Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "HexagonISelLowering.h"
     11 #include "HexagonRegisterInfo.h"
     12 #include "HexagonSubtarget.h"
     13 #include "llvm/Support/CommandLine.h"
     14 
     15 using namespace llvm;
     16 
     17 static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 };
     18 static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
     19 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
     20 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
     21 
     22 
     23 void
     24 HexagonTargetLowering::initializeHVXLowering() {
     25   if (Subtarget.useHVX64BOps()) {
     26     addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass);
     27     addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
     28     addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
     29     addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
     30     addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
     31     addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
     32     // These "short" boolean vector types should be legal because
     33     // they will appear as results of vector compares. If they were
     34     // not legal, type legalization would try to make them legal
     35     // and that would require using operations that do not use or
     36     // produce such types. That, in turn, would imply using custom
     37     // nodes, which would be unoptimizable by the DAG combiner.
     38     // The idea is to rely on target-independent operations as much
     39     // as possible.
     40     addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
     41     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
     42     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
     43     addRegisterClass(MVT::v512i1, &Hexagon::HvxQRRegClass);
     44   } else if (Subtarget.useHVX128BOps()) {
     45     addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass);
     46     addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass);
     47     addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass);
     48     addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass);
     49     addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
     50     addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass);
     51     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
     52     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
     53     addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
     54     addRegisterClass(MVT::v1024i1, &Hexagon::HvxQRRegClass);
     55   }
     56 
     57   // Set up operation actions.
     58 
     59   bool Use64b = Subtarget.useHVX64BOps();
     60   ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
     61   ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
     62   MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8;
     63   MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
     64 
     65   auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
     66     setOperationAction(Opc, FromTy, Promote);
     67     AddPromotedToType(Opc, FromTy, ToTy);
     68   };
     69 
     70   setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
     71   setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
     72 
     73   for (MVT T : LegalV) {
     74     setIndexedLoadAction(ISD::POST_INC,  T, Legal);
     75     setIndexedStoreAction(ISD::POST_INC, T, Legal);
     76 
     77     setOperationAction(ISD::AND,            T, Legal);
     78     setOperationAction(ISD::OR,             T, Legal);
     79     setOperationAction(ISD::XOR,            T, Legal);
     80     setOperationAction(ISD::ADD,            T, Legal);
     81     setOperationAction(ISD::SUB,            T, Legal);
     82     setOperationAction(ISD::CTPOP,          T, Legal);
     83     setOperationAction(ISD::CTLZ,           T, Legal);
     84     if (T != ByteV) {
     85       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
     86       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
     87       setOperationAction(ISD::BSWAP,                    T, Legal);
     88     }
     89 
     90     setOperationAction(ISD::CTTZ,               T, Custom);
     91     setOperationAction(ISD::LOAD,               T, Custom);
     92     setOperationAction(ISD::MUL,                T, Custom);
     93     setOperationAction(ISD::MULHS,              T, Custom);
     94     setOperationAction(ISD::MULHU,              T, Custom);
     95     setOperationAction(ISD::BUILD_VECTOR,       T, Custom);
     96     // Make concat-vectors custom to handle concats of more than 2 vectors.
     97     setOperationAction(ISD::CONCAT_VECTORS,     T, Custom);
     98     setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom);
     99     setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom);
    100     setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom);
    101     setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
    102     setOperationAction(ISD::ANY_EXTEND,         T, Custom);
    103     setOperationAction(ISD::SIGN_EXTEND,        T, Custom);
    104     setOperationAction(ISD::ZERO_EXTEND,        T, Custom);
    105     if (T != ByteV) {
    106       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
    107       // HVX only has shifts of words and halfwords.
    108       setOperationAction(ISD::SRA,                     T, Custom);
    109       setOperationAction(ISD::SHL,                     T, Custom);
    110       setOperationAction(ISD::SRL,                     T, Custom);
    111 
    112       // Promote all shuffles to operate on vectors of bytes.
    113       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
    114     }
    115 
    116     setCondCodeAction(ISD::SETNE,  T, Expand);
    117     setCondCodeAction(ISD::SETLE,  T, Expand);
    118     setCondCodeAction(ISD::SETGE,  T, Expand);
    119     setCondCodeAction(ISD::SETLT,  T, Expand);
    120     setCondCodeAction(ISD::SETULE, T, Expand);
    121     setCondCodeAction(ISD::SETUGE, T, Expand);
    122     setCondCodeAction(ISD::SETULT, T, Expand);
    123   }
    124 
    125   for (MVT T : LegalW) {
    126     // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
    127     // independent) handling of it would convert it to a load, which is
    128     // not always the optimal choice.
    129     setOperationAction(ISD::BUILD_VECTOR,   T, Custom);
    130     // Make concat-vectors custom to handle concats of more than 2 vectors.
    131     setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
    132 
    133     // Custom-lower these operations for pairs. Expand them into a concat
    134     // of the corresponding operations on individual vectors.
    135     setOperationAction(ISD::ANY_EXTEND,               T, Custom);
    136     setOperationAction(ISD::SIGN_EXTEND,              T, Custom);
    137     setOperationAction(ISD::ZERO_EXTEND,              T, Custom);
    138     setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom);
    139     setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom);
    140     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
    141     setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
    142 
    143     setOperationAction(ISD::LOAD,     T, Custom);
    144     setOperationAction(ISD::STORE,    T, Custom);
    145     setOperationAction(ISD::CTLZ,     T, Custom);
    146     setOperationAction(ISD::CTTZ,     T, Custom);
    147     setOperationAction(ISD::CTPOP,    T, Custom);
    148 
    149     setOperationAction(ISD::ADD,      T, Legal);
    150     setOperationAction(ISD::SUB,      T, Legal);
    151     setOperationAction(ISD::MUL,      T, Custom);
    152     setOperationAction(ISD::MULHS,    T, Custom);
    153     setOperationAction(ISD::MULHU,    T, Custom);
    154     setOperationAction(ISD::AND,      T, Custom);
    155     setOperationAction(ISD::OR,       T, Custom);
    156     setOperationAction(ISD::XOR,      T, Custom);
    157     setOperationAction(ISD::SETCC,    T, Custom);
    158     setOperationAction(ISD::VSELECT,  T, Custom);
    159     if (T != ByteW) {
    160       setOperationAction(ISD::SRA,      T, Custom);
    161       setOperationAction(ISD::SHL,      T, Custom);
    162       setOperationAction(ISD::SRL,      T, Custom);
    163 
    164       // Promote all shuffles to operate on vectors of bytes.
