Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveRange and LiveInterval classes.  Given some
     11 // numbering of each the machine instructions an interval [i, j) is said to be a
     12 // live range for register v if there is no instruction with number j' >= j
     13 // such that v is live at j' and there is no instruction with number i' < i such
     14 // that v is live at i'. In this implementation ranges can have holes,
     15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
     16 // individual segment is represented as an instance of LiveRange::Segment,
     17 // and the whole range is represented as an instance of LiveRange.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H
     22 #define LLVM_CODEGEN_LIVEINTERVAL_H
     23 
     24 #include "llvm/ADT/ArrayRef.h"
     25 #include "llvm/ADT/IntEqClasses.h"
     26 #include "llvm/ADT/STLExtras.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/ADT/iterator_range.h"
     29 #include "llvm/CodeGen/SlotIndexes.h"
     30 #include "llvm/MC/LaneBitmask.h"
     31 #include "llvm/Support/Allocator.h"
     32 #include "llvm/Support/MathExtras.h"
     33 #include <algorithm>
     34 #include <cassert>
     35 #include <cstddef>
     36 #include <functional>
     37 #include <memory>
     38 #include <set>
     39 #include <tuple>
     40 #include <utility>
     41 
     42 namespace llvm {
     43 
     44   class CoalescerPair;
     45   class LiveIntervals;
     46   class MachineRegisterInfo;
     47   class raw_ostream;
     48 
     49   /// VNInfo - Value Number Information.
     50   /// This class holds information about a machine level values, including
     51   /// definition and use points.
     52   ///
     53   class VNInfo {
     54   public:
     55     using Allocator = BumpPtrAllocator;
     56 
     57     /// The ID number of this value.
     58     unsigned id;
     59 
     60     /// The index of the defining instruction.
     61     SlotIndex def;
     62 
     63     /// VNInfo constructor.
     64     VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
     65 
     66     /// VNInfo constructor, copies values from orig, except for the value number.
     67     VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
     68 
     69     /// Copy from the parameter into this VNInfo.
     70     void copyFrom(VNInfo &src) {
     71       def = src.def;
     72     }
     73 
     74     /// Returns true if this value is defined by a PHI instruction (or was,
     75     /// PHI instructions may have been eliminated).
     76     /// PHI-defs begin at a block boundary, all other defs begin at register or
     77     /// EC slots.
     78     bool isPHIDef() const { return def.isBlock(); }
     79 
     80     /// Returns true if this value is unused.
     81     bool isUnused() const { return !def.isValid(); }
     82 
     83     /// Mark this value as unused.
     84     void markUnused() { def = SlotIndex(); }
     85   };
     86 
     87   /// Result of a LiveRange query. This class hides the implementation details
     88   /// of live ranges, and it should be used as the primary interface for
     89   /// examining live ranges around instructions.
     90   class LiveQueryResult {
     91     VNInfo *const EarlyVal;
     92     VNInfo *const LateVal;
     93     const SlotIndex EndPoint;
     94     const bool Kill;
     95 
     96   public:
     97     LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
     98                     bool Kill)
     99       : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
    100     {}
    101 
    102     /// Return the value that is live-in to the instruction. This is the value
    103     /// that will be read by the instruction's use operands. Return NULL if no
    104     /// value is live-in.
    105     VNInfo *valueIn() const {
    106       return EarlyVal;
    107     }
    108 
    109     /// Return true if the live-in value is killed by this instruction. This
    110     /// means that either the live range ends at the instruction, or it changes
    111     /// value.
    112     bool isKill() const {
    113       return Kill;
    114     }
    115 
    116     /// Return true if this instruction has a dead def.
    117     bool isDeadDef() const {
    118       return EndPoint.isDead();
    119     }
    120 
    121     /// Return the value leaving the instruction, if any. This can be a
    122     /// live-through value, or a live def. A dead def returns NULL.
    123     VNInfo *valueOut() const {
    124       return isDeadDef() ? nullptr : LateVal;
    125     }
    126 
    127     /// Returns the value alive at the end of the instruction, if any. This can
    128     /// be a live-through value, a live def or a dead def.
    129     VNInfo *valueOutOrDead() const {
    130       return LateVal;
    131     }
    132 
    133     /// Return the value defined by this instruction, if any. This includes
    134     /// dead defs, it is the value created by the instruction's def operands.
