Home | History | Annotate | Download | only in AMDGPU
      1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file
     11 /// This is the parent TargetLowering class for hardware code gen
     12 /// targets.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
     17 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
     18 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
     19 
     20 #include "AMDGPUISelLowering.h"
     21 #include "AMDGPU.h"
     22 #include "AMDGPUCallLowering.h"
     23 #include "AMDGPUFrameLowering.h"
     24 #include "AMDGPUIntrinsicInfo.h"
     25 #include "AMDGPURegisterInfo.h"
     26 #include "AMDGPUSubtarget.h"
     27 #include "AMDGPUTargetMachine.h"
     28 #include "Utils/AMDGPUBaseInfo.h"
     29 #include "R600MachineFunctionInfo.h"
     30 #include "SIInstrInfo.h"
     31 #include "SIMachineFunctionInfo.h"
     32 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
     33 #include "llvm/CodeGen/Analysis.h"
     34 #include "llvm/CodeGen/CallingConvLower.h"
     35 #include "llvm/CodeGen/MachineFunction.h"
     36 #include "llvm/CodeGen/MachineRegisterInfo.h"
     37 #include "llvm/CodeGen/SelectionDAG.h"
     38 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     39 #include "llvm/IR/DataLayout.h"
     40 #include "llvm/IR/DiagnosticInfo.h"
     41 #include "llvm/Support/KnownBits.h"
     42 using namespace llvm;
     43 
     44 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
     45                            CCValAssign::LocInfo LocInfo,
     46                            ISD::ArgFlagsTy ArgFlags, CCState &State,
     47                            const TargetRegisterClass *RC,
     48                            unsigned NumRegs) {
     49   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
     50   unsigned RegResult = State.AllocateReg(RegList);
     51   if (RegResult == AMDGPU::NoRegister)
     52     return false;
     53 
     54   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
     55   return true;
     56 }
     57 
     58 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
     59                               CCValAssign::LocInfo LocInfo,
     60                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
     61   switch (LocVT.SimpleTy) {
     62   case MVT::i64:
     63   case MVT::f64:
     64   case MVT::v2i32:
     65   case MVT::v2f32:
     66   case MVT::v4i16:
     67   case MVT::v4f16: {
     68     // Up to SGPR0-SGPR39
     69     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
     70                           &AMDGPU::SGPR_64RegClass, 20);
     71   }
     72   default:
     73     return false;
     74   }
     75 }
     76 
     77 // Allocate up to VGPR31.
     78 //
     79 // TODO: Since there are no VGPR alignent requirements would it be better to
     80 // split into individual scalar registers?
     81 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
     82                               CCValAssign::LocInfo LocInfo,
     83                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
     84   switch (LocVT.SimpleTy) {
     85   case MVT::i64:
     86   case MVT::f64:
     87   case MVT::v2i32:
     88   case MVT::v2f32:
     89   case MVT::v4i16:
     90   case MVT::v4f16: {
     91     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
     92                           &AMDGPU::VReg_64RegClass, 31);
     93   }
     94   case MVT::v4i32:
     95   case MVT::v4f32:
     96   case MVT::v2i64:
     97   case MVT::v2f64: {
     98     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
     99                           &AMDGPU::VReg_128RegClass, 29);
    100   }
    101   case MVT::v8i32:
    102   case MVT::v8f32: {
    103     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
    104                           &AMDGPU::VReg_256RegClass, 25);
    105 
    106   }
    107   case MVT::v16i32:
    108   case MVT::v16f32: {
    109     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
    110                           &AMDGPU::VReg_512RegClass, 17);
    111 
    112   }
    113   default:
    114     return false;
    115   }
    116 }
    117 
    118 #include "AMDGPUGenCallingConv.inc"
    119 
    120 // Find a larger type to do a load / store of a vector with.
    121 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
    122   unsigned StoreSize = VT.getStoreSizeInBits();
    123   if (StoreSize <= 32)
    124     return EVT::getIntegerVT(Ctx, StoreSize);
    125 
    126   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
    127   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
    128 }
    129 
    130 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
    131   KnownBits Known;
    132   EVT VT = Op.getValueType();
    133   DAG.computeKnownBits(Op, Known);
    134 
    135   return VT.getSizeInBits() - Known.countMinLeadingZeros();
    136 }
    137 
    138 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
    139   EVT VT = Op.getValueType();
    140 
    141   // In order for this to be a signed 24-bit value, bit 23, must
    142   // be a sign bit.
    143   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
    144 }
    145 
    146 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
    147                                            const AMDGPUSubtarget &STI)
    148     : TargetLowering(TM), Subtarget(&STI) {
    149   AMDGPUASI = AMDGPU::getAMDGPUAS(TM);
    150   // Lower floating point store/load to integer store/load to reduce the number
    151   // of patterns in tablegen.
    152   setOperationAction(ISD::LOAD, MVT::f32, Promote);
    153   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
    154 
    155   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
    156   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
    157 
    158   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
    159   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
    160 
    161   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
    162   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
    163 
    164   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
    165   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
    166 
    167   setOperationAction(ISD::LOAD, MVT::i64, Promote);
    168   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
    169 
    170   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
    171   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
    172 
    173   setOperationAction(ISD::LOAD, MVT::f64, Promote);
    174   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
    175 
    176   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
    177   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
    178 
    179   // There are no 64-bit extloads. These should be done as a 32-bit extload and
    180   // an extension to 64-bit.
    181   for (MVT VT : MVT::integer_valuetypes()) {
    182     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
    183     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
    184     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
    185   }
    186 
    187   for (MVT VT : MVT::integer_valuetypes()) {
    188     if (VT == MVT::i64)
    189       continue;
    190 
    191     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    192     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
    193     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
    194     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
    195 
    196     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    197     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
    198     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
    199     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
    200 
    201     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    202     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
    203     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
    204     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
    205   }
    206 
    207   for (MVT VT : MVT::integer_vector_valuetypes()) {
    208     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
    209     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
    210     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
    211     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
    212     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
    213     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
    214     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
    215     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
    216     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
    217     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
    218     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
    219     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
    220   }
    221 
    222   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
    223   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
    224   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
    225   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
    226 
    227   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
    228   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
    229   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
    230   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
    231 
    232   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
    233   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
    234   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
    235   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
    236 
    237   setOperationAction(ISD::STORE, MVT::f32, Promote);
    238   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
    239 
    240   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
    241   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
    242 
    243   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
    244   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
    245 
    246   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
    247   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
    248 
    249   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
    250   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
    251 
    252   setOperationAction(ISD::STORE, MVT::i64, Promote);
    253   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
    254 
    255   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
    256   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
    257 
    258   setOperationAction(ISD::STORE, MVT::f64, Promote);
    259   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
    260 
    261   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
    262   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
    263 
    264   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
    265   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
    266   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
    267   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
    268 
    269   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
    270   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
    271   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
    272   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
    273 
    274   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    275   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
    276   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
    277   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
    278 
    279   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    280   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    281 
    282   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
    283   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
    284 
    285   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
    286   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
    287 
    288   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
    289   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
    290 
    291 
    292   setOperationAction(ISD::Constant, MVT::i32, Legal);
    293   setOperationAction(ISD::Constant, MVT::i64, Legal);
    294   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
    295   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
    296 
    297   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    298   setOperationAction(ISD::BRIND, MVT::Other, Expand);
    299 
    300   // This is totally unsupported, just custom lower to produce an error.
    301   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
    302 
    303   // Library functions.  These default to Expand, but we have instructions
    304   // for them.
    305   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    306   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
    307   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
    308   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
    309   setOperationAction(ISD::FABS,   MVT::f32, Legal);
    310   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    311   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
    312   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    313   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
    314   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
    315 
    316   setOperationAction(ISD::FROUND, MVT::f32, Custom);
    317   setOperationAction(ISD::FROUND, MVT::f64, Custom);
    318 
    319   setOperationAction(ISD::FLOG, MVT::f32, Custom);
    320   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
    321 
    322 
    323   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
    324   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
    325 
    326   setOperationAction(ISD::FREM, MVT::f32, Custom);
    327   setOperationAction(ISD::FREM, MVT::f64, Custom);
    328 
    329   // Expand to fneg + fadd.
    330   setOperationAction(ISD::FSUB, MVT::f64, Expand);
    331 
    332   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
    333   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
    334   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
    335   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
    336   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
    337   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
    338   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
    339   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
    340   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
    341   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
    342 
    343   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
    344   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
    345   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
    346 
    347   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
    348   for (MVT VT : ScalarIntVTs) {
    349     // These should use [SU]DIVREM, so set them to expand
    350     setOperationAction(ISD::SDIV, VT, Expand);
    351     setOperationAction(ISD::UDIV, VT, Expand);
    352     setOperationAction(ISD::SREM, VT, Expand);
    353     setOperationAction(ISD::UREM, VT, Expand);
    354 
    355     // GPU does not have divrem function for signed or unsigned.
    356     setOperationAction(ISD::SDIVREM, VT, Custom);
    357     setOperationAction(ISD::UDIVREM, VT, Custom);
    358 
    359     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
    360     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    361     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    362 
    363     setOperationAction(ISD::BSWAP, VT, Expand);
    364     setOperationAction(ISD::CTTZ, VT, Expand);
    365     setOperationAction(ISD::CTLZ, VT, Expand);
    366 
    367     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
    368     setOperationAction(ISD::ADDC, VT, Legal);
    369     setOperationAction(ISD::SUBC, VT, Legal);
    370     setOperationAction(ISD::ADDE, VT, Legal);
    371     setOperationAction(ISD::SUBE, VT, Legal);
    372   }
    373 
    374   // The hardware supports 32-bit ROTR, but not ROTL.
    375   setOperationAction(ISD::ROTL, MVT::i32, Expand);
    376   setOperationAction(ISD::ROTL, MVT::i64, Expand);
    377   setOperationAction(ISD::ROTR, MVT::i64, Expand);
    378 
    379   setOperationAction(ISD::MUL, MVT::i64, Expand);
    380   setOperationAction(ISD::MULHU, MVT::i64, Expand);
    381   setOperationAction(ISD::MULHS, MVT::i64, Expand);
    382   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    383   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    384   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    385   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    386   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
    387 
    388   setOperationAction(ISD::SMIN, MVT::i32, Legal);
    389   setOperationAction(ISD::UMIN, MVT::i32, Legal);
    390   setOperationAction(ISD::SMAX, MVT::i32, Legal);
    391   setOperationAction(ISD::UMAX, MVT::i32, Legal);
    392 
    393   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
    394   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
    395   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
    396   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
    397 
    398   static const MVT::SimpleValueType VectorIntTypes[] = {
    399     MVT::v2i32, MVT::v4i32
    400   };
    401 
    402   for (MVT VT : VectorIntTypes) {
    403     // Expand the following operations for the current type by default.
    404     setOperationAction(ISD::ADD,  VT, Expand);
    405     setOperationAction(ISD::AND,  VT, Expand);
    406     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    407     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    408     setOperationAction(ISD::MUL,  VT, Expand);
    409     setOperationAction(ISD::MULHU, VT, Expand);
    410     setOperationAction(ISD::MULHS, VT, Expand);
    411     setOperationAction(ISD::OR,   VT, Expand);
    412     setOperationAction(ISD::SHL,  VT, Expand);
    413     setOperationAction(ISD::SRA,  VT, Expand);
    414     setOperationAction(ISD::SRL,  VT, Expand);
    415     setOperationAction(ISD::ROTL, VT, Expand);
    416     setOperationAction(ISD::ROTR, VT, Expand);
    417     setOperationAction(ISD::SUB,  VT, Expand);
    418     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    419     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    420     setOperationAction(ISD::SDIV, VT, Expand);
    421     setOperationAction(ISD::UDIV, VT, Expand);
    422     setOperationAction(ISD::SREM, VT, Expand);
    423     setOperationAction(ISD::UREM, VT, Expand);
    424     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    425     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    426     setOperationAction(ISD::SDIVREM, VT, Custom);
    427     setOperationAction(ISD::UDIVREM, VT, Expand);
    428     setOperationAction(ISD::SELECT, VT, Expand);
    429     setOperationAction(ISD::VSELECT, VT, Expand);
    430     setOperationAction(ISD::SELECT_CC, VT, Expand);
    431     setOperationAction(ISD::XOR,  VT, Expand);
    432     setOperationAction(ISD::BSWAP, VT, Expand);
    433     setOperationAction(ISD::CTPOP, VT, Expand);
    434     setOperationAction(ISD::CTTZ, VT, Expand);
    435     setOperationAction(ISD::CTLZ, VT, Expand);
    436     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
    437     setOperationAction(ISD::SETCC, VT, Expand);
    438   }
    439 
    440   static const MVT::SimpleValueType FloatVectorTypes[] = {
    441     MVT::v2f32, MVT::v4f32
    442   };
    443 
    444   for (MVT VT : FloatVectorTypes) {
    445     setOperationAction(ISD::FABS, VT, Expand);
    446     setOperationAction(ISD::FMINNUM, VT, Expand);
    447     setOperationAction(ISD::FMAXNUM, VT, Expand);
    448     setOperationAction(ISD::FADD, VT, Expand);
    449     setOperationAction(ISD::FCEIL, VT, Expand);
    450     setOperationAction(ISD::FCOS, VT, Expand);
    451     setOperationAction(ISD::FDIV, VT, Expand);
    452     setOperationAction(ISD::FEXP2, VT, Expand);
    453     setOperationAction(ISD::FLOG2, VT, Expand);
    454     setOperationAction(ISD::FREM, VT, Expand);
    455     setOperationAction(ISD::FLOG, VT, Expand);
    456     setOperationAction(ISD::FLOG10, VT, Expand);
    457     setOperationAction(ISD::FPOW, VT, Expand);
    458     setOperationAction(ISD::FFLOOR, VT, Expand);
    459     setOperationAction(ISD::FTRUNC, VT, Expand);
    460     setOperationAction(ISD::FMUL, VT, Expand);
    461     setOperationAction(ISD::FMA, VT, Expand);
    462     setOperationAction(ISD::FRINT, VT, Expand);
    463     setOperationAction(ISD::FNEARBYINT, VT, Expand);
    464     setOperationAction(ISD::FSQRT, VT, Expand);
    465     setOperationAction(ISD::FSIN, VT, Expand);
    466     setOperationAction(ISD::FSUB, VT, Expand);
    467     setOperationAction(ISD::FNEG, VT, Expand);
    468     setOperationAction(ISD::VSELECT, VT, Expand);
    469     setOperationAction(ISD::SELECT_CC, VT, Expand);
    470     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
    471     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
    472     setOperationAction(ISD::SETCC, VT, Expand);
    473   }
    474 
    475   // This causes using an unrolled select operation rather than expansion with
    476   // bit operations. This is in general better, but the alternative using BFI
    477   // instructions may be better if the select sources are SGPRs.
    478   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
    479   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
    480 
    481   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
    482   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
    483 
    484   // There are no libcalls of any kind.
    485   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
    486     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
    487 
    488   setBooleanContents(ZeroOrNegativeOneBooleanContent);
    489   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    490 
    491   setSchedulingPreference(Sched::RegPressure);
    492   setJumpIsExpensive(true);
    493 
    494   // FIXME: This is only partially true. If we have to do vector compares, any
    495   // SGPR pair can be a condition register. If we have a uniform condition, we
    496   // are better off doing SALU operations, where there is only one SCC. For now,
    497   // we don't have a way of knowing during instruction selection if a condition
    498   // will be uniform and we always use vector compares. Assume we are using
    499   // vector compares until that is fixed.
    500   setHasMultipleConditionRegisters(true);
    501 
    502   PredictableSelectIsExpensive = false;
    503 
    504   // We want to find all load dependencies for long chains of stores to enable
    505   // merging into very wide vectors. The problem is with vectors with > 4
    506   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
    507   // vectors are a legal type, even though we have to split the loads
    508   // usually. When we can more precisely specify load legality per address
    509   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
    510   // smarter so that they can figure out what to do in 2 iterations without all
    511   // N > 4 stores on the same chain.
    512   GatherAllAliasesMaxDepth = 16;
    513 
    514   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
    515   // about these during lowering.
