Home | History | Annotate | Download | only in program
      1 /*
      2  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
      3  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
      4  * Copyright  2010 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     23  * DEALINGS IN THE SOFTWARE.
     24  */
     25 
     26 /**
     27  * \file ir_to_mesa.cpp
     28  *
     29  * Translate GLSL IR to Mesa's gl_program representation.
     30  */
     31 
     32 #include <stdio.h>
     33 #include "main/macros.h"
     34 #include "main/mtypes.h"
     35 #include "main/shaderapi.h"
     36 #include "main/shaderobj.h"
     37 #include "main/uniforms.h"
     38 #include "compiler/glsl/ast.h"
     39 #include "compiler/glsl/ir.h"
     40 #include "compiler/glsl/ir_expression_flattening.h"
     41 #include "compiler/glsl/ir_visitor.h"
     42 #include "compiler/glsl/ir_optimization.h"
     43 #include "compiler/glsl/ir_uniform.h"
     44 #include "compiler/glsl/glsl_parser_extras.h"
     45 #include "compiler/glsl_types.h"
     46 #include "compiler/glsl/linker.h"
     47 #include "compiler/glsl/program.h"
     48 #include "compiler/glsl/shader_cache.h"
     49 #include "compiler/glsl/string_to_uint_map.h"
     50 #include "program/prog_instruction.h"
     51 #include "program/prog_optimize.h"
     52 #include "program/prog_print.h"
     53 #include "program/program.h"
     54 #include "program/prog_parameter.h"
     55 
     56 
     57 static int swizzle_for_size(int size);
     58 
     59 namespace {
     60 
     61 class src_reg;
     62 class dst_reg;
     63 
     64 /**
     65  * This struct is a corresponding struct to Mesa prog_src_register, with
     66  * wider fields.
     67  */
     68 class src_reg {
     69 public:
     70    src_reg(gl_register_file file, int index, const glsl_type *type)
     71    {
     72       this->file = file;
     73       this->index = index;
     74       if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
     75 	 this->swizzle = swizzle_for_size(type->vector_elements);
     76       else
     77 	 this->swizzle = SWIZZLE_XYZW;
     78       this->negate = 0;
     79       this->reladdr = NULL;
     80    }
     81 
     82    src_reg()
     83    {
     84       this->file = PROGRAM_UNDEFINED;
     85       this->index = 0;
     86       this->swizzle = 0;
     87       this->negate = 0;
     88       this->reladdr = NULL;
     89    }
     90 
     91    explicit src_reg(dst_reg reg);
     92 
     93    gl_register_file file; /**< PROGRAM_* from Mesa */
     94    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
     95    GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
     96    int negate; /**< NEGATE_XYZW mask from mesa */
     97    /** Register index should be offset by the integer in this reg. */
     98    src_reg *reladdr;
     99 };
    100 
    101 class dst_reg {
    102 public:
    103    dst_reg(gl_register_file file, int writemask)
    104    {
    105       this->file = file;
    106       this->index = 0;
    107       this->writemask = writemask;
    108       this->reladdr = NULL;
    109    }
    110 
    111    dst_reg()
    112    {
    113       this->file = PROGRAM_UNDEFINED;
    114       this->index = 0;
    115       this->writemask = 0;
    116       this->reladdr = NULL;
    117    }
    118 
    119    explicit dst_reg(src_reg reg);
    120 
    121    gl_register_file file; /**< PROGRAM_* from Mesa */
    122    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
    123    int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
    124    /** Register index should be offset by the integer in this reg. */
    125    src_reg *reladdr;
    126 };
    127 
    128 } /* anonymous namespace */
    129 
    130 src_reg::src_reg(dst_reg reg)
    131 {
    132    this->file = reg.file;
    133    this->index = reg.index;
    134    this->swizzle = SWIZZLE_XYZW;
    135    this->negate = 0;
    136    this->reladdr = reg.reladdr;
    137 }
    138 
    139 dst_reg::dst_reg(src_reg reg)
    140 {
    141    this->file = reg.file;
    142    this->index = reg.index;
    143    this->writemask = WRITEMASK_XYZW;
    144    this->reladdr = reg.reladdr;
    145 }
    146 
    147 namespace {
    148 
    149 class ir_to_mesa_instruction : public exec_node {
    150 public:
    151    DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
    152 
    153    enum prog_opcode op;
    154    dst_reg dst;
    155    src_reg src[3];
    156    /** Pointer to the ir source this tree came from for debugging */
    157    ir_instruction *ir;
    158    bool saturate;
    159    int sampler; /**< sampler index */
    160    int tex_target; /**< One of TEXTURE_*_INDEX */
    161    GLboolean tex_shadow;
    162 };
    163 
    164 class variable_storage : public exec_node {
    165 public:
    166    variable_storage(ir_variable *var, gl_register_file file, int index)
    167       : file(file), index(index), var(var)
    168    {
    169       /* empty */
    170    }
    171 
    172    gl_register_file file;
    173    int index;
    174    ir_variable *var; /* variable that maps to this, if any */
    175 };
    176 
    177 class function_entry : public exec_node {
    178 public:
    179    ir_function_signature *sig;
    180 
    181    /**
    182     * identifier of this function signature used by the program.
    183     *
    184     * At the point that Mesa instructions for function calls are
    185     * generated, we don't know the address of the first instruction of
    186     * the function body.  So we make the BranchTarget that is called a
    187     * small integer and rewrite them during set_branchtargets().
    188     */
    189    int sig_id;
    190 
    191    /**
    192     * Pointer to first instruction of the function body.
    193     *
    194     * Set during function body emits after main() is processed.
    195     */
    196    ir_to_mesa_instruction *bgn_inst;
    197 
    198    /**
    199     * Index of the first instruction of the function body in actual
    200     * Mesa IR.
    201     *
    202     * Set after convertion from ir_to_mesa_instruction to prog_instruction.
    203     */
    204    int inst;
    205 
    206    /** Storage for the return value. */
    207    src_reg return_reg;
    208 };
    209 
    210 class ir_to_mesa_visitor : public ir_visitor {
    211 public:
    212    ir_to_mesa_visitor();
    213    ~ir_to_mesa_visitor();
    214 
    215    function_entry *current_function;
    216 
    217    struct gl_context *ctx;
    218    struct gl_program *prog;
    219    struct gl_shader_program *shader_program;
    220    struct gl_shader_compiler_options *options;
    221 
    222    int next_temp;
    223 
    224    variable_storage *find_variable_storage(const ir_variable *var);
    225 
    226    src_reg get_temp(const glsl_type *type);
    227    void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
    228 
    229    src_reg src_reg_for_float(float val);
    230 
    231    /**
    232     * \name Visit methods
    233     *
    234     * As typical for the visitor pattern, there must be one \c visit method for
    235     * each concrete subclass of \c ir_instruction.  Virtual base classes within
    236     * the hierarchy should not have \c visit methods.
    237     */
    238    /*@{*/
    239    virtual void visit(ir_variable *);
    240    virtual void visit(ir_loop *);
    241    virtual void visit(ir_loop_jump *);
    242    virtual void visit(ir_function_signature *);
    243    virtual void visit(ir_function *);
    244    virtual void visit(ir_expression *);
    245    virtual void visit(ir_swizzle *);
    246    virtual void visit(ir_dereference_variable  *);
    247    virtual void visit(ir_dereference_array *);
    248    virtual void visit(ir_dereference_record *);
    249    virtual void visit(ir_assignment *);
    250    virtual void visit(ir_constant *);
    251    virtual void visit(ir_call *);
    252    virtual void visit(ir_return *);
    253    virtual void visit(ir_discard *);
    254    virtual void visit(ir_texture *);
    255    virtual void visit(ir_if *);
    256    virtual void visit(ir_emit_vertex *);
    257    virtual void visit(ir_end_primitive *);
    258    virtual void visit(ir_barrier *);
    259    /*@}*/
    260 
    261    src_reg result;
    262 
    263    /** List of variable_storage */
    264    exec_list variables;
    265 
    266    /** List of function_entry */
    267    exec_list function_signatures;
    268    int next_signature_id;
    269 
    270    /** List of ir_to_mesa_instruction */
    271    exec_list instructions;
    272 
    273    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
    274 
    275    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
    276 			        dst_reg dst, src_reg src0);
    277 
    278    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
    279 			        dst_reg dst, src_reg src0, src_reg src1);
    280 
    281    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
    282 			        dst_reg dst,
    283 			        src_reg src0, src_reg src1, src_reg src2);
    284 
    285    /**
    286     * Emit the correct dot-product instruction for the type of arguments
    287     */
    288    ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
    289 				    dst_reg dst,
    290 				    src_reg src0,
    291 				    src_reg src1,
    292 				    unsigned elements);
    293 
    294    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
    295 		    dst_reg dst, src_reg src0);
    296 
    297    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
    298 		    dst_reg dst, src_reg src0, src_reg src1);
    299 
    300    bool try_emit_mad(ir_expression *ir,
    301 			  int mul_operand);
    302    bool try_emit_mad_for_and_not(ir_expression *ir,
    303 				 int mul_operand);
    304 
    305    void emit_swz(ir_expression *ir);
    306 
    307    void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
    308                                  dst_reg dst,
    309                                  const src_reg &src0, const src_reg &src1);
    310 
    311    inline void emit_sne(ir_expression *ir, dst_reg dst,
    312                         const src_reg &src0, const src_reg &src1)
    313    {
    314       emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
    315    }
    316 
    317    inline void emit_seq(ir_expression *ir, dst_reg dst,
    318                         const src_reg &src0, const src_reg &src1)
    319    {
    320       emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
    321    }
    322 
    323    bool process_move_condition(ir_rvalue *ir);
    324 
    325    void copy_propagate(void);
    326 
    327    void *mem_ctx;
    328 };
    329 
    330 } /* anonymous namespace */
    331 
    332 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
    333 
    334 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
    335 
    336 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
    337 
    338 static int
    339 swizzle_for_size(int size)
    340 {
    341    static const int size_swizzles[4] = {
    342       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
    343       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
    344       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
    345       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
    346    };
    347 
    348    assert((size >= 1) && (size <= 4));
    349    return size_swizzles[size - 1];
    350 }
    351 
    352 ir_to_mesa_instruction *
    353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
    354 			 dst_reg dst,
    355 			 src_reg src0, src_reg src1, src_reg src2)
    356 {
    357    ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
    358    int num_reladdr = 0;
    359 
    360    /* If we have to do relative addressing, we want to load the ARL
    361     * reg directly for one of the regs, and preload the other reladdr
    362     * sources into temps.