    135     VNInfo *valueDefined() const {
    136       return EarlyVal == LateVal ? nullptr : LateVal;
    137     }
    138 
    139     /// Return the end point of the last live range segment to interact with
    140     /// the instruction, if any.
    141     ///
    142     /// The end point is an invalid SlotIndex only if the live range doesn't
    143     /// intersect the instruction at all.
    144     ///
    145     /// The end point may be at or past the end of the instruction's basic
    146     /// block. That means the value was live out of the block.
    147     SlotIndex endPoint() const {
    148       return EndPoint;
    149     }
    150   };
    151 
    152   /// This class represents the liveness of a register, stack slot, etc.
    153   /// It manages an ordered list of Segment objects.
    154   /// The Segments are organized in a static single assignment form: At places
    155   /// where a new value is defined or different values reach a CFG join a new
    156   /// segment with a new value number is used.
    157   class LiveRange {
    158   public:
    159     /// This represents a simple continuous liveness interval for a value.
    160     /// The start point is inclusive, the end point exclusive. These intervals
    161     /// are rendered as [start,end).
    162     struct Segment {
    163       SlotIndex start;  // Start point of the interval (inclusive)
    164       SlotIndex end;    // End point of the interval (exclusive)
    165       VNInfo *valno = nullptr; // identifier for the value contained in this
    166                                // segment.
    167 
    168       Segment() = default;
    169 
    170       Segment(SlotIndex S, SlotIndex E, VNInfo *V)
    171         : start(S), end(E), valno(V) {
    172         assert(S < E && "Cannot create empty or backwards segment");
    173       }
    174 
    175       /// Return true if the index is covered by this segment.
    176       bool contains(SlotIndex I) const {
    177         return start <= I && I < end;
    178       }
    179 
    180       /// Return true if the given interval, [S, E), is covered by this segment.
    181       bool containsInterval(SlotIndex S, SlotIndex E) const {
    182         assert((S < E) && "Backwards interval?");
    183         return (start <= S && S < end) && (start < E && E <= end);
    184       }
    185 
    186       bool operator<(const Segment &Other) const {
    187         return std::tie(start, end) < std::tie(Other.start, Other.end);
    188       }
    189       bool operator==(const Segment &Other) const {
    190         return start == Other.start && end == Other.end;
    191       }
    192 
    193       void dump() const;
    194     };
    195 
    196     using Segments = SmallVector<Segment, 2>;
    197     using VNInfoList = SmallVector<VNInfo *, 2>;
    198 
    199     Segments segments;   // the liveness segments
    200     VNInfoList valnos;   // value#'s
    201 
    202     // The segment set is used temporarily to accelerate initial computation
    203     // of live ranges of physical registers in computeRegUnitRange.
    204     // After that the set is flushed to the segment vector and deleted.
    205     using SegmentSet = std::set<Segment>;
    206     std::unique_ptr<SegmentSet> segmentSet;
    207 
    208     using iterator = Segments::iterator;
    209     using const_iterator = Segments::const_iterator;
    210 
    211     iterator begin() { return segments.begin(); }
    212     iterator end()   { return segments.end(); }
    213 
    214     const_iterator begin() const { return segments.begin(); }
    215     const_iterator end() const  { return segments.end(); }
    216 
    217     using vni_iterator = VNInfoList::iterator;
    218     using const_vni_iterator = VNInfoList::const_iterator;
    219 
    220     vni_iterator vni_begin() { return valnos.begin(); }
    221     vni_iterator vni_end()   { return valnos.end(); }
    222 
    223     const_vni_iterator vni_begin() const { return valnos.begin(); }
    224     const_vni_iterator vni_end() const   { return valnos.end(); }
    225 
    226     /// Constructs a new LiveRange object.
    227     LiveRange(bool UseSegmentSet = false)
    228         : segmentSet(UseSegmentSet ? llvm::make_unique<SegmentSet>()
    229                                    : nullptr) {}
    230 
    231     /// Constructs a new LiveRange object by copying segments and valnos from
    232     /// another LiveRange.
    233     LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
    234       assert(Other.segmentSet == nullptr &&
    235              "Copying of LiveRanges with active SegmentSets is not supported");
    236       assign(Other, Allocator);
    237     }
    238 
    239     /// Copies values numbers and live segments from \p Other into this range.