    165       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
    166     }
    167   }
    168 
    169   // Boolean vectors.
    170 
    171   for (MVT T : LegalW) {
    172     // Boolean types for vector pairs will overlap with the boolean
    173     // types for single vectors, e.g.
    174     //   v64i8  -> v64i1 (single)
    175     //   v64i16 -> v64i1 (pair)
    176     // Set these actions first, and allow the single actions to overwrite
    177     // any duplicates.
    178     MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
    179     setOperationAction(ISD::SETCC,              BoolW, Custom);
    180     setOperationAction(ISD::AND,                BoolW, Custom);
    181     setOperationAction(ISD::OR,                 BoolW, Custom);
    182     setOperationAction(ISD::XOR,                BoolW, Custom);
    183   }
    184 
    185   for (MVT T : LegalV) {
    186     MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
    187     setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom);
    188     setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom);
    189     setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom);
    190     setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom);
    191     setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom);
    192     setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
    193     setOperationAction(ISD::AND,                BoolV, Legal);
    194     setOperationAction(ISD::OR,                 BoolV, Legal);
    195     setOperationAction(ISD::XOR,                BoolV, Legal);
    196   }
    197 }
    198 
    199 SDValue
    200 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
    201                               const SDLoc &dl, SelectionDAG &DAG) const {
    202   SmallVector<SDValue,4> IntOps;
    203   IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
    204   for (const SDValue &Op : Ops)
    205     IntOps.push_back(Op);
    206   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
    207 }
    208 
    209 MVT
    210 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
    211   assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
    212 
    213   MVT ElemTy = Tys.first.getVectorElementType();
    214   return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
    215                                   Tys.second.getVectorNumElements());
    216 }
    217 
    218 HexagonTargetLowering::TypePair
    219 HexagonTargetLowering::typeSplit(MVT VecTy) const {
    220   assert(VecTy.isVector());
    221   unsigned NumElem = VecTy.getVectorNumElements();
    222   assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
    223   MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
    224   return { HalfTy, HalfTy };
    225 }
    226 
    227 MVT
    228 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
    229   MVT ElemTy = VecTy.getVectorElementType();
    230   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
    231   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
    232 }
    233 
    234 MVT
    235 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
    236   MVT ElemTy = VecTy.getVectorElementType();
    237   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
    238   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
    239 }
    240 
    241 SDValue
    242 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
    243                                   SelectionDAG &DAG) const {
    244   if (ty(Vec).getVectorElementType() == ElemTy)
    245     return Vec;
    246   MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
    247   return DAG.getBitcast(CastTy, Vec);
    248 }
    249 
    250 SDValue
    251 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
    252                               SelectionDAG &DAG) const {
    253   return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
    254                      Ops.second, Ops.first);
    255 }
    256 
    257 HexagonTargetLowering::VectorPair
    258 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
    259                                SelectionDAG &DAG) const {
    260   TypePair Tys = typeSplit(ty(Vec));
    261   if (Vec.getOpcode() == HexagonISD::QCAT)
    262     return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
    263   return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
    264 }
    265 
    266 bool
    267 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
    268   return Subtarget.isHVXVectorType(Ty) &&
    269          Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
    270 }
    271 
    272 bool
    273 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
    274   return Subtarget.isHVXVectorType(Ty) &&
    275          Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
    276 }
    277 
    278 SDValue
    279 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
    280                                           SelectionDAG &DAG) const {
    281   if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
    282     ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
    283 
    284   unsigned ElemWidth = ElemTy.getSizeInBits();
    285   if (ElemWidth == 8)
    286     return ElemIdx;
    287 
    288   unsigned L = Log2_32(ElemWidth/8);
    289   const SDLoc &dl(ElemIdx);
    290   return DAG.getNode(ISD::SHL, dl, MVT::i32,
    291                      {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
    292 }
    293 
    294 SDValue
    295 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
    296                                         SelectionDAG &DAG) const {
    297   unsigned ElemWidth = ElemTy.getSizeInBits();
    298   assert(ElemWidth >= 8 && ElemWidth <= 32);
    299   if (ElemWidth == 32)
    300     return Idx;
    301 
    302   if (ty(Idx) != MVT::i32)
    303     Idx = DAG.getBitcast(MVT::i32, Idx);
    304   const SDLoc &dl(Idx);
    305   SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
    306   SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
    307   return SubIdx;
    308 }
    309 
    310 SDValue
    311 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
    312                                       SDValue Op1, ArrayRef<int> Mask,
    313                                       SelectionDAG &DAG) const {
    314   MVT OpTy = ty(Op0);
    315   assert(OpTy == ty(Op1));
    316 
    317   MVT ElemTy = OpTy.getVectorElementType();
    318   if (ElemTy == MVT::i8)
    319     return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
    320   assert(ElemTy.getSizeInBits() >= 8);
    321 
    322   MVT ResTy = tyVector(OpTy, MVT::i8);
    323   unsigned ElemSize = ElemTy.getSizeInBits() / 8;
    324 
    325   SmallVector<int,128> ByteMask;
    326   for (int M : Mask) {
    327     if (M < 0) {
    328       for (unsigned I = 0; I != ElemSize; ++I)
    329         ByteMask.push_back(-1);
    330     } else {
    331       int NewM = M*ElemSize;
    332       for (unsigned I = 0; I != ElemSize; ++I)
    333         ByteMask.push_back(NewM+I);
    334     }
    335   }
    336   assert(ResTy.getVectorNumElements() == ByteMask.size());
    337   return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
    338                               opCastElem(Op1, MVT::i8, DAG), ByteMask);
    339 }
    340 
    341 SDValue
    342 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
    343                                          const SDLoc &dl, MVT VecTy,
    344                                          SelectionDAG &DAG) const {
    345   unsigned VecLen = Values.size();
    346   MachineFunction &MF = DAG.getMachineFunction();
    347   MVT ElemTy = VecTy.getVectorElementType();
    348   unsigned ElemWidth = ElemTy.getSizeInBits();
    349   unsigned HwLen = Subtarget.getVectorLength();
    350 
    351   unsigned ElemSize = ElemWidth / 8;
    352   assert(ElemSize*VecLen == HwLen);
    353   SmallVector<SDValue,32> Words;
    354 
    355   if (VecTy.getVectorElementType() != MVT::i32) {
    356     assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
    357     unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
    358     MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
    359     for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
    360       SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
    361       Words.push_back(DAG.getBitcast(MVT::i32, W));
    362     }
    363   } else {
    364     Words.assign(Values.begin(), Values.end());
    365   }
    366 
    367   unsigned NumWords = Words.size();
    368   bool IsSplat = true, IsUndef = true;
    369   SDValue SplatV;
    370   for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
    371     if (isUndef(Words[i]))
    372       continue;
    373     IsUndef = false;
    374     if (!SplatV.getNode())
    375       SplatV = Words[i];
    376     else if (SplatV != Words[i])
    377       IsSplat = false;
    378   }
    379   if (IsUndef)
    380     return DAG.getUNDEF(VecTy);
    381   if (IsSplat) {
    382     assert(SplatV.getNode());
    383     auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
    384     if (IdxN && IdxN->isNullValue())
    385       return getZero(dl, VecTy, DAG);
    386     return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV);
    387   }
    388 
    389   // Delay recognizing constant vectors until here, so that we can generate
    390   // a vsplat.
