If this is greater than the
    224   /// native alignment maintained by the compiler, dynamic alignment code will
    225   /// be needed.
    226   ///
    227   unsigned MaxAlignment = 0;
    228 
    229   /// Set to true if this function adjusts the stack -- e.g.,
    230   /// when calling another function. This is only valid during and after
    231   /// prolog/epilog code insertion.
    232   bool AdjustsStack = false;
    233 
    234   /// Set to true if this function has any function calls.
    235   bool HasCalls = false;
    236 
    237   /// The frame index for the stack protector.
    238   int StackProtectorIdx = -1;
    239 
    240   /// The frame index for the function context. Used for SjLj exceptions.
    241   int FunctionContextIdx = -1;
    242 
    243   /// This contains the size of the largest call frame if the target uses frame
    244   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
    245   /// class).  This information is important for frame pointer elimination.
    246   /// It is only valid during and after prolog/epilog code insertion.
    247   unsigned MaxCallFrameSize = ~0u;
    248 
    249   /// The prolog/epilog code inserter fills in this vector with each
    250   /// callee saved register saved in the frame.  Beyond its use by the prolog/
    251   /// epilog code inserter, this data used for debug info and exception
    252   /// handling.
    253   std::vector<CalleeSavedInfo> CSInfo;
    254 
    255   /// Has CSInfo been set yet?
    256   bool CSIValid = false;
    257 
    258   /// References to frame indices which are mapped
    259   /// into the local frame allocation block. <FrameIdx, LocalOffset>
    260   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
    261 
    262   /// Size of the pre-allocated local frame block.
    263   int64_t LocalFrameSize = 0;
    264 
    265   /// Required alignment of the local object blob, which is the strictest
    266   /// alignment of any object in it.
    267   unsigned LocalFrameMaxAlign = 0;
    268 
    269   /// Whether the local object blob needs to be allocated together. If not,
    270   /// PEI should ignore the isPreAllocated flags on the stack objects and
    271   /// just allocate them normally.
    272   bool UseLocalStackAllocationBlock = false;
    273 
    274   /// True if the function dynamically adjusts the stack pointer through some
    275   /// opaque mechanism like inline assembly or Win32 EH.
    276   bool HasOpaqueSPAdjustment = false;
    277 
    278   /// True if the function contains operations which will lower down to
    279   /// instructions which manipulate the stack pointer.
    280   bool HasCopyImplyingStackAdjustment = false;
    281 
    282   /// True if the function contains a call to the llvm.vastart intrinsic.
    283   bool HasVAStart = false;
    284 
    285   /// True if this is a varargs function that contains a musttail call.
    286   bool HasMustTailInVarArgFunc = false;
    287 
    288   /// True if this function contains a tail call. If so immutable objects like
    289   /// function arguments are no longer so. A tail call *can* override fixed
    290   /// stack objects like arguments so we can't treat them as immutable.
    291   bool HasTailCall = false;
    292 
    293   /// Not null, if shrink-wrapping found a better place for the prologue.
    294   MachineBasicBlock *Save = nullptr;
    295   /// Not null, if shrink-wrapping found a better place for the epilogue.
    296   MachineBasicBlock *Restore = nullptr;
    297 
    298 public:
    299   explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
    300                             bool ForcedRealign)
    301       : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
    302         ForcedRealign(ForcedRealign) {}
    303 
    304   /// Return true if there are any stack objects in this function.
    305   bool hasStackObjects() const { return !Objects.empty(); }
    306 
    307   /// This method may be called any time after instruction
    308   /// selection is complete to determine if the stack frame for this function
    309   /// contains any variable sized objects.
    310   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
    311 
    312   /// Return the index for the stack protector object.
    313   int getStackProtectorIndex() const { return StackProtectorIdx; }
    314   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
    315   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
    316 
    317   /// Return the index for the function context object.
    318   /// This object is used for SjLj exceptions.
    319   int getFunctionContextIndex() const { return FunctionContextIdx; }
    320   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
    321 
    322   /// This method may be called any time after instruction
    323   /// selection is complete to determine if there is a call to
    324   /// \@llvm.frameaddress in this function.
    325   bool isFrameAddressTaken() const { return FrameAddressTaken; }
    326   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
    327 
    328   /// This method may be called any time after
    329   /// instruction selection is complete to determine if there is a call to
    330   /// \@llvm.returnaddress in this function.
    331   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
    332   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
    333 
    334   /// This method may be called any time after instruction
    335   /// selection is complete to determine if there is a call to builtin
    336   /// \@llvm.experimental.stackmap.