    363     */
    364    num_reladdr += dst.reladdr != NULL;
    365    num_reladdr += src0.reladdr != NULL;
    366    num_reladdr += src1.reladdr != NULL;
    367    num_reladdr += src2.reladdr != NULL;
    368 
    369    reladdr_to_temp(ir, &src2, &num_reladdr);
    370    reladdr_to_temp(ir, &src1, &num_reladdr);
    371    reladdr_to_temp(ir, &src0, &num_reladdr);
    372 
    373    if (dst.reladdr) {
    374       emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
    375       num_reladdr--;
    376    }
    377    assert(num_reladdr == 0);
    378 
    379    inst->op = op;
    380    inst->dst = dst;
    381    inst->src[0] = src0;
    382    inst->src[1] = src1;
    383    inst->src[2] = src2;
    384    inst->ir = ir;
    385 
    386    this->instructions.push_tail(inst);
    387 
    388    return inst;
    389 }
    390 
    391 
    392 ir_to_mesa_instruction *
    393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
    394 			 dst_reg dst, src_reg src0, src_reg src1)
    395 {
    396    return emit(ir, op, dst, src0, src1, undef_src);
    397 }
    398 
    399 ir_to_mesa_instruction *
    400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
    401 			 dst_reg dst, src_reg src0)
    402 {
    403    assert(dst.writemask != 0);
    404    return emit(ir, op, dst, src0, undef_src, undef_src);
    405 }
    406 
    407 ir_to_mesa_instruction *
    408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
    409 {
    410    return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
    411 }
    412 
    413 ir_to_mesa_instruction *
    414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
    415 			    dst_reg dst, src_reg src0, src_reg src1,
    416 			    unsigned elements)
    417 {
    418    static const enum prog_opcode dot_opcodes[] = {
    419       OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
    420    };
    421 
    422    return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
    423 }
    424 
    425 /**
    426  * Emits Mesa scalar opcodes to produce unique answers across channels.
    427  *
    428  * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
    429  * channel determines the result across all channels.  So to do a vec4
    430  * of this operation, we want to emit a scalar per source channel used
    431  * to produce dest channels.
    432  */
    433 void
    434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
    435 			        dst_reg dst,
    436 				src_reg orig_src0, src_reg orig_src1)
    437 {
    438    int i, j;
    439    int done_mask = ~dst.writemask;
    440 
    441    /* Mesa RCP is a scalar operation splatting results to all channels,
    442     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
    443     * dst channels.
    444     */
    445    for (i = 0; i < 4; i++) {
    446       GLuint this_mask = (1 << i);
    447       ir_to_mesa_instruction *inst;
    448       src_reg src0 = orig_src0;
    449       src_reg src1 = orig_src1;
    450 
    451       if (done_mask & this_mask)
    452 	 continue;
    453 
    454       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
    455       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
    456       for (j = i + 1; j < 4; j++) {
    457 	 /* If there is another enabled component in the destination that is
    458 	  * derived from the same inputs, generate its value on this pass as
    459 	  * well.
    460 	  */
    461 	 if (!(done_mask & (1 << j)) &&
    462 	     GET_SWZ(src0.swizzle, j) == src0_swiz &&
    463 	     GET_SWZ(src1.swizzle, j) == src1_swiz) {
    464 	    this_mask |= (1 << j);
    465 	 }
    466       }
    467       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
    468 				   src0_swiz, src0_swiz);
    469       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
    470 				  src1_swiz, src1_swiz);
    471 
    472       inst = emit(ir, op, dst, src0, src1);
    473       inst->dst.writemask = this_mask;
    474       done_mask |= this_mask;
    475    }
    476 }
    477 
    478 void
    479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
    480 			        dst_reg dst, src_reg src0)
    481 {
    482    src_reg undef = undef_src;
    483 
    484    undef.swizzle = SWIZZLE_XXXX;
    485 
    486    emit_scalar(ir, op, dst, src0, undef);
    487 }
    488 
    489 src_reg
    490 ir_to_mesa_visitor::src_reg_for_float(float val)
    491 {
    492    src_reg src(PROGRAM_CONSTANT, -1, NULL);
    493 
    494    src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
    495 					  (const gl_constant_value *)&val, 1, &src.swizzle);
    496 
    497    return src;
    498 }
    499 
    500 static int
    501 storage_type_size(const struct glsl_type *type, bool bindless)
    502 {
    503    unsigned int i;
    504    int size;
    505 
    506    switch (type->base_type) {
    507    case GLSL_TYPE_UINT:
    508    case GLSL_TYPE_INT:
    509    case GLSL_TYPE_UINT16:
    510    case GLSL_TYPE_INT16:
    511    case GLSL_TYPE_FLOAT:
    512    case GLSL_TYPE_FLOAT16:
    513    case GLSL_TYPE_BOOL:
    514       if (type->is_matrix()) {
    515 	 return type->matrix_columns;
    516       } else {
    517 	 /* Regardless of size of vector, it gets a vec4. This is bad
    518 	  * packing for things like floats, but otherwise arrays become a
    519 	  * mess.  Hopefully a later pass over the code can pack scalars
    520 	  * down if appropriate.
    521 	  */
    522 	 return 1;
    523       }
    524       break;
    525    case GLSL_TYPE_DOUBLE:
    526       if (type->is_matrix()) {
    527          if (type->vector_elements > 2)
    528             return type->matrix_columns * 2;
    529          else
    530             return type->matrix_columns;
    531       } else {
    532          if (type->vector_elements > 2)
    533             return 2;
    534          else
    535             return 1;
    536       }
    537       break;
    538    case GLSL_TYPE_UINT64:
    539    case GLSL_TYPE_INT64:
    540       if (type->vector_elements > 2)
    541          return 2;
    542       else
    543          return 1;
    544    case GLSL_TYPE_ARRAY:
    545       assert(type->length > 0);
    546       return storage_type_size(type->fields.array, bindless) * type->length;
    547    case GLSL_TYPE_STRUCT:
    548       size = 0;
    549       for (i = 0; i < type->length; i++) {
    550 	 size += storage_type_size(type->fields.structure[i].type, bindless);
    551       }
    552       return size;
    553    case GLSL_TYPE_SAMPLER:
    554    case GLSL_TYPE_IMAGE:
    555       if (!bindless)
    556          return 0;
    557       /* fall through */
    558    case GLSL_TYPE_SUBROUTINE:
    559       return 1;
    560    case GLSL_TYPE_ATOMIC_UINT:
    561    case GLSL_TYPE_VOID:
    562    case GLSL_TYPE_ERROR:
    563    case GLSL_TYPE_INTERFACE:
    564    case GLSL_TYPE_FUNCTION:
    565       assert(!"Invalid type in type_size");
    566       break;
    567    }
    568 
    569    return 0;
    570 }
    571 
    572 static int
    573 type_size(const struct glsl_type *type)
    574 {
    575    return storage_type_size(type, false);
    576 }
    577 
    578 /**
    579  * In the initial pass of codegen, we assign temporary numbers to
    580  * intermediate results.  (not SSA -- variable assignments will reuse
    581  * storage).  Actual register allocation for the Mesa VM occurs in a
    582  * pass over the Mesa IR later.
    583  */
    584 src_reg
    585 ir_to_mesa_visitor::get_temp(const glsl_type *type)
    586 {
    587    src_reg src;
    588 
    589    src.file = PROGRAM_TEMPORARY;
    590    src.index = next_temp;
    591    src.reladdr = NULL;
    592    next_temp += type_size(type);
    593 
    594    if (type->is_array() || type->is_record()) {
    595       src.swizzle = SWIZZLE_NOOP;
    596    } else {
    597       src.swizzle = swizzle_for_size(type->vector_elements);
    598    }
    599    src.negate = 0;
    600 
    601    return src;
    602 }
    603 
    604 variable_storage *
    605 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
    606 {
    607    foreach_in_list(variable_storage, entry, &this->variables) {
    608       if (entry->var == var)
    609 	 return entry;
    610    }
    611 
    612    return NULL;
    613 }
    614 
    615 void
    616 ir_to_mesa_visitor::visit(ir_variable *ir)
    617 {
    618    if (strcmp(ir->name, "gl_FragCoord") == 0) {
    619       this->prog->OriginUpperLeft = ir->data.origin_upper_left;
    620       this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
    621    }
    622 
    623    if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
    624       unsigned int i;
    625       const ir_state_slot *const slots = ir->get_state_slots();
    626       assert(slots != NULL);
    627 
    628       /* Check if this statevar's setup in the STATE file exactly
    629        * matches how we'll want to reference it as a
    630        * struct/array/whatever.  If not, then we need to move it into
    631        * temporary storage and hope that it'll get copy-propagated
    632        * out.