    391   SmallVector<ConstantInt*, 128> Consts(VecLen);
    392   bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
    393   if (AllConst) {
    394     ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
    395                             (Constant**)Consts.end());
    396     Constant *CV = ConstantVector::get(Tmp);
    397     unsigned Align = HwLen;
    398     SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
    399     return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
    400                        MachinePointerInfo::getConstantPool(MF), Align);
    401   }
    402 
    403   // Construct two halves in parallel, then or them together.
    404   assert(4*Words.size() == Subtarget.getVectorLength());
    405   SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
    406   SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
    407   SDValue S = DAG.getConstant(4, dl, MVT::i32);
    408   for (unsigned i = 0; i != NumWords/2; ++i) {
    409     SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
    410                             {HalfV0, Words[i]});
    411     SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
    412                             {HalfV1, Words[i+NumWords/2]});
    413     HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
    414     HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
    415   }
    416 
    417   HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
    418                        {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
    419   SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
    420   return DstV;
    421 }
    422 
    423 SDValue
    424 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
    425       unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
    426   MVT PredTy = ty(PredV);
    427   unsigned HwLen = Subtarget.getVectorLength();
    428   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
    429 
    430   if (Subtarget.isHVXVectorType(PredTy, true)) {
    431     // Move the vector predicate SubV to a vector register, and scale it
    432     // down to match the representation (bytes per type element) that VecV
    433     // uses. The scaling down will pick every 2nd or 4th (every Scale-th
    434     // in general) element and put them at the front of the resulting
    435     // vector. This subvector will then be inserted into the Q2V of VecV.
    436     // To avoid having an operation that generates an illegal type (short
    437     // vector), generate a full size vector.
    438     //
    439     SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
    440     SmallVector<int,128> Mask(HwLen);
    441     // Scale = BitBytes(PredV) / Given BitBytes.
    442     unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
    443     unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
    444 
    445     for (unsigned i = 0; i != HwLen; ++i) {
    446       unsigned Num = i % Scale;
    447       unsigned Off = i / Scale;
    448       Mask[BlockLen*Num + Off] = i;
    449     }
    450     SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
    451     if (!ZeroFill)
    452       return S;
    453     // Fill the bytes beyond BlockLen with 0s.
    454     MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
    455     SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
    456                          {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
    457     SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
    458     return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
    459   }
    460 
    461   // Make sure that this is a valid scalar predicate.
    462   assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
    463 
    464   unsigned Bytes = 8 / PredTy.getVectorNumElements();
    465   SmallVector<SDValue,4> Words[2];
    466   unsigned IdxW = 0;
    467 
    468   auto Lo32 = [&DAG, &dl] (SDValue P) {
    469     return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
    470   };
    471   auto Hi32 = [&DAG, &dl] (SDValue P) {
    472     return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
    473   };
    474 
    475   SDValue W0 = isUndef(PredV)
    476                   ? DAG.getUNDEF(MVT::i64)
    477                   : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
    478   Words[IdxW].push_back(Hi32(W0));
    479   Words[IdxW].push_back(Lo32(W0));
    480 
    481   while (Bytes < BitBytes) {
    482     IdxW ^= 1;
    483     Words[IdxW].clear();
    484 
    485     if (Bytes < 4) {
    486       for (const SDValue &W : Words[IdxW ^ 1]) {
    487         SDValue T = expandPredicate(W, dl, DAG);
    488         Words[IdxW].push_back(Hi32(T));
    489         Words[IdxW].push_back(Lo32(T));
    490       }
    491     } else {
    492       for (const SDValue &W : Words[IdxW ^ 1]) {
    493         Words[IdxW].push_back(W);
    494         Words[IdxW].push_back(W);
    495       }
    496     }
    497     Bytes *= 2;
    498   }
    499 
    500   assert(Bytes == BitBytes);
    501 
    502   SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
    503   SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
    504   for (const SDValue &W : Words[IdxW]) {
    505     Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
    506     Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
    507   }
    508 
    509   return Vec;
    510 }
    511 
    512 SDValue
    513 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
    514                                           const SDLoc &dl, MVT VecTy,
    515                                           SelectionDAG &DAG) const {
    516   // Construct a vector V of bytes, such that a comparison V >u 0 would
    517   // produce the required vector predicate.
    518   unsigned VecLen = Values.size();
    519   unsigned HwLen = Subtarget.getVectorLength();
    520   assert(VecLen <= HwLen || VecLen == 8*HwLen);
    521   SmallVector<SDValue,128> Bytes;
    522   bool AllT = true, AllF = true;
    523 
    524   auto IsTrue = [] (SDValue V) {
    525     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
    526       return !N->isNullValue();
    527     return false;
    528   };
    529   auto IsFalse = [] (SDValue V) {
    530     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
    531       return N->isNullValue();
    532     return false;
    533   };
    534 
    535   if (VecLen <= HwLen) {
    536     // In the hardware, each bit of a vector predicate corresponds to a byte
    537     // of a vector register. Calculate how many bytes does a bit of VecTy
    538     // correspond to.
    539     assert(HwLen % VecLen == 0);
    540     unsigned BitBytes = HwLen / VecLen;
    541     for (SDValue V : Values) {
    542       AllT &= IsTrue(V);
    543       AllF &= IsFalse(V);
    544 
    545       SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
    546                                  : DAG.getUNDEF(MVT::i8);
    547       for (unsigned B = 0; B != BitBytes; ++B)
    548         Bytes.push_back(Ext);
    549     }
    550   } else {
    551     // There are as many i1 values, as there are bits in a vector register.
    552     // Divide the values into groups of 8 and check that each group consists
    553     // of the same value (ignoring undefs).
    554     for (unsigned I = 0; I != VecLen; I += 8) {
    555       unsigned B = 0;
    556       // Find the first non-undef value in this group.