    240     void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
    241       if (this == &Other)
    242         return;
    243 
    244       assert(Other.segmentSet == nullptr &&
    245              "Copying of LiveRanges with active SegmentSets is not supported");
    246       // Duplicate valnos.
    247       for (const VNInfo *VNI : Other.valnos)
    248         createValueCopy(VNI, Allocator);
    249       // Now we can copy segments and remap their valnos.
    250       for (const Segment &S : Other.segments)
    251         segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
    252     }
    253 
    254     /// advanceTo - Advance the specified iterator to point to the Segment
    255     /// containing the specified position, or end() if the position is past the
    256     /// end of the range.  If no Segment contains this position, but the
    257     /// position is in a hole, this method returns an iterator pointing to the
    258     /// Segment immediately after the hole.
    259     iterator advanceTo(iterator I, SlotIndex Pos) {
    260       assert(I != end());
    261       if (Pos >= endIndex())
    262         return end();
    263       while (I->end <= Pos) ++I;
    264       return I;
    265     }
    266 
    267     const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
    268       assert(I != end());
    269       if (Pos >= endIndex())
    270         return end();
    271       while (I->end <= Pos) ++I;
    272       return I;
    273     }
    274 
    275     /// find - Return an iterator pointing to the first segment that ends after
    276     /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
    277     /// when searching large ranges.
    278     ///
    279     /// If Pos is contained in a Segment, that segment is returned.
    280     /// If Pos is in a hole, the following Segment is returned.
    281     /// If Pos is beyond endIndex, end() is returned.
    282     iterator find(SlotIndex Pos);
    283 
    284     const_iterator find(SlotIndex Pos) const {
    285       return const_cast<LiveRange*>(this)->find(Pos);
    286     }
    287 
    288     void clear() {
    289       valnos.clear();
    290       segments.clear();
    291     }
    292 
    293     size_t size() const {
    294       return segments.size();
    295     }
    296 
    297     bool hasAtLeastOneValue() const { return !valnos.empty(); }
    298 
    299     bool containsOneValue() const { return valnos.size() == 1; }
    300 
    301     unsigned getNumValNums() const { return (unsigned)valnos.size(); }
    302 
    303     /// getValNumInfo - Returns pointer to the specified val#.
    304     ///
    305     inline VNInfo *getValNumInfo(unsigned ValNo) {
    306       return valnos[ValNo];
    307     }
    308     inline const VNInfo *getValNumInfo(unsigned ValNo) const {
    309       return valnos[ValNo];
    310     }
    311 
    312     /// containsValue - Returns true if VNI belongs to this range.
    313     bool containsValue(const VNInfo *VNI) const {
    314       return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
    315     }
    316 
    317     /// getNextValue - Create a new value number and return it.  MIIdx specifies
    318     /// the instruction that defines the value number.
    319     VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
    320       VNInfo *VNI =
    321         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
    322       valnos.push_back(VNI);
    323       return VNI;
    324     }
    325 
    326     /// createDeadDef - Make sure the range has a value defined at Def.
    327     /// If one already exists, return it. Otherwise allocate a new value and
    328     /// add liveness for a dead def.
    329     VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
    330 
    331     /// Create a def of value @p VNI. Return @p VNI. If there already exists
    332     /// a definition at VNI->def, the value defined there must be @p VNI.
    333     VNInfo *createDeadDef(VNInfo *VNI);
    334 
    335     /// Create a copy of the given value. The new value will be identical except
    336     /// for the Value number.
    337     VNInfo *createValueCopy(const VNInfo *orig,
    338                             VNInfo::Allocator &VNInfoAllocator) {
    339       VNInfo *VNI =
    340         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
    341       valnos.push_back(VNI);
    342       return VNI;
    343     }
    344 
    345     /// RenumberValues - Renumber all values in order of appearance and remove
    346     /// unused values.
    347     void RenumberValues();
    348 
    349     /// MergeValueNumberInto - This method is called when two value numbers
    350     /// are found to be equivalent.  This eliminates V1, replacing all
    351     /// segments with the V1 value number with the V2 value number.  This can
    352     /// cause merging of V1/V2 values numbers and compaction of the value space.
    353     VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
    354 
    355     /// Merge all of the live segments of a specific val# in RHS into this live
    356     /// range as the specified value number. The segments in RHS are allowed
    357     /// to overlap with segments in the current range, it will replace the
    358     /// value numbers of the overlaped live segments with the specified value
    359     /// number.