    516   MaxStoresPerMemcpy  = 0xffffffff;
    517   MaxStoresPerMemmove = 0xffffffff;
    518   MaxStoresPerMemset  = 0xffffffff;
    519 
    520   setTargetDAGCombine(ISD::BITCAST);
    521   setTargetDAGCombine(ISD::SHL);
    522   setTargetDAGCombine(ISD::SRA);
    523   setTargetDAGCombine(ISD::SRL);
    524   setTargetDAGCombine(ISD::TRUNCATE);
    525   setTargetDAGCombine(ISD::MUL);
    526   setTargetDAGCombine(ISD::MULHU);
    527   setTargetDAGCombine(ISD::MULHS);
    528   setTargetDAGCombine(ISD::SELECT);
    529   setTargetDAGCombine(ISD::SELECT_CC);
    530   setTargetDAGCombine(ISD::STORE);
    531   setTargetDAGCombine(ISD::FADD);
    532   setTargetDAGCombine(ISD::FSUB);
    533   setTargetDAGCombine(ISD::FNEG);
    534   setTargetDAGCombine(ISD::FABS);
    535   setTargetDAGCombine(ISD::AssertZext);
    536   setTargetDAGCombine(ISD::AssertSext);
    537 }
    538 
    539 //===----------------------------------------------------------------------===//
    540 // Target Information
    541 //===----------------------------------------------------------------------===//
    542 
    543 LLVM_READNONE
    544 static bool fnegFoldsIntoOp(unsigned Opc) {
    545   switch (Opc) {
    546   case ISD::FADD:
    547   case ISD::FSUB:
    548   case ISD::FMUL:
    549   case ISD::FMA:
    550   case ISD::FMAD:
    551   case ISD::FMINNUM:
    552   case ISD::FMAXNUM:
    553   case ISD::FSIN:
    554   case ISD::FTRUNC:
    555   case ISD::FRINT:
    556   case ISD::FNEARBYINT:
    557   case ISD::FCANONICALIZE:
    558   case AMDGPUISD::RCP:
    559   case AMDGPUISD::RCP_LEGACY:
    560   case AMDGPUISD::RCP_IFLAG:
    561   case AMDGPUISD::SIN_HW:
    562   case AMDGPUISD::FMUL_LEGACY:
    563   case AMDGPUISD::FMIN_LEGACY:
    564   case AMDGPUISD::FMAX_LEGACY:
    565     return true;
    566   default:
    567     return false;
    568   }
    569 }
    570 
    571 /// \p returns true if the operation will definitely need to use a 64-bit
    572 /// encoding, and thus will use a VOP3 encoding regardless of the source
    573 /// modifiers.
    574 LLVM_READONLY
    575 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
    576   return N->getNumOperands() > 2 || VT == MVT::f64;
    577 }
    578 
    579 // Most FP instructions support source modifiers, but this could be refined
    580 // slightly.
    581 LLVM_READONLY
    582 static bool hasSourceMods(const SDNode *N) {
    583   if (isa<MemSDNode>(N))
    584     return false;
    585 
    586   switch (N->getOpcode()) {
    587   case ISD::CopyToReg:
    588   case ISD::SELECT:
    589   case ISD::FDIV:
    590   case ISD::FREM:
    591   case ISD::INLINEASM:
    592   case AMDGPUISD::INTERP_P1:
    593   case AMDGPUISD::INTERP_P2:
    594   case AMDGPUISD::DIV_SCALE:
    595 
    596   // TODO: Should really be looking at the users of the bitcast. These are
    597   // problematic because bitcasts are used to legalize all stores to integer
    598   // types.
    599   case ISD::BITCAST:
    600     return false;
    601   default:
    602     return true;
    603   }
    604 }
    605 
    606 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
    607                                                  unsigned CostThreshold) {
    608   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
    609   // it is truly free to use a source modifier in all cases. If there are
    610   // multiple users but for each one will necessitate using VOP3, there will be
    611   // a code size increase. Try to avoid increasing code size unless we know it
    612   // will save on the instruction count.
    613   unsigned NumMayIncreaseSize = 0;
    614   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
    615 
    616   // XXX - Should this limit number of uses to check?
    617   for (const SDNode *U : N->uses()) {
    618     if (!hasSourceMods(U))
    619       return false;
    620 
    621     if (!opMustUseVOP3Encoding(U, VT)) {
    622       if (++NumMayIncreaseSize > CostThreshold)
    623         return false;
    624     }
    625   }
    626 
    627   return true;
    628 }
    629 
    630 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
    631   return MVT::i32;
    632 }
    633 
    634 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
    635   return true;
    636 }
    637 
    638 // The backend supports 32 and 64 bit floating point immediates.
    639 // FIXME: Why are we reporting vectors of FP immediates as legal?
    640 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
    641   EVT ScalarVT = VT.getScalarType();
    642   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
    643          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
    644 }
    645 
    646 // We don't want to shrink f64 / f32 constants.
    647 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
    648   EVT ScalarVT = VT.getScalarType();
    649   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
    650 }
    651 
    652 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
    653                                                  ISD::LoadExtType,
    654                                                  EVT NewVT) const {
    655 
    656   unsigned NewSize = NewVT.getStoreSizeInBits();
    657 
    658   // If we are reducing to a 32-bit load, this is always better.
    659   if (NewSize == 32)
    660     return true;
    661 
    662   EVT OldVT = N->getValueType(0);
    663   unsigned OldSize = OldVT.getStoreSizeInBits();
    664 
    665   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
    666   // extloads, so doing one requires using a buffer_load. In cases where we
    667   // still couldn't use a scalar load, using the wider load shouldn't really
    668   // hurt anything.
    669 
    670   // If the old size already had to be an extload, there's no harm in continuing
    671   // to reduce the width.
    672   return (OldSize < 32);
    673 }
    674 
    675 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
    676                                                    EVT CastTy) const {
    677 
    678   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
    679 
    680   if (LoadTy.getScalarType() == MVT::i32)
    681     return false;
    682 
    683   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
    684   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
    685 
    686   return (LScalarSize < CastScalarSize) ||
    687          (CastScalarSize >= 32);
    688 }
    689 
    690 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
    691 // profitable with the expansion for 64-bit since it's generally good to
    692 // speculate things.
    693 // FIXME: These should really have the size as a parameter.
    694 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
    695   return true;
    696 }
    697 
    698 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
    699   return true;
    700 }
    701 
    702 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
    703   switch (N->getOpcode()) {
    704     default:
    705     return false;
    706     case ISD::EntryToken:
    707     case ISD::TokenFactor:
    708       return true;
    709     case ISD::INTRINSIC_WO_CHAIN:
    710     {
    711       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
    712       switch (IntrID) {
    713         default:
    714         return false;
    715         case Intrinsic::amdgcn_readfirstlane:
    716         case Intrinsic::amdgcn_readlane:
    717           return true;
    718       }
    719     }
    720     break;
    721     case ISD::LOAD:
    722     {
    723       const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
    724       if (L->getMemOperand()->getAddrSpace()
    725       == AMDGPUASI.CONSTANT_ADDRESS_32BIT)
    726         return true;
    727       return false;
    728     }
    729     break;
    730   }
    731 }
    732 
    733 //===---------------------------------------------------------------------===//
    734 // Target Properties
    735 //===---------------------------------------------------------------------===//
    736 
    737 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
    738   assert(VT.isFloatingPoint());
    739 
    740   // Packed operations do not have a fabs modifier.
    741   return VT == MVT::f32 || VT == MVT::f64 ||
    742          (Subtarget->has16BitInsts() && VT == MVT::f16);
    743 }
    744 
    745 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
    746   assert(VT.isFloatingPoint());
    747   return VT == MVT::f32 || VT == MVT::f64 ||
    748          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
    749          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
    750 }
    751 
    752 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
    753                                                          unsigned NumElem,
    754                                                          unsigned AS) const {
    755   return true;
    756 }
    757 
    758 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
    759   // There are few operations which truly have vector input operands. Any vector
    760   // operation is going to involve operations on each component, and a
    761   // build_vector will be a copy per element, so it always makes sense to use a
    762   // build_vector input in place of the extracted element to avoid a copy into a
    763   // super register.
    764   //
    765   // We should probably only do this if all users are extracts only, but this
    766   // should be the common case.
    767   return true;
    768 }
    769 
    770 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
    771   // Truncate is just accessing a subregister.
    772 
    773   unsigned SrcSize = Source.getSizeInBits();
    774   unsigned DestSize = Dest.getSizeInBits();
    775 
    776   return DestSize < SrcSize && DestSize % 32 == 0 ;
    777 }
    778 
    779 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
    780   // Truncate is just accessing a subregister.
    781 
    782   unsigned SrcSize = Source->getScalarSizeInBits();
    783   unsigned DestSize = Dest->getScalarSizeInBits();
    784 
    785   if (DestSize== 16 && Subtarget->has16BitInsts())
    786     return SrcSize >= 32;
    787 
    788   return DestSize < SrcSize && DestSize % 32 == 0;
    789 }
    790 
    791 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
    792   unsigned SrcSize = Src->getScalarSizeInBits();
    793   unsigned DestSize = Dest->getScalarSizeInBits();
    794 
    795   if (SrcSize == 16 && Subtarget->has16BitInsts())
    796     return DestSize >= 32;
    797 
    798   return SrcSize == 32 && DestSize == 64;
    799 }
    800 
    801 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
    802   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
    803   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
    804   // this will enable reducing 64-bit operations the 32-bit, which is always
    805   // good.
    806 
    807   if (Src == MVT::i16)
    808     return Dest == MVT::i32 ||Dest == MVT::i64 ;
    809 
    810   return Src == MVT::i32 && Dest == MVT::i64;
    811 }
    812 
    813 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
    814   return isZExtFree(Val.getValueType(), VT2);
    815 }
    816 
    817 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
    818   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
    819   // limited number of native 64-bit operations. Shrinking an operation to fit
    820   // in a single 32-bit register should always be helpful. As currently used,
    821   // this is much less general than the name suggests, and is only used in
    822   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
    823   // not profitable, and may actually be harmful.
    824   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
    825 }
    826 
    827 //===---------------------------------------------------------------------===//
    828 // TargetLowering Callbacks
    829 //===---------------------------------------------------------------------===//
    830 
    831 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
    832                                                   bool IsVarArg) {
    833   switch (CC) {
    834   case CallingConv::AMDGPU_KERNEL:
    835   case CallingConv::SPIR_KERNEL:
    836     llvm_unreachable("kernels should not be handled here");
    837   case CallingConv::AMDGPU_VS:
    838   case CallingConv::AMDGPU_GS:
    839   case CallingConv::AMDGPU_PS:
    840   case CallingConv::AMDGPU_CS:
    841   case CallingConv::AMDGPU_HS:
    842   case CallingConv::AMDGPU_ES:
    843   case CallingConv::AMDGPU_LS:
    844     return CC_AMDGPU;
    845   case CallingConv::C:
    846   case CallingConv::Fast:
    847   case CallingConv::Cold:
    848     return CC_AMDGPU_Func;
    849   default:
    850     report_fatal_error("Unsupported calling convention.");
    851   }
    852 }
    853 
    854 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
    855                                                     bool IsVarArg) {
    856   switch (CC) {
    857   case CallingConv::AMDGPU_KERNEL:
    858   case CallingConv::SPIR_KERNEL:
    859     llvm_unreachable("kernels should not be handled here");
    860   case CallingConv::AMDGPU_VS:
    861   case CallingConv::AMDGPU_GS:
    862   case CallingConv::AMDGPU_PS:
    863   case CallingConv::AMDGPU_CS:
    864   case CallingConv::AMDGPU_HS:
    865   case CallingConv::AMDGPU_ES:
    866   case CallingConv::AMDGPU_LS:
    867     return RetCC_SI_Shader;
    868   case CallingConv::C:
    869   case CallingConv::Fast:
    870   case CallingConv::Cold:
    871     return RetCC_AMDGPU_Func;
    872   default:
    873     report_fatal_error("Unsupported calling convention.");
    874   }
    875 }
    876 
    877 /// The SelectionDAGBuilder will automatically promote function arguments
    878 /// with illegal types.  However, this does not work for the AMDGPU targets
    879 /// since the function arguments are stored in memory as these illegal types.
    880 /// In order to handle this properly we need to get the original types sizes
    881 /// from the LLVM IR Function and fixup the ISD:InputArg values before
    882 /// passing them to AnalyzeFormalArguments()
    883 
    884 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
    885 /// input values across multiple registers.  Each item in the Ins array
    886 /// represents a single value that will be stored in registers.  Ins[x].VT is
    887 /// the value type of the value that will be stored in the register, so
    888 /// whatever SDNode we lower the argument to needs to be this type.
    889 ///
    890 /// In order to correctly lower the arguments we need to know the size of each
    891 /// argument.  Since Ins[x].VT gives us the size of the register that will
    892 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
    893 /// for the orignal function argument so that we can deduce the correct memory
    894 /// type to use for Ins[x].  In most cases the correct memory type will be
    895 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
    896 /// we have a kernel argument of type v8i8, this argument will be split into
    897 /// 8 parts and each part will be represented by its own item in the Ins array.
    898 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
    899 /// the argument before it was split.  From this, we deduce that the memory type
    900 /// for each individual part is i8.  We pass the memory type as LocVT to the
    901 /// calling convention analysis function and the register type (Ins[x].VT) as
    902 /// the ValVT.
    903 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
    904   CCState &State,
    905   const SmallVectorImpl<ISD::InputArg> &Ins) const {
    906   const MachineFunction &MF = State.getMachineFunction();
    907   const Function &Fn = MF.getFunction();
    908   LLVMContext &Ctx = Fn.getParent()->getContext();
    909   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
    910   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
    911   CallingConv::ID CC = Fn.getCallingConv();
    912 
    913   unsigned MaxAlign = 1;
    914   uint64_t ExplicitArgOffset = 0;
    915   const DataLayout &DL = Fn.getParent()->getDataLayout();
    916 
    917   unsigned InIndex = 0;
    918 
    919   for (const Argument &Arg : Fn.args()) {
    920     Type *BaseArgTy = Arg.getType();
    921     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
    922     MaxAlign = std::max(Align, MaxAlign);
    923     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
    924 
    925     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
    926     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
    927 
    928     // We're basically throwing away everything passed into us and starting over
    929     // to get accurate in-memory offsets. The "PartOffset" is completely useless
    930     // to us as computed in Ins.
    931     //
    932     // We also need to figure out what type legalization is trying to do to get
    933     // the correct memory offsets.
    934 
    935     SmallVector<EVT, 16> ValueVTs;
    936     SmallVector<uint64_t, 16> Offsets;
    937     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
    938 
    939     for (unsigned Value = 0, NumValues = ValueVTs.size();
    940          Value != NumValues; ++Value) {
    941       uint64_t BasePartOffset = Offsets[Value];
    942 
    943       EVT ArgVT = ValueVTs[Value];
    944       EVT MemVT = ArgVT;
    945       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
    946       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
    947 
    948       if (NumRegs == 1) {
    949         // This argument is not split, so the IR type is the memory type.
    950         if (ArgVT.isExtended()) {
    951           // We have an extended type, like i24, so we should just use the
    952           // register type.
    953           MemVT = RegisterVT;
    954         } else {
    955           MemVT = ArgVT;
    956         }
    957       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
    958                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
    959         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
    960         // We have a vector value which has been split into a vector with
    961         // the same scalar type, but fewer elements.  This should handle
    962         // all the floating-point vector types.
    963         MemVT = RegisterVT;
    964       } else if (ArgVT.isVector() &&
    965                  ArgVT.getVectorNumElements() == NumRegs) {
    966         // This arg has been split so that each element is stored in a separate
    967         // register.
    968         MemVT = ArgVT.getScalarType();
    969       } else if (ArgVT.isExtended()) {
    970         // We have an extended type, like i65.
    971         MemVT = RegisterVT;
    972       } else {
    973         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
    974         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
    975         if (RegisterVT.isInteger()) {
    976           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
    977         } else if (RegisterVT.isVector()) {
    978           assert(!RegisterVT.getScalarType().isFloatingPoint());
    979           unsigned NumElements = RegisterVT.getVectorNumElements();
    980           assert(MemoryBits % NumElements == 0);
    981           // This vector type has been split into another vector type with
    982           // a different elements size.
    983           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
    984                                            MemoryBits / NumElements);
    985           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
    986         } else {
    987           llvm_unreachable("cannot deduce memory type.");
    988         }
    989       }
    990 
    991       // Convert one element vectors to scalar.
    992       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
    993         MemVT = MemVT.getScalarType();
    994 
    995       if (MemVT.isExtended()) {
    996         // This should really only happen if we have vec3 arguments
    997         assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
    998         MemVT = MemVT.getPow2VectorType(State.getContext());
    999       }
   1000 
   1001       unsigned PartOffset = 0;
   1002       for (unsigned i = 0; i != NumRegs; ++i) {
   1003         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
   1004                                                BasePartOffset + PartOffset,
   1005                                                MemVT.getSimpleVT(),
   1006                                                CCValAssign::Full));
   1007         PartOffset += MemVT.getStoreSize();
   1008       }
   1009     }
   1010   }
   1011 }
   1012 
   1013 SDValue AMDGPUTargetLowering::LowerReturn(
   1014   SDValue Chain, CallingConv::ID CallConv,
   1015   bool isVarArg,
   1016   const SmallVectorImpl<ISD::OutputArg> &Outs,
   1017   const SmallVectorImpl<SDValue> &OutVals,
   1018   const SDLoc &DL, SelectionDAG &DAG) const {
   1019   // FIXME: Fails for r600 tests
   1020   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
   1021   // "wave terminate should not have return values");
   1022   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
   1023 }
   1024 
   1025 //===---------------------------------------------------------------------===//
   1026 // Target specific lowering
   1027 //===---------------------------------------------------------------------===//
   1028 
   1029 /// Selects the correct CCAssignFn for a given CallingConvention value.