    337   bool hasStackMap() const { return HasStackMap; }
    338   void setHasStackMap(bool s = true) { HasStackMap = s; }
    339 
    340   /// This method may be called any time after instruction
    341   /// selection is complete to determine if there is a call to builtin
    342   /// \@llvm.experimental.patchpoint.
    343   bool hasPatchPoint() const { return HasPatchPoint; }
    344   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
    345 
    346   /// Return the minimum frame object index.
    347   int getObjectIndexBegin() const { return -NumFixedObjects; }
    348 
    349   /// Return one past the maximum frame object index.
    350   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
    351 
    352   /// Return the number of fixed objects.
    353   unsigned getNumFixedObjects() const { return NumFixedObjects; }
    354 
    355   /// Return the number of objects.
    356   unsigned getNumObjects() const { return Objects.size(); }
    357 
    358   /// Map a frame index into the local object block
    359   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
    360     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
    361     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
    362   }
    363 
    364   /// Get the local offset mapping for a for an object.
    365   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
    366     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
    367             "Invalid local object reference!");
    368     return LocalFrameObjects[i];
    369   }
    370 
    371   /// Return the number of objects allocated into the local object block.
    372   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
    373 
    374   /// Set the size of the local object blob.
    375   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
    376 
    377   /// Get the size of the local object blob.
    378   int64_t getLocalFrameSize() const { return LocalFrameSize; }
    379 
    380   /// Required alignment of the local object blob,
    381   /// which is the strictest alignment of any object in it.
    382   void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
    383 
    384   /// Return the required alignment of the local object blob.
    385   unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
    386 
    387   /// Get whether the local allocation blob should be allocated together or
    388   /// let PEI allocate the locals in it directly.
    389   bool getUseLocalStackAllocationBlock() const {
    390     return UseLocalStackAllocationBlock;
    391   }
    392 
    393   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
    394   /// should be allocated together or let PEI allocate the locals in it
    395   /// directly.
    396   void setUseLocalStackAllocationBlock(bool v) {
    397     UseLocalStackAllocationBlock = v;
    398   }
    399 
    400   /// Return true if the object was pre-allocated into the local block.
    401   bool isObjectPreAllocated(int ObjectIdx) const {
    402     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    403            "Invalid Object Idx!");
    404     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
    405   }
    406 
    407   /// Return the size of the specified object.
    408   int64_t getObjectSize(int ObjectIdx) const {
    409     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    410            "Invalid Object Idx!");
    411     return Objects[ObjectIdx+NumFixedObjects].Size;
    412   }
    413 
    414   /// Change the size of the specified stack object.
    415   void setObjectSize(int ObjectIdx, int64_t Size) {
    416     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    417            "Invalid Object Idx!");
    418     Objects[ObjectIdx+NumFixedObjects].Size = Size;
    419   }
    420 
    421   /// Return the alignment of the specified stack object.
    422   unsigned getObjectAlignment(int ObjectIdx) const {
    423     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    424            "Invalid Object Idx!");
    425     return Objects[ObjectIdx+NumFixedObjects].Alignment;
    426   }
    427 
    428   /// setObjectAlignment - Change the alignment of the specified stack object.
    429   void setObjectAlignment(int ObjectIdx, unsigned Align) {
    430     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    431            "Invalid Object Idx!");
    432     Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
    433     ensureMaxAlignment(Align);
    434   }
    435 
    436   /// Return the underlying Alloca of the specified
    437   /// stack object if it exists. Returns 0 if none exists.
    438   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
    439     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    440            "Invalid Object Idx!");
    441     return Objects[ObjectIdx+NumFixedObjects].Alloca;
    442   }
    443 
    444   /// Return the assigned stack offset of the specified object
    445   /// from the incoming stack pointer.
    446   int64_t getObjectOffset(int ObjectIdx) const {
    447     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    448            "Invalid Object Idx!");
    449     assert(!isDeadObjectIndex(ObjectIdx) &&
    450            "Getting frame offset for a dead object?");
    451     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
    452   }
    453 
    454   bool isObjectZExt(int ObjectIdx) const {
    455     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    456            "Invalid Object Idx!");
    457     return Objects[ObjectIdx+NumFixedObjects].isZExt;
    458   }
    459 
    460   void setObjectZExt(int ObjectIdx, bool IsZExt) {
    461     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    462            "Invalid Object Idx!");
    463     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
    464   }
    465 
    466   bool isObjectSExt(int ObjectIdx) const {
    467     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    468            "Invalid Object Idx!");
    469     return Objects[ObjectIdx+NumFixedObjects].isSExt;
    470   }
    471 
    472   void setObjectSExt(int ObjectIdx, bool IsSExt) {
    473     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    474            "Invalid Object Idx!");
    475     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
    476   }
    477 
    478   /// Set the stack frame offset of the specified object. The
    479   /// offset is relative to the stack pointer on entry to the function.
