Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/TargetSchedule.h - Sched Machine Model ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a wrapper around MCSchedModel that allows the interface to
     11 // benefit from information currently only available in TargetInstrInfo.
     12 // Ideally, the scheduling interface would be fully defined in the MC layer.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H
     17 #define LLVM_CODEGEN_TARGETSCHEDULE_H
     18 
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/MC/MCInstrItineraries.h"
     22 #include "llvm/MC/MCSchedule.h"
     23 #include "llvm/Target/TargetSubtargetInfo.h"
     24 
     25 namespace llvm {
     26 
     27 class MachineInstr;
     28 class TargetInstrInfo;
     29 
     30 /// Provide an instruction scheduling machine model to CodeGen passes.
     31 class TargetSchedModel {
     32   // For efficiency, hold a copy of the statically defined MCSchedModel for this
     33   // processor.
     34   MCSchedModel SchedModel;
     35   InstrItineraryData InstrItins;
     36   const TargetSubtargetInfo *STI = nullptr;
     37   const TargetInstrInfo *TII = nullptr;
     38 
     39   SmallVector<unsigned, 16> ResourceFactors;
     40   unsigned MicroOpFactor; // Multiply to normalize microops to resource units.
     41   unsigned ResourceLCM;   // Resource units per cycle. Latency normalization factor.
     42 
     43   unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const;
     44 
     45 public:
     46   TargetSchedModel() : SchedModel(MCSchedModel::GetDefaultSchedModel()) {}
     47 
     48   /// \brief Initialize the machine model for instruction scheduling.
     49   ///
     50   /// The machine model API keeps a copy of the top-level MCSchedModel table
     51   /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve
     52   /// dynamic properties.
     53   void init(const MCSchedModel &sm, const TargetSubtargetInfo *sti,
     54             const TargetInstrInfo *tii);
     55 
     56   /// Return the MCSchedClassDesc for this instruction.
     57   const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const;
     58 
     59   /// \brief TargetSubtargetInfo getter.
     60   const TargetSubtargetInfo *getSubtargetInfo() const { return STI; }
     61 
     62   /// \brief TargetInstrInfo getter.
     63   const TargetInstrInfo *getInstrInfo() const { return TII; }
     64 
     65   /// \brief Return true if this machine model includes an instruction-level
     66   /// scheduling model.
     67   ///
     68   /// This is more detailed than the course grain IssueWidth and default
     69   /// latency properties, but separate from the per-cycle itinerary data.
     70   bool hasInstrSchedModel() const;
     71 
     72   const MCSchedModel *getMCSchedModel() const { return &SchedModel; }
     73 
     74   /// \brief Return true if this machine model includes cycle-to-cycle itinerary
     75   /// data.
     76   ///
     77   /// This models scheduling at each stage in the processor pipeline.
     78   bool hasInstrItineraries() const;
     79 
     80   const InstrItineraryData *getInstrItineraries() const {
     81     if (hasInstrItineraries())
     82       return &InstrItins;
     83     return nullptr;
     84   }
     85 
     86   /// \brief Return true if this machine model includes an instruction-level
     87   /// scheduling model or cycle-to-cycle itinerary data.
     88   bool hasInstrSchedModelOrItineraries() const {
     89     return hasInstrSchedModel() || hasInstrItineraries();
     90   }
     91 
     92   /// \brief Identify the processor corresponding to the current subtarget.
     93   unsigned getProcessorID() const { return SchedModel.getProcessorID(); }
     94 
     95   /// \brief Maximum number of micro-ops that may be scheduled per cycle.
     96   unsigned getIssueWidth() const { return SchedModel.IssueWidth; }
     97 
     98   /// \brief Return true if new group must begin.
     99   bool mustBeginGroup(const MachineInstr *MI,
    100                           const MCSchedClassDesc *SC = nullptr) const;
    101   /// \brief Return true if current group must end.
    102   bool mustEndGroup(const MachineInstr *MI,
    103                           const MCSchedClassDesc *SC = nullptr) const;
    104 
    105   /// \brief Return the number of issue slots required for this MI.