   1030 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
   1031                                                     bool IsVarArg) {
   1032   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
   1033 }
   1034 
   1035 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
   1036                                                       bool IsVarArg) {
   1037   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
   1038 }
   1039 
   1040 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
   1041                                                   SelectionDAG &DAG,
   1042                                                   MachineFrameInfo &MFI,
   1043                                                   int ClobberedFI) const {
   1044   SmallVector<SDValue, 8> ArgChains;
   1045   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
   1046   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
   1047 
   1048   // Include the original chain at the beginning of the list. When this is
   1049   // used by target LowerCall hooks, this helps legalize find the
   1050   // CALLSEQ_BEGIN node.
   1051   ArgChains.push_back(Chain);
   1052 
   1053   // Add a chain value for each stack argument corresponding
   1054   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
   1055                             UE = DAG.getEntryNode().getNode()->use_end();
   1056        U != UE; ++U) {
   1057     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
   1058       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
   1059         if (FI->getIndex() < 0) {
   1060           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
   1061           int64_t InLastByte = InFirstByte;
   1062           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
   1063 
   1064           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
   1065               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
   1066             ArgChains.push_back(SDValue(L, 1));
   1067         }
   1068       }
   1069     }
   1070   }
   1071 
   1072   // Build a tokenfactor for all the chains.
   1073   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
   1074 }
   1075 
   1076 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
   1077                                                  SmallVectorImpl<SDValue> &InVals,
   1078                                                  StringRef Reason) const {
   1079   SDValue Callee = CLI.Callee;
   1080   SelectionDAG &DAG = CLI.DAG;
   1081 
   1082   const Function &Fn = DAG.getMachineFunction().getFunction();
   1083 
   1084   StringRef FuncName("<unknown>");
   1085 
   1086   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
   1087     FuncName = G->getSymbol();
   1088   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   1089     FuncName = G->getGlobal()->getName();
   1090 
   1091   DiagnosticInfoUnsupported NoCalls(
   1092     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
   1093   DAG.getContext()->diagnose(NoCalls);
   1094 
   1095   if (!CLI.IsTailCall) {
   1096     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
   1097       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
   1098   }
   1099 
   1100   return DAG.getEntryNode();
   1101 }
   1102 
   1103 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
   1104                                         SmallVectorImpl<SDValue> &InVals) const {
   1105   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
   1106 }
   1107 
   1108 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   1109                                                       SelectionDAG &DAG) const {
   1110   const Function &Fn = DAG.getMachineFunction().getFunction();
   1111 
   1112   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
   1113                                             SDLoc(Op).getDebugLoc());
   1114   DAG.getContext()->diagnose(NoDynamicAlloca);
   1115   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
   1116   return DAG.getMergeValues(Ops, SDLoc());
   1117 }
   1118 
   1119 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
   1120                                              SelectionDAG &DAG) const {
   1121   switch (Op.getOpcode()) {
   1122   default:
   1123     Op->print(errs(), &DAG);
   1124     llvm_unreachable("Custom lowering code for this"
   1125                      "instruction is not implemented yet!");
   1126     break;
   1127   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
   1128   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   1129   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
   1130   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
   1131   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
   1132   case ISD::FREM: return LowerFREM(Op, DAG);
   1133   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
   1134   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
   1135   case ISD::FRINT: return LowerFRINT(Op, DAG);
   1136   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
   1137   case ISD::FROUND: return LowerFROUND(Op, DAG);
   1138   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
   1139   case ISD::FLOG:
   1140     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
   1141   case ISD::FLOG10:
   1142     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
   1143   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
   1144   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
   1145   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
   1146   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
   1147   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
   1148   case ISD::CTTZ:
   1149   case ISD::CTTZ_ZERO_UNDEF:
   1150   case ISD::CTLZ:
   1151   case ISD::CTLZ_ZERO_UNDEF:
   1152     return LowerCTLZ_CTTZ(Op, DAG);
   1153   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
   1154   }
   1155   return Op;
   1156 }
   1157 
   1158 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
   1159                                               SmallVectorImpl<SDValue> &Results,
   1160                                               SelectionDAG &DAG) const {
   1161   switch (N->getOpcode()) {
   1162   case ISD::SIGN_EXTEND_INREG:
   1163     // Different parts of legalization seem to interpret which type of
   1164     // sign_extend_inreg is the one to check for custom lowering. The extended
   1165     // from type is what really matters, but some places check for custom
   1166     // lowering of the result type. This results in trying to use
   1167     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
   1168     // nothing here and let the illegal result integer be handled normally.
   1169     return;
   1170   default:
   1171     return;
   1172   }
   1173 }
   1174 
   1175 static bool hasDefinedInitializer(const GlobalValue *GV) {
   1176   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
   1177   if (!GVar || !GVar->hasInitializer())
   1178     return false;
   1179 
   1180   return !isa<UndefValue>(GVar->getInitializer());
   1181 }
   1182 
   1183 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
   1184                                                  SDValue Op,
   1185                                                  SelectionDAG &DAG) const {
   1186 
   1187   const DataLayout &DL = DAG.getDataLayout();
   1188   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
   1189   const GlobalValue *GV = G->getGlobal();
   1190 
   1191   if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS ||
   1192       G->getAddressSpace() == AMDGPUASI.REGION_ADDRESS) {
   1193     if (!MFI->isEntryFunction()) {
   1194       const Function &Fn = DAG.getMachineFunction().getFunction();
   1195       DiagnosticInfoUnsupported BadLDSDecl(
   1196         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
   1197       DAG.getContext()->diagnose(BadLDSDecl);
   1198     }
   1199 
   1200     // XXX: What does the value of G->getOffset() mean?
   1201     assert(G->getOffset() == 0 &&
   1202          "Do not know what to do with an non-zero offset");
   1203 
   1204     // TODO: We could emit code to handle the initialization somewhere.
   1205     if (!hasDefinedInitializer(GV)) {
   1206       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
   1207       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
   1208     }
   1209   }
   1210 
   1211   const Function &Fn = DAG.getMachineFunction().getFunction();
   1212   DiagnosticInfoUnsupported BadInit(
   1213       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
   1214   DAG.getContext()->diagnose(BadInit);
   1215   return SDValue();
   1216 }
   1217 
   1218 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
   1219                                                   SelectionDAG &DAG) const {
   1220   SmallVector<SDValue, 8> Args;
   1221 
   1222   EVT VT = Op.getValueType();
   1223   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
   1224     SDLoc SL(Op);
   1225     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
   1226     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
   1227 
   1228     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
   1229     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
   1230   }
   1231 
   1232   for (const SDUse &U : Op->ops())
   1233     DAG.ExtractVectorElements(U.get(), Args);
   1234 
   1235   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
   1236 }
   1237 
   1238 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
   1239                                                      SelectionDAG &DAG) const {
   1240 
   1241   SmallVector<SDValue, 8> Args;
   1242   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   1243   EVT VT = Op.getValueType();
   1244   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
   1245                             VT.getVectorNumElements());
   1246 
   1247   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
   1248 }
   1249 
   1250 /// Generate Min/Max node
   1251 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
   1252                                                    SDValue LHS, SDValue RHS,
   1253                                                    SDValue True, SDValue False,
   1254                                                    SDValue CC,
   1255                                                    DAGCombinerInfo &DCI) const {
   1256   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
   1257     return SDValue();
   1258 
   1259   SelectionDAG &DAG = DCI.DAG;
   1260   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
   1261   switch (CCOpcode) {
   1262   case ISD::SETOEQ:
   1263   case ISD::SETONE:
   1264   case ISD::SETUNE:
   1265   case ISD::SETNE:
   1266   case ISD::SETUEQ:
   1267   case ISD::SETEQ:
   1268   case ISD::SETFALSE:
   1269   case ISD::SETFALSE2:
   1270   case ISD::SETTRUE:
   1271   case ISD::SETTRUE2:
   1272   case ISD::SETUO:
   1273   case ISD::SETO:
   1274     break;
   1275   case ISD::SETULE:
   1276   case ISD::SETULT: {
   1277     if (LHS == True)
   1278       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
   1279     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
   1280   }
   1281   case ISD::SETOLE:
   1282   case ISD::SETOLT:
   1283   case ISD::SETLE:
   1284   case ISD::SETLT: {
   1285     // Ordered. Assume ordered for undefined.
   1286 
   1287     // Only do this after legalization to avoid interfering with other combines
   1288     // which might occur.
   1289     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
   1290         !DCI.isCalledByLegalizer())
   1291       return SDValue();
   1292 
   1293     // We need to permute the operands to get the correct NaN behavior. The
   1294     // selected operand is the second one based on the failing compare with NaN,
   1295     // so permute it based on the compare type the hardware uses.
   1296     if (LHS == True)
   1297       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
   1298     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
   1299   }
   1300   case ISD::SETUGE:
   1301   case ISD::SETUGT: {
   1302     if (LHS == True)
   1303       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
   1304     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
   1305   }
   1306   case ISD::SETGT:
   1307   case ISD::SETGE:
   1308   case ISD::SETOGE:
   1309   case ISD::SETOGT: {
   1310     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
   1311         !DCI.isCalledByLegalizer())
   1312       return SDValue();
   1313 
   1314     if (LHS == True)
   1315       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
   1316     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
   1317   }
   1318   case ISD::SETCC_INVALID:
   1319     llvm_unreachable("Invalid setcc condcode!");
   1320   }
   1321   return SDValue();
   1322 }
   1323 
   1324 std::pair<SDValue, SDValue>
   1325 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
   1326   SDLoc SL(Op);
   1327 
   1328   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
   1329 
   1330   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   1331   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
   1332 
   1333   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
   1334   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
   1335 
   1336   return std::make_pair(Lo, Hi);
   1337 }
   1338 
   1339 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
   1340   SDLoc SL(Op);
   1341 
   1342   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
   1343   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   1344   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
   1345 }
   1346 
   1347 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
   1348   SDLoc SL(Op);
   1349 
   1350   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
   1351   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
   1352   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
   1353 }
   1354 
   1355 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
   1356                                               SelectionDAG &DAG) const {
   1357   LoadSDNode *Load = cast<LoadSDNode>(Op);
   1358   EVT VT = Op.getValueType();
   1359 
   1360 
   1361   // If this is a 2 element vector, we really want to scalarize and not create
   1362   // weird 1 element vectors.
   1363   if (VT.getVectorNumElements() == 2)
   1364     return scalarizeVectorLoad(Load, DAG);
   1365 
   1366   SDValue BasePtr = Load->getBasePtr();
   1367   EVT MemVT = Load->getMemoryVT();
   1368   SDLoc SL(Op);
   1369 
   1370   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
   1371 
   1372   EVT LoVT, HiVT;
   1373   EVT LoMemVT, HiMemVT;
   1374   SDValue Lo, Hi;
   1375 
   1376   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
   1377   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
   1378   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
   1379 
   1380   unsigned Size = LoMemVT.getStoreSize();
   1381   unsigned BaseAlign = Load->getAlignment();
   1382   unsigned HiAlign = MinAlign(BaseAlign, Size);
   1383 
   1384   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
   1385                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
   1386                                   BaseAlign, Load->getMemOperand()->getFlags());
   1387   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
   1388   SDValue HiLoad =
   1389       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
   1390                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
   1391                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
   1392 
   1393   SDValue Ops[] = {
   1394     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
   1395     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
   1396                 LoLoad.getValue(1), HiLoad.getValue(1))
   1397   };
   1398 
   1399   return DAG.getMergeValues(Ops, SL);
   1400 }
   1401 
   1402 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
   1403                                                SelectionDAG &DAG) const {
   1404   StoreSDNode *Store = cast<StoreSDNode>(Op);
   1405   SDValue Val = Store->getValue();
   1406   EVT VT = Val.getValueType();
   1407 
   1408   // If this is a 2 element vector, we really want to scalarize and not create
   1409   // weird 1 element vectors.
   1410   if (VT.getVectorNumElements() == 2)
   1411     return scalarizeVectorStore(Store, DAG);
   1412 
   1413   EVT MemVT = Store->getMemoryVT();
   1414   SDValue Chain = Store->getChain();
   1415   SDValue BasePtr = Store->getBasePtr();
   1416   SDLoc SL(Op);
   1417 
   1418   EVT LoVT, HiVT;
   1419   EVT LoMemVT, HiMemVT;
   1420   SDValue Lo, Hi;
   1421 
   1422   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
   1423   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
   1424   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
   1425 
   1426   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
   1427 
   1428   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
   1429   unsigned BaseAlign = Store->getAlignment();
   1430   unsigned Size = LoMemVT.getStoreSize();
   1431   unsigned HiAlign = MinAlign(BaseAlign, Size);
   1432 
   1433   SDValue LoStore =
   1434       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
   1435                         Store->getMemOperand()->getFlags());
   1436   SDValue HiStore =
   1437       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
   1438                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
   1439 
   1440   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
   1441 }
   1442 
   1443 // This is a shortcut for integer division because we have fast i32<->f32
   1444 // conversions, and fast f32 reciprocal instructions. The fractional part of a
   1445 // float is enough to accurately represent up to a 24-bit signed integer.
   1446 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
   1447                                             bool Sign) const {
   1448   SDLoc DL(Op);
   1449   EVT VT = Op.getValueType();
   1450   SDValue LHS = Op.getOperand(0);
   1451   SDValue RHS = Op.getOperand(1);
   1452   MVT IntVT = MVT::i32;
   1453   MVT FltVT = MVT::f32;
   1454 
   1455   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
   1456   if (LHSSignBits < 9)
   1457     return SDValue();
   1458 
   1459   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
   1460   if (RHSSignBits < 9)
   1461     return SDValue();
   1462 
   1463   unsigned BitSize = VT.getSizeInBits();
   1464   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
   1465   unsigned DivBits = BitSize - SignBits;
   1466   if (Sign)
   1467     ++DivBits;
   1468 
   1469   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
   1470   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
   1471 
   1472   SDValue jq = DAG.getConstant(1, DL, IntVT);
   1473 
   1474   if (Sign) {
   1475     // char|short jq = ia ^ ib;
   1476     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
   1477 
   1478     // jq = jq >> (bitsize - 2)
   1479     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
   1480                      DAG.getConstant(BitSize - 2, DL, VT));
   1481 
   1482     // jq = jq | 0x1
   1483     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
   1484   }
   1485 
   1486   // int ia = (int)LHS;
   1487   SDValue ia = LHS;
   1488 
   1489   // int ib, (int)RHS;
   1490   SDValue ib = RHS;
   1491 
   1492   // float fa = (float)ia;
   1493   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
   1494 
   1495   // float fb = (float)ib;
   1496   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
   1497 
   1498   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
   1499                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
   1500 
   1501   // fq = trunc(fq);
   1502   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
   1503 
   1504   // float fqneg = -fq;
   1505   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
   1506 
   1507   // float fr = mad(fqneg, fb, fa);
   1508   unsigned OpCode = Subtarget->hasFP32Denormals() ?
   1509                     (unsigned)AMDGPUISD::FMAD_FTZ :
   1510                     (unsigned)ISD::FMAD;
   1511   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
   1512 
   1513   // int iq = (int)fq;
   1514   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
   1515 
   1516   // fr = fabs(fr);
   1517   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
   1518 
   1519   // fb = fabs(fb);
   1520   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
   1521 
   1522   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
   1523 
   1524   // int cv = fr >= fb;
   1525   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
   1526 
   1527   // jq = (cv ? jq : 0);
   1528   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
   1529 
   1530   // dst = iq + jq;
   1531   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
   1532 
   1533   // Rem needs compensation, it's easier to recompute it
   1534   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
   1535   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
   1536 
   1537   // Truncate to number of bits this divide really is.
   1538   if (Sign) {
   1539     SDValue InRegSize
   1540       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
   1541     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
   1542     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
   1543   } else {
   1544     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
   1545     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
   1546     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
   1547   }
   1548 
   1549   return DAG.getMergeValues({ Div, Rem }, DL);
   1550 }
   1551 
   1552 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
   1553                                       SelectionDAG &DAG,
   1554                                       SmallVectorImpl<SDValue> &Results) const {
   1555   SDLoc DL(Op);
   1556   EVT VT = Op.getValueType();
   1557 
   1558   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
   1559 
   1560   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
   1561 
   1562   SDValue One = DAG.getConstant(1, DL, HalfVT);
   1563   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
   1564 
   1565   //HiLo split
   1566   SDValue LHS = Op.getOperand(0);
   1567   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
   1568   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
   1569 
   1570   SDValue RHS = Op.getOperand(1);
   1571   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
   1572   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
   1573 
   1574   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
   1575       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
   1576 
   1577     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
   1578                               LHS_Lo, RHS_Lo);
   1579 
   1580     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
   1581     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
   1582 
   1583     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
   1584     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
   1585     return;
   1586   }
   1587 
   1588   if (isTypeLegal(MVT::i64)) {
   1589     // Compute denominator reciprocal.