    480   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
    481     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    482            "Invalid Object Idx!");
    483     assert(!isDeadObjectIndex(ObjectIdx) &&
    484            "Setting frame offset for a dead object?");
    485     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
    486   }
    487 
    488   /// Return the number of bytes that must be allocated to hold
    489   /// all of the fixed size frame objects.  This is only valid after
    490   /// Prolog/Epilog code insertion has finalized the stack frame layout.
    491   uint64_t getStackSize() const { return StackSize; }
    492 
    493   /// Set the size of the stack.
    494   void setStackSize(uint64_t Size) { StackSize = Size; }
    495 
    496   /// Estimate and return the size of the stack frame.
    497   unsigned estimateStackSize(const MachineFunction &MF) const;
    498 
    499   /// Return the correction for frame offsets.
    500   int getOffsetAdjustment() const { return OffsetAdjustment; }
    501 
    502   /// Set the correction for frame offsets.
    503   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
    504 
    505   /// Return the alignment in bytes that this function must be aligned to,
    506   /// which is greater than the default stack alignment provided by the target.
    507   unsigned getMaxAlignment() const { return MaxAlignment; }
    508 
    509   /// Make sure the function is at least Align bytes aligned.
    510   void ensureMaxAlignment(unsigned Align);
    511 
    512   /// Return true if this function adjusts the stack -- e.g.,
    513   /// when calling another function. This is only valid during and after
    514   /// prolog/epilog code insertion.
    515   bool adjustsStack() const { return AdjustsStack; }
    516   void setAdjustsStack(bool V) { AdjustsStack = V; }
    517 
    518   /// Return true if the current function has any function calls.
    519   bool hasCalls() const { return HasCalls; }
    520   void setHasCalls(bool V) { HasCalls = V; }
    521 
    522   /// Returns true if the function contains opaque dynamic stack adjustments.
    523   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
    524   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
    525 
    526   /// Returns true if the function contains operations which will lower down to
    527   /// instructions which manipulate the stack pointer.
    528   bool hasCopyImplyingStackAdjustment() const {
    529     return HasCopyImplyingStackAdjustment;
    530   }
    531   void setHasCopyImplyingStackAdjustment(bool B) {
    532     HasCopyImplyingStackAdjustment = B;
    533   }
    534 
    535   /// Returns true if the function calls the llvm.va_start intrinsic.
    536   bool hasVAStart() const { return HasVAStart; }
    537   void setHasVAStart(bool B) { HasVAStart = B; }
    538 
    539   /// Returns true if the function is variadic and contains a musttail call.
    540   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
    541   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
    542 
    543   /// Returns true if the function contains a tail call.
    544   bool hasTailCall() const { return HasTailCall; }
    545   void setHasTailCall() { HasTailCall = true; }
    546 
    547   /// Computes the maximum size of a callframe and the AdjustsStack property.
    548   /// This only works for targets defining
    549   /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
    550   /// and getFrameSize().
    551   /// This is usually computed by the prologue epilogue inserter but some
    552   /// targets may call this to compute it earlier.
    553   void computeMaxCallFrameSize(const MachineFunction &MF);
    554 
    555   /// Return the maximum size of a call frame that must be
    556   /// allocated for an outgoing function call.  This is only available if
    557   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
    558   /// then only during or after prolog/epilog code insertion.
    559   ///
    560   unsigned getMaxCallFrameSize() const {
    561     // TODO: Enable this assert when targets are fixed.
    562     //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
    563     if (!isMaxCallFrameSizeComputed())
    564       return 0;
    565     return MaxCallFrameSize;
    566   }
    567   bool isMaxCallFrameSizeComputed() const {
    568     return MaxCallFrameSize != ~0u;
    569   }
    570   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
    571 
    572   /// Create a new object at a fixed location on the stack.
    573   /// All fixed objects should be created before other objects are created for
    574   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
    575   /// values. This returns an index with a negative value.
    576   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable,
    577                         bool isAliased = false);
    578 
    579   /// Create a spill slot at a fixed location on the stack.
    580   /// Returns an index with a negative value.
    581   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
    582                                   bool Immutable = false);
    583 
    584   /// Returns true if the specified index corresponds to a fixed stack object.