    360     void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
    361 
    362     /// MergeValueInAsValue - Merge all of the segments of a specific val#
    363     /// in RHS into this live range as the specified value number.
    364     /// The segments in RHS are allowed to overlap with segments in the
    365     /// current range, but only if the overlapping segments have the
    366     /// specified value number.
    367     void MergeValueInAsValue(const LiveRange &RHS,
    368                              const VNInfo *RHSValNo, VNInfo *LHSValNo);
    369 
    370     bool empty() const { return segments.empty(); }
    371 
    372     /// beginIndex - Return the lowest numbered slot covered.
    373     SlotIndex beginIndex() const {
    374       assert(!empty() && "Call to beginIndex() on empty range.");
    375       return segments.front().start;
    376     }
    377 
    378     /// endNumber - return the maximum point of the range of the whole,
    379     /// exclusive.
    380     SlotIndex endIndex() const {
    381       assert(!empty() && "Call to endIndex() on empty range.");
    382       return segments.back().end;
    383     }
    384 
    385     bool expiredAt(SlotIndex index) const {
    386       return index >= endIndex();
    387     }
    388 
    389     bool liveAt(SlotIndex index) const {
    390       const_iterator r = find(index);
    391       return r != end() && r->start <= index;
    392     }
    393 
    394     /// Return the segment that contains the specified index, or null if there
    395     /// is none.
    396     const Segment *getSegmentContaining(SlotIndex Idx) const {
    397       const_iterator I = FindSegmentContaining(Idx);
    398       return I == end() ? nullptr : &*I;
    399     }
    400 
    401     /// Return the live segment that contains the specified index, or null if
    402     /// there is none.
    403     Segment *getSegmentContaining(SlotIndex Idx) {
    404       iterator I = FindSegmentContaining(Idx);
    405       return I == end() ? nullptr : &*I;
    406     }
    407 
    408     /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
    409     VNInfo *getVNInfoAt(SlotIndex Idx) const {
    410       const_iterator I = FindSegmentContaining(Idx);
    411       return I == end() ? nullptr : I->valno;
    412     }
    413 
    414     /// getVNInfoBefore - Return the VNInfo that is live up to but not
    415     /// necessarilly including Idx, or NULL. Use this to find the reaching def
    416     /// used by an instruction at this SlotIndex position.
    417     VNInfo *getVNInfoBefore(SlotIndex Idx) const {
    418       const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
    419       return I == end() ? nullptr : I->valno;
    420     }
    421 
    422     /// Return an iterator to the segment that contains the specified index, or
    423     /// end() if there is none.
    424     iterator FindSegmentContaining(SlotIndex Idx) {
    425       iterator I = find(Idx);
    426       return I != end() && I->start <= Idx ? I : end();
    427     }
    428 
    429     const_iterator FindSegmentContaining(SlotIndex Idx) const {
    430       const_iterator I = find(Idx);
    431       return I != end() && I->start <= Idx ? I : end();
    432     }
    433 
    434     /// overlaps - Return true if the intersection of the two live ranges is
    435     /// not empty.
    436     bool overlaps(const LiveRange &other) const {
    437       if (other.empty())
    438         return false;
    439       return overlapsFrom(other, other.begin());
    440     }
    441 
    442     /// overlaps - Return true if the two ranges have overlapping segments
    443     /// that are not coalescable according to CP.
    444     ///
    445     /// Overlapping segments where one range is defined by a coalescable
    446     /// copy are allowed.
    447     bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
    448                   const SlotIndexes&) const;
    449 
    450     /// overlaps - Return true if the live range overlaps an interval specified
    451     /// by [Start, End).
    452     bool overlaps(SlotIndex Start, SlotIndex End) const;
    453 
    454     /// overlapsFrom - Return true if the intersection of the two live ranges
    455     /// is not empty.  The specified iterator is a hint that we can begin
    456     /// scanning the Other range starting at I.
    457     bool overlapsFrom(const LiveRange &Other, const_iterator I) const;
    458 
    459     /// Returns true if all segments of the @p Other live range are completely
    460     /// covered by this live range.
    461     /// Adjacent live ranges do not affect the covering:the liverange
    462     /// [1,5](5,10] covers (3,7].