   1590     unsigned FMAD = Subtarget->hasFP32Denormals() ?
   1591                     (unsigned)AMDGPUISD::FMAD_FTZ :
   1592                     (unsigned)ISD::FMAD;
   1593 
   1594     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
   1595     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
   1596     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
   1597       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
   1598       Cvt_Lo);
   1599     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
   1600     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
   1601       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
   1602     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
   1603       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
   1604     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
   1605     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
   1606       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
   1607       Mul1);
   1608     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
   1609     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
   1610     SDValue Rcp64 = DAG.getBitcast(VT,
   1611                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
   1612 
   1613     SDValue Zero64 = DAG.getConstant(0, DL, VT);
   1614     SDValue One64  = DAG.getConstant(1, DL, VT);
   1615     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
   1616     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
   1617 
   1618     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
   1619     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
   1620     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
   1621     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
   1622                                     Zero);
   1623     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
   1624                                     One);
   1625 
   1626     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
   1627                                   Mulhi1_Lo, Zero1);
   1628     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
   1629                                   Mulhi1_Hi, Add1_Lo.getValue(1));
   1630     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
   1631     SDValue Add1 = DAG.getBitcast(VT,
   1632                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
   1633 
   1634     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
   1635     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
   1636     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
   1637                                     Zero);
   1638     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
   1639                                     One);
   1640 
   1641     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
   1642                                   Mulhi2_Lo, Zero1);
   1643     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
   1644                                    Mulhi2_Hi, Add1_Lo.getValue(1));
   1645     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
   1646                                   Zero, Add2_Lo.getValue(1));
   1647     SDValue Add2 = DAG.getBitcast(VT,
   1648                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
   1649     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
   1650 
   1651     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
   1652 
   1653     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
   1654     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
   1655     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
   1656                                   Mul3_Lo, Zero1);
   1657     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
   1658                                   Mul3_Hi, Sub1_Lo.getValue(1));
   1659     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
   1660     SDValue Sub1 = DAG.getBitcast(VT,
   1661                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
   1662 
   1663     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
   1664     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
   1665                                  ISD::SETUGE);
   1666     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
   1667                                  ISD::SETUGE);
   1668     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
   1669 
   1670     // TODO: Here and below portions of the code can be enclosed into if/endif.
   1671     // Currently control flow is unconditional and we have 4 selects after
   1672     // potential endif to substitute PHIs.
   1673 
   1674     // if C3 != 0 ...
   1675     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
   1676                                   RHS_Lo, Zero1);
   1677     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
   1678                                   RHS_Hi, Sub1_Lo.getValue(1));
   1679     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
   1680                                   Zero, Sub2_Lo.getValue(1));
   1681     SDValue Sub2 = DAG.getBitcast(VT,
   1682                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
   1683 
   1684     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
   1685 
   1686     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
   1687                                  ISD::SETUGE);
   1688     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
   1689                                  ISD::SETUGE);
   1690     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
   1691 
   1692     // if (C6 != 0)
   1693     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
   1694 
   1695     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
   1696                                   RHS_Lo, Zero1);
   1697     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
   1698                                   RHS_Hi, Sub2_Lo.getValue(1));
   1699     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
   1700                                   Zero, Sub3_Lo.getValue(1));
   1701     SDValue Sub3 = DAG.getBitcast(VT,
   1702                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
   1703 
   1704     // endif C6
   1705     // endif C3
   1706 
   1707     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
   1708     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
   1709 
   1710     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
   1711     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
   1712 
   1713     Results.push_back(Div);
   1714     Results.push_back(Rem);
   1715 
   1716     return;
   1717   }
   1718 
   1719   // r600 expandion.
   1720   // Get Speculative values
   1721   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
   1722   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
   1723 
   1724   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
   1725   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
   1726   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
   1727 
   1728   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
   1729   SDValue DIV_Lo = Zero;
   1730 
   1731   const unsigned halfBitWidth = HalfVT.getSizeInBits();
   1732 
   1733   for (unsigned i = 0; i < halfBitWidth; ++i) {
   1734     const unsigned bitPos = halfBitWidth - i - 1;
   1735     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
   1736     // Get value of high bit
   1737     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
   1738     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
   1739     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
   1740 
   1741     // Shift
   1742     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
   1743     // Add LHS high bit
   1744     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
   1745 
   1746     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
   1747     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
   1748 
   1749     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
   1750 
   1751     // Update REM
   1752     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
   1753     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
   1754   }
   1755 
   1756   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
   1757   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
   1758   Results.push_back(DIV);
   1759   Results.push_back(REM);
   1760 }
   1761 
   1762 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
   1763                                            SelectionDAG &DAG) const {
   1764   SDLoc DL(Op);
   1765   EVT VT = Op.getValueType();
   1766 
   1767   if (VT == MVT::i64) {
   1768     SmallVector<SDValue, 2> Results;
   1769     LowerUDIVREM64(Op, DAG, Results);
   1770     return DAG.getMergeValues(Results, DL);
   1771   }
   1772 
   1773   if (VT == MVT::i32) {
   1774     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
   1775       return Res;
   1776   }
   1777 
   1778   SDValue Num = Op.getOperand(0);
   1779   SDValue Den = Op.getOperand(1);
   1780 
   1781   // RCP =  URECIP(Den) = 2^32 / Den + e
   1782   // e is rounding error.
   1783   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
   1784 
   1785   // RCP_LO = mul(RCP, Den) */
   1786   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
   1787 
   1788   // RCP_HI = mulhu (RCP, Den) */
   1789   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
   1790 
   1791   // NEG_RCP_LO = -RCP_LO
   1792   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
   1793                                                      RCP_LO);
   1794 
   1795   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
   1796   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
   1797                                            NEG_RCP_LO, RCP_LO,
   1798                                            ISD::SETEQ);
   1799   // Calculate the rounding error from the URECIP instruction
   1800   // E = mulhu(ABS_RCP_LO, RCP)
   1801   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
   1802 
   1803   // RCP_A_E = RCP + E
   1804   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
   1805 
   1806   // RCP_S_E = RCP - E
   1807   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
   1808 
   1809   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
   1810   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
   1811                                      RCP_A_E, RCP_S_E,
   1812                                      ISD::SETEQ);
   1813   // Quotient = mulhu(Tmp0, Num)
   1814   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
   1815 
   1816   // Num_S_Remainder = Quotient * Den
   1817   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
   1818 
   1819   // Remainder = Num - Num_S_Remainder
   1820   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
   1821 
   1822   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
   1823   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
   1824                                                  DAG.getConstant(-1, DL, VT),
   1825                                                  DAG.getConstant(0, DL, VT),
   1826                                                  ISD::SETUGE);
   1827   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
   1828   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
   1829                                                   Num_S_Remainder,
   1830                                                   DAG.getConstant(-1, DL, VT),
   1831                                                   DAG.getConstant(0, DL, VT),
   1832                                                   ISD::SETUGE);
   1833   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
   1834   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
   1835                                                Remainder_GE_Zero);
   1836 
   1837   // Calculate Division result:
   1838 
   1839   // Quotient_A_One = Quotient + 1
   1840   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
   1841                                        DAG.getConstant(1, DL, VT));
   1842 
   1843   // Quotient_S_One = Quotient - 1
   1844   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
   1845                                        DAG.getConstant(1, DL, VT));
   1846 
   1847   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
   1848   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
   1849                                      Quotient, Quotient_A_One, ISD::SETEQ);
   1850 
   1851   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
   1852   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
   1853                             Quotient_S_One, Div, ISD::SETEQ);
   1854 
   1855   // Calculate Rem result:
   1856 
   1857   // Remainder_S_Den = Remainder - Den
   1858   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
   1859 
   1860   // Remainder_A_Den = Remainder + Den
   1861   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
   1862 
   1863   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
   1864   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
   1865                                     Remainder, Remainder_S_Den, ISD::SETEQ);
   1866 
   1867   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
   1868   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
   1869                             Remainder_A_Den, Rem, ISD::SETEQ);
   1870   SDValue Ops[2] = {
   1871     Div,
   1872     Rem
   1873   };
   1874   return DAG.getMergeValues(Ops, DL);
   1875 }
   1876 
   1877 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
   1878                                            SelectionDAG &DAG) const {
   1879   SDLoc DL(Op);
   1880   EVT VT = Op.getValueType();
   1881 
   1882   SDValue LHS = Op.getOperand(0);
   1883   SDValue RHS = Op.getOperand(1);
   1884 
   1885   SDValue Zero = DAG.getConstant(0, DL, VT);
   1886   SDValue NegOne = DAG.getConstant(-1, DL, VT);
   1887 
   1888   if (VT == MVT::i32) {
   1889     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
   1890       return Res;
   1891   }
   1892 
   1893   if (VT == MVT::i64 &&
   1894       DAG.ComputeNumSignBits(LHS) > 32 &&
   1895       DAG.ComputeNumSignBits(RHS) > 32) {
   1896     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
   1897 
   1898     //HiLo split
   1899     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
   1900     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
   1901     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
   1902                                  LHS_Lo, RHS_Lo);
   1903     SDValue Res[2] = {
   1904       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
   1905       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
   1906     };
   1907     return DAG.getMergeValues(Res, DL);
   1908   }
   1909 
   1910   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
   1911   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
   1912   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
   1913   SDValue RSign = LHSign; // Remainder sign is the same as LHS
   1914 
   1915   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
   1916   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
   1917 
   1918   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
   1919   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
   1920 
   1921   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
   1922   SDValue Rem = Div.getValue(1);
   1923 
   1924   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
   1925   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
   1926 
   1927   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
   1928   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
   1929 
   1930   SDValue Res[2] = {
   1931     Div,
   1932     Rem
   1933   };
   1934   return DAG.getMergeValues(Res, DL);
   1935 }
   1936 
   1937 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
   1938 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
   1939   SDLoc SL(Op);
   1940   EVT VT = Op.getValueType();
   1941   SDValue X = Op.getOperand(0);
   1942   SDValue Y = Op.getOperand(1);
   1943 
   1944   // TODO: Should this propagate fast-math-flags?
   1945 
   1946   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
   1947   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
   1948   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
   1949 
   1950   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
   1951 }
   1952 
   1953 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
   1954   SDLoc SL(Op);
   1955   SDValue Src = Op.getOperand(0);
   1956 
   1957   // result = trunc(src)
   1958   // if (src > 0.0 && src != result)
   1959   //   result += 1.0
   1960 
   1961   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
   1962 
   1963   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
   1964   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
   1965 
   1966   EVT SetCCVT =
   1967       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
   1968 
   1969   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
   1970   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
   1971   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
   1972 
   1973   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
   1974   // TODO: Should this propagate fast-math-flags?
   1975   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
   1976 }
   1977 
   1978 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
   1979                                   SelectionDAG &DAG) {
   1980   const unsigned FractBits = 52;
   1981   const unsigned ExpBits = 11;
   1982 
   1983   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
   1984                                 Hi,
   1985                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
   1986                                 DAG.getConstant(ExpBits, SL, MVT::i32));
   1987   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
   1988                             DAG.getConstant(1023, SL, MVT::i32));
   1989 
   1990   return Exp;
   1991 }
   1992 
   1993 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
   1994   SDLoc SL(Op);
   1995   SDValue Src = Op.getOperand(0);
   1996 
   1997   assert(Op.getValueType() == MVT::f64);
   1998 
   1999   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   2000   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
   2001 
   2002   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
   2003 
   2004   // Extract the upper half, since this is where we will find the sign and
   2005   // exponent.
   2006   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
   2007 
   2008   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
   2009 
   2010   const unsigned FractBits = 52;
   2011 
   2012   // Extract the sign bit.
   2013   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
   2014   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
   2015 
   2016   // Extend back to 64-bits.
   2017   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
   2018   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
   2019 
   2020   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
   2021   const SDValue FractMask
   2022     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
   2023 
   2024   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
   2025   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
   2026   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
   2027 
   2028   EVT SetCCVT =
   2029       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
   2030 
   2031   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
   2032 
   2033   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
   2034   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
   2035 
   2036   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
   2037   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
   2038 
   2039   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
   2040 }
   2041 
   2042 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
   2043   SDLoc SL(Op);
   2044   SDValue Src = Op.getOperand(0);
   2045 
   2046   assert(Op.getValueType() == MVT::f64);
   2047 
   2048   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
   2049   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
   2050   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
   2051 
   2052   // TODO: Should this propagate fast-math-flags?
   2053 
   2054   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
   2055   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
   2056 
   2057   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
   2058 
   2059   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
   2060   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
   2061 
   2062   EVT SetCCVT =
   2063       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
   2064   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
   2065 
   2066   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
   2067 }
   2068 
   2069 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
   2070   // FNEARBYINT and FRINT are the same, except in their handling of FP
   2071   // exceptions. Those aren't really meaningful for us, and OpenCL only has
   2072   // rint, so just treat them as equivalent.
   2073   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
   2074 }
   2075 
   2076 // XXX - May require not supporting f32 denormals?
   2077 
   2078 // Don't handle v2f16. The extra instructions to scalarize and repack around the
   2079 // compare and vselect end up producing worse code than scalarizing the whole
   2080 // operation.
   2081 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
   2082   SDLoc SL(Op);
   2083   SDValue X = Op.getOperand(0);
   2084   EVT VT = Op.getValueType();
   2085 
   2086   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
   2087 
   2088   // TODO: Should this propagate fast-math-flags?
   2089 
   2090   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
   2091 
   2092   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
   2093 
   2094   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
   2095   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
   2096   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
   2097 
   2098   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
   2099 
   2100   EVT SetCCVT =
   2101       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
   2102 
   2103   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
   2104 
   2105   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
   2106 
   2107   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
   2108 }
   2109 
   2110 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
   2111   SDLoc SL(Op);
   2112   SDValue X = Op.getOperand(0);
   2113 
   2114   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
   2115 
   2116   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   2117   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
   2118   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
   2119   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
   2120   EVT SetCCVT =
   2121       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
   2122 
   2123   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
   2124 
   2125   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
   2126 
   2127   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
   2128 
   2129   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
   2130                                        MVT::i64);
   2131 
   2132   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
   2133   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
   2134                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
   2135                                           MVT::i64),
   2136                           Exp);
   2137 
   2138   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
   2139   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
   2140                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
   2141                               ISD::SETNE);
   2142 
   2143   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
   2144                              D, DAG.getConstant(0, SL, MVT::i64));
   2145   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
   2146 
   2147   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
   2148   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
   2149 
   2150   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
   2151   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
   2152   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
   2153 
   2154   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
   2155                             ExpEqNegOne,
   2156                             DAG.getConstantFP(1.0, SL, MVT::f64),
   2157                             DAG.getConstantFP(0.0, SL, MVT::f64));
   2158 
   2159   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
   2160 
   2161   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
   2162   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
   2163 
   2164   return K;
   2165 }
   2166 
   2167 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
   2168   EVT VT = Op.getValueType();
   2169 
   2170   if (VT == MVT::f32 || VT == MVT::f16)
   2171     return LowerFROUND32_16(Op, DAG);
   2172 
   2173   if (VT == MVT::f64)
   2174     return LowerFROUND64(Op, DAG);
   2175 
   2176   llvm_unreachable("unhandled type");
   2177 }
   2178 
   2179 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
   2180   SDLoc SL(Op);
   2181   SDValue Src = Op.getOperand(0);
   2182 
   2183   // result = trunc(src);
   2184   // if (src < 0.0 && src != result)
   2185   //   result += -1.0.
   2186 
   2187   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
   2188 
   2189   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
   2190   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
   2191 
   2192   EVT SetCCVT =
   2193       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
   2194 
   2195   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
   2196   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
   2197   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
   2198 
   2199   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
   2200   // TODO: Should this propagate fast-math-flags?
   2201   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
   2202 }
   2203 
   2204 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
   2205                                         double Log2BaseInverted) const {
   2206   EVT VT = Op.getValueType();
   2207 
   2208   SDLoc SL(Op);
   2209   SDValue Operand = Op.getOperand(0);
   2210   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
   2211   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
   2212 
   2213   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
   2214 }
   2215 
   2216 static bool isCtlzOpc(unsigned Opc) {
   2217   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
   2218 }
   2219 
   2220 static bool isCttzOpc(unsigned Opc) {
   2221   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
   2222 }
   2223 
   2224 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
   2225   SDLoc SL(Op);
   2226   SDValue Src = Op.getOperand(0);
   2227   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
   2228                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
   2229 
   2230   unsigned ISDOpc, NewOpc;
   2231   if (isCtlzOpc(Op.getOpcode())) {
   2232     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
   2233     NewOpc = AMDGPUISD::FFBH_U32;
   2234   } else if (isCttzOpc(Op.getOpcode())) {
   2235     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
   2236     NewOpc = AMDGPUISD::FFBL_B32;
   2237   } else
   2238     llvm_unreachable("Unexpected OPCode!!!");
   2239 
   2240 
   2241   if (ZeroUndef && Src.getValueType() == MVT::i32)
   2242     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
   2243 
   2244   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
   2245 
   2246   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   2247   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
   2248 
   2249   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
   2250   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
   2251 
   2252   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
   2253                                    *DAG.getContext(), MVT::i32);
   2254 
   2255   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
   2256   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
   2257 
   2258   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
   2259   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
   2260 
   2261   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
   2262   SDValue Add, NewOpr;
   2263   if (isCtlzOpc(Op.getOpcode())) {
   2264     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
   2265     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
   2266     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
   2267   } else {
   2268     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
   2269     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
   2270     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
   2271   }
   2272 
   2273   if (!ZeroUndef) {
   2274     // Test if the full 64-bit input is zero.