    557       for (; B != 8; ++B) {
    558         if (!Values[I+B].isUndef())
    559           break;
    560       }
    561       SDValue F = Values[I+B];
    562       AllT &= IsTrue(F);
    563       AllF &= IsFalse(F);
    564 
    565       SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
    566                             : DAG.getUNDEF(MVT::i8);
    567       Bytes.push_back(Ext);
    568       // Verify that the rest of values in the group are the same as the
    569       // first.
    570       for (; B != 8; ++B)
    571         assert(Values[I+B].isUndef() || Values[I+B] == F);
    572     }
    573   }
    574 
    575   if (AllT)
    576     return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
    577   if (AllF)
    578     return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
    579 
    580   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
    581   SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
    582   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
    583 }
    584 
    585 SDValue
    586 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
    587       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
    588   MVT ElemTy = ty(VecV).getVectorElementType();
    589 
    590   unsigned ElemWidth = ElemTy.getSizeInBits();
    591   assert(ElemWidth >= 8 && ElemWidth <= 32);
    592   (void)ElemWidth;
    593 
    594   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
    595   SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
    596                                {VecV, ByteIdx});
    597   if (ElemTy == MVT::i32)
    598     return ExWord;
    599 
    600   // Have an extracted word, need to extract the smaller element out of it.
    601   // 1. Extract the bits of (the original) IdxV that correspond to the index
    602   //    of the desired element in the 32-bit word.
    603   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
    604   // 2. Extract the element from the word.
    605   SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
    606   return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
    607 }
    608 
    609 SDValue
    610 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
    611       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
    612   // Implement other return types if necessary.
    613   assert(ResTy == MVT::i1);
    614 
    615   unsigned HwLen = Subtarget.getVectorLength();
    616   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
    617   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
    618 
    619   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
    620   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
    621   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
    622 
    623   SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
    624   SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
    625   return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
    626 }
    627 
    628 SDValue
    629 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
    630       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
    631   MVT ElemTy = ty(VecV).getVectorElementType();
    632 
    633   unsigned ElemWidth = ElemTy.getSizeInBits();
    634   assert(ElemWidth >= 8 && ElemWidth <= 32);
    635   (void)ElemWidth;
    636 
    637   auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
    638                                      SDValue ByteIdxV) {
    639     MVT VecTy = ty(VecV);
    640     unsigned HwLen = Subtarget.getVectorLength();
    641     SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
    642                                 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
    643     SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
    644     SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
    645     SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
    646                                {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
    647     SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
    648     return TorV;
    649   };
    650 
    651   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
    652   if (ElemTy == MVT::i32)
    653     return InsertWord(VecV, ValV, ByteIdx);
    654 
    655   // If this is not inserting a 32-bit word, convert it into such a thing.
    656   // 1. Extract the existing word from the target vector.
    657   SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
    658                                 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
    659   SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
    660                                      dl, MVT::i32, DAG);
    661 
    662   // 2. Treating the extracted word as a 32-bit vector, insert the given
    663   //    value into it.
    664   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
    665   MVT SubVecTy = tyVector(ty(Ext), ElemTy);
    666   SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
    667                              ValV, SubIdx, dl, ElemTy, DAG);
    668 
    669   // 3. Insert the 32-bit word back into the original vector.
    670   return InsertWord(VecV, Ins, ByteIdx);
    671 }
    672 
    673 SDValue
    674 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
    675       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
    676   unsigned HwLen = Subtarget.getVectorLength();
    677   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
    678   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
    679 
    680   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
    681   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
    682   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
    683   ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
    684 
    685   SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
    686   return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
    687 }
    688 
    689 SDValue
    690 HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
    691       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
    692   MVT VecTy = ty(VecV);
    693   unsigned HwLen = Subtarget.getVectorLength();
    694   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
    695   MVT ElemTy = VecTy.getVectorElementType();
    696   unsigned ElemWidth = ElemTy.getSizeInBits();
    697 
    698   // If the source vector is a vector pair, get the single vector containing
    699   // the subvector of interest. The subvector will never overlap two single
    700   // vectors.
    701   if (isHvxPairTy(VecTy)) {
    702     unsigned SubIdx;
    703     if (Idx * ElemWidth >= 8*HwLen) {
    704       SubIdx = Hexagon::vsub_hi;
    705       Idx -= VecTy.getVectorNumElements() / 2;
    706     } else {
    707       SubIdx = Hexagon::vsub_lo;
    708     }
    709     VecTy = typeSplit(VecTy).first;
    710     VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
    711     if (VecTy == ResTy)
    712       return VecV;
    713   }
    714 
    715   // The only meaningful subvectors of a single HVX vector are those that
    716   // fit in a scalar register.
    717   assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
    718 
    719   MVT WordTy = tyVector(VecTy, MVT::i32);
    720   SDValue WordVec = DAG.getBitcast(WordTy, VecV);
    721   unsigned WordIdx = (Idx*ElemWidth) / 32;
    722 
    723   SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
    724   SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
    725   if (ResTy.getSizeInBits() == 32)
    726     return DAG.getBitcast(ResTy, W0);
    727 
    728   SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
    729   SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
    730   SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
    731   return DAG.getBitcast(ResTy, WW);
    732 }
    733 
    734 SDValue
    735 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
    736       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
    737   MVT VecTy = ty(VecV);
    738   unsigned HwLen = Subtarget.getVectorLength();
    739   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
    740   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
    741   // IdxV is required to be a constant.
    742   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
    743 
    744   unsigned ResLen = ResTy.getVectorNumElements();
    745   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
    746   unsigned Offset = Idx * BitBytes;
    747   SDValue Undef = DAG.getUNDEF(ByteTy);
    748   SmallVector<int,128> Mask;
    749 
    750   if (Subtarget.isHVXVectorType(ResTy, true)) {
    751     // Converting between two vector predicates. Since the result is shorter
    752     // than the source, it will correspond to a vector predicate with the
    753     // relevant bits replicated. The replication count is the ratio of the
    754     // source and target vector lengths.
    755     unsigned Rep = VecTy.getVectorNumElements() / ResLen;
    756     assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
    757     for (unsigned i = 0; i != HwLen/Rep; ++i) {
    758       for (unsigned j = 0; j != Rep; ++j)
    759         Mask.push_back(i + Offset);
    760     }
    761     SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
    762     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
    763   }
    764 
    765   // Converting between a vector predicate and a scalar predicate. In the
    766   // vector predicate, a group of BitBytes bits will correspond to a single
    767   // i1 element of the source vector type. Those bits will all have the same
    768   // value. The same will be true for ByteVec, where each byte corresponds
    769   // to a bit in the vector predicate.