    633        */
    634       for (i = 0; i < ir->get_num_state_slots(); i++) {
    635 	 if (slots[i].swizzle != SWIZZLE_XYZW) {
    636 	    break;
    637 	 }
    638       }
    639 
    640       variable_storage *storage;
    641       dst_reg dst;
    642       if (i == ir->get_num_state_slots()) {
    643 	 /* We'll set the index later. */
    644 	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
    645 	 this->variables.push_tail(storage);
    646 
    647 	 dst = undef_dst;
    648       } else {
    649 	 /* The variable_storage constructor allocates slots based on the size
    650 	  * of the type.  However, this had better match the number of state
    651 	  * elements that we're going to copy into the new temporary.
    652 	  */
    653 	 assert((int) ir->get_num_state_slots() == type_size(ir->type));
    654 
    655 	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
    656 						 this->next_temp);
    657 	 this->variables.push_tail(storage);
    658 	 this->next_temp += type_size(ir->type);
    659 
    660 	 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
    661       }
    662 
    663 
    664       for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
    665 	 int index = _mesa_add_state_reference(this->prog->Parameters,
    666 					       (gl_state_index *)slots[i].tokens);
    667 
    668 	 if (storage->file == PROGRAM_STATE_VAR) {
    669 	    if (storage->index == -1) {
    670 	       storage->index = index;
    671 	    } else {
    672 	       assert(index == storage->index + (int)i);
    673 	    }
    674 	 } else {
    675 	    src_reg src(PROGRAM_STATE_VAR, index, NULL);
    676 	    src.swizzle = slots[i].swizzle;
    677 	    emit(ir, OPCODE_MOV, dst, src);
    678 	    /* even a float takes up a whole vec4 reg in a struct/array. */
    679 	    dst.index++;
    680 	 }
    681       }
    682 
    683       if (storage->file == PROGRAM_TEMPORARY &&
    684 	  dst.index != storage->index + (int) ir->get_num_state_slots()) {
    685 	 linker_error(this->shader_program,
    686 		      "failed to load builtin uniform `%s' "
    687 		      "(%d/%d regs loaded)\n",
    688 		      ir->name, dst.index - storage->index,
    689 		      type_size(ir->type));
    690       }
    691    }
    692 }
    693 
    694 void
    695 ir_to_mesa_visitor::visit(ir_loop *ir)
    696 {
    697    emit(NULL, OPCODE_BGNLOOP);
    698 
    699    visit_exec_list(&ir->body_instructions, this);
    700 
    701    emit(NULL, OPCODE_ENDLOOP);
    702 }
    703 
    704 void
    705 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
    706 {
    707    switch (ir->mode) {
    708    case ir_loop_jump::jump_break:
    709       emit(NULL, OPCODE_BRK);
    710       break;
    711    case ir_loop_jump::jump_continue:
    712       emit(NULL, OPCODE_CONT);
    713       break;
    714    }
    715 }
    716 
    717 
    718 void
    719 ir_to_mesa_visitor::visit(ir_function_signature *ir)
    720 {
    721    assert(0);
    722    (void)ir;
    723 }
    724 
    725 void
    726 ir_to_mesa_visitor::visit(ir_function *ir)
    727 {
    728    /* Ignore function bodies other than main() -- we shouldn't see calls to
    729     * them since they should all be inlined before we get to ir_to_mesa.
    730     */
    731    if (strcmp(ir->name, "main") == 0) {
    732       const ir_function_signature *sig;
    733       exec_list empty;
    734 
    735       sig = ir->matching_signature(NULL, &empty, false);
    736 
    737       assert(sig);
    738 
    739       foreach_in_list(ir_instruction, ir, &sig->body) {
    740 	 ir->accept(this);
    741       }
    742    }
    743 }
    744 
    745 bool
    746 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
    747 {
    748    int nonmul_operand = 1 - mul_operand;
    749    src_reg a, b, c;
    750 
    751    ir_expression *expr = ir->operands[mul_operand]->as_expression();
    752    if (!expr || expr->operation != ir_binop_mul)
    753       return false;
    754 
    755    expr->operands[0]->accept(this);
    756    a = this->result;
    757    expr->operands[1]->accept(this);
    758    b = this->result;
    759    ir->operands[nonmul_operand]->accept(this);
    760    c = this->result;
    761 
    762    this->result = get_temp(ir->type);
    763    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
    764 
    765    return true;
    766 }
    767 
    768 /**
    769  * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
    770  *
    771  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
    772  * implemented using multiplication, and logical-or is implemented using
    773  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
    774  * As result, the logical expression (a & !b) can be rewritten as:
    775  *
    776  *     - a * !b
    777  *     - a * (1 - b)
    778  *     - (a * 1) - (a * b)
    779  *     - a + -(a * b)
    780  *     - a + (a * -b)
    781  *
    782  * This final expression can be implemented as a single MAD(a, -b, a)
    783  * instruction.
    784  */
    785 bool
    786 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
    787 {
    788    const int other_operand = 1 - try_operand;
    789    src_reg a, b;
    790 
    791    ir_expression *expr = ir->operands[try_operand]->as_expression();
    792    if (!expr || expr->operation != ir_unop_logic_not)
    793       return false;
    794 
    795    ir->operands[other_operand]->accept(this);
    796    a = this->result;
    797    expr->operands[0]->accept(this);
    798    b = this->result;
    799 
    800    b.negate = ~b.negate;
    801 
    802    this->result = get_temp(ir->type);
    803    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
    804 
    805    return true;
    806 }
    807 
    808 void
    809 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
    810 				    src_reg *reg, int *num_reladdr)
    811 {
    812    if (!reg->reladdr)
    813       return;
    814 
    815    emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
    816 
    817    if (*num_reladdr != 1) {
    818       src_reg temp = get_temp(glsl_type::vec4_type);
    819 
    820       emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
    821       *reg = temp;
    822    }
    823 
    824    (*num_reladdr)--;
    825 }
    826 
    827 void
    828 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
    829 {
    830    /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
    831     * This means that each of the operands is either an immediate value of -1,
    832     * 0, or 1, or is a component from one source register (possibly with
    833     * negation).
    834     */
    835    uint8_t components[4] = { 0 };
    836    bool negate[4] = { false };
    837    ir_variable *var = NULL;
    838 
    839    for (unsigned i = 0; i < ir->type->vector_elements; i++) {
    840       ir_rvalue *op = ir->operands[i];
    841 
    842       assert(op->type->is_scalar());
    843 
    844       while (op != NULL) {
    845 	 switch (op->ir_type) {
    846 	 case ir_type_constant: {
    847 
    848 	    assert(op->type->is_scalar());
    849 
    850 	    const ir_constant *const c = op->as_constant();
    851 	    if (c->is_one()) {
    852 	       components[i] = SWIZZLE_ONE;
    853 	    } else if (c->is_zero()) {
    854 	       components[i] = SWIZZLE_ZERO;
    855 	    } else if (c->is_negative_one()) {
    856 	       components[i] = SWIZZLE_ONE;
    857 	       negate[i] = true;
    858 	    } else {
    859 	       assert(!"SWZ constant must be 0.0 or 1.0.");
    860 	    }
    861 
    862 	    op = NULL;
    863 	    break;
    864 	 }
    865 
    866 	 case ir_type_dereference_variable: {
    867 	    ir_dereference_variable *const deref =
    868 	       (ir_dereference_variable *) op;
    869 
    870 	    assert((var == NULL) || (deref->var == var));
    871 	    components[i] = SWIZZLE_X;
    872 	    var = deref->var;
    873 	    op = NULL;
    874 	    break;
    875 	 }
    876 
    877 	 case ir_type_expression: {
    878 	    ir_expression *const expr = (ir_expression *) op;
    879 
    880 	    assert(expr->operation == ir_unop_neg);
    881 	    negate[i] = true;
    882 
    883 	    op = expr->operands[0];
    884 	    break;
    885 	 }
    886 
    887 	 case ir_type_swizzle: {
    888 	    ir_swizzle *const swiz = (ir_swizzle *) op;
    889 
    890 	    components[i] = swiz->mask.x;
    891 	    op = swiz->val;
    892 	    break;
    893 	 }
    894 
    895 	 default:
    896 	    assert(!"Should not get here.");
    897 	    return;
    898 	 }
    899       }
    900    }
    901 
    902    assert(var != NULL);
    903 
    904    ir_dereference_variable *const deref =
    905       new(mem_ctx) ir_dereference_variable(var);
    906 
    907    this->result.file = PROGRAM_UNDEFINED;
    908    deref->accept(this);
    909    if (this->result.file == PROGRAM_UNDEFINED) {
    910       printf("Failed to get tree for expression operand:\n");
    911       deref->print();
    912       printf("\n");
    913       exit(1);
    914    }
    915 
    916    src_reg src;
    917 
    918    src = this->result;
    919    src.swizzle = MAKE_SWIZZLE4(components[0],
    920 			       components[1],
    921 			       components[2],
    922 			       components[3]);
    923    src.negate = ((unsigned(negate[0]) << 0)
    924 		 | (unsigned(negate[1]) << 1)
    925 		 | (unsigned(negate[2]) << 2)
    926 		 | (unsigned(negate[3]) << 3));
    927 
    928    /* Storage for our result.  Ideally for an assignment we'd be using the
    929     * actual storage for the result here, instead.