    106   unsigned getNumMicroOps(const MachineInstr *MI,
    107                           const MCSchedClassDesc *SC = nullptr) const;
    108 
    109   /// \brief Get the number of kinds of resources for this target.
    110   unsigned getNumProcResourceKinds() const {
    111     return SchedModel.getNumProcResourceKinds();
    112   }
    113 
    114   /// \brief Get a processor resource by ID for convenience.
    115   const MCProcResourceDesc *getProcResource(unsigned PIdx) const {
    116     return SchedModel.getProcResource(PIdx);
    117   }
    118 
    119 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    120   const char *getResourceName(unsigned PIdx) const {
    121     if (!PIdx)
    122       return "MOps";
    123     return SchedModel.getProcResource(PIdx)->Name;
    124   }
    125 #endif
    126 
    127   using ProcResIter = const MCWriteProcResEntry *;
    128 
    129   // \brief Get an iterator into the processor resources consumed by this
    130   // scheduling class.
    131   ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const {
    132     // The subtarget holds a single resource table for all processors.
    133     return STI->getWriteProcResBegin(SC);
    134   }
    135   ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const {
    136     return STI->getWriteProcResEnd(SC);
    137   }
    138 
    139   /// \brief Multiply the number of units consumed for a resource by this factor
    140   /// to normalize it relative to other resources.
    141   unsigned getResourceFactor(unsigned ResIdx) const {
    142     return ResourceFactors[ResIdx];
    143   }
    144 
    145   /// \brief Multiply number of micro-ops by this factor to normalize it
    146   /// relative to other resources.
    147   unsigned getMicroOpFactor() const {
    148     return MicroOpFactor;
    149   }
    150 
    151   /// \brief Multiply cycle count by this factor to normalize it relative to
    152   /// other resources. This is the number of resource units per cycle.
    153   unsigned getLatencyFactor() const {
    154     return ResourceLCM;
    155   }
    156 
    157   /// \brief Number of micro-ops that may be buffered for OOO execution.
    158   unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; }
    159 
    160   /// \brief Number of resource units that may be buffered for OOO execution.
    161   /// \return The buffer size in resource units or -1 for unlimited.
    162   int getResourceBufferSize(unsigned PIdx) const {
    163     return SchedModel.getProcResource(PIdx)->BufferSize;
    164   }
    165 
    166   /// \brief Compute operand latency based on the available machine model.
    167   ///
    168   /// Compute and return the latency of the given data dependent def and use
    169   /// when the operand indices are already known. UseMI may be NULL for an
    170   /// unknown user.
    171   unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
    172                                  const MachineInstr *UseMI, unsigned UseOperIdx)
    173     const;
    174 
    175   /// \brief Compute the instruction latency based on the available machine
    176   /// model.
    177   ///
    178   /// Compute and return the expected latency of this instruction independent of
    179   /// a particular use. computeOperandLatency is the preferred API, but this is
    180   /// occasionally useful to help estimate instruction cost.
    181   ///
    182   /// If UseDefaultDefLatency is false and no new machine sched model is
    183   /// present this method falls back to TII->getInstrLatency with an empty
    184   /// instruction itinerary (this is so we preserve the previous behavior of the
    185   /// if converter after moving it to TargetSchedModel).
    186   unsigned computeInstrLatency(const MachineInstr *MI,
    187                                bool UseDefaultDefLatency = true) const;
    188   unsigned computeInstrLatency(unsigned Opcode) const;
    189 
    190 
    191   /// \brief Output dependency latency of a pair of defs of the same register.
    192   ///
    193   /// This is typically one cycle.
    194   unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefIdx,
    195                                 const MachineInstr *DepMI) const;
    196 
    197   /// \brief Compute the reciprocal throughput of the given instruction.
    198   Optional<double> computeInstrRThroughput(const MachineInstr *MI) const;
    199   Optional<double> computeInstrRThroughput(unsigned Opcode) const;
    200 };
    201 
    202 } // end namespace llvm
    203 
    204 #endif // LLVM_CODEGEN_TARGETSCHEDULE_H
    205