    463     bool covers(const LiveRange &Other) const;
    464 
    465     /// Add the specified Segment to this range, merging segments as
    466     /// appropriate.  This returns an iterator to the inserted segment (which
    467     /// may have grown since it was inserted).
    468     iterator addSegment(Segment S);
    469 
    470     /// Attempt to extend a value defined after @p StartIdx to include @p Use.
    471     /// Both @p StartIdx and @p Use should be in the same basic block. In case
    472     /// of subranges, an extension could be prevented by an explicit "undef"
    473     /// caused by a <def,read-undef> on a non-overlapping lane. The list of
    474     /// location of such "undefs" should be provided in @p Undefs.
    475     /// The return value is a pair: the first element is VNInfo of the value
    476     /// that was extended (possibly nullptr), the second is a boolean value
    477     /// indicating whether an "undef" was encountered.
    478     /// If this range is live before @p Use in the basic block that starts at
    479     /// @p StartIdx, and there is no intervening "undef", extend it to be live
    480     /// up to @p Use, and return the pair {value, false}. If there is no
    481     /// segment before @p Use and there is no "undef" between @p StartIdx and
    482     /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
    483     /// return {nullptr, true}.
    484     std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
    485         SlotIndex StartIdx, SlotIndex Use);
    486 
    487     /// Simplified version of the above "extendInBlock", which assumes that
    488     /// no register lanes are undefined by <def,read-undef> operands.
    489     /// If this range is live before @p Use in the basic block that starts
    490     /// at @p StartIdx, extend it to be live up to @p Use, and return the
    491     /// value. If there is no segment before @p Use, return nullptr.
    492     VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
    493 
    494     /// join - Join two live ranges (this, and other) together.  This applies
    495     /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
    496     /// the ranges are not joinable, this aborts.
    497     void join(LiveRange &Other,
    498               const int *ValNoAssignments,
    499               const int *RHSValNoAssignments,
    500               SmallVectorImpl<VNInfo *> &NewVNInfo);
    501 
    502     /// True iff this segment is a single segment that lies between the
    503     /// specified boundaries, exclusively. Vregs live across a backedge are not
    504     /// considered local. The boundaries are expected to lie within an extended
    505     /// basic block, so vregs that are not live out should contain no holes.
    506     bool isLocal(SlotIndex Start, SlotIndex End) const {
    507       return beginIndex() > Start.getBaseIndex() &&
    508         endIndex() < End.getBoundaryIndex();
    509     }
    510 
    511     /// Remove the specified segment from this range.  Note that the segment
    512     /// must be a single Segment in its entirety.
    513     void removeSegment(SlotIndex Start, SlotIndex End,
    514                        bool RemoveDeadValNo = false);
    515 
    516     void removeSegment(Segment S, bool RemoveDeadValNo = false) {
    517       removeSegment(S.start, S.end, RemoveDeadValNo);
    518     }
    519 
    520     /// Remove segment pointed to by iterator @p I from this range.  This does
    521     /// not remove dead value numbers.
    522     iterator removeSegment(iterator I) {
    523       return segments.erase(I);
    524     }
    525 
    526     /// Query Liveness at Idx.
    527     /// The sub-instruction slot of Idx doesn't matter, only the instruction
    528     /// it refers to is considered.
    529     LiveQueryResult Query(SlotIndex Idx) const {
    530       // Find the segment that enters the instruction.
    531       const_iterator I = find(Idx.getBaseIndex());
    532       const_iterator E = end();
    533       if (I == E)
    534         return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
    535 
    536       // Is this an instruction live-in segment?
    537       // If Idx is the start index of a basic block, include live-in segments
    538       // that start at Idx.getBaseIndex().
    539       VNInfo *EarlyVal = nullptr;
    540       VNInfo *LateVal  = nullptr;
    541       SlotIndex EndPoint;
    542       bool Kill = false;
    543       if (I->start <= Idx.getBaseIndex()) {
    544         EarlyVal = I->valno;
    545         EndPoint = I->end;
    546         // Move to the potentially live-out segment.
    547         if (SlotIndex::isSameInstr(Idx, I->end)) {
    548           Kill = true;
    549           if (++I == E)
    550             return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
    551         }
    552         // Special case: A PHIDef value can have its def in the middle of a
    553         // segment if the value happens to be live out of the layout
    554         // predecessor.
    555         // Such a value is not live-in.