   2275 
   2276     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
   2277     // which we probably don't want.
   2278     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
   2279     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
   2280     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
   2281 
   2282     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
   2283     // with the same cycles, otherwise it is slower.
   2284     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
   2285     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
   2286 
   2287     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
   2288 
   2289     // The instruction returns -1 for 0 input, but the defined intrinsic
   2290     // behavior is to return the number of bits.
   2291     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
   2292                          SrcIsZero, Bits32, NewOpr);
   2293   }
   2294 
   2295   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
   2296 }
   2297 
   2298 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
   2299                                                bool Signed) const {
   2300   // Unsigned
   2301   // cul2f(ulong u)
   2302   //{
   2303   //  uint lz = clz(u);
   2304   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
   2305   //  u = (u << lz) & 0x7fffffffffffffffUL;
   2306   //  ulong t = u & 0xffffffffffUL;
   2307   //  uint v = (e << 23) | (uint)(u >> 40);
   2308   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
   2309   //  return as_float(v + r);
   2310   //}
   2311   // Signed
   2312   // cl2f(long l)
   2313   //{
   2314   //  long s = l >> 63;
   2315   //  float r = cul2f((l + s) ^ s);
   2316   //  return s ? -r : r;
   2317   //}
   2318 
   2319   SDLoc SL(Op);
   2320   SDValue Src = Op.getOperand(0);
   2321   SDValue L = Src;
   2322 
   2323   SDValue S;
   2324   if (Signed) {
   2325     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
   2326     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
   2327 
   2328     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
   2329     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
   2330   }
   2331 
   2332   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
   2333                                    *DAG.getContext(), MVT::f32);
   2334 
   2335 
   2336   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
   2337   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
   2338   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
   2339   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
   2340 
   2341   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
   2342   SDValue E = DAG.getSelect(SL, MVT::i32,
   2343     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
   2344     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
   2345     ZeroI32);
   2346 
   2347   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
   2348     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
   2349     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
   2350 
   2351   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
   2352                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
   2353 
   2354   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
   2355                              U, DAG.getConstant(40, SL, MVT::i64));
   2356 
   2357   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
   2358     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
   2359     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
   2360 
   2361   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
   2362   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
   2363   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
   2364 
   2365   SDValue One = DAG.getConstant(1, SL, MVT::i32);
   2366 
   2367   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
   2368 
   2369   SDValue R = DAG.getSelect(SL, MVT::i32,
   2370     RCmp,
   2371     One,
   2372     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
   2373   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
   2374   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
   2375 
   2376   if (!Signed)
   2377     return R;
   2378 
   2379   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
   2380   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
   2381 }
   2382 
   2383 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
   2384                                                bool Signed) const {
   2385   SDLoc SL(Op);
   2386   SDValue Src = Op.getOperand(0);
   2387 
   2388   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
   2389 
   2390   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
   2391                            DAG.getConstant(0, SL, MVT::i32));
   2392   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
   2393                            DAG.getConstant(1, SL, MVT::i32));
   2394 
   2395   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
   2396                               SL, MVT::f64, Hi);
   2397 
   2398   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
   2399 
   2400   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
   2401                               DAG.getConstant(32, SL, MVT::i32));
   2402   // TODO: Should this propagate fast-math-flags?
   2403   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
   2404 }
   2405 
   2406 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
   2407                                                SelectionDAG &DAG) const {
   2408   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
   2409          "operation should be legal");
   2410 
   2411   // TODO: Factor out code common with LowerSINT_TO_FP.
   2412 
   2413   EVT DestVT = Op.getValueType();
   2414   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
   2415     SDLoc DL(Op);
   2416     SDValue Src = Op.getOperand(0);
   2417 
   2418     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
   2419     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
   2420     SDValue FPRound =
   2421         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
   2422 
   2423     return FPRound;
   2424   }
   2425 
   2426   if (DestVT == MVT::f32)
   2427     return LowerINT_TO_FP32(Op, DAG, false);
   2428 
   2429   assert(DestVT == MVT::f64);
   2430   return LowerINT_TO_FP64(Op, DAG, false);
   2431 }
   2432 
   2433 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
   2434                                               SelectionDAG &DAG) const {
   2435   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
   2436          "operation should be legal");
   2437 
   2438   // TODO: Factor out code common with LowerUINT_TO_FP.
   2439 
   2440   EVT DestVT = Op.getValueType();
   2441   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
   2442     SDLoc DL(Op);
   2443     SDValue Src = Op.getOperand(0);
   2444 
   2445     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
   2446     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
   2447     SDValue FPRound =
   2448         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
   2449 
   2450     return FPRound;
   2451   }
   2452 
   2453   if (DestVT == MVT::f32)
   2454     return LowerINT_TO_FP32(Op, DAG, true);
   2455 
   2456   assert(DestVT == MVT::f64);
   2457   return LowerINT_TO_FP64(Op, DAG, true);
   2458 }
   2459 
   2460 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
   2461                                                bool Signed) const {
   2462   SDLoc SL(Op);
   2463 
   2464   SDValue Src = Op.getOperand(0);
   2465 
   2466   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
   2467 
   2468   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
   2469                                  MVT::f64);
   2470   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
   2471                                  MVT::f64);
   2472   // TODO: Should this propagate fast-math-flags?
   2473   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
   2474 
   2475   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
   2476 
   2477 
   2478   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
   2479 
   2480   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
   2481                            MVT::i32, FloorMul);
   2482   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
   2483 
   2484   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
   2485 
   2486   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
   2487 }
   2488 
   2489 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
   2490   SDLoc DL(Op);
   2491   SDValue N0 = Op.getOperand(0);
   2492 
   2493   // Convert to target node to get known bits
   2494   if (N0.getValueType() == MVT::f32)
   2495     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
   2496 
   2497   if (getTargetMachine().Options.UnsafeFPMath) {
   2498     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
   2499     return SDValue();
   2500   }
   2501 
   2502   assert(N0.getSimpleValueType() == MVT::f64);
   2503 
   2504   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
   2505   const unsigned ExpMask = 0x7ff;
   2506   const unsigned ExpBiasf64 = 1023;
   2507   const unsigned ExpBiasf16 = 15;
   2508   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
   2509   SDValue One = DAG.getConstant(1, DL, MVT::i32);
   2510   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
   2511   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
   2512                            DAG.getConstant(32, DL, MVT::i64));
   2513   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
   2514   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
   2515   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
   2516                           DAG.getConstant(20, DL, MVT::i64));
   2517   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
   2518                   DAG.getConstant(ExpMask, DL, MVT::i32));
   2519   // Subtract the fp64 exponent bias (1023) to get the real exponent and
   2520   // add the f16 bias (15) to get the biased exponent for the f16 format.
   2521   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
   2522                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
   2523 
   2524   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
   2525                           DAG.getConstant(8, DL, MVT::i32));
   2526   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
   2527                   DAG.getConstant(0xffe, DL, MVT::i32));
   2528 
   2529   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
   2530                                   DAG.getConstant(0x1ff, DL, MVT::i32));
   2531   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
   2532 
   2533   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
   2534   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
   2535 
   2536   // (M != 0 ? 0x0200 : 0) | 0x7c00;
   2537   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
   2538       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
   2539                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
   2540 
   2541   // N = M | (E << 12);
   2542   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
   2543       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
   2544                   DAG.getConstant(12, DL, MVT::i32)));
   2545 
   2546   // B = clamp(1-E, 0, 13);
   2547   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
   2548                                   One, E);
   2549   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
   2550   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
   2551                   DAG.getConstant(13, DL, MVT::i32));
   2552 
   2553   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
   2554                                    DAG.getConstant(0x1000, DL, MVT::i32));
   2555 
   2556   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
   2557   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
   2558   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
   2559   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
   2560 
   2561   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
   2562   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
   2563                               DAG.getConstant(0x7, DL, MVT::i32));
   2564   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
   2565                   DAG.getConstant(2, DL, MVT::i32));
   2566   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
   2567                                One, Zero, ISD::SETEQ);
   2568   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
   2569                                One, Zero, ISD::SETGT);
   2570   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
   2571   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
   2572 
   2573   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
   2574                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
   2575   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
   2576                       I, V, ISD::SETEQ);
   2577 
   2578   // Extract the sign bit.
   2579   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
   2580                             DAG.getConstant(16, DL, MVT::i32));
   2581   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
   2582                      DAG.getConstant(0x8000, DL, MVT::i32));
   2583 
   2584   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
   2585   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
   2586 }
   2587 
   2588 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
   2589                                               SelectionDAG &DAG) const {
   2590   SDValue Src = Op.getOperand(0);
   2591 
   2592   // TODO: Factor out code common with LowerFP_TO_UINT.
   2593 
   2594   EVT SrcVT = Src.getValueType();
   2595   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
   2596     SDLoc DL(Op);
   2597 
   2598     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
   2599     SDValue FpToInt32 =
   2600         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
   2601 
   2602     return FpToInt32;
   2603   }
   2604 
   2605   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
   2606     return LowerFP64_TO_INT(Op, DAG, true);
   2607 
   2608   return SDValue();
   2609 }
   2610 
   2611 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
   2612                                               SelectionDAG &DAG) const {
   2613   SDValue Src = Op.getOperand(0);
   2614 
   2615   // TODO: Factor out code common with LowerFP_TO_SINT.
   2616 
   2617   EVT SrcVT = Src.getValueType();
   2618   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
   2619     SDLoc DL(Op);
   2620 
   2621     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
   2622     SDValue FpToInt32 =
   2623         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
   2624 
   2625     return FpToInt32;
   2626   }
   2627 
   2628   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
   2629     return LowerFP64_TO_INT(Op, DAG, false);
   2630 
   2631   return SDValue();
   2632 }
   2633 
   2634 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   2635                                                      SelectionDAG &DAG) const {
   2636   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   2637   MVT VT = Op.getSimpleValueType();
   2638   MVT ScalarVT = VT.getScalarType();
   2639 
   2640   assert(VT.isVector());
   2641 
   2642   SDValue Src = Op.getOperand(0);
   2643   SDLoc DL(Op);
   2644 
   2645   // TODO: Don't scalarize on Evergreen?
   2646   unsigned NElts = VT.getVectorNumElements();
   2647   SmallVector<SDValue, 8> Args;
   2648   DAG.ExtractVectorElements(Src, Args, 0, NElts);
   2649 
   2650   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
   2651   for (unsigned I = 0; I < NElts; ++I)
   2652     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
   2653 
   2654   return DAG.getBuildVector(VT, DL, Args);
   2655 }
   2656 
   2657 //===----------------------------------------------------------------------===//
   2658 // Custom DAG optimizations
   2659 //===----------------------------------------------------------------------===//
   2660 
   2661 static bool isU24(SDValue Op, SelectionDAG &DAG) {
   2662   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
   2663 }
   2664 
   2665 static bool isI24(SDValue Op, SelectionDAG &DAG) {
   2666   EVT VT = Op.getValueType();
   2667   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
   2668                                      // as unsigned 24-bit values.
   2669     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
   2670 }
   2671 
   2672 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
   2673                         TargetLowering::DAGCombinerInfo &DCI) {
   2674 
   2675   SelectionDAG &DAG = DCI.DAG;
   2676   SDValue Op = Node24->getOperand(OpIdx);
   2677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2678   EVT VT = Op.getValueType();
   2679 
   2680   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
   2681   APInt KnownZero, KnownOne;
   2682   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
   2683   if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO))
   2684     return true;
   2685 
   2686   return false;
   2687 }
   2688 
   2689 template <typename IntTy>
   2690 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
   2691                                uint32_t Width, const SDLoc &DL) {
   2692   if (Width + Offset < 32) {
   2693     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
   2694     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
   2695     return DAG.getConstant(Result, DL, MVT::i32);
   2696   }
   2697 
   2698   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
   2699 }
   2700 
   2701 static bool hasVolatileUser(SDNode *Val) {
   2702   for (SDNode *U : Val->uses()) {
   2703     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
   2704       if (M->isVolatile())
   2705         return true;
   2706     }
   2707   }
   2708 
   2709   return false;
   2710 }
   2711 
   2712 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
   2713   // i32 vectors are the canonical memory type.
   2714   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
   2715     return false;
   2716 
   2717   if (!VT.isByteSized())
   2718     return false;
   2719 
   2720   unsigned Size = VT.getStoreSize();
   2721 
   2722   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
   2723     return false;
   2724 
   2725   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
   2726     return false;
   2727 
   2728   return true;
   2729 }
   2730 
   2731 // Replace load of an illegal type with a store of a bitcast to a friendlier
   2732 // type.
   2733 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
   2734                                                  DAGCombinerInfo &DCI) const {
   2735   if (!DCI.isBeforeLegalize())
   2736     return SDValue();
   2737 
   2738   LoadSDNode *LN = cast<LoadSDNode>(N);
   2739   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
   2740     return SDValue();
   2741 
   2742   SDLoc SL(N);
   2743   SelectionDAG &DAG = DCI.DAG;
   2744   EVT VT = LN->getMemoryVT();
   2745 
   2746   unsigned Size = VT.getStoreSize();
   2747   unsigned Align = LN->getAlignment();
   2748   if (Align < Size && isTypeLegal(VT)) {
   2749     bool IsFast;
   2750     unsigned AS = LN->getAddressSpace();
   2751 
   2752     // Expand unaligned loads earlier than legalization. Due to visitation order
   2753     // problems during legalization, the emitted instructions to pack and unpack
   2754     // the bytes again are not eliminated in the case of an unaligned copy.
   2755     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
   2756       if (VT.isVector())
   2757         return scalarizeVectorLoad(LN, DAG);
   2758 
   2759       SDValue Ops[2];
   2760       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
   2761       return DAG.getMergeValues(Ops, SDLoc(N));
   2762     }
   2763 
   2764     if (!IsFast)
   2765       return SDValue();
   2766   }
   2767 
   2768   if (!shouldCombineMemoryType(VT))
   2769     return SDValue();
   2770 
   2771   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
   2772 
   2773   SDValue NewLoad
   2774     = DAG.getLoad(NewVT, SL, LN->getChain(),
   2775                   LN->getBasePtr(), LN->getMemOperand());
   2776 
   2777   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
   2778   DCI.CombineTo(N, BC, NewLoad.getValue(1));
   2779   return SDValue(N, 0);
   2780 }
   2781 
   2782 // Replace store of an illegal type with a store of a bitcast to a friendlier
   2783 // type.
   2784 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
   2785                                                   DAGCombinerInfo &DCI) const {
   2786   if (!DCI.isBeforeLegalize())
   2787     return SDValue();
   2788 
   2789   StoreSDNode *SN = cast<StoreSDNode>(N);
   2790   if (SN->isVolatile() || !ISD::isNormalStore(SN))
   2791     return SDValue();
   2792 
   2793   EVT VT = SN->getMemoryVT();
   2794   unsigned Size = VT.getStoreSize();
   2795 
   2796   SDLoc SL(N);
   2797   SelectionDAG &DAG = DCI.DAG;
   2798   unsigned Align = SN->getAlignment();
   2799   if (Align < Size && isTypeLegal(VT)) {
   2800     bool IsFast;
   2801     unsigned AS = SN->getAddressSpace();
   2802 
   2803     // Expand unaligned stores earlier than legalization. Due to visitation
   2804     // order problems during legalization, the emitted instructions to pack and
   2805     // unpack the bytes again are not eliminated in the case of an unaligned
   2806     // copy.
   2807     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
   2808       if (VT.isVector())
   2809         return scalarizeVectorStore(SN, DAG);
   2810 
   2811       return expandUnalignedStore(SN, DAG);
   2812     }
   2813 
   2814     if (!IsFast)
   2815       return SDValue();
   2816   }
   2817 
   2818   if (!shouldCombineMemoryType(VT))
   2819     return SDValue();
   2820 
   2821   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
   2822   SDValue Val = SN->getValue();
   2823 
   2824   //DCI.AddToWorklist(Val.getNode());
   2825 
   2826   bool OtherUses = !Val.hasOneUse();
   2827   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
   2828   if (OtherUses) {
   2829     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
   2830     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
   2831   }
   2832 
   2833   return DAG.getStore(SN->getChain(), SL, CastVal,
   2834                       SN->getBasePtr(), SN->getMemOperand());
   2835 }
   2836 
   2837 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
   2838 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
   2839 // issues.