    770   // The algorithm is to traverse the ByteVec, going over the i1 values from
    771   // the source vector, and generate the corresponding representation in an
    772   // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
    773   // elements so that the interesting 8 bytes will be in the low end of the
    774   // vector.
    775   unsigned Rep = 8 / ResLen;
    776   // Make sure the output fill the entire vector register, so repeat the
    777   // 8-byte groups as many times as necessary.
    778   for (unsigned r = 0; r != HwLen/ResLen; ++r) {
    779     // This will generate the indexes of the 8 interesting bytes.
    780     for (unsigned i = 0; i != ResLen; ++i) {
    781       for (unsigned j = 0; j != Rep; ++j)
    782         Mask.push_back(Offset + i*BitBytes);
    783     }
    784   }
    785 
    786   SDValue Zero = getZero(dl, MVT::i32, DAG);
    787   SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
    788   // Combine the two low words from ShuffV into a v8i8, and byte-compare
    789   // them against 0.
    790   SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
    791   SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
    792                            {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
    793   SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
    794   return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
    795                   {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
    796 }
    797 
    798 SDValue
    799 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
    800       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
    801   MVT VecTy = ty(VecV);
    802   MVT SubTy = ty(SubV);
    803   unsigned HwLen = Subtarget.getVectorLength();
    804   MVT ElemTy = VecTy.getVectorElementType();
    805   unsigned ElemWidth = ElemTy.getSizeInBits();
    806 
    807   bool IsPair = isHvxPairTy(VecTy);
    808   MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
    809   // The two single vectors that VecV consists of, if it's a pair.
    810   SDValue V0, V1;
    811   SDValue SingleV = VecV;
    812   SDValue PickHi;
    813 
    814   if (IsPair) {
    815     V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
    816     V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
    817 
    818     SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
    819                                     dl, MVT::i32);
    820     PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
    821     if (isHvxSingleTy(SubTy)) {
    822       if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
    823         unsigned Idx = CN->getZExtValue();
    824         assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
    825         unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
    826         return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
    827       }
    828       // If IdxV is not a constant, generate the two variants: with the
    829       // SubV as the high and as the low subregister, and select the right
    830       // pair based on the IdxV.
    831       SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
    832       SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
    833       return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
    834     }
    835     // The subvector being inserted must be entirely contained in one of
    836     // the vectors V0 or V1. Set SingleV to the correct one, and update
    837     // IdxV to be the index relative to the beginning of that vector.
    838     SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
    839     IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
    840     SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
    841   }
    842 
    843   // The only meaningful subvectors of a single HVX vector are those that
    844   // fit in a scalar register.
    845   assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
    846   // Convert IdxV to be index in bytes.
    847   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
    848   if (!IdxN || !IdxN->isNullValue()) {
    849     IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
    850                        DAG.getConstant(ElemWidth/8, dl, MVT::i32));
    851     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
    852   }
    853   // When inserting a single word, the rotation back to the original position
    854   // would be by HwLen-Idx, but if two words are inserted, it will need to be
    855   // by (HwLen-4)-Idx.
    856   unsigned RolBase = HwLen;
    857   if (VecTy.getSizeInBits() == 32) {
    858     SDValue V = DAG.getBitcast(MVT::i32, SubV);
    859     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
    860   } else {
    861     SDValue V = DAG.getBitcast(MVT::i64, SubV);
    862     SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
    863     SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
    864     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
    865     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
    866                           DAG.getConstant(4, dl, MVT::i32));
    867     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
    868     RolBase = HwLen-4;
    869   }
    870   // If the vector wasn't ror'ed, don't ror it back.
    871   if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
    872     SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
    873                                DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
    874     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
    875   }
    876 
    877   if (IsPair) {
    878     SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
    879     SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
    880     return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
    881   }
    882   return SingleV;
    883 }
    884 
    885 SDValue
    886 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
    887       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
    888   MVT VecTy = ty(VecV);
    889   MVT SubTy = ty(SubV);
    890   assert(Subtarget.isHVXVectorType(VecTy, true));
    891   // VecV is an HVX vector predicate. SubV may be either an HVX vector
    892   // predicate as well, or it can be a scalar predicate.
    893 
    894   unsigned VecLen = VecTy.getVectorNumElements();
    895   unsigned HwLen = Subtarget.getVectorLength();
    896   assert(HwLen % VecLen == 0 && "Unexpected vector type");
    897 
    898   unsigned Scale = VecLen / SubTy.getVectorNumElements();
    899   unsigned BitBytes = HwLen / VecLen;
    900   unsigned BlockLen = HwLen / Scale;
    901 
    902   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
    903   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
    904   SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
    905   SDValue ByteIdx;
    906 
    907   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
    908   if (!IdxN || !IdxN->isNullValue()) {
    909     ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
    910                           DAG.getConstant(BitBytes, dl, MVT::i32));
    911     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
    912   }
    913 
    914   // ByteVec is the target vector VecV rotated in such a way that the
    915   // subvector should be inserted at index 0. Generate a predicate mask
    916   // and use vmux to do the insertion.
    917   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
    918   SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
    919                        {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
    920   ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
    921   // Rotate ByteVec back, and convert to a vector predicate.
    922   if (!IdxN || !IdxN->isNullValue()) {
    923     SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
    924     SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
    925     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
    926   }
    927   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
    928 }
    929 
    930 SDValue
    931 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
    932       MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
    933   // Sign- and any-extending of a vector predicate to a vector register is
    934   // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
    935   // a vector of 1s (where the 1s are of type matching the vector type).
    936   assert(Subtarget.isHVXVectorType(ResTy));
    937   if (!ZeroExt)
    938     return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
    939 
    940   assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
    941   SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
    942                              DAG.getConstant(1, dl, MVT::i32));
    943   SDValue False = getZero(dl, ResTy, DAG);
    944   return DAG.getSelect(dl, ResTy, VecV, True, False);
    945 }
    946 
    947 SDValue
    948 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
    949       const {
    950   const SDLoc &dl(Op);
    951   MVT VecTy = ty(Op);
    952 
    953   unsigned Size = Op.getNumOperands();
    954   SmallVector<SDValue,128> Ops;
    955   for (unsigned i = 0; i != Size; ++i)
    956     Ops.push_back(Op.getOperand(i));
    957 
    958   if (VecTy.getVectorElementType() == MVT::i1)
    959     return buildHvxVectorPred(Ops, dl, VecTy, DAG);
    960 
    961   if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
    962     ArrayRef<SDValue> A(Ops);
    963     MVT SingleTy = typeSplit(VecTy).first;
    964     SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
    965     SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
    966     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
    967   }
    968 
    969   return buildHvxVectorReg(Ops, dl, VecTy, DAG);
    970 }
    971 
    972 SDValue
    973 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
    974       const {
    975   // Vector concatenation of two integer (non-bool) vectors does not need
    976   // special lowering. Custom-lower concats of bool vectors and expand
    977   // concats of more than 2 vectors.