    930     */
    931    const src_reg result_src = get_temp(ir->type);
    932    dst_reg result_dst = dst_reg(result_src);
    933 
    934    /* Limit writes to the channels that will be used by result_src later.
    935     * This does limit this temp's use as a temporary for multi-instruction
    936     * sequences.
    937     */
    938    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
    939 
    940    emit(ir, OPCODE_SWZ, result_dst, src);
    941    this->result = result_src;
    942 }
    943 
    944 void
    945 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
    946                                              enum prog_opcode op,
    947                                              dst_reg dst,
    948                                              const src_reg &src0,
    949                                              const src_reg &src1)
    950 {
    951    src_reg difference;
    952    src_reg abs_difference = get_temp(glsl_type::vec4_type);
    953    const src_reg zero = src_reg_for_float(0.0);
    954 
    955    /* x == y is equivalent to -abs(x-y) >= 0.  Since all of the code that
    956     * consumes the generated IR is pretty dumb, take special care when one
    957     * of the operands is zero.
    958     *
    959     * Similarly, x != y is equivalent to -abs(x-y) < 0.
    960     */
    961    if (src0.file == zero.file &&
    962        src0.index == zero.index &&
    963        src0.swizzle == zero.swizzle) {
    964       difference = src1;
    965    } else if (src1.file == zero.file &&
    966               src1.index == zero.index &&
    967               src1.swizzle == zero.swizzle) {
    968       difference = src0;
    969    } else {
    970       difference = get_temp(glsl_type::vec4_type);
    971 
    972       src_reg tmp_src = src0;
    973       tmp_src.negate = ~tmp_src.negate;
    974 
    975       emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
    976    }
    977 
    978    emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
    979 
    980    abs_difference.negate = ~abs_difference.negate;
    981    emit(ir, op, dst, abs_difference, zero);
    982 }
    983 
    984 void
    985 ir_to_mesa_visitor::visit(ir_expression *ir)
    986 {
    987    unsigned int operand;
    988    src_reg op[ARRAY_SIZE(ir->operands)];
    989    src_reg result_src;
    990    dst_reg result_dst;
    991 
    992    /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
    993     */
    994    if (ir->operation == ir_binop_add) {
    995       if (try_emit_mad(ir, 1))
    996 	 return;
    997       if (try_emit_mad(ir, 0))
    998 	 return;
    999    }
   1000 
   1001    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
   1002     */
   1003    if (ir->operation == ir_binop_logic_and) {
   1004       if (try_emit_mad_for_and_not(ir, 1))
   1005 	 return;
   1006       if (try_emit_mad_for_and_not(ir, 0))
   1007 	 return;
   1008    }
   1009 
   1010    if (ir->operation == ir_quadop_vector) {
   1011       this->emit_swz(ir);
   1012       return;
   1013    }
   1014 
   1015    for (operand = 0; operand < ir->num_operands; operand++) {
   1016       this->result.file = PROGRAM_UNDEFINED;
   1017       ir->operands[operand]->accept(this);
   1018       if (this->result.file == PROGRAM_UNDEFINED) {
   1019 	 printf("Failed to get tree for expression operand:\n");
   1020          ir->operands[operand]->print();
   1021          printf("\n");
   1022 	 exit(1);
   1023       }
   1024       op[operand] = this->result;
   1025 
   1026       /* Matrix expression operands should have been broken down to vector
   1027        * operations already.
   1028        */
   1029       assert(!ir->operands[operand]->type->is_matrix());
   1030    }
   1031 
   1032    int vector_elements = ir->operands[0]->type->vector_elements;
   1033    if (ir->operands[1]) {
   1034       vector_elements = MAX2(vector_elements,
   1035 			     ir->operands[1]->type->vector_elements);
   1036    }
   1037 
   1038    this->result.file = PROGRAM_UNDEFINED;
   1039 
   1040    /* Storage for our result.  Ideally for an assignment we'd be using
   1041     * the actual storage for the result here, instead.
   1042     */
   1043    result_src = get_temp(ir->type);
   1044    /* convenience for the emit functions below. */
   1045    result_dst = dst_reg(result_src);
   1046    /* Limit writes to the channels that will be used by result_src later.
   1047     * This does limit this temp's use as a temporary for multi-instruction
   1048     * sequences.
   1049     */
   1050    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
   1051 
   1052    switch (ir->operation) {
   1053    case ir_unop_logic_not:
   1054       /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
   1055        * older GPUs implement SEQ using multiple instructions (i915 uses two
   1056        * SGE instructions and a MUL instruction).  Since our logic values are
   1057        * 0.0 and 1.0, 1-x also implements !x.
   1058        */
   1059       op[0].negate = ~op[0].negate;
   1060       emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
   1061       break;
   1062    case ir_unop_neg:
   1063       op[0].negate = ~op[0].negate;
   1064       result_src = op[0];
   1065       break;
   1066    case ir_unop_abs:
   1067       emit(ir, OPCODE_ABS, result_dst, op[0]);
   1068       break;
   1069    case ir_unop_sign:
   1070       emit(ir, OPCODE_SSG, result_dst, op[0]);
   1071       break;
   1072    case ir_unop_rcp:
   1073       emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
   1074       break;
   1075 
   1076    case ir_unop_exp2:
   1077       emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
   1078       break;
   1079    case ir_unop_exp:
   1080       assert(!"not reached: should be handled by exp_to_exp2");
   1081       break;
   1082    case ir_unop_log:
   1083       assert(!"not reached: should be handled by log_to_log2");
   1084       break;
   1085    case ir_unop_log2:
   1086       emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
   1087       break;
   1088    case ir_unop_sin:
   1089       emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
   1090       break;
   1091    case ir_unop_cos:
   1092       emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
   1093       break;
   1094 
   1095    case ir_unop_dFdx:
   1096       emit(ir, OPCODE_DDX, result_dst, op[0]);
   1097       break;
   1098    case ir_unop_dFdy:
   1099       emit(ir, OPCODE_DDY, result_dst, op[0]);
   1100       break;
   1101 
   1102    case ir_unop_saturate: {
   1103       ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
   1104                                           result_dst, op[0]);
   1105       inst->saturate = true;
   1106       break;
   1107    }
   1108    case ir_unop_noise: {
   1109       const enum prog_opcode opcode =
   1110 	 prog_opcode(OPCODE_NOISE1
   1111 		     + (ir->operands[0]->type->vector_elements) - 1);
   1112       assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
   1113 
   1114       emit(ir, opcode, result_dst, op[0]);
   1115       break;
   1116    }
   1117 
   1118    case ir_binop_add:
   1119       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
   1120       break;
   1121    case ir_binop_sub:
   1122       emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
   1123       break;
   1124 
   1125    case ir_binop_mul:
   1126       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
   1127       break;
   1128    case ir_binop_div:
   1129       assert(!"not reached: should be handled by ir_div_to_mul_rcp");
   1130       break;
   1131    case ir_binop_mod:
   1132       /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
   1133       assert(ir->type->is_integer());
   1134       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
   1135       break;
   1136 
   1137    case ir_binop_less:
   1138       emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
   1139       break;
   1140    case ir_binop_gequal:
   1141       emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
   1142       break;
   1143    case ir_binop_equal:
   1144       emit_seq(ir, result_dst, op[0], op[1]);
   1145       break;
   1146    case ir_binop_nequal:
   1147       emit_sne(ir, result_dst, op[0], op[1]);
   1148       break;
   1149    case ir_binop_all_equal:
   1150       /* "==" operator producing a scalar boolean. */
   1151       if (ir->operands[0]->type->is_vector() ||
   1152 	  ir->operands[1]->type->is_vector()) {
   1153 	 src_reg temp = get_temp(glsl_type::vec4_type);
   1154          emit_sne(ir, dst_reg(temp), op[0], op[1]);
   1155 
   1156 	 /* After the dot-product, the value will be an integer on the
   1157 	  * range [0,4].  Zero becomes 1.0, and positive values become zero.
   1158 	  */
   1159 	 emit_dp(ir, result_dst, temp, temp, vector_elements);
   1160 
   1161 	 /* Negating the result of the dot-product gives values on the range
   1162 	  * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
   1163 	  * achieved using SGE.
   1164 	  */
   1165 	 src_reg sge_src = result_src;
   1166 	 sge_src.negate = ~sge_src.negate;
   1167 	 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
   1168       } else {
   1169          emit_seq(ir, result_dst, op[0], op[1]);
   1170       }
   1171       break;
   1172    case ir_binop_any_nequal:
   1173       /* "!=" operator producing a scalar boolean. */
   1174       if (ir->operands[0]->type->is_vector() ||
   1175 	  ir->operands[1]->type->is_vector()) {
   1176 	 src_reg temp = get_temp(glsl_type::vec4_type);
   1177          if (ir->operands[0]->type->is_boolean() &&
   1178              ir->operands[1]->as_constant() &&
   1179              ir->operands[1]->as_constant()->is_zero()) {
   1180             temp = op[0];
   1181          } else {
   1182             emit_sne(ir, dst_reg(temp), op[0], op[1]);
   1183          }
   1184 
   1185 	 /* After the dot-product, the value will be an integer on the
   1186 	  * range [0,4].  Zero stays zero, and positive values become 1.0.