    556         if (EarlyVal->def == Idx.getBaseIndex())
    557           EarlyVal = nullptr;
    558       }
    559       // I now points to the segment that may be live-through, or defined by
    560       // this instr. Ignore segments starting after the current instr.
    561       if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
    562         LateVal = I->valno;
    563         EndPoint = I->end;
    564       }
    565       return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
    566     }
    567 
    568     /// removeValNo - Remove all the segments defined by the specified value#.
    569     /// Also remove the value# from value# list.
    570     void removeValNo(VNInfo *ValNo);
    571 
    572     /// Returns true if the live range is zero length, i.e. no live segments
    573     /// span instructions. It doesn't pay to spill such a range.
    574     bool isZeroLength(SlotIndexes *Indexes) const {
    575       for (const Segment &S : segments)
    576         if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
    577             S.end.getBaseIndex())
    578           return false;
    579       return true;
    580     }
    581 
    582     // Returns true if any segment in the live range contains any of the
    583     // provided slot indexes.  Slots which occur in holes between
    584     // segments will not cause the function to return true.
    585     bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
    586 
    587     bool operator<(const LiveRange& other) const {
    588       const SlotIndex &thisIndex = beginIndex();
    589       const SlotIndex &otherIndex = other.beginIndex();
    590       return thisIndex < otherIndex;
    591     }
    592 
    593     /// Returns true if there is an explicit "undef" between @p Begin
    594     /// @p End.
    595     bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
    596                    SlotIndex End) const {
    597       return std::any_of(Undefs.begin(), Undefs.end(),
    598                 [Begin,End] (SlotIndex Idx) -> bool {
    599                   return Begin <= Idx && Idx < End;
    600                 });
    601     }
    602 
    603     /// Flush segment set into the regular segment vector.
    604     /// The method is to be called after the live range
    605     /// has been created, if use of the segment set was
    606     /// activated in the constructor of the live range.
    607     void flushSegmentSet();
    608 
    609     void print(raw_ostream &OS) const;
    610     void dump() const;
    611 
    612     /// \brief Walk the range and assert if any invariants fail to hold.
    613     ///
    614     /// Note that this is a no-op when asserts are disabled.
    615 #ifdef NDEBUG
    616     void verify() const {}
    617 #else
    618     void verify() const;
    619 #endif
    620 
    621   protected:
    622     /// Append a segment to the list of segments.
    623     void append(const LiveRange::Segment S);
    624 
    625   private:
    626     friend class LiveRangeUpdater;
    627     void addSegmentToSet(Segment S);
    628     void markValNoForDeletion(VNInfo *V);
    629   };
    630 
    631   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
    632     LR.print(OS);
    633     return OS;
    634   }
    635 
    636   /// LiveInterval - This class represents the liveness of a register,
    637   /// or stack slot.
    638   class LiveInterval : public LiveRange {
    639   public:
    640     using super = LiveRange;
    641 
    642     /// A live range for subregisters. The LaneMask specifies which parts of the
    643     /// super register are covered by the interval.
    644     /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
    645     class SubRange : public LiveRange {
    646     public:
    647       SubRange *Next = nullptr;
    648       LaneBitmask LaneMask;
    649 
    650       /// Constructs a new SubRange object.
    651       SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
    652 
    653       /// Constructs a new SubRange object by copying liveness from @p Other.
    654       SubRange(LaneBitmask LaneMask, const LiveRange &Other,
    655                BumpPtrAllocator &Allocator)
    656         : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
    657 
    658       void print(raw_ostream &OS) const;
    659       void dump() const;
    660     };
    661 
    662   private:
    663     SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
    664                                    /// ranges.
    665 
    666   public:
    667     const unsigned reg;  // the register or stack slot of this interval.