    585   bool isFixedObjectIndex(int ObjectIdx) const {
    586     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
    587   }
    588 
    589   /// Returns true if the specified index corresponds
    590   /// to an object that might be pointed to by an LLVM IR value.
    591   bool isAliasedObjectIndex(int ObjectIdx) const {
    592     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    593            "Invalid Object Idx!");
    594     return Objects[ObjectIdx+NumFixedObjects].isAliased;
    595   }
    596 
    597   /// Returns true if the specified index corresponds to an immutable object.
    598   bool isImmutableObjectIndex(int ObjectIdx) const {
    599     // Tail calling functions can clobber their function arguments.
    600     if (HasTailCall)
    601       return false;
    602     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    603            "Invalid Object Idx!");
    604     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
    605   }
    606 
    607   /// Marks the immutability of an object.
    608   void setIsImmutableObjectIndex(int ObjectIdx, bool Immutable) {
    609     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    610            "Invalid Object Idx!");
    611     Objects[ObjectIdx+NumFixedObjects].isImmutable = Immutable;
    612   }
    613 
    614   /// Returns true if the specified index corresponds to a spill slot.
    615   bool isSpillSlotObjectIndex(int ObjectIdx) const {
    616     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    617            "Invalid Object Idx!");
    618     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
    619   }
    620 
    621   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
    622     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    623            "Invalid Object Idx!");
    624     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
    625   }
    626 
    627   /// \see StackID
    628   uint8_t getStackID(int ObjectIdx) const {
    629     return Objects[ObjectIdx+NumFixedObjects].StackID;
    630   }
    631 
    632   /// \see StackID
    633   void setStackID(int ObjectIdx, uint8_t ID) {
    634     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    635            "Invalid Object Idx!");
    636     Objects[ObjectIdx+NumFixedObjects].StackID = ID;
    637   }
    638 
    639   /// Returns true if the specified index corresponds to a dead object.
    640   bool isDeadObjectIndex(int ObjectIdx) const {
    641     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    642            "Invalid Object Idx!");
    643     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
    644   }
    645 
    646   /// Returns true if the specified index corresponds to a variable sized
    647   /// object.
    648   bool isVariableSizedObjectIndex(int ObjectIdx) const {
    649     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
    650            "Invalid Object Idx!");
    651     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
    652   }
    653 
    654   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
    655     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    656            "Invalid Object Idx!");
    657     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
    658     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
    659   }
    660 
    661   /// Create a new statically sized stack object, returning
    662   /// a nonnegative identifier to represent it.
    663   int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
    664                         const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
    665 
    666   /// Create a new statically sized stack object that represents a spill slot,
    667   /// returning a nonnegative identifier to represent it.
    668   int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
    669 
    670   /// Remove or mark dead a statically sized stack object.
    671   void RemoveStackObject(int ObjectIdx) {
    672     // Mark it dead.
    673     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
    674   }
    675 
    676   /// Notify the MachineFrameInfo object that a variable sized object has been
    677   /// created.  This must be created whenever a variable sized object is
    678   /// created, whether or not the index returned is actually used.
    679   int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
    680 
    681   /// Returns a reference to call saved info vector for the current function.
    682   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
    683     return CSInfo;
    684   }
    685   /// \copydoc getCalleeSavedInfo()
    686   std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
    687 
    688   /// Used by prolog/epilog inserter to set the function's callee saved
    689   /// information.
    690   void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
    691     CSInfo = CSI;
    692   }
    693 
    694   /// Has the callee saved info been calculated yet?
    695   bool isCalleeSavedInfoValid() const { return CSIValid; }
    696 
    697   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
    698 
    699   MachineBasicBlock *getSavePoint() const { return Save; }
    700   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
    701   MachineBasicBlock *getRestorePoint() const { return Restore; }
    702   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
    703 
    704   /// Return a set of physical registers that are pristine.
    705   ///
    706   /// Pristine registers hold a value that is useless to the current function,
    707   /// but that must be preserved - they are callee saved registers that are not
    708   /// saved.
    709   ///
    710   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
    711   /// method always returns an empty set.
    712   BitVector getPristineRegs(const MachineFunction &MF) const;
    713 
    714   /// Used by the MachineFunction printer to print information about
    715   /// stack objects. Implemented in MachineFunction.cpp.
    716   void print(const MachineFunction &MF, raw_ostream &OS) const;
    717 
    718   /// dump - Print the function to stderr.
    719   void dump(const MachineFunction &MF) const;
    720 };
    721 
    722 } // End llvm namespace
    723 
    724 #endif
    725