   1187 	  */
   1188 	 ir_to_mesa_instruction *const dp =
   1189 	    emit_dp(ir, result_dst, temp, temp, vector_elements);
   1190 	 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
   1191 	    /* The clamping to [0,1] can be done for free in the fragment
   1192 	     * shader with a saturate.
   1193 	     */
   1194 	    dp->saturate = true;
   1195 	 } else {
   1196 	    /* Negating the result of the dot-product gives values on the range
   1197 	     * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
   1198 	     * achieved using SLT.
   1199 	     */
   1200 	    src_reg slt_src = result_src;
   1201 	    slt_src.negate = ~slt_src.negate;
   1202 	    emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
   1203 	 }
   1204       } else {
   1205          emit_sne(ir, result_dst, op[0], op[1]);
   1206       }
   1207       break;
   1208 
   1209    case ir_binop_logic_xor:
   1210       emit_sne(ir, result_dst, op[0], op[1]);
   1211       break;
   1212 
   1213    case ir_binop_logic_or: {
   1214       if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
   1215          /* After the addition, the value will be an integer on the
   1216           * range [0,2].  Zero stays zero, and positive values become 1.0.
   1217           */
   1218          ir_to_mesa_instruction *add =
   1219             emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
   1220 	 add->saturate = true;
   1221       } else {
   1222          /* The Boolean arguments are stored as float 0.0 and 1.0.  If either
   1223           * value is 1.0, the result of the logcal-or should be 1.0.  If both
   1224           * values are 0.0, the result should be 0.0.  This is exactly what
   1225           * MAX does.
   1226           */
   1227          emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
   1228       }
   1229       break;
   1230    }
   1231 
   1232    case ir_binop_logic_and:
   1233       /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
   1234       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
   1235       break;
   1236 
   1237    case ir_binop_dot:
   1238       assert(ir->operands[0]->type->is_vector());
   1239       assert(ir->operands[0]->type == ir->operands[1]->type);
   1240       emit_dp(ir, result_dst, op[0], op[1],
   1241 	      ir->operands[0]->type->vector_elements);
   1242       break;
   1243 
   1244    case ir_unop_sqrt:
   1245       /* sqrt(x) = x * rsq(x). */
   1246       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
   1247       emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
   1248       /* For incoming channels <= 0, set the result to 0. */
   1249       op[0].negate = ~op[0].negate;
   1250       emit(ir, OPCODE_CMP, result_dst,
   1251 			  op[0], result_src, src_reg_for_float(0.0));
   1252       break;
   1253    case ir_unop_rsq:
   1254       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
   1255       break;
   1256    case ir_unop_i2f:
   1257    case ir_unop_u2f:
   1258    case ir_unop_b2f:
   1259    case ir_unop_b2i:
   1260    case ir_unop_i2u:
   1261    case ir_unop_u2i:
   1262       /* Mesa IR lacks types, ints are stored as truncated floats. */
   1263       result_src = op[0];
   1264       break;
   1265    case ir_unop_f2i:
   1266    case ir_unop_f2u:
   1267       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
   1268       break;
   1269    case ir_unop_f2b:
   1270    case ir_unop_i2b:
   1271       emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
   1272       break;
   1273    case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
   1274    case ir_unop_bitcast_f2u:
   1275    case ir_unop_bitcast_i2f:
   1276    case ir_unop_bitcast_u2f:
   1277       break;
   1278    case ir_unop_trunc:
   1279       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
   1280       break;
   1281    case ir_unop_ceil:
   1282       op[0].negate = ~op[0].negate;
   1283       emit(ir, OPCODE_FLR, result_dst, op[0]);
   1284       result_src.negate = ~result_src.negate;
   1285       break;
   1286    case ir_unop_floor:
   1287       emit(ir, OPCODE_FLR, result_dst, op[0]);
   1288       break;
   1289    case ir_unop_fract:
   1290       emit(ir, OPCODE_FRC, result_dst, op[0]);
   1291       break;
   1292    case ir_unop_pack_snorm_2x16:
   1293    case ir_unop_pack_snorm_4x8:
   1294    case ir_unop_pack_unorm_2x16:
   1295    case ir_unop_pack_unorm_4x8:
   1296    case ir_unop_pack_half_2x16:
   1297    case ir_unop_pack_double_2x32:
   1298    case ir_unop_unpack_snorm_2x16:
   1299    case ir_unop_unpack_snorm_4x8:
   1300    case ir_unop_unpack_unorm_2x16:
   1301    case ir_unop_unpack_unorm_4x8:
   1302    case ir_unop_unpack_half_2x16:
   1303    case ir_unop_unpack_double_2x32:
   1304    case ir_unop_bitfield_reverse:
   1305    case ir_unop_bit_count:
   1306    case ir_unop_find_msb:
   1307    case ir_unop_find_lsb:
   1308    case ir_unop_d2f:
   1309    case ir_unop_f2d:
   1310    case ir_unop_d2i:
   1311    case ir_unop_i2d:
   1312    case ir_unop_d2u:
   1313    case ir_unop_u2d:
   1314    case ir_unop_d2b:
   1315    case ir_unop_frexp_sig:
   1316    case ir_unop_frexp_exp:
   1317       assert(!"not supported");
   1318       break;
   1319    case ir_binop_min:
   1320       emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
   1321       break;
   1322    case ir_binop_max:
   1323       emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
   1324       break;
   1325    case ir_binop_pow:
   1326       emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
   1327       break;
   1328 
   1329       /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
   1330        * hardware backends have no way to avoid Mesa IR generation
   1331        * even if they don't use it, we need to emit "something" and
   1332        * continue.
   1333        */
   1334    case ir_binop_lshift:
   1335    case ir_binop_rshift:
   1336    case ir_binop_bit_and:
   1337    case ir_binop_bit_xor:
   1338    case ir_binop_bit_or:
   1339       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
   1340       break;
   1341 
   1342    case ir_unop_bit_not:
   1343    case ir_unop_round_even:
   1344       emit(ir, OPCODE_MOV, result_dst, op[0]);
   1345       break;
   1346 
   1347    case ir_binop_ubo_load:
   1348       assert(!"not supported");
   1349       break;
   1350 
   1351    case ir_triop_lrp:
   1352       /* ir_triop_lrp operands are (x, y, a) while
   1353        * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
   1354        */
   1355       emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
   1356       break;
   1357 
   1358    case ir_triop_csel:
   1359       /* We assume that boolean true and false are 1.0 and 0.0.  OPCODE_CMP
   1360        * selects src1 if src0 is < 0, src2 otherwise.
   1361        */
   1362       op[0].negate = ~op[0].negate;
   1363       emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
   1364       break;
   1365 
   1366    case ir_binop_vector_extract:
   1367    case ir_triop_fma:
   1368    case ir_triop_bitfield_extract:
   1369    case ir_triop_vector_insert:
   1370    case ir_quadop_bitfield_insert:
   1371    case ir_binop_ldexp:
   1372    case ir_binop_carry:
   1373    case ir_binop_borrow:
   1374    case ir_binop_imul_high:
   1375    case ir_unop_interpolate_at_centroid:
   1376    case ir_binop_interpolate_at_offset:
   1377    case ir_binop_interpolate_at_sample:
   1378    case ir_unop_dFdx_coarse:
   1379    case ir_unop_dFdx_fine:
   1380    case ir_unop_dFdy_coarse:
   1381    case ir_unop_dFdy_fine:
   1382    case ir_unop_subroutine_to_int:
   1383    case ir_unop_get_buffer_size:
   1384    case ir_unop_bitcast_u642d:
   1385    case ir_unop_bitcast_i642d:
   1386    case ir_unop_bitcast_d2u64:
   1387    case ir_unop_bitcast_d2i64:
   1388    case ir_unop_i642i:
   1389    case ir_unop_u642i:
   1390    case ir_unop_i642u:
   1391    case ir_unop_u642u:
   1392    case ir_unop_i642b:
   1393    case ir_unop_i642f:
   1394    case ir_unop_u642f:
   1395    case ir_unop_i642d:
   1396    case ir_unop_u642d:
   1397    case ir_unop_i2i64:
   1398    case ir_unop_u2i64:
   1399    case ir_unop_b2i64:
   1400    case ir_unop_f2i64:
   1401    case ir_unop_d2i64:
   1402    case ir_unop_i2u64:
   1403    case ir_unop_u2u64:
   1404    case ir_unop_f2u64:
   1405    case ir_unop_d2u64:
   1406    case ir_unop_u642i64:
   1407    case ir_unop_i642u64:
   1408    case ir_unop_pack_int_2x32:
   1409    case ir_unop_unpack_int_2x32:
   1410    case ir_unop_pack_uint_2x32:
   1411    case ir_unop_unpack_uint_2x32:
   1412    case ir_unop_pack_sampler_2x32:
   1413    case ir_unop_unpack_sampler_2x32:
   1414    case ir_unop_pack_image_2x32:
   1415    case ir_unop_unpack_image_2x32:
   1416       assert(!"not supported");
   1417       break;
   1418 
   1419    case ir_unop_ssbo_unsized_array_length:
   1420    case ir_quadop_vector:
   1421       /* This operation should have already been handled.