    668     float weight;        // weight of this interval
    669 
    670     LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {}
    671 
    672     ~LiveInterval() {
    673       clearSubRanges();
    674     }
    675 
    676     template<typename T>
    677     class SingleLinkedListIterator {
    678       T *P;
    679 
    680     public:
    681       SingleLinkedListIterator<T>(T *P) : P(P) {}
    682 
    683       SingleLinkedListIterator<T> &operator++() {
    684         P = P->Next;
    685         return *this;
    686       }
    687       SingleLinkedListIterator<T> operator++(int) {
    688         SingleLinkedListIterator res = *this;
    689         ++*this;
    690         return res;
    691       }
    692       bool operator!=(const SingleLinkedListIterator<T> &Other) {
    693         return P != Other.operator->();
    694       }
    695       bool operator==(const SingleLinkedListIterator<T> &Other) {
    696         return P == Other.operator->();
    697       }
    698       T &operator*() const {
    699         return *P;
    700       }
    701       T *operator->() const {
    702         return P;
    703       }
    704     };
    705 
    706     using subrange_iterator = SingleLinkedListIterator<SubRange>;
    707     using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
    708 
    709     subrange_iterator subrange_begin() {
    710       return subrange_iterator(SubRanges);
    711     }
    712     subrange_iterator subrange_end() {
    713       return subrange_iterator(nullptr);
    714     }
    715 
    716     const_subrange_iterator subrange_begin() const {
    717       return const_subrange_iterator(SubRanges);
    718     }
    719     const_subrange_iterator subrange_end() const {
    720       return const_subrange_iterator(nullptr);
    721     }
    722 
    723     iterator_range<subrange_iterator> subranges() {
    724       return make_range(subrange_begin(), subrange_end());
    725     }
    726 
    727     iterator_range<const_subrange_iterator> subranges() const {
    728       return make_range(subrange_begin(), subrange_end());
    729     }
    730 
    731     /// Creates a new empty subregister live range. The range is added at the
    732     /// beginning of the subrange list; subrange iterators stay valid.
    733     SubRange *createSubRange(BumpPtrAllocator &Allocator,
    734                              LaneBitmask LaneMask) {
    735       SubRange *Range = new (Allocator) SubRange(LaneMask);
    736       appendSubRange(Range);
    737       return Range;
    738     }
    739 
    740     /// Like createSubRange() but the new range is filled with a copy of the
    741     /// liveness information in @p CopyFrom.
    742     SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
    743                                  LaneBitmask LaneMask,
    744                                  const LiveRange &CopyFrom) {
    745       SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
    746       appendSubRange(Range);
    747       return Range;
    748     }
    749 
    750     /// Returns true if subregister liveness information is available.
    751     bool hasSubRanges() const {
    752       return SubRanges != nullptr;
    753     }
    754 
    755     /// Removes all subregister liveness information.
    756     void clearSubRanges();
    757 
    758     /// Removes all subranges without any segments (subranges without segments
    759     /// are not considered valid and should only exist temporarily).
    760     void removeEmptySubRanges();
    761 
    762     /// getSize - Returns the sum of sizes of all the LiveRange's.
    763     ///
    764     unsigned getSize() const;
    765 
    766     /// isSpillable - Can this interval be spilled?
    767     bool isSpillable() const {
    768       return weight != huge_valf;
    769     }
    770 
    771     /// markNotSpillable - Mark interval as not spillable
    772     void markNotSpillable() {
    773       weight = huge_valf;
    774     }
    775 
    776     /// For a given lane mask @p LaneMask, compute indexes at which the
    777     /// lane is marked undefined by subregister <def,read-undef> definitions.
    778     void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
    779                                LaneBitmask LaneMask,
    780                                const MachineRegisterInfo &MRI,
    781                                const SlotIndexes &Indexes) const;
    782 
    783     /// Refines the subranges to support \p LaneMask. This may only be called
    784     /// for LI.hasSubrange()==true. Subregister ranges are split or created
    785     /// until \p LaneMask can be matched exactly. \p Mod is executed on the
    786     /// matching subranges.
    787     ///
    788     /// Example:
    789     ///    Given an interval with subranges with lanemasks L0F00, L00F0 and
    790     ///    L000F, refining for mask L0018. Will split the L00F0 lane into
    791     ///    L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
    792     ///    function will be applied to the L0010 and L0008 subranges.
    793     void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
    794                          std::function<void(LiveInterval::SubRange&)> Mod);
    795 
    796     bool operator<(const LiveInterval& other) const {
    797       const SlotIndex &thisIndex = beginIndex();
    798       const SlotIndex &otherIndex = other.beginIndex();
    799       return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
    800     }
    801 
    802     void print(raw_ostream &OS) const;
    803     void dump() const;
    804 
    805     /// \brief Walks the interval and assert if any invariants fail to hold.
    806     ///
    807     /// Note that this is a no-op when asserts are disabled.