   2840 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
   2841                                                         DAGCombinerInfo &DCI) const {
   2842   SelectionDAG &DAG = DCI.DAG;
   2843   SDValue N0 = N->getOperand(0);
   2844 
   2845   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
   2846   //     (vt2 (truncate (assertzext vt0:x, vt1)))
   2847   if (N0.getOpcode() == ISD::TRUNCATE) {
   2848     SDValue N1 = N->getOperand(1);
   2849     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
   2850     SDLoc SL(N);
   2851 
   2852     SDValue Src = N0.getOperand(0);
   2853     EVT SrcVT = Src.getValueType();
   2854     if (SrcVT.bitsGE(ExtVT)) {
   2855       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
   2856       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
   2857     }
   2858   }
   2859 
   2860   return SDValue();
   2861 }
   2862 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
   2863 /// binary operation \p Opc to it with the corresponding constant operands.
   2864 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
   2865   DAGCombinerInfo &DCI, const SDLoc &SL,
   2866   unsigned Opc, SDValue LHS,
   2867   uint32_t ValLo, uint32_t ValHi) const {
   2868   SelectionDAG &DAG = DCI.DAG;
   2869   SDValue Lo, Hi;
   2870   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
   2871 
   2872   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
   2873   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
   2874 
   2875   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
   2876   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
   2877 
   2878   // Re-visit the ands. It's possible we eliminated one of them and it could
   2879   // simplify the vector.
   2880   DCI.AddToWorklist(Lo.getNode());
   2881   DCI.AddToWorklist(Hi.getNode());
   2882 
   2883   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
   2884   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
   2885 }
   2886 
   2887 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
   2888                                                 DAGCombinerInfo &DCI) const {
   2889   EVT VT = N->getValueType(0);
   2890 
   2891   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2892   if (!RHS)
   2893     return SDValue();
   2894 
   2895   SDValue LHS = N->getOperand(0);
   2896   unsigned RHSVal = RHS->getZExtValue();
   2897   if (!RHSVal)
   2898     return LHS;
   2899 
   2900   SDLoc SL(N);
   2901   SelectionDAG &DAG = DCI.DAG;
   2902 
   2903   switch (LHS->getOpcode()) {
   2904   default:
   2905     break;
   2906   case ISD::ZERO_EXTEND:
   2907   case ISD::SIGN_EXTEND:
   2908   case ISD::ANY_EXTEND: {
   2909     SDValue X = LHS->getOperand(0);
   2910 
   2911     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
   2912         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
   2913       // Prefer build_vector as the canonical form if packed types are legal.
   2914       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
   2915       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
   2916        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
   2917       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
   2918     }
   2919 
   2920     // shl (ext x) => zext (shl x), if shift does not overflow int
   2921     if (VT != MVT::i64)
   2922       break;
   2923     KnownBits Known;
   2924     DAG.computeKnownBits(X, Known);
   2925     unsigned LZ = Known.countMinLeadingZeros();
   2926     if (LZ < RHSVal)
   2927       break;
   2928     EVT XVT = X.getValueType();
   2929     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
   2930     return DAG.getZExtOrTrunc(Shl, SL, VT);
   2931   }
   2932   }
   2933 
   2934   if (VT != MVT::i64)
   2935     return SDValue();
   2936 
   2937   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
   2938 
   2939   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
   2940   // common case, splitting this into a move and a 32-bit shift is faster and
   2941   // the same code size.
   2942   if (RHSVal < 32)
   2943     return SDValue();
   2944 
   2945   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
   2946 
   2947   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
   2948   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
   2949 
   2950   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   2951 
   2952   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
   2953   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
   2954 }
   2955 
   2956 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
   2957                                                 DAGCombinerInfo &DCI) const {
   2958   if (N->getValueType(0) != MVT::i64)
   2959     return SDValue();
   2960 
   2961   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2962   if (!RHS)
   2963     return SDValue();
   2964 
   2965   SelectionDAG &DAG = DCI.DAG;
   2966   SDLoc SL(N);
   2967   unsigned RHSVal = RHS->getZExtValue();
   2968 
   2969   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
   2970   if (RHSVal == 32) {
   2971     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
   2972     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
   2973                                    DAG.getConstant(31, SL, MVT::i32));
   2974 
   2975     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
   2976     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
   2977   }
   2978 
   2979   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
   2980   if (RHSVal == 63) {
   2981     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
   2982     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
   2983                                    DAG.getConstant(31, SL, MVT::i32));
   2984     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
   2985     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
   2986   }
   2987 
   2988   return SDValue();
   2989 }
   2990 
   2991 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
   2992                                                 DAGCombinerInfo &DCI) const {
   2993   if (N->getValueType(0) != MVT::i64)
   2994     return SDValue();
   2995 
   2996   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2997   if (!RHS)
   2998     return SDValue();
   2999 
   3000   unsigned ShiftAmt = RHS->getZExtValue();
   3001   if (ShiftAmt < 32)
   3002     return SDValue();
   3003 
   3004   // srl i64:x, C for C >= 32
   3005   // =>
   3006   //   build_pair (srl hi_32(x), C - 32), 0
   3007 
   3008   SelectionDAG &DAG = DCI.DAG;
   3009   SDLoc SL(N);
   3010 
   3011   SDValue One = DAG.getConstant(1, SL, MVT::i32);
   3012   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   3013 
   3014   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
   3015   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
   3016                            VecOp, One);
   3017 
   3018   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
   3019   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
   3020 
   3021   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
   3022 
   3023   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
   3024 }
   3025 
   3026 SDValue AMDGPUTargetLowering::performTruncateCombine(
   3027   SDNode *N, DAGCombinerInfo &DCI) const {
   3028   SDLoc SL(N);
   3029   SelectionDAG &DAG = DCI.DAG;
   3030   EVT VT = N->getValueType(0);
   3031   SDValue Src = N->getOperand(0);
   3032 
   3033   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
   3034   if (Src.getOpcode() == ISD::BITCAST) {
   3035     SDValue Vec = Src.getOperand(0);
   3036     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
   3037       SDValue Elt0 = Vec.getOperand(0);
   3038       EVT EltVT = Elt0.getValueType();
   3039       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
   3040         if (EltVT.isFloatingPoint()) {
   3041           Elt0 = DAG.getNode(ISD::BITCAST, SL,
   3042                              EltVT.changeTypeToInteger(), Elt0);
   3043         }
   3044 
   3045         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
   3046       }
   3047     }
   3048   }
   3049 
   3050   // Equivalent of above for accessing the high element of a vector as an
   3051   // integer operation.
   3052   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
   3053   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
   3054     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
   3055       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
   3056         SDValue BV = stripBitcast(Src.getOperand(0));
   3057         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
   3058             BV.getValueType().getVectorNumElements() == 2) {
   3059           SDValue SrcElt = BV.getOperand(1);
   3060           EVT SrcEltVT = SrcElt.getValueType();
   3061           if (SrcEltVT.isFloatingPoint()) {
   3062             SrcElt = DAG.getNode(ISD::BITCAST, SL,
   3063                                  SrcEltVT.changeTypeToInteger(), SrcElt);
   3064           }
   3065 
   3066           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
   3067         }
   3068       }
   3069     }
   3070   }
   3071 
   3072   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
   3073   //
   3074   // i16 (trunc (srl i64:x, K)), K <= 16 ->
   3075   //     i16 (trunc (srl (i32 (trunc x), K)))
   3076   if (VT.getScalarSizeInBits() < 32) {
   3077     EVT SrcVT = Src.getValueType();
   3078     if (SrcVT.getScalarSizeInBits() > 32 &&
   3079         (Src.getOpcode() == ISD::SRL ||
   3080          Src.getOpcode() == ISD::SRA ||
   3081          Src.getOpcode() == ISD::SHL)) {
   3082       SDValue Amt = Src.getOperand(1);
   3083       KnownBits Known;
   3084       DAG.computeKnownBits(Amt, Known);
   3085       unsigned Size = VT.getScalarSizeInBits();
   3086       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
   3087           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
   3088         EVT MidVT = VT.isVector() ?
   3089           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
   3090                            VT.getVectorNumElements()) : MVT::i32;
   3091 
   3092         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
   3093         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
   3094                                     Src.getOperand(0));
   3095         DCI.AddToWorklist(Trunc.getNode());
   3096 
   3097         if (Amt.getValueType() != NewShiftVT) {
   3098           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
   3099           DCI.AddToWorklist(Amt.getNode());
   3100         }
   3101 
   3102         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
   3103                                           Trunc, Amt);
   3104         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
   3105       }
   3106     }
   3107   }
   3108 
   3109   return SDValue();
   3110 }
   3111 
   3112 // We need to specifically handle i64 mul here to avoid unnecessary conversion
   3113 // instructions. If we only match on the legalized i64 mul expansion,
   3114 // SimplifyDemandedBits will be unable to remove them because there will be
   3115 // multiple uses due to the separate mul + mulh[su].
   3116 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
   3117                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
   3118   if (Size <= 32) {
   3119     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
   3120     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
   3121   }
   3122 
   3123   // Because we want to eliminate extension instructions before the
   3124   // operation, we need to create a single user here (i.e. not the separate
   3125   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
   3126 
   3127   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
   3128 
   3129   SDValue Mul = DAG.getNode(MulOpc, SL,
   3130                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
   3131 
   3132   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
   3133                      Mul.getValue(0), Mul.getValue(1));
   3134 }
   3135 
   3136 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
   3137                                                 DAGCombinerInfo &DCI) const {
   3138   EVT VT = N->getValueType(0);
   3139 
   3140   unsigned Size = VT.getSizeInBits();
   3141   if (VT.isVector() || Size > 64)
   3142     return SDValue();
   3143 
   3144   // There are i16 integer mul/mad.
   3145   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
   3146     return SDValue();
   3147 
   3148   SelectionDAG &DAG = DCI.DAG;
   3149   SDLoc DL(N);
   3150 
   3151   SDValue N0 = N->getOperand(0);
   3152   SDValue N1 = N->getOperand(1);
   3153 
   3154   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
   3155   // in the source into any_extends if the result of the mul is truncated. Since
   3156   // we can assume the high bits are whatever we want, use the underlying value
   3157   // to avoid the unknown high bits from interfering.
   3158   if (N0.getOpcode() == ISD::ANY_EXTEND)
   3159     N0 = N0.getOperand(0);
   3160 
   3161   if (N1.getOpcode() == ISD::ANY_EXTEND)
   3162     N1 = N1.getOperand(0);
   3163 
   3164   SDValue Mul;
   3165 
   3166   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
   3167     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
   3168     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
   3169     Mul = getMul24(DAG, DL, N0, N1, Size, false);
   3170   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
   3171     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
   3172     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
   3173     Mul = getMul24(DAG, DL, N0, N1, Size, true);
   3174   } else {
   3175     return SDValue();
   3176   }
   3177 
   3178   // We need to use sext even for MUL_U24, because MUL_U24 is used
   3179   // for signed multiply of 8 and 16-bit types.
   3180   return DAG.getSExtOrTrunc(Mul, DL, VT);
   3181 }
   3182 
   3183 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
   3184                                                   DAGCombinerInfo &DCI) const {
   3185   EVT VT = N->getValueType(0);
   3186 
   3187   if (!Subtarget->hasMulI24() || VT.isVector())
   3188     return SDValue();
   3189 
   3190   SelectionDAG &DAG = DCI.DAG;
   3191   SDLoc DL(N);
   3192 
   3193   SDValue N0 = N->getOperand(0);
   3194   SDValue N1 = N->getOperand(1);
   3195 
   3196   if (!isI24(N0, DAG) || !isI24(N1, DAG))
   3197     return SDValue();
   3198 
   3199   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
   3200   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
   3201 
   3202   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
   3203   DCI.AddToWorklist(Mulhi.getNode());
   3204   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
   3205 }
   3206 
   3207 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
   3208                                                   DAGCombinerInfo &DCI) const {
   3209   EVT VT = N->getValueType(0);
   3210 
   3211   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
   3212     return SDValue();
   3213 
   3214   SelectionDAG &DAG = DCI.DAG;
   3215   SDLoc DL(N);
   3216 
   3217   SDValue N0 = N->getOperand(0);
   3218   SDValue N1 = N->getOperand(1);
   3219 
   3220   if (!isU24(N0, DAG) || !isU24(N1, DAG))
   3221     return SDValue();
   3222 
   3223   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
   3224   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
   3225 
   3226   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
   3227   DCI.AddToWorklist(Mulhi.getNode());
   3228   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
   3229 }
   3230 
   3231 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
   3232   SDNode *N, DAGCombinerInfo &DCI) const {
   3233   SelectionDAG &DAG = DCI.DAG;
   3234 
   3235   // Simplify demanded bits before splitting into multiple users.
   3236   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
   3237     return SDValue();
   3238 
   3239   SDValue N0 = N->getOperand(0);
   3240   SDValue N1 = N->getOperand(1);
   3241 
   3242   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
   3243 
   3244   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
   3245   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
   3246 
   3247   SDLoc SL(N);
   3248 
   3249   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
   3250   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
   3251   return DAG.getMergeValues({ MulLo, MulHi }, SL);
   3252 }
   3253 
   3254 static bool isNegativeOne(SDValue Val) {
   3255   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
   3256     return C->isAllOnesValue();
   3257   return false;
   3258 }
   3259 
   3260 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
   3261                                           SDValue Op,
   3262                                           const SDLoc &DL,
   3263                                           unsigned Opc) const {
   3264   EVT VT = Op.getValueType();
   3265   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
   3266   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
   3267                               LegalVT != MVT::i16))
   3268     return SDValue();
   3269 
   3270   if (VT != MVT::i32)
   3271     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
   3272 
   3273   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
   3274   if (VT != MVT::i32)
   3275     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
   3276 
   3277   return FFBX;
   3278 }
   3279 
   3280 // The native instructions return -1 on 0 input. Optimize out a select that
   3281 // produces -1 on 0.
   3282 //
   3283 // TODO: If zero is not undef, we could also do this if the output is compared
   3284 // against the bitwidth.
   3285 //
   3286 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
   3287 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
   3288                                                  SDValue LHS, SDValue RHS,
   3289                                                  DAGCombinerInfo &DCI) const {
   3290   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   3291   if (!CmpRhs || !CmpRhs->isNullValue())
   3292     return SDValue();
   3293 
   3294   SelectionDAG &DAG = DCI.DAG;
   3295   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   3296   SDValue CmpLHS = Cond.getOperand(0);
   3297 
   3298   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
   3299                                            AMDGPUISD::FFBH_U32;
   3300 
   3301   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
   3302   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
   3303   if (CCOpcode == ISD::SETEQ &&
   3304       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
   3305       RHS.getOperand(0) == CmpLHS &&
   3306       isNegativeOne(LHS)) {
   3307     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
   3308   }
   3309 
   3310   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
   3311   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
   3312   if (CCOpcode == ISD::SETNE &&
   3313       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
   3314       LHS.getOperand(0) == CmpLHS &&
   3315       isNegativeOne(RHS)) {
   3316     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
   3317   }
   3318 
   3319   return SDValue();
   3320 }
   3321 
   3322 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
   3323                                          unsigned Op,
   3324                                          const SDLoc &SL,
   3325                                          SDValue Cond,
   3326                                          SDValue N1,
   3327                                          SDValue N2) {
   3328   SelectionDAG &DAG = DCI.DAG;
   3329   EVT VT = N1.getValueType();
   3330 
   3331   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
   3332                                   N1.getOperand(0), N2.getOperand(0));
   3333   DCI.AddToWorklist(NewSelect.getNode());
   3334   return DAG.getNode(Op, SL, VT, NewSelect);
   3335 }
   3336 
   3337 // Pull a free FP operation out of a select so it may fold into uses.
   3338 //
   3339 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
   3340 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
   3341 //
   3342 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
   3343 // select c, (fabs x), +k -> fabs (select c, x, k)
   3344 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
   3345                                     SDValue N) {
   3346   SelectionDAG &DAG = DCI.DAG;
   3347   SDValue Cond = N.getOperand(0);
   3348   SDValue LHS = N.getOperand(1);
   3349   SDValue RHS = N.getOperand(2);
   3350 
   3351   EVT VT = N.getValueType();
   3352   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
   3353       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
   3354     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
   3355                                      SDLoc(N), Cond, LHS, RHS);
   3356   }
   3357 
   3358   bool Inv = false;
   3359   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
   3360     std::swap(LHS, RHS);
   3361     Inv = true;
   3362   }
   3363 
   3364   // TODO: Support vector constants.
   3365   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
   3366   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
   3367     SDLoc SL(N);
   3368     // If one side is an fneg/fabs and the other is a constant, we can push the
   3369     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
   3370     SDValue NewLHS = LHS.getOperand(0);
   3371     SDValue NewRHS = RHS;
   3372 
   3373     // Careful: if the neg can be folded up, don't try to pull it back down.