   1422        */
   1423       assert(!"Should not get here.");
   1424       break;
   1425    }
   1426 
   1427    this->result = result_src;
   1428 }
   1429 
   1430 
   1431 void
   1432 ir_to_mesa_visitor::visit(ir_swizzle *ir)
   1433 {
   1434    src_reg src;
   1435    int i;
   1436    int swizzle[4];
   1437 
   1438    /* Note that this is only swizzles in expressions, not those on the left
   1439     * hand side of an assignment, which do write masking.  See ir_assignment
   1440     * for that.
   1441     */
   1442 
   1443    ir->val->accept(this);
   1444    src = this->result;
   1445    assert(src.file != PROGRAM_UNDEFINED);
   1446    assert(ir->type->vector_elements > 0);
   1447 
   1448    for (i = 0; i < 4; i++) {
   1449       if (i < ir->type->vector_elements) {
   1450 	 switch (i) {
   1451 	 case 0:
   1452 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
   1453 	    break;
   1454 	 case 1:
   1455 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
   1456 	    break;
   1457 	 case 2:
   1458 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
   1459 	    break;
   1460 	 case 3:
   1461 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
   1462 	    break;
   1463 	 }
   1464       } else {
   1465 	 /* If the type is smaller than a vec4, replicate the last
   1466 	  * channel out.
   1467 	  */
   1468 	 swizzle[i] = swizzle[ir->type->vector_elements - 1];
   1469       }
   1470    }
   1471 
   1472    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
   1473 
   1474    this->result = src;
   1475 }
   1476 
   1477 void
   1478 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
   1479 {
   1480    variable_storage *entry = find_variable_storage(ir->var);
   1481    ir_variable *var = ir->var;
   1482 
   1483    if (!entry) {
   1484       switch (var->data.mode) {
   1485       case ir_var_uniform:
   1486 	 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
   1487 					       var->data.param_index);
   1488 	 this->variables.push_tail(entry);
   1489 	 break;
   1490       case ir_var_shader_in:
   1491 	 /* The linker assigns locations for varyings and attributes,
   1492 	  * including deprecated builtins (like gl_Color),
   1493 	  * user-assigned generic attributes (glBindVertexLocation),
   1494 	  * and user-defined varyings.
   1495 	  */
   1496 	 assert(var->data.location != -1);
   1497          entry = new(mem_ctx) variable_storage(var,
   1498                                                PROGRAM_INPUT,
   1499                                                var->data.location);
   1500          break;
   1501       case ir_var_shader_out:
   1502 	 assert(var->data.location != -1);
   1503          entry = new(mem_ctx) variable_storage(var,
   1504                                                PROGRAM_OUTPUT,
   1505                                                var->data.location);
   1506 	 break;
   1507       case ir_var_system_value:
   1508          entry = new(mem_ctx) variable_storage(var,
   1509                                                PROGRAM_SYSTEM_VALUE,
   1510                                                var->data.location);
   1511          break;
   1512       case ir_var_auto:
   1513       case ir_var_temporary:
   1514 	 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
   1515 					       this->next_temp);
   1516 	 this->variables.push_tail(entry);
   1517 
   1518 	 next_temp += type_size(var->type);
   1519 	 break;
   1520       }
   1521 
   1522       if (!entry) {
   1523 	 printf("Failed to make storage for %s\n", var->name);
   1524 	 exit(1);
   1525       }
   1526    }
   1527 
   1528    this->result = src_reg(entry->file, entry->index, var->type);
   1529 }
   1530 
   1531 void
   1532 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
   1533 {
   1534    ir_constant *index;
   1535    src_reg src;
   1536    int element_size = type_size(ir->type);
   1537 
   1538    index = ir->array_index->constant_expression_value(ralloc_parent(ir));
   1539 
   1540    ir->array->accept(this);
   1541    src = this->result;
   1542 
   1543    if (index) {
   1544       src.index += index->value.i[0] * element_size;
   1545    } else {
   1546       /* Variable index array dereference.  It eats the "vec4" of the
   1547        * base of the array and an index that offsets the Mesa register
   1548        * index.
   1549        */
   1550       ir->array_index->accept(this);
   1551 
   1552       src_reg index_reg;
   1553 
   1554       if (element_size == 1) {
   1555 	 index_reg = this->result;
   1556       } else {
   1557 	 index_reg = get_temp(glsl_type::float_type);
   1558 
   1559 	 emit(ir, OPCODE_MUL, dst_reg(index_reg),
   1560 	      this->result, src_reg_for_float(element_size));
   1561       }
   1562 
   1563       /* If there was already a relative address register involved, add the
   1564        * new and the old together to get the new offset.
   1565        */
   1566       if (src.reladdr != NULL)  {
   1567 	 src_reg accum_reg = get_temp(glsl_type::float_type);
   1568 
   1569 	 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
   1570 	      index_reg, *src.reladdr);
   1571 
   1572 	 index_reg = accum_reg;
   1573       }
   1574 
   1575       src.reladdr = ralloc(mem_ctx, src_reg);
   1576       memcpy(src.reladdr, &index_reg, sizeof(index_reg));
   1577    }
   1578 
   1579    /* If the type is smaller than a vec4, replicate the last channel out. */
   1580    if (ir->type->is_scalar() || ir->type->is_vector())
   1581       src.swizzle = swizzle_for_size(ir->type->vector_elements);
   1582    else
   1583       src.swizzle = SWIZZLE_NOOP;
   1584 
   1585    this->result = src;
   1586 }
   1587 
   1588 void
   1589 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
   1590 {
   1591    unsigned int i;
   1592    const glsl_type *struct_type = ir->record->type;
   1593    int offset = 0;
   1594 
   1595    ir->record->accept(this);
   1596 
   1597    assert(ir->field_idx >= 0);
   1598    for (i = 0; i < struct_type->length; i++) {
   1599       if (i == (unsigned) ir->field_idx)
   1600 	 break;
   1601       offset += type_size(struct_type->fields.structure[i].type);
   1602    }
   1603 
   1604    /* If the type is smaller than a vec4, replicate the last channel out. */
   1605    if (ir->type->is_scalar() || ir->type->is_vector())
   1606       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
   1607    else
   1608       this->result.swizzle = SWIZZLE_NOOP;
   1609 
   1610    this->result.index += offset;
   1611 }
   1612 
   1613 /**
   1614  * We want to be careful in assignment setup to hit the actual storage
   1615  * instead of potentially using a temporary like we might with the
   1616  * ir_dereference handler.
   1617  */
   1618 static dst_reg
   1619 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
   1620 {
   1621    /* The LHS must be a dereference.  If the LHS is a variable indexed array
   1622     * access of a vector, it must be separated into a series conditional moves
   1623     * before reaching this point (see ir_vec_index_to_cond_assign).
   1624     */
   1625    assert(ir->as_dereference());
   1626    ir_dereference_array *deref_array = ir->as_dereference_array();
   1627    if (deref_array) {
   1628       assert(!deref_array->array->type->is_vector());
   1629    }
   1630 
   1631    /* Use the rvalue deref handler for the most part.  We'll ignore
   1632     * swizzles in it and write swizzles using writemask, though.
   1633     */
   1634    ir->accept(v);
   1635    return dst_reg(v->result);
   1636 }
   1637 
   1638 /* Calculate the sampler index and also calculate the base uniform location
   1639  * for struct members.
   1640  */
   1641 static void
   1642 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
   1643                      unsigned *offset, unsigned *array_elements,
   1644                      unsigned *location)
   1645 {
   1646    if (deref->ir_type == ir_type_dereference_variable)
   1647       return;
   1648 
   1649    switch (deref->ir_type) {
   1650    case ir_type_dereference_array: {
   1651       ir_dereference_array *deref_arr = deref->as_dereference_array();
   1652 
   1653       void *mem_ctx = ralloc_parent(deref_arr);
   1654       ir_constant *array_index =
   1655          deref_arr->array_index->constant_expression_value(mem_ctx);
   1656 
   1657       if (!array_index) {
   1658 	 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
   1659 	  * while GLSL 1.30 requires that the array indices be
   1660 	  * constant integer expressions.  We don't expect any driver
   1661 	  * to actually work with a really variable array index, so
   1662 	  * all that would work would be an unrolled loop counter that ends
   1663 	  * up being constant above.