    808 #ifdef NDEBUG
    809     void verify(const MachineRegisterInfo *MRI = nullptr) const {}
    810 #else
    811     void verify(const MachineRegisterInfo *MRI = nullptr) const;
    812 #endif
    813 
    814   private:
    815     /// Appends @p Range to SubRanges list.
    816     void appendSubRange(SubRange *Range) {
    817       Range->Next = SubRanges;
    818       SubRanges = Range;
    819     }
    820 
    821     /// Free memory held by SubRange.
    822     void freeSubRange(SubRange *S);
    823   };
    824 
    825   inline raw_ostream &operator<<(raw_ostream &OS,
    826                                  const LiveInterval::SubRange &SR) {
    827     SR.print(OS);
    828     return OS;
    829   }
    830 
    831   inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
    832     LI.print(OS);
    833     return OS;
    834   }
    835 
    836   raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
    837 
    838   inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
    839     return V < S.start;
    840   }
    841 
    842   inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
    843     return S.start < V;
    844   }
    845 
    846   /// Helper class for performant LiveRange bulk updates.
    847   ///
    848   /// Calling LiveRange::addSegment() repeatedly can be expensive on large
    849   /// live ranges because segments after the insertion point may need to be
    850   /// shifted. The LiveRangeUpdater class can defer the shifting when adding
    851   /// many segments in order.
    852   ///
    853   /// The LiveRange will be in an invalid state until flush() is called.
    854   class LiveRangeUpdater {
    855     LiveRange *LR;
    856     SlotIndex LastStart;
    857     LiveRange::iterator WriteI;
    858     LiveRange::iterator ReadI;
    859     SmallVector<LiveRange::Segment, 16> Spills;
    860     void mergeSpills();
    861 
    862   public:
    863     /// Create a LiveRangeUpdater for adding segments to LR.
    864     /// LR will temporarily be in an invalid state until flush() is called.
    865     LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
    866 
    867     ~LiveRangeUpdater() { flush(); }
    868 
    869     /// Add a segment to LR and coalesce when possible, just like
    870     /// LR.addSegment(). Segments should be added in increasing start order for
    871     /// best performance.
    872     void add(LiveRange::Segment);
    873 
    874     void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
    875       add(LiveRange::Segment(Start, End, VNI));
    876     }
    877 
    878     /// Return true if the LR is currently in an invalid state, and flush()
    879     /// needs to be called.
    880     bool isDirty() const { return LastStart.isValid(); }
    881 
    882     /// Flush the updater state to LR so it is valid and contains all added
    883     /// segments.
    884     void flush();
    885 
    886     /// Select a different destination live range.
    887     void setDest(LiveRange *lr) {
    888       if (LR != lr && isDirty())
    889         flush();
    890       LR = lr;
    891     }
    892 
    893     /// Get the current destination live range.
    894     LiveRange *getDest() const { return LR; }
    895 
    896     void dump() const;
    897     void print(raw_ostream&) const;
    898   };
    899 
    900   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
    901     X.print(OS);
    902     return OS;
    903   }
    904 
    905   /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
    906   /// LiveInterval into equivalence clases of connected components. A
    907   /// LiveInterval that has multiple connected components can be broken into
    908   /// multiple LiveIntervals.
    909   ///
    910   /// Given a LiveInterval that may have multiple connected components, run:
    911   ///
    912   ///   unsigned numComps = ConEQ.Classify(LI);
    913   ///   if (numComps > 1) {
    914   ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
    915   ///     ConEQ.Distribute(LIS);
    916   /// }
    917 
    918   class ConnectedVNInfoEqClasses {
    919     LiveIntervals &LIS;
    920     IntEqClasses EqClass;
    921 
    922   public:
    923     explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
    924 
    925     /// Classify the values in \p LR into connected components.
    926     /// Returns the number of connected components.
    927     unsigned Classify(const LiveRange &LR);
    928 
    929     /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
    930     /// the equivalence class assigned the VNI.
    931     unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
    932 
    933     /// Distribute values in \p LI into a separate LiveIntervals
    934     /// for each connected component. LIV must have an empty LiveInterval for
    935     /// each additional connected component. The first connected component is
    936     /// left in \p LI.
    937     void Distribute(LiveInterval &LI, LiveInterval *LIV[],
    938                     MachineRegisterInfo &MRI);
    939   };
    940 
    941 } // end namespace llvm
    942 
    943 #endif // LLVM_CODEGEN_LIVEINTERVAL_H
    944