   3374     bool ShouldFoldNeg = true;
   3375 
   3376     if (NewLHS.hasOneUse()) {
   3377       unsigned Opc = NewLHS.getOpcode();
   3378       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
   3379         ShouldFoldNeg = false;
   3380       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
   3381         ShouldFoldNeg = false;
   3382     }
   3383 
   3384     if (ShouldFoldNeg) {
   3385       if (LHS.getOpcode() == ISD::FNEG)
   3386         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
   3387       else if (CRHS->isNegative())
   3388         return SDValue();
   3389 
   3390       if (Inv)
   3391         std::swap(NewLHS, NewRHS);
   3392 
   3393       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
   3394                                       Cond, NewLHS, NewRHS);
   3395       DCI.AddToWorklist(NewSelect.getNode());
   3396       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
   3397     }
   3398   }
   3399 
   3400   return SDValue();
   3401 }
   3402 
   3403 
   3404 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
   3405                                                    DAGCombinerInfo &DCI) const {
   3406   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
   3407     return Folded;
   3408 
   3409   SDValue Cond = N->getOperand(0);
   3410   if (Cond.getOpcode() != ISD::SETCC)
   3411     return SDValue();
   3412 
   3413   EVT VT = N->getValueType(0);
   3414   SDValue LHS = Cond.getOperand(0);
   3415   SDValue RHS = Cond.getOperand(1);
   3416   SDValue CC = Cond.getOperand(2);
   3417 
   3418   SDValue True = N->getOperand(1);
   3419   SDValue False = N->getOperand(2);
   3420 
   3421   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
   3422     SelectionDAG &DAG = DCI.DAG;
   3423     if ((DAG.isConstantValueOfAnyType(True) ||
   3424          DAG.isConstantValueOfAnyType(True)) &&
   3425         (!DAG.isConstantValueOfAnyType(False) &&
   3426          !DAG.isConstantValueOfAnyType(False))) {
   3427       // Swap cmp + select pair to move constant to false input.
   3428       // This will allow using VOPC cndmasks more often.
   3429       // select (setcc x, y), k, x -> select (setcc y, x) x, x
   3430 
   3431       SDLoc SL(N);
   3432       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
   3433                                             LHS.getValueType().isInteger());
   3434 
   3435       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
   3436       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
   3437     }
   3438 
   3439     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
   3440       SDValue MinMax
   3441         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
   3442       // Revisit this node so we can catch min3/max3/med3 patterns.
   3443       //DCI.AddToWorklist(MinMax.getNode());
   3444       return MinMax;
   3445     }
   3446   }
   3447 
   3448   // There's no reason to not do this if the condition has other uses.
   3449   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
   3450 }
   3451 
   3452 static bool isConstantFPZero(SDValue N) {
   3453   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
   3454     return C->isZero() && !C->isNegative();
   3455   return false;
   3456 }
   3457 
   3458 static unsigned inverseMinMax(unsigned Opc) {
   3459   switch (Opc) {
   3460   case ISD::FMAXNUM:
   3461     return ISD::FMINNUM;
   3462   case ISD::FMINNUM:
   3463     return ISD::FMAXNUM;
   3464   case AMDGPUISD::FMAX_LEGACY:
   3465     return AMDGPUISD::FMIN_LEGACY;
   3466   case AMDGPUISD::FMIN_LEGACY:
   3467     return  AMDGPUISD::FMAX_LEGACY;
   3468   default:
   3469     llvm_unreachable("invalid min/max opcode");
   3470   }
   3471 }
   3472 
   3473 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
   3474                                                  DAGCombinerInfo &DCI) const {
   3475   SelectionDAG &DAG = DCI.DAG;
   3476   SDValue N0 = N->getOperand(0);
   3477   EVT VT = N->getValueType(0);
   3478 
   3479   unsigned Opc = N0.getOpcode();
   3480 
   3481   // If the input has multiple uses and we can either fold the negate down, or
   3482   // the other uses cannot, give up. This both prevents unprofitable
   3483   // transformations and infinite loops: we won't repeatedly try to fold around
   3484   // a negate that has no 'good' form.
   3485   if (N0.hasOneUse()) {
   3486     // This may be able to fold into the source, but at a code size cost. Don't
   3487     // fold if the fold into the user is free.
   3488     if (allUsesHaveSourceMods(N, 0))
   3489       return SDValue();
   3490   } else {
   3491     if (fnegFoldsIntoOp(Opc) &&
   3492         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
   3493       return SDValue();
   3494   }
   3495 
   3496   SDLoc SL(N);
   3497   switch (Opc) {
   3498   case ISD::FADD: {
   3499     if (!mayIgnoreSignedZero(N0))
   3500       return SDValue();
   3501 
   3502     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
   3503     SDValue LHS = N0.getOperand(0);
   3504     SDValue RHS = N0.getOperand(1);
   3505 
   3506     if (LHS.getOpcode() != ISD::FNEG)
   3507       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
   3508     else
   3509       LHS = LHS.getOperand(0);
   3510 
   3511     if (RHS.getOpcode() != ISD::FNEG)
   3512       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
   3513     else
   3514       RHS = RHS.getOperand(0);
   3515 
   3516     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
   3517     if (!N0.hasOneUse())
   3518       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
   3519     return Res;
   3520   }
   3521   case ISD::FMUL:
   3522   case AMDGPUISD::FMUL_LEGACY: {
   3523     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
   3524     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
   3525     SDValue LHS = N0.getOperand(0);
   3526     SDValue RHS = N0.getOperand(1);
   3527 
   3528     if (LHS.getOpcode() == ISD::FNEG)
   3529       LHS = LHS.getOperand(0);
   3530     else if (RHS.getOpcode() == ISD::FNEG)
   3531       RHS = RHS.getOperand(0);
   3532     else
   3533       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
   3534 
   3535     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
   3536     if (!N0.hasOneUse())
   3537       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
   3538     return Res;
   3539   }
   3540   case ISD::FMA:
   3541   case ISD::FMAD: {
   3542     if (!mayIgnoreSignedZero(N0))
   3543       return SDValue();
   3544 
   3545     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
   3546     SDValue LHS = N0.getOperand(0);
   3547     SDValue MHS = N0.getOperand(1);
   3548     SDValue RHS = N0.getOperand(2);
   3549 
   3550     if (LHS.getOpcode() == ISD::FNEG)
   3551       LHS = LHS.getOperand(0);
   3552     else if (MHS.getOpcode() == ISD::FNEG)
   3553       MHS = MHS.getOperand(0);
   3554     else
   3555       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
   3556 
   3557     if (RHS.getOpcode() != ISD::FNEG)
   3558       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
   3559     else
   3560       RHS = RHS.getOperand(0);
   3561 
   3562     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
   3563     if (!N0.hasOneUse())
   3564       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
   3565     return Res;
   3566   }
   3567   case ISD::FMAXNUM:
   3568   case ISD::FMINNUM:
   3569   case AMDGPUISD::FMAX_LEGACY:
   3570   case AMDGPUISD::FMIN_LEGACY: {
   3571     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
   3572     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
   3573     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
   3574     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
   3575 
   3576     SDValue LHS = N0.getOperand(0);
   3577     SDValue RHS = N0.getOperand(1);
   3578 
   3579     // 0 doesn't have a negated inline immediate.
   3580     // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
   3581     // operations.
   3582     if (isConstantFPZero(RHS))
   3583       return SDValue();
   3584 
   3585     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
   3586     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
   3587     unsigned Opposite = inverseMinMax(Opc);
   3588 
   3589     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
   3590     if (!N0.hasOneUse())
   3591       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
   3592     return Res;
   3593   }
   3594   case ISD::FP_EXTEND:
   3595   case ISD::FTRUNC:
   3596   case ISD::FRINT:
   3597   case ISD::FNEARBYINT: // XXX - Should fround be handled?
   3598   case ISD::FSIN:
   3599   case ISD::FCANONICALIZE:
   3600   case AMDGPUISD::RCP:
   3601   case AMDGPUISD::RCP_LEGACY:
   3602   case AMDGPUISD::RCP_IFLAG:
   3603   case AMDGPUISD::SIN_HW: {
   3604     SDValue CvtSrc = N0.getOperand(0);
   3605     if (CvtSrc.getOpcode() == ISD::FNEG) {
   3606       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
   3607       // (fneg (rcp (fneg x))) -> (rcp x)
   3608       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
   3609     }
   3610 
   3611     if (!N0.hasOneUse())
   3612       return SDValue();
   3613 
   3614     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
   3615     // (fneg (rcp x)) -> (rcp (fneg x))
   3616     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
   3617     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
   3618   }
   3619   case ISD::FP_ROUND: {
   3620     SDValue CvtSrc = N0.getOperand(0);
   3621 
   3622     if (CvtSrc.getOpcode() == ISD::FNEG) {
   3623       // (fneg (fp_round (fneg x))) -> (fp_round x)
   3624       return DAG.getNode(ISD::FP_ROUND, SL, VT,
   3625                          CvtSrc.getOperand(0), N0.getOperand(1));
   3626     }
   3627 
   3628     if (!N0.hasOneUse())
   3629       return SDValue();
   3630 
   3631     // (fneg (fp_round x)) -> (fp_round (fneg x))
   3632     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
   3633     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
   3634   }
   3635   case ISD::FP16_TO_FP: {
   3636     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
   3637     // f16, but legalization of f16 fneg ends up pulling it out of the source.
   3638     // Put the fneg back as a legal source operation that can be matched later.
   3639     SDLoc SL(N);
   3640 
   3641     SDValue Src = N0.getOperand(0);
   3642     EVT SrcVT = Src.getValueType();
   3643 
   3644     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
   3645     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
   3646                                   DAG.getConstant(0x8000, SL, SrcVT));
   3647     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
   3648   }
   3649   default:
   3650     return SDValue();
   3651   }
   3652 }
   3653 
   3654 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
   3655                                                  DAGCombinerInfo &DCI) const {
   3656   SelectionDAG &DAG = DCI.DAG;
   3657   SDValue N0 = N->getOperand(0);
   3658 
   3659   if (!N0.hasOneUse())
   3660     return SDValue();
   3661 
   3662   switch (N0.getOpcode()) {
   3663   case ISD::FP16_TO_FP: {
   3664     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
   3665     SDLoc SL(N);
   3666     SDValue Src = N0.getOperand(0);
   3667     EVT SrcVT = Src.getValueType();
   3668 
   3669     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
   3670     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
   3671                                   DAG.getConstant(0x7fff, SL, SrcVT));
   3672     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
   3673   }
   3674   default:
   3675     return SDValue();
   3676   }
   3677 }
   3678 
   3679 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
   3680                                                 DAGCombinerInfo &DCI) const {
   3681   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
   3682   if (!CFP)
   3683     return SDValue();
   3684 
   3685   // XXX - Should this flush denormals?
   3686   const APFloat &Val = CFP->getValueAPF();
   3687   APFloat One(Val.getSemantics(), "1.0");
   3688   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
   3689 }
   3690 
   3691 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
   3692                                                 DAGCombinerInfo &DCI) const {
   3693   SelectionDAG &DAG = DCI.DAG;
   3694   SDLoc DL(N);
   3695 
   3696   switch(N->getOpcode()) {
   3697   default:
   3698     break;
   3699   case ISD::BITCAST: {
   3700     EVT DestVT = N->getValueType(0);
   3701 
   3702     // Push casts through vector builds. This helps avoid emitting a large
   3703     // number of copies when materializing floating point vector constants.
   3704     //
   3705     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
   3706     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
   3707     if (DestVT.isVector()) {
   3708       SDValue Src = N->getOperand(0);
   3709       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
   3710         EVT SrcVT = Src.getValueType();
   3711         unsigned NElts = DestVT.getVectorNumElements();
   3712 
   3713         if (SrcVT.getVectorNumElements() == NElts) {
   3714           EVT DestEltVT = DestVT.getVectorElementType();
   3715 
   3716           SmallVector<SDValue, 8> CastedElts;
   3717           SDLoc SL(N);
   3718           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
   3719             SDValue Elt = Src.getOperand(I);
   3720             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
   3721           }
   3722 
   3723           return DAG.getBuildVector(DestVT, SL, CastedElts);
   3724         }
   3725       }
   3726     }
   3727 
   3728     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
   3729       break;
   3730 
   3731     // Fold bitcasts of constants.
   3732     //
   3733     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
   3734     // TODO: Generalize and move to DAGCombiner
   3735     SDValue Src = N->getOperand(0);
   3736     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
   3737       if (Src.getValueType() == MVT::i64) {
   3738         SDLoc SL(N);
   3739         uint64_t CVal = C->getZExtValue();
   3740         return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
   3741                            DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
   3742                            DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
   3743       }
   3744     }
   3745 
   3746     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
   3747       const APInt &Val = C->getValueAPF().bitcastToAPInt();
   3748       SDLoc SL(N);
   3749       uint64_t CVal = Val.getZExtValue();
   3750       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
   3751                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
   3752                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
   3753 
   3754       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
   3755     }
   3756 
   3757     break;
   3758   }
   3759   case ISD::SHL: {
   3760     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
   3761       break;
   3762 
   3763     return performShlCombine(N, DCI);
   3764   }
   3765   case ISD::SRL: {
   3766     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
   3767       break;
   3768 
   3769     return performSrlCombine(N, DCI);
   3770   }
   3771   case ISD::SRA: {
   3772     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
   3773       break;
   3774 
   3775     return performSraCombine(N, DCI);
   3776   }
   3777   case ISD::TRUNCATE:
   3778     return performTruncateCombine(N, DCI);
   3779   case ISD::MUL:
   3780     return performMulCombine(N, DCI);
   3781   case ISD::MULHS:
   3782     return performMulhsCombine(N, DCI);
   3783   case ISD::MULHU:
   3784     return performMulhuCombine(N, DCI);
   3785   case AMDGPUISD::MUL_I24:
   3786   case AMDGPUISD::MUL_U24:
   3787   case AMDGPUISD::MULHI_I24:
   3788   case AMDGPUISD::MULHI_U24: {
   3789     // If the first call to simplify is successfull, then N may end up being
   3790     // deleted, so we shouldn't call simplifyI24 again.
   3791     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
   3792     return SDValue();
   3793   }
   3794   case AMDGPUISD::MUL_LOHI_I24:
   3795   case AMDGPUISD::MUL_LOHI_U24:
   3796     return performMulLoHi24Combine(N, DCI);
   3797   case ISD::SELECT:
   3798     return performSelectCombine(N, DCI);
   3799   case ISD::FNEG:
   3800     return performFNegCombine(N, DCI);
   3801   case ISD::FABS:
   3802     return performFAbsCombine(N, DCI);
   3803   case AMDGPUISD::BFE_I32:
   3804   case AMDGPUISD::BFE_U32: {
   3805     assert(!N->getValueType(0).isVector() &&
   3806            "Vector handling of BFE not implemented");
   3807     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
   3808     if (!Width)
   3809       break;
   3810 
   3811     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
   3812     if (WidthVal == 0)
   3813       return DAG.getConstant(0, DL, MVT::i32);
   3814 
   3815     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
   3816     if (!Offset)
   3817       break;
   3818 
   3819     SDValue BitsFrom = N->getOperand(0);
   3820     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
   3821 
   3822     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
   3823 
   3824     if (OffsetVal == 0) {
   3825       // This is already sign / zero extended, so try to fold away extra BFEs.
   3826       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
   3827 
   3828       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
   3829       if (OpSignBits >= SignBits)
   3830         return BitsFrom;
   3831 
   3832       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
   3833       if (Signed) {
   3834         // This is a sign_extend_inreg. Replace it to take advantage of existing
   3835         // DAG Combines. If not eliminated, we will match back to BFE during
   3836         // selection.
   3837 
   3838         // TODO: The sext_inreg of extended types ends, although we can could
   3839         // handle them in a single BFE.