   1664 	  */
   1665          ralloc_strcat(&prog->data->InfoLog,
   1666 		       "warning: Variable sampler array index unsupported.\n"
   1667 		       "This feature of the language was removed in GLSL 1.20 "
   1668 		       "and is unlikely to be supported for 1.10 in Mesa.\n");
   1669       } else {
   1670          *offset += array_index->value.u[0] * *array_elements;
   1671       }
   1672 
   1673       *array_elements *= deref_arr->array->type->length;
   1674 
   1675       calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
   1676                            offset, array_elements, location);
   1677       break;
   1678    }
   1679 
   1680    case ir_type_dereference_record: {
   1681       ir_dereference_record *deref_record = deref->as_dereference_record();
   1682       unsigned field_index = deref_record->field_idx;
   1683       *location +=
   1684          deref_record->record->type->record_location_offset(field_index);
   1685       calc_sampler_offsets(prog, deref_record->record->as_dereference(),
   1686                            offset, array_elements, location);
   1687       break;
   1688    }
   1689 
   1690    default:
   1691       unreachable("Invalid deref type");
   1692       break;
   1693    }
   1694 }
   1695 
   1696 static int
   1697 get_sampler_uniform_value(class ir_dereference *sampler,
   1698                           struct gl_shader_program *shader_program,
   1699                           const struct gl_program *prog)
   1700 {
   1701    GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
   1702    ir_variable *var = sampler->variable_referenced();
   1703    unsigned location = var->data.location;
   1704    unsigned array_elements = 1;
   1705    unsigned offset = 0;
   1706 
   1707    calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
   1708                         &location);
   1709 
   1710    assert(shader_program->data->UniformStorage[location].opaque[shader].active);
   1711    return shader_program->data->UniformStorage[location].opaque[shader].index +
   1712           offset;
   1713 }
   1714 
   1715 /**
   1716  * Process the condition of a conditional assignment
   1717  *
   1718  * Examines the condition of a conditional assignment to generate the optimal
   1719  * first operand of a \c CMP instruction.  If the condition is a relational
   1720  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
   1721  * used as the source for the \c CMP instruction.  Otherwise the comparison
   1722  * is processed to a boolean result, and the boolean result is used as the
   1723  * operand to the CMP instruction.
   1724  */
   1725 bool
   1726 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
   1727 {
   1728    ir_rvalue *src_ir = ir;
   1729    bool negate = true;
   1730    bool switch_order = false;
   1731 
   1732    ir_expression *const expr = ir->as_expression();
   1733    if ((expr != NULL) && (expr->num_operands == 2)) {
   1734       bool zero_on_left = false;
   1735 
   1736       if (expr->operands[0]->is_zero()) {
   1737 	 src_ir = expr->operands[1];
   1738 	 zero_on_left = true;
   1739       } else if (expr->operands[1]->is_zero()) {
   1740 	 src_ir = expr->operands[0];
   1741 	 zero_on_left = false;
   1742       }
   1743 
   1744       /*      a is -  0  +            -  0  +
   1745        * (a <  0)  T  F  F  ( a < 0)  T  F  F
   1746        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
   1747        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
   1748        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
   1749        *
   1750        * Note that exchanging the order of 0 and 'a' in the comparison simply
   1751        * means that the value of 'a' should be negated.
   1752        */
   1753       if (src_ir != ir) {
   1754 	 switch (expr->operation) {
   1755 	 case ir_binop_less:
   1756 	    switch_order = false;
   1757 	    negate = zero_on_left;
   1758 	    break;
   1759 
   1760 	 case ir_binop_gequal:
   1761 	    switch_order = true;
   1762 	    negate = zero_on_left;
   1763 	    break;
   1764 
   1765 	 default:
   1766 	    /* This isn't the right kind of comparison afterall, so make sure
   1767 	     * the whole condition is visited.
   1768 	     */
   1769 	    src_ir = ir;
   1770 	    break;
   1771 	 }
   1772       }
   1773    }
   1774 
   1775    src_ir->accept(this);
   1776 
   1777    /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
   1778     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
   1779     * choose which value OPCODE_CMP produces without an extra instruction
   1780     * computing the condition.
   1781     */
   1782    if (negate)
   1783       this->result.negate = ~this->result.negate;
   1784 
   1785    return switch_order;
   1786 }
   1787 
   1788 void
   1789 ir_to_mesa_visitor::visit(ir_assignment *ir)
   1790 {
   1791    dst_reg l;
   1792    src_reg r;
   1793    int i;
   1794 
   1795    ir->rhs->accept(this);
   1796    r = this->result;
   1797 
   1798    l = get_assignment_lhs(ir->lhs, this);
   1799 
   1800    /* FINISHME: This should really set to the correct maximal writemask for each
   1801     * FINISHME: component written (in the loops below).  This case can only
   1802     * FINISHME: occur for matrices, arrays, and structures.
   1803     */
   1804    if (ir->write_mask == 0) {
   1805       assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
   1806       l.writemask = WRITEMASK_XYZW;
   1807    } else if (ir->lhs->type->is_scalar()) {
   1808       /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
   1809        * FINISHME: W component of fragment shader output zero, work correctly.
   1810        */
   1811       l.writemask = WRITEMASK_XYZW;
   1812    } else {
   1813       int swizzles[4];
   1814       int first_enabled_chan = 0;
   1815       int rhs_chan = 0;
   1816 
   1817       assert(ir->lhs->type->is_vector());
   1818       l.writemask = ir->write_mask;
   1819 
   1820       for (int i = 0; i < 4; i++) {
   1821 	 if (l.writemask & (1 << i)) {
   1822 	    first_enabled_chan = GET_SWZ(r.swizzle, i);
   1823 	    break;
   1824 	 }
   1825       }
   1826 
   1827       /* Swizzle a small RHS vector into the channels being written.
   1828        *
   1829        * glsl ir treats write_mask as dictating how many channels are
   1830        * present on the RHS while Mesa IR treats write_mask as just
   1831        * showing which channels of the vec4 RHS get written.
   1832        */
   1833       for (int i = 0; i < 4; i++) {
   1834 	 if (l.writemask & (1 << i))
   1835 	    swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
   1836 	 else
   1837 	    swizzles[i] = first_enabled_chan;
   1838       }
   1839       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
   1840 				swizzles[2], swizzles[3]);
   1841    }
   1842 
   1843    assert(l.file != PROGRAM_UNDEFINED);
   1844    assert(r.file != PROGRAM_UNDEFINED);
   1845 
   1846    if (ir->condition) {
   1847       const bool switch_order = this->process_move_condition(ir->condition);
   1848       src_reg condition = this->result;
   1849 
   1850       for (i = 0; i < type_size(ir->lhs->type); i++) {
   1851 	 if (switch_order) {
   1852 	    emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
   1853 	 } else {
   1854 	    emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
   1855 	 }
   1856 
   1857 	 l.index++;
   1858 	 r.index++;
   1859       }
   1860    } else {
   1861       for (i = 0; i < type_size(ir->lhs->type); i++) {
   1862 	 emit(ir, OPCODE_MOV, l, r);
   1863 	 l.index++;
   1864 	 r.index++;
   1865       }
   1866    }
   1867 }
   1868 
   1869 
   1870 void
   1871 ir_to_mesa_visitor::visit(ir_constant *ir)
   1872 {
   1873    src_reg src;
   1874    GLfloat stack_vals[4] = { 0 };
   1875    GLfloat *values = stack_vals;
   1876    unsigned int i;
   1877 
   1878    /* Unfortunately, 4 floats is all we can get into
   1879     * _mesa_add_unnamed_constant.  So, make a temp to store an
   1880     * aggregate constant and move each constant value into it.  If we
   1881     * get lucky, copy propagation will eliminate the extra moves.
   1882     */
   1883 
   1884    if (ir->type->is_record()) {
   1885       src_reg temp_base = get_temp(ir->type);
   1886       dst_reg temp = dst_reg(temp_base);
   1887 
   1888       for (i = 0; i < ir->type->length; i++) {
   1889          ir_constant *const field_value = ir->get_record_field(i);
   1890 	 int size = type_size(field_value->type);
   1891 
   1892 	 assert(size > 0);
   1893 
   1894 	 field_value->accept(this);
   1895 	 src = this->result;
   1896 
   1897          for (unsigned j = 0; j < (unsigned int)size; j++) {
   1898 	    emit(ir, OPCODE_MOV, temp, src);
   1899 
   1900 	    src.index++;
   1901 	    temp.index++;
   1902 	 }
   1903       }
   1904       this->result = temp_base;
   1905       return;
   1906    }
   1907 
   1908    if (ir->type->is_array()) {
   1909       src_reg temp_base = get_temp(ir->type);
   1910       dst_reg temp = dst_reg(temp_base);
   1911       int size = type_size(ir->type->fields.array);
   1912 
   1913       assert(size > 0);
   1914 
   1915       for (i = 0; i < ir->type->length; i++) {
   1916 	 ir->const_elements[i]->accept(this);
   1917 	 src = this->result;
   1918 	 for (int j = 0; j < size; j++) {
   1919 	    emit(ir, OPCODE_MOV, temp, src);
   1920 
   1921 	    src.index++;
   1922 	    temp.index++;
   1923 	 }
   1924       }
   1925       this->result = temp_base;
   1926       return;
   1927    }
   1928 
   1929    if (ir->type->is_matrix()) {
   1930       src_reg mat = get_temp(ir->type);
   1931       dst_reg mat_column = dst_reg(mat);
   1932 
   1933       for (i = 0; i < ir->type->matrix_columns; i++) {
   1934 	 assert(ir->type->is_float());
   1935 	 values = &ir->value.f[i * ir->type->vector_elements];
   1936 
   1937 	 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
   1938 	 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
   1939 						(gl_constant_value *) values,
   1940 						ir->type->vector_elements,
   1941 						&src.swizzle);
   1942 	 emit(ir, OPCODE_MOV, mat_column, src);
   1943 
   1944 	 mat_column.index++;
   1945       }
   1946 
   1947       this->result = mat;
   1948       return;
   1949    }
   1950 
   1951    src.file = PROGRAM_CONSTANT;
   1952    switch (ir->type->base_type) {
   1953    case GLSL_TYPE_FLOAT:
   1954       values = &ir->value.f[0];
   1955       break;
   1956    case GLSL_TYPE_UINT:
   1957       for (i = 0; i < ir->type->vector_elements; i++) {
   1958 	 values[i] = ir->value.u[i];
   1959       }
   1960       break;
   1961    case GLSL_TYPE_INT:
   1962       for (i = 0; i < ir->type->vector_elements; i++) {
   1963 	 values[i] = ir->value.i[i];
   1964       }
   1965       break;
   1966    case GLSL_TYPE_BOOL:
   1967       for (i = 0; i < ir->type->vector_elements; i++) {
   1968 	 values[i] = ir->value.b[i];
   1969       }
   1970       break;
   1971    default:
   1972       assert(!"Non-float/uint/int/bool constant");
   1973    }
   1974 
   1975    this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
   1976    this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
   1977 						   (gl_constant_value *) values,
   1978 						   ir->type->vector_elements,
   1979 						   &this->result.swizzle);
   1980 }
   1981 
   1982 void
   1983 ir_to_mesa_visitor::visit(ir_call *)
   1984 {
   1985    assert(!"ir_to_mesa: All function calls should have been inlined by now.");
   1986 }
   1987 
   1988 void
   1989 ir_to_mesa_visitor::visit(ir_texture *ir)
   1990 {
   1991    src_reg result_src, coord, lod_info, projector, dx, dy;
   1992    dst_reg result_dst, coord_dst;
   1993    ir_to_mesa_instruction *inst = NULL;
   1994    prog_opcode opcode = OPCODE_NOP;
   1995 
   1996    if (ir->op == ir_txs)
   1997       this->result = src_reg_for_float(0.0);
   1998    else
   1999       ir->coordinate->accept(this);
   2000 
   2001    /* Put our coords in a temp.  We'll need to modify them for shadow,
   2002     * projection, or LOD, so the only case we'd use it as-is is if
   2003     * we're doing plain old texturing.  Mesa IR optimization should
   2004     * handle cleaning up our mess in that case.