    978   MVT VecTy = ty(Op);
    979   const SDLoc &dl(Op);
    980   unsigned NumOp = Op.getNumOperands();
    981   if (VecTy.getVectorElementType() != MVT::i1) {
    982     if (NumOp == 2)
    983       return Op;
    984     // Expand the other cases into a build-vector.
    985     SmallVector<SDValue,8> Elems;
    986     for (SDValue V : Op.getNode()->ops())
    987       DAG.ExtractVectorElements(V, Elems);
    988     // A vector of i16 will be broken up into a build_vector of i16's.
    989     // This is a problem, since at the time of operation legalization,
    990     // all operations are expected to be type-legalized, and i16 is not
    991     // a legal type. If any of the extracted elements is not of a valid
    992     // type, sign-extend it to a valid one.
    993     for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
    994       SDValue V = Elems[i];
    995       MVT Ty = ty(V);
    996       if (!isTypeLegal(Ty)) {
    997         EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
    998         if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
    999           Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
   1000                                  DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
   1001                                              V.getOperand(0), V.getOperand(1)),
   1002                                  DAG.getValueType(Ty));
   1003           continue;
   1004         }
   1005         // A few less complicated cases.
   1006         if (V.getOpcode() == ISD::Constant)
   1007           Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
   1008         else if (V.isUndef())
   1009           Elems[i] = DAG.getUNDEF(NTy);
   1010         else
   1011           llvm_unreachable("Unexpected vector element");
   1012       }
   1013     }
   1014     return DAG.getBuildVector(VecTy, dl, Elems);
   1015   }
   1016 
   1017   assert(VecTy.getVectorElementType() == MVT::i1);
   1018   unsigned HwLen = Subtarget.getVectorLength();
   1019   assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
   1020 
   1021   SDValue Op0 = Op.getOperand(0);
   1022 
   1023   // If the operands are HVX types (i.e. not scalar predicates), then
   1024   // defer the concatenation, and create QCAT instead.
   1025   if (Subtarget.isHVXVectorType(ty(Op0), true)) {
   1026     if (NumOp == 2)
   1027       return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
   1028 
   1029     ArrayRef<SDUse> U(Op.getNode()->ops());
   1030     SmallVector<SDValue,4> SV(U.begin(), U.end());
   1031     ArrayRef<SDValue> Ops(SV);
   1032 
   1033     MVT HalfTy = typeSplit(VecTy).first;
   1034     SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
   1035                              Ops.take_front(NumOp/2));
   1036     SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
   1037                              Ops.take_back(NumOp/2));
   1038     return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
   1039   }
   1040 
   1041   // Count how many bytes (in a vector register) each bit in VecTy
   1042   // corresponds to.
   1043   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
   1044 
   1045   SmallVector<SDValue,8> Prefixes;
   1046   for (SDValue V : Op.getNode()->op_values()) {
   1047     SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
   1048     Prefixes.push_back(P);
   1049   }
   1050 
   1051   unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
   1052   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
   1053   SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
   1054   SDValue Res = getZero(dl, ByteTy, DAG);
   1055   for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
   1056     Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
   1057     Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
   1058   }
   1059   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
   1060 }
   1061 
   1062 SDValue
   1063 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
   1064       const {
   1065   // Change the type of the extracted element to i32.
   1066   SDValue VecV = Op.getOperand(0);
   1067   MVT ElemTy = ty(VecV).getVectorElementType();
   1068   const SDLoc &dl(Op);
   1069   SDValue IdxV = Op.getOperand(1);
   1070   if (ElemTy == MVT::i1)
   1071     return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
   1072 
   1073   return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
   1074 }
   1075 
   1076 SDValue
   1077 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
   1078       const {
   1079   const SDLoc &dl(Op);
   1080   SDValue VecV = Op.getOperand(0);
   1081   SDValue ValV = Op.getOperand(1);
   1082   SDValue IdxV = Op.getOperand(2);
   1083   MVT ElemTy = ty(VecV).getVectorElementType();
   1084   if (ElemTy == MVT::i1)
   1085     return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
   1086 
   1087   return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
   1088 }
   1089 
   1090 SDValue
   1091 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
   1092       const {
   1093   SDValue SrcV = Op.getOperand(0);
   1094   MVT SrcTy = ty(SrcV);
   1095   MVT DstTy = ty(Op);
   1096   SDValue IdxV = Op.getOperand(1);
   1097   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
   1098   assert(Idx % DstTy.getVectorNumElements() == 0);
   1099   (void)Idx;
   1100   const SDLoc &dl(Op);
   1101 
   1102   MVT ElemTy = SrcTy.getVectorElementType();
   1103   if (ElemTy == MVT::i1)
   1104     return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
   1105 
   1106   return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
   1107 }
   1108 
   1109 SDValue
   1110 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
   1111       const {
   1112   // Idx does not need to be a constant.
   1113   SDValue VecV = Op.getOperand(0);
   1114   SDValue ValV = Op.getOperand(1);
   1115   SDValue IdxV = Op.getOperand(2);
   1116 
   1117   const SDLoc &dl(Op);
   1118   MVT VecTy = ty(VecV);
   1119   MVT ElemTy = VecTy.getVectorElementType();
   1120   if (ElemTy == MVT::i1)
   1121     return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
   1122 
   1123   return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
   1124 }
   1125 
   1126 SDValue
   1127 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
   1128   // Lower any-extends of boolean vectors to sign-extends, since they
   1129   // translate directly to Q2V. Zero-extending could also be done equally
   1130   // fast, but Q2V is used/recognized in more places.
   1131   // For all other vectors, use zero-extend.