   3840         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
   3841                            DAG.getValueType(SmallVT));
   3842       }
   3843 
   3844       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
   3845     }
   3846 
   3847     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
   3848       if (Signed) {
   3849         return constantFoldBFE<int32_t>(DAG,
   3850                                         CVal->getSExtValue(),
   3851                                         OffsetVal,
   3852                                         WidthVal,
   3853                                         DL);
   3854       }
   3855 
   3856       return constantFoldBFE<uint32_t>(DAG,
   3857                                        CVal->getZExtValue(),
   3858                                        OffsetVal,
   3859                                        WidthVal,
   3860                                        DL);
   3861     }
   3862 
   3863     if ((OffsetVal + WidthVal) >= 32 &&
   3864         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
   3865       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
   3866       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
   3867                          BitsFrom, ShiftVal);
   3868     }
   3869 
   3870     if (BitsFrom.hasOneUse()) {
   3871       APInt Demanded = APInt::getBitsSet(32,
   3872                                          OffsetVal,
   3873                                          OffsetVal + WidthVal);
   3874 
   3875       KnownBits Known;
   3876       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   3877                                             !DCI.isBeforeLegalizeOps());
   3878       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3879       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
   3880           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
   3881         DCI.CommitTargetLoweringOpt(TLO);
   3882       }
   3883     }
   3884 
   3885     break;
   3886   }
   3887   case ISD::LOAD:
   3888     return performLoadCombine(N, DCI);
   3889   case ISD::STORE:
   3890     return performStoreCombine(N, DCI);
   3891   case AMDGPUISD::RCP:
   3892   case AMDGPUISD::RCP_IFLAG:
   3893     return performRcpCombine(N, DCI);
   3894   case ISD::AssertZext:
   3895   case ISD::AssertSext:
   3896     return performAssertSZExtCombine(N, DCI);
   3897   }
   3898   return SDValue();
   3899 }
   3900 
   3901 //===----------------------------------------------------------------------===//
   3902 // Helper functions
   3903 //===----------------------------------------------------------------------===//
   3904 
   3905 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
   3906                                                    const TargetRegisterClass *RC,
   3907                                                    unsigned Reg, EVT VT,
   3908                                                    const SDLoc &SL,
   3909                                                    bool RawReg) const {
   3910   MachineFunction &MF = DAG.getMachineFunction();
   3911   MachineRegisterInfo &MRI = MF.getRegInfo();
   3912   unsigned VReg;
   3913 
   3914   if (!MRI.isLiveIn(Reg)) {
   3915     VReg = MRI.createVirtualRegister(RC);
   3916     MRI.addLiveIn(Reg, VReg);
   3917   } else {
   3918     VReg = MRI.getLiveInVirtReg(Reg);
   3919   }
   3920 
   3921   if (RawReg)
   3922     return DAG.getRegister(VReg, VT);
   3923 
   3924   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
   3925 }
   3926 
   3927 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
   3928                                                   EVT VT,
   3929                                                   const SDLoc &SL,
   3930                                                   int64_t Offset) const {
   3931   MachineFunction &MF = DAG.getMachineFunction();
   3932   MachineFrameInfo &MFI = MF.getFrameInfo();
   3933 
   3934   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
   3935   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
   3936   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
   3937 
   3938   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
   3939                      MachineMemOperand::MODereferenceable |
   3940                      MachineMemOperand::MOInvariant);
   3941 }
   3942 
   3943 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
   3944                                                    const SDLoc &SL,
   3945                                                    SDValue Chain,
   3946                                                    SDValue StackPtr,
   3947                                                    SDValue ArgVal,
   3948                                                    int64_t Offset) const {
   3949   MachineFunction &MF = DAG.getMachineFunction();
   3950   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
   3951 
   3952   SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset);
   3953   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
   3954                                MachineMemOperand::MODereferenceable);
   3955   return Store;
   3956 }
   3957 
   3958 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
   3959                                              const TargetRegisterClass *RC,
   3960                                              EVT VT, const SDLoc &SL,
   3961                                              const ArgDescriptor &Arg) const {
   3962   assert(Arg && "Attempting to load missing argument");
   3963 
   3964   if (Arg.isRegister())
   3965     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
   3966   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
   3967 }
   3968 
   3969 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
   3970     const MachineFunction &MF, const ImplicitParameter Param) const {
   3971   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
   3972   const AMDGPUSubtarget &ST =
   3973       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
   3974   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
   3975   unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
   3976   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
   3977                        ExplicitArgOffset;
   3978   switch (Param) {
   3979   case GRID_DIM:
   3980     return ArgOffset;
   3981   case GRID_OFFSET:
   3982     return ArgOffset + 4;
   3983   }
   3984   llvm_unreachable("unexpected implicit parameter type");
   3985 }
   3986 
   3987 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
   3988 
   3989 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
   3990   switch ((AMDGPUISD::NodeType)Opcode) {
   3991   case AMDGPUISD::FIRST_NUMBER: break;
   3992   // AMDIL DAG nodes
   3993   NODE_NAME_CASE(UMUL);
   3994   NODE_NAME_CASE(BRANCH_COND);
   3995 
   3996   // AMDGPU DAG nodes
   3997   NODE_NAME_CASE(IF)
   3998   NODE_NAME_CASE(ELSE)
   3999   NODE_NAME_CASE(LOOP)
   4000   NODE_NAME_CASE(CALL)
   4001   NODE_NAME_CASE(TC_RETURN)
   4002   NODE_NAME_CASE(TRAP)
   4003   NODE_NAME_CASE(RET_FLAG)
   4004   NODE_NAME_CASE(RETURN_TO_EPILOG)
   4005   NODE_NAME_CASE(ENDPGM)
   4006   NODE_NAME_CASE(DWORDADDR)
   4007   NODE_NAME_CASE(FRACT)
   4008   NODE_NAME_CASE(SETCC)
   4009   NODE_NAME_CASE(SETREG)
   4010   NODE_NAME_CASE(FMA_W_CHAIN)
   4011   NODE_NAME_CASE(FMUL_W_CHAIN)
   4012   NODE_NAME_CASE(CLAMP)
   4013   NODE_NAME_CASE(COS_HW)
   4014   NODE_NAME_CASE(SIN_HW)
   4015   NODE_NAME_CASE(FMAX_LEGACY)
   4016   NODE_NAME_CASE(FMIN_LEGACY)
   4017   NODE_NAME_CASE(FMAX3)
   4018   NODE_NAME_CASE(SMAX3)
   4019   NODE_NAME_CASE(UMAX3)
   4020   NODE_NAME_CASE(FMIN3)
   4021   NODE_NAME_CASE(SMIN3)
   4022   NODE_NAME_CASE(UMIN3)
   4023   NODE_NAME_CASE(FMED3)
   4024   NODE_NAME_CASE(SMED3)
   4025   NODE_NAME_CASE(UMED3)
   4026   NODE_NAME_CASE(FDOT2)
   4027   NODE_NAME_CASE(URECIP)
   4028   NODE_NAME_CASE(DIV_SCALE)
   4029   NODE_NAME_CASE(DIV_FMAS)
   4030   NODE_NAME_CASE(DIV_FIXUP)
   4031   NODE_NAME_CASE(FMAD_FTZ)
   4032   NODE_NAME_CASE(TRIG_PREOP)
   4033   NODE_NAME_CASE(RCP)
   4034   NODE_NAME_CASE(RSQ)
   4035   NODE_NAME_CASE(RCP_LEGACY)
   4036   NODE_NAME_CASE(RSQ_LEGACY)
   4037   NODE_NAME_CASE(RCP_IFLAG)
   4038   NODE_NAME_CASE(FMUL_LEGACY)
   4039   NODE_NAME_CASE(RSQ_CLAMP)
   4040   NODE_NAME_CASE(LDEXP)
   4041   NODE_NAME_CASE(FP_CLASS)
   4042   NODE_NAME_CASE(DOT4)
   4043   NODE_NAME_CASE(CARRY)
   4044   NODE_NAME_CASE(BORROW)
   4045   NODE_NAME_CASE(BFE_U32)
   4046   NODE_NAME_CASE(BFE_I32)
   4047   NODE_NAME_CASE(BFI)
   4048   NODE_NAME_CASE(BFM)
   4049   NODE_NAME_CASE(FFBH_U32)
   4050   NODE_NAME_CASE(FFBH_I32)
   4051   NODE_NAME_CASE(FFBL_B32)
   4052   NODE_NAME_CASE(MUL_U24)
   4053   NODE_NAME_CASE(MUL_I24)
   4054   NODE_NAME_CASE(MULHI_U24)
   4055   NODE_NAME_CASE(MULHI_I24)
   4056   NODE_NAME_CASE(MUL_LOHI_U24)
   4057   NODE_NAME_CASE(MUL_LOHI_I24)
   4058   NODE_NAME_CASE(MAD_U24)
   4059   NODE_NAME_CASE(MAD_I24)
   4060   NODE_NAME_CASE(MAD_I64_I32)
   4061   NODE_NAME_CASE(MAD_U64_U32)
   4062   NODE_NAME_CASE(PERM)
   4063   NODE_NAME_CASE(TEXTURE_FETCH)
   4064   NODE_NAME_CASE(EXPORT)
   4065   NODE_NAME_CASE(EXPORT_DONE)
   4066   NODE_NAME_CASE(R600_EXPORT)
   4067   NODE_NAME_CASE(CONST_ADDRESS)
   4068   NODE_NAME_CASE(REGISTER_LOAD)
   4069   NODE_NAME_CASE(REGISTER_STORE)
   4070   NODE_NAME_CASE(SAMPLE)
   4071   NODE_NAME_CASE(SAMPLEB)
   4072   NODE_NAME_CASE(SAMPLED)
   4073   NODE_NAME_CASE(SAMPLEL)
   4074   NODE_NAME_CASE(CVT_F32_UBYTE0)
   4075   NODE_NAME_CASE(CVT_F32_UBYTE1)
   4076   NODE_NAME_CASE(CVT_F32_UBYTE2)
   4077   NODE_NAME_CASE(CVT_F32_UBYTE3)
   4078   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
   4079   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
   4080   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
   4081   NODE_NAME_CASE(CVT_PK_I16_I32)
   4082   NODE_NAME_CASE(CVT_PK_U16_U32)
   4083   NODE_NAME_CASE(FP_TO_FP16)
   4084   NODE_NAME_CASE(FP16_ZEXT)
   4085   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
   4086   NODE_NAME_CASE(CONST_DATA_PTR)
   4087   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
   4088   NODE_NAME_CASE(KILL)
   4089   NODE_NAME_CASE(DUMMY_CHAIN)
   4090   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
   4091   NODE_NAME_CASE(INIT_EXEC)
   4092   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
   4093   NODE_NAME_CASE(SENDMSG)
   4094   NODE_NAME_CASE(SENDMSGHALT)
   4095   NODE_NAME_CASE(INTERP_MOV)
   4096   NODE_NAME_CASE(INTERP_P1)
   4097   NODE_NAME_CASE(INTERP_P2)
   4098   NODE_NAME_CASE(STORE_MSKOR)
   4099   NODE_NAME_CASE(LOAD_CONSTANT)
   4100   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
   4101   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
   4102   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
   4103   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
   4104   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
   4105   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
   4106   NODE_NAME_CASE(ATOMIC_INC)
   4107   NODE_NAME_CASE(ATOMIC_DEC)
   4108   NODE_NAME_CASE(ATOMIC_LOAD_FADD)
   4109   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
   4110   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
   4111   NODE_NAME_CASE(BUFFER_LOAD)
   4112   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
   4113   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
   4114   NODE_NAME_CASE(BUFFER_STORE)
   4115   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
   4116   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
   4117   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
   4118   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
   4119   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
   4120   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
   4121   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
   4122   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
   4123   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
   4124   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
   4125   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
   4126   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
   4127   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
   4128 
   4129   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
   4130   }
   4131   return nullptr;
   4132 }
   4133 
   4134 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
   4135                                               SelectionDAG &DAG, int Enabled,
   4136                                               int &RefinementSteps,
   4137                                               bool &UseOneConstNR,
   4138                                               bool Reciprocal) const {
   4139   EVT VT = Operand.getValueType();
   4140 
   4141   if (VT == MVT::f32) {
   4142     RefinementSteps = 0;
   4143     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
   4144   }
   4145 
   4146   // TODO: There is also f64 rsq instruction, but the documentation is less
   4147   // clear on its precision.
   4148 
   4149   return SDValue();
   4150 }
   4151 
   4152 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
   4153                                                SelectionDAG &DAG, int Enabled,
   4154                                                int &RefinementSteps) const {
   4155   EVT VT = Operand.getValueType();
   4156 
   4157   if (VT == MVT::f32) {
   4158     // Reciprocal, < 1 ulp error.
   4159     //
   4160     // This reciprocal approximation converges to < 0.5 ulp error with one
   4161     // newton rhapson performed with two fused multiple adds (FMAs).
   4162 
   4163     RefinementSteps = 0;
   4164     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
   4165   }
   4166 
   4167   // TODO: There is also f64 rcp instruction, but the documentation is less
   4168   // clear on its precision.
   4169 
   4170   return SDValue();
   4171 }
   4172 
   4173 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
   4174     const SDValue Op, KnownBits &Known,
   4175     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
   4176 
   4177   Known.resetAll(); // Don't know anything.
   4178 
   4179   unsigned Opc = Op.getOpcode();
   4180 
   4181   switch (Opc) {
   4182   default:
   4183     break;
   4184   case AMDGPUISD::CARRY:
   4185   case AMDGPUISD::BORROW: {
   4186     Known.Zero = APInt::getHighBitsSet(32, 31);
   4187     break;
   4188   }
   4189 
   4190   case AMDGPUISD::BFE_I32:
   4191   case AMDGPUISD::BFE_U32: {
   4192     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   4193     if (!CWidth)
   4194       return;
   4195 
   4196     uint32_t Width = CWidth->getZExtValue() & 0x1f;
   4197 
   4198     if (Opc == AMDGPUISD::BFE_U32)
   4199       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
   4200 
   4201     break;
   4202   }
   4203   case AMDGPUISD::FP_TO_FP16:
   4204   case AMDGPUISD::FP16_ZEXT: {
   4205     unsigned BitWidth = Known.getBitWidth();
   4206 
   4207     // High bits are zero.
   4208     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
   4209     break;
   4210   }
   4211   case AMDGPUISD::MUL_U24:
   4212   case AMDGPUISD::MUL_I24: {
   4213     KnownBits LHSKnown, RHSKnown;
   4214     DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
   4215     DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
   4216 
   4217     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
   4218                       RHSKnown.countMinTrailingZeros();
   4219     Known.Zero.setLowBits(std::min(TrailZ, 32u));
   4220 
   4221     unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u);
   4222     unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u);
   4223     unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
   4224     if (MaxValBits >= 32)
   4225       break;
   4226     bool Negative = false;
   4227     if (Opc == AMDGPUISD::MUL_I24) {
   4228       bool LHSNegative = !!(LHSKnown.One  & (1 << 23));
   4229       bool LHSPositive = !!(LHSKnown.Zero & (1 << 23));
   4230       bool RHSNegative = !!(RHSKnown.One  & (1 << 23));
   4231       bool RHSPositive = !!(RHSKnown.Zero & (1 << 23));
   4232       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
   4233         break;
   4234       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
   4235     }
   4236     if (Negative)
   4237       Known.One.setHighBits(32 - MaxValBits);
   4238     else
   4239       Known.Zero.setHighBits(32 - MaxValBits);
   4240     break;
   4241   }
   4242   case AMDGPUISD::PERM: {
   4243     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   4244     if (!CMask)
   4245       return;
   4246 
   4247     KnownBits LHSKnown, RHSKnown;
   4248     DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
   4249     DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
   4250     unsigned Sel = CMask->getZExtValue();
   4251 
   4252     for (unsigned I = 0; I < 32; I += 8) {
   4253       unsigned SelBits = Sel & 0xff;
   4254       if (SelBits < 4) {
   4255         SelBits *= 8;
   4256         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
   4257         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
   4258       } else if (SelBits < 7) {
   4259         SelBits = (SelBits & 3) * 8;
   4260         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
   4261         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
   4262       } else if (SelBits == 0x0c) {
   4263         Known.Zero |= 0xff << I;
   4264       } else if (SelBits > 0x0c) {
   4265         Known.One |= 0xff << I;
   4266       }
   4267       Sel >>= 8;
   4268     }
   4269     break;
   4270   }
   4271   case ISD::INTRINSIC_WO_CHAIN: {
   4272     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   4273     switch (IID) {
   4274     case Intrinsic::amdgcn_mbcnt_lo:
   4275     case Intrinsic::amdgcn_mbcnt_hi: {
   4276       const GCNSubtarget &ST =
   4277           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
   4278       // These return at most the wavefront size - 1.
   4279       unsigned Size = Op.getValueType().getSizeInBits();
   4280       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
   4281       break;
   4282     }
   4283     default:
   4284       break;
   4285     }
   4286   }
   4287   }
   4288 }
   4289 
   4290 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
   4291     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
   4292     unsigned Depth) const {
   4293   switch (Op.getOpcode()) {
   4294   case AMDGPUISD::BFE_I32: {
   4295     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   4296     if (!Width)
   4297       return 1;
   4298 
   4299     unsigned SignBits = 32 - Width->getZExtValue() + 1;
   4300     if (!isNullConstant(Op.getOperand(1)))
   4301       return SignBits;
   4302 
   4303     // TODO: Could probably figure something out with non-0 offsets.
   4304     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
   4305     return std::max(SignBits, Op0SignBits);
   4306   }
   4307 
   4308   case AMDGPUISD::BFE_U32: {
   4309     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   4310     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
   4311   }
   4312 
   4313   case AMDGPUISD::CARRY:
   4314   case AMDGPUISD::BORROW:
   4315     return 31;
   4316   case AMDGPUISD::FP_TO_FP16:
   4317   case AMDGPUISD::FP16_ZEXT:
   4318     return 16;
   4319   default:
   4320     return 1;
   4321   }
   4322 }
   4323