   1132   MVT ResTy = ty(Op);
   1133   SDValue InpV = Op.getOperand(0);
   1134   MVT ElemTy = ty(InpV).getVectorElementType();
   1135   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
   1136     return LowerHvxSignExt(Op, DAG);
   1137   return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
   1138 }
   1139 
   1140 SDValue
   1141 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
   1142   MVT ResTy = ty(Op);
   1143   SDValue InpV = Op.getOperand(0);
   1144   MVT ElemTy = ty(InpV).getVectorElementType();
   1145   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
   1146     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
   1147   return Op;
   1148 }
   1149 
   1150 SDValue
   1151 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
   1152   MVT ResTy = ty(Op);
   1153   SDValue InpV = Op.getOperand(0);
   1154   MVT ElemTy = ty(InpV).getVectorElementType();
   1155   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
   1156     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
   1157   return Op;
   1158 }
   1159 
   1160 SDValue
   1161 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
   1162   // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
   1163   // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
   1164   const SDLoc &dl(Op);
   1165   MVT ResTy = ty(Op);
   1166   SDValue InpV = Op.getOperand(0);
   1167   assert(ResTy == ty(InpV));
   1168 
   1169   // Calculate the vectors of 1 and bitwidth(x).
   1170   MVT ElemTy = ty(InpV).getVectorElementType();
   1171   unsigned ElemWidth = ElemTy.getSizeInBits();
   1172   // Using uint64_t because a shift by 32 can happen.
   1173   uint64_t Splat1 = 0, SplatW = 0;
   1174   assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32);
   1175   for (unsigned i = 0; i != 32/ElemWidth; ++i) {
   1176     Splat1 = (Splat1 << ElemWidth) | 1;
   1177     SplatW = (SplatW << ElemWidth) | ElemWidth;
   1178   }
   1179   SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
   1180                              DAG.getConstant(uint32_t(Splat1), dl, MVT::i32));
   1181   SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
   1182                              DAG.getConstant(uint32_t(SplatW), dl, MVT::i32));
   1183   SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
   1184                               DAG.getConstant(-1, dl, MVT::i32));
   1185   // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
   1186   // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
   1187   // it separately in custom combine or selection).
   1188   SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
   1189                           {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
   1190                            DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
   1191   return DAG.getNode(ISD::SUB, dl, ResTy,
   1192                      {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
   1193 }
   1194 
   1195 SDValue
   1196 HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
   1197   MVT ResTy = ty(Op);
   1198   assert(ResTy.isVector() && isHvxSingleTy(ResTy));
   1199   const SDLoc &dl(Op);
   1200   SmallVector<int,256> ShuffMask;
   1201 
   1202   MVT ElemTy = ResTy.getVectorElementType();
   1203   unsigned VecLen = ResTy.getVectorNumElements();
   1204   SDValue Vs = Op.getOperand(0);
   1205   SDValue Vt = Op.getOperand(1);
   1206 
   1207   switch (ElemTy.SimpleTy) {
   1208     case MVT::i8: {
   1209       // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
   1210       // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
   1211       // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
   1212       MVT ExtTy = typeExtElem(ResTy, 2);
   1213       unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
   1214                                           : Hexagon::V6_vmpyhv;
   1215       SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
   1216 
   1217       // Discard high halves of the resulting values, collect the low halves.
   1218       for (unsigned I = 0; I < VecLen; I += 2) {
   1219         ShuffMask.push_back(I);         // Pick even element.
   1220         ShuffMask.push_back(I+VecLen);  // Pick odd element.
   1221       }
   1222       VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
   1223       SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
   1224       return DAG.getBitcast(ResTy, BS);
   1225     }
   1226     case MVT::i16:
   1227       // For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
   1228       // (There is also V6_vmpyhv, which behaves in an analogous way to
   1229       // V6_vmpybv.)
   1230       return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
   1231     case MVT::i32: {
   1232       // Use the following sequence for signed word multiply:
   1233       // T0 = V6_vmpyiowh Vs, Vt
   1234       // T1 = V6_vaslw T0, 16
   1235       // T2 = V6_vmpyiewuh_acc T1, Vs, Vt
   1236       SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
   1237       SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
   1238       SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
   1239       SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
   1240                             {T1, Vs, Vt}, DAG);
   1241       return T2;
   1242     }
   1243     default:
   1244       break;
   1245   }
   1246   return SDValue();
   1247 }
   1248 
   1249 SDValue
   1250 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
   1251   MVT ResTy = ty(Op);
   1252   assert(ResTy.isVector());
   1253   const SDLoc &dl(Op);
   1254   SmallVector<int,256> ShuffMask;
   1255 
   1256   MVT ElemTy = ResTy.getVectorElementType();
   1257   unsigned VecLen = ResTy.getVectorNumElements();
   1258   SDValue Vs = Op.getOperand(0);
   1259   SDValue Vt = Op.getOperand(1);
   1260   bool IsSigned = Op.getOpcode() == ISD::MULHS;
   1261 
   1262   if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
   1263     // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
   1264     // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
   1265     // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
   1266     // For i16, use V6_vmpyhv, which behaves in an analogous way to
   1267     // V6_vmpybv: results Lo and Hi are products of even/odd elements
   1268     // respectively.
   1269     MVT ExtTy = typeExtElem(ResTy, 2);
   1270     unsigned MpyOpc = ElemTy == MVT::i8
   1271         ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
   1272         : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
   1273     SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
   1274 
   1275     // Discard low halves of the resulting values, collect the high halves.
   1276     for (unsigned I = 0; I < VecLen; I += 2) {
   1277       ShuffMask.push_back(I+1);         // Pick even element.
   1278       ShuffMask.push_back(I+VecLen+1);  // Pick odd element.
   1279     }
   1280     VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
   1281     SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
   1282     return DAG.getBitcast(ResTy, BS);
   1283   }
   1284 
   1285   assert(ElemTy == MVT::i32);
   1286   SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
   1287 
   1288   if (IsSigned) {
   1289     // mulhs(Vs,Vt) =
   1290     //   = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
   1291     //   = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
   1292     //      + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
   1293     //   = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
   1294     //      + Lo(Vs) *us Vt] >> 32
   1295     // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
   1296     // anything, so it cannot produce any carry over to higher bits),
   1297     // so everything in [] can be shifted by 16 without loss of precision.
   1298     //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
   1299     //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
   1300     // Denote Hi(Vs) = Vs':
   1301     //   = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
   1302     //   = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
   1303     SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
   1304     // Get Vs':
   1305     SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
   1306     SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
   1307                           {T0, S0, Vt}, DAG);
   1308     // Shift by 16:
   1309     SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
   1310     // Get Vs'*Hi(Vt):
   1311     SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
   1312     // Add:
   1313     SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
   1314     return T3;
   1315   }
   1316 
   1317   // Unsigned mulhw. (Would expansion using signed mulhw be better?)
   1318 
   1319   auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
   1320     return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
   1321   };
   1322   auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
   1323     return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
   1324   };
   1325 
   1326   MVT PairTy = typeJoin({ResTy, ResTy});
   1327   SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
   1328                        {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
   1329   // Multiply-unsigned halfwords:
   1330   //   LoVec = Vs.uh[2i] * Vt.uh[2i],
   1331   //   HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
   1332   SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
   1333   // The low halves in the LoVec of the pair can be discarded. They are
   1334   // not added to anything (in the full-precision product), so they cannot
   1335   // produce a carry into the higher bits.
   1336   SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
   1337   // Swap low and high halves in Vt, and do the halfword multiplication
   1338   // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
   1339   SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
   1340   SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
   1341   // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
   1342   // These products are words, but cannot be added directly because the
   1343   // sums could overflow. Add these products, by halfwords, where each sum
   1344   // of a pair of halfwords gives a word.
   1345   SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
   1346                         {LoVec(T2), HiVec(T2)}, DAG);
   1347   // Add the high halfwords from the products of the low halfwords.
   1348   SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
   1349   SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
   1350   SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
   1351   SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
   1352   return T7;
   1353 }
   1354 
   1355 SDValue
   1356 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
   1357   // Sign- and zero-extends are legal.
   1358   assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
   1359   return DAG.getZeroExtendVectorInReg(Op.getOperand(0), SDLoc(Op), ty(Op));
   1360 }
   1361 
   1362 SDValue
   1363 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
   1364   if (SDValue S = getVectorShiftByInt(Op, DAG))
   1365     return S;
   1366   return Op;
   1367 }
   1368 
   1369 SDValue
   1370 HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
   1371   assert(!Op.isMachineOpcode());
   1372   SmallVector<SDValue,2> OpsL, OpsH;
   1373   const SDLoc &dl(Op);
   1374 
   1375   auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
   1376     MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
   1377     SDValue TV = DAG.getValueType(Ty);
   1378     return std::make_pair(TV, TV);
   1379   };
   1380 
   1381   for (SDValue A : Op.getNode()->ops()) {
   1382     VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
   1383                     ? opSplit(A, dl, DAG)
   1384                     : std::make_pair(A, A);
   1385     // Special case for type operand.
   1386     if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
   1387       if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
   1388         P = SplitVTNode(N);
   1389     }
   1390     OpsL.push_back(P.first);
   1391     OpsH.push_back(P.second);
   1392   }
   1393 
   1394   MVT ResTy = ty(Op);
   1395   MVT HalfTy = typeSplit(ResTy).first;
   1396   SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
   1397   SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
   1398   SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
   1399   return S;
   1400 }
   1401 
   1402 SDValue
   1403 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
   1404   LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode());
   1405   assert(BN->isUnindexed());
   1406   MVT MemTy = BN->getMemoryVT().getSimpleVT();
   1407   if (!isHvxPairTy(MemTy))
   1408     return Op;
   1409 
   1410   const SDLoc &dl(Op);
   1411   unsigned HwLen = Subtarget.getVectorLength();
   1412   MVT SingleTy = typeSplit(MemTy).first;
   1413   SDValue Chain = BN->getChain();
   1414   SDValue Base0 = BN->getBasePtr();
   1415   SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl);
   1416 
   1417   MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
   1418   if (MachineMemOperand *MMO = BN->getMemOperand()) {
   1419     MachineFunction &MF = DAG.getMachineFunction();
   1420     MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
   1421     MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
   1422   }
   1423 
   1424   unsigned MemOpc = BN->getOpcode();
   1425   SDValue NewOp;
   1426 
   1427   if (MemOpc == ISD::LOAD) {
   1428     SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
   1429     SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
   1430     NewOp = DAG.getMergeValues(
   1431               { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
   1432                 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1433                             Load0.getValue(1), Load1.getValue(1)) }, dl);
   1434   } else {
   1435     assert(MemOpc == ISD::STORE);
   1436     VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
   1437     SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
   1438     SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
   1439     NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
   1440   }
   1441 
   1442   return NewOp;
   1443 }
   1444 
   1445 SDValue
   1446 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
   1447   unsigned Opc = Op.getOpcode();
   1448   bool IsPairOp = isHvxPairTy(ty(Op)) ||
   1449                   llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
   1450                     return isHvxPairTy(ty(V));
   1451                   });
   1452 
   1453   if (IsPairOp) {
   1454     switch (Opc) {
   1455       default:
   1456         break;
   1457       case ISD::LOAD:
   1458       case ISD::STORE:
   1459         return SplitHvxMemOp(Op, DAG);
   1460       case ISD::CTPOP:
   1461       case ISD::CTLZ:
   1462       case ISD::CTTZ:
   1463       case ISD::MUL:
   1464       case ISD::MULHS:
   1465       case ISD::MULHU:
   1466       case ISD::AND:
   1467       case ISD::OR:
   1468       case ISD::XOR:
   1469       case ISD::SRA:
   1470       case ISD::SHL:
   1471       case ISD::SRL:
   1472       case ISD::SETCC:
   1473       case ISD::VSELECT:
   1474       case ISD::SIGN_EXTEND_INREG:
   1475         return SplitHvxPairOp(Op, DAG);
   1476     }
   1477   }
   1478 
   1479   switch (Opc) {
   1480     default:
   1481       break;
   1482     case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG);
   1483     case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG);
   1484     case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG);
   1485     case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG);
   1486     case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG);
   1487     case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG);
   1488 
   1489     case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG);
   1490     case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG);
   1491     case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG);
   1492     case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG);
   1493     case ISD::SRA:
   1494     case ISD::SHL:
   1495     case ISD::SRL:                     return LowerHvxShift(Op, DAG);
   1496     case ISD::MUL:                     return LowerHvxMul(Op, DAG);
   1497     case ISD::MULHS:
   1498     case ISD::MULHU:                   return LowerHvxMulh(Op, DAG);
   1499     case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
   1500     case ISD::SETCC:
   1501     case ISD::INTRINSIC_VOID:          return Op;
   1502     // Unaligned loads will be handled by the default lowering.
   1503     case ISD::LOAD:                    return SDValue();
   1504   }
   1505 #ifndef NDEBUG
   1506   Op.dumpr(&DAG);
   1507 #endif
   1508   llvm_unreachable("Unhandled HVX operation");
   1509 }
   1510 
   1511 bool
   1512 HexagonTargetLowering::isHvxOperation(SDValue Op) const {
   1513   // If the type of the result, or any operand type are HVX vector types,
   1514   // this is an HVX operation.
   1515   return Subtarget.isHVXVectorType(ty(Op), true) ||
   1516          llvm::any_of(Op.getNode()->ops(),
   1517                       [this] (SDValue V) {
   1518                         return Subtarget.isHVXVectorType(ty(V), true);
   1519                       });
   1520 }
   1521