   2005     */
   2006    coord = get_temp(glsl_type::vec4_type);
   2007    coord_dst = dst_reg(coord);
   2008    emit(ir, OPCODE_MOV, coord_dst, this->result);
   2009 
   2010    if (ir->projector) {
   2011       ir->projector->accept(this);
   2012       projector = this->result;
   2013    }
   2014 
   2015    /* Storage for our result.  Ideally for an assignment we'd be using
   2016     * the actual storage for the result here, instead.
   2017     */
   2018    result_src = get_temp(glsl_type::vec4_type);
   2019    result_dst = dst_reg(result_src);
   2020 
   2021    switch (ir->op) {
   2022    case ir_tex:
   2023    case ir_txs:
   2024       opcode = OPCODE_TEX;
   2025       break;
   2026    case ir_txb:
   2027       opcode = OPCODE_TXB;
   2028       ir->lod_info.bias->accept(this);
   2029       lod_info = this->result;
   2030       break;
   2031    case ir_txf:
   2032       /* Pretend to be TXL so the sampler, coordinate, lod are available */
   2033    case ir_txl:
   2034       opcode = OPCODE_TXL;
   2035       ir->lod_info.lod->accept(this);
   2036       lod_info = this->result;
   2037       break;
   2038    case ir_txd:
   2039       opcode = OPCODE_TXD;
   2040       ir->lod_info.grad.dPdx->accept(this);
   2041       dx = this->result;
   2042       ir->lod_info.grad.dPdy->accept(this);
   2043       dy = this->result;
   2044       break;
   2045    case ir_txf_ms:
   2046       assert(!"Unexpected ir_txf_ms opcode");
   2047       break;
   2048    case ir_lod:
   2049       assert(!"Unexpected ir_lod opcode");
   2050       break;
   2051    case ir_tg4:
   2052       assert(!"Unexpected ir_tg4 opcode");
   2053       break;
   2054    case ir_query_levels:
   2055       assert(!"Unexpected ir_query_levels opcode");
   2056       break;
   2057    case ir_samples_identical:
   2058       unreachable("Unexpected ir_samples_identical opcode");
   2059    case ir_texture_samples:
   2060       unreachable("Unexpected ir_texture_samples opcode");
   2061    }
   2062 
   2063    const glsl_type *sampler_type = ir->sampler->type;
   2064 
   2065    if (ir->projector) {
   2066       if (opcode == OPCODE_TEX) {
   2067 	 /* Slot the projector in as the last component of the coord. */
   2068 	 coord_dst.writemask = WRITEMASK_W;
   2069 	 emit(ir, OPCODE_MOV, coord_dst, projector);
   2070 	 coord_dst.writemask = WRITEMASK_XYZW;
   2071 	 opcode = OPCODE_TXP;
   2072       } else {
   2073 	 src_reg coord_w = coord;
   2074 	 coord_w.swizzle = SWIZZLE_WWWW;
   2075 
   2076 	 /* For the other TEX opcodes there's no projective version
   2077 	  * since the last slot is taken up by lod info.  Do the
   2078 	  * projective divide now.
   2079 	  */
   2080 	 coord_dst.writemask = WRITEMASK_W;
   2081 	 emit(ir, OPCODE_RCP, coord_dst, projector);
   2082 
   2083 	 /* In the case where we have to project the coordinates "by hand,"
   2084 	  * the shadow comparator value must also be projected.
   2085 	  */
   2086 	 src_reg tmp_src = coord;
   2087 	 if (ir->shadow_comparator) {
   2088 	    /* Slot the shadow value in as the second to last component of the
   2089 	     * coord.
   2090 	     */
   2091 	    ir->shadow_comparator->accept(this);
   2092 
   2093 	    tmp_src = get_temp(glsl_type::vec4_type);
   2094 	    dst_reg tmp_dst = dst_reg(tmp_src);
   2095 
   2096 	    /* Projective division not allowed for array samplers. */
   2097 	    assert(!sampler_type->sampler_array);
   2098 
   2099 	    tmp_dst.writemask = WRITEMASK_Z;
   2100 	    emit(ir, OPCODE_MOV, tmp_dst, this->result);
   2101 
   2102 	    tmp_dst.writemask = WRITEMASK_XY;
   2103 	    emit(ir, OPCODE_MOV, tmp_dst, coord);
   2104 	 }
   2105 
   2106 	 coord_dst.writemask = WRITEMASK_XYZ;
   2107 	 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
   2108 
   2109 	 coord_dst.writemask = WRITEMASK_XYZW;
   2110 	 coord.swizzle = SWIZZLE_XYZW;
   2111       }
   2112    }
   2113 
   2114    /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
   2115     * comparator was put in the correct place (and projected) by the code,
   2116     * above, that handles by-hand projection.
   2117     */
   2118    if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
   2119       /* Slot the shadow value in as the second to last component of the
   2120        * coord.
   2121        */
   2122       ir->shadow_comparator->accept(this);
   2123 
   2124       /* XXX This will need to be updated for cubemap array samplers. */
   2125       if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
   2126           sampler_type->sampler_array) {
   2127          coord_dst.writemask = WRITEMASK_W;
   2128       } else {
   2129          coord_dst.writemask = WRITEMASK_Z;
   2130       }
   2131 
   2132       emit(ir, OPCODE_MOV, coord_dst, this->result);
   2133       coord_dst.writemask = WRITEMASK_XYZW;
   2134    }
   2135 
   2136    if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
   2137       /* Mesa IR stores lod or lod bias in the last channel of the coords. */
   2138       coord_dst.writemask = WRITEMASK_W;
   2139       emit(ir, OPCODE_MOV, coord_dst, lod_info);
   2140       coord_dst.writemask = WRITEMASK_XYZW;
   2141    }
   2142 
   2143    if (opcode == OPCODE_TXD)
   2144       inst = emit(ir, opcode, result_dst, coord, dx, dy);
   2145    else
   2146       inst = emit(ir, opcode, result_dst, coord);
   2147 
   2148    if (ir->shadow_comparator)
   2149       inst->tex_shadow = GL_TRUE;
   2150 
   2151    inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
   2152                                              prog);
   2153 
   2154    switch (sampler_type->sampler_dimensionality) {
   2155    case GLSL_SAMPLER_DIM_1D:
   2156       inst->tex_target = (sampler_type->sampler_array)
   2157 	 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
   2158       break;
   2159    case GLSL_SAMPLER_DIM_2D:
   2160       inst->tex_target = (sampler_type->sampler_array)
   2161 	 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
   2162       break;
   2163    case GLSL_SAMPLER_DIM_3D:
   2164       inst->tex_target = TEXTURE_3D_INDEX;
   2165       break;
   2166    case GLSL_SAMPLER_DIM_CUBE:
   2167       inst->tex_target = TEXTURE_CUBE_INDEX;
   2168       break;
   2169    case GLSL_SAMPLER_DIM_RECT:
   2170       inst->tex_target = TEXTURE_RECT_INDEX;
   2171       break;
   2172    case GLSL_SAMPLER_DIM_BUF:
   2173       assert(!"FINISHME: Implement ARB_texture_buffer_object");
   2174       break;
   2175    case GLSL_SAMPLER_DIM_EXTERNAL:
   2176       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
   2177       break;
   2178    default:
   2179       assert(!"Should not get here.");
   2180    }
   2181 
   2182    this->result = result_src;
   2183 }
   2184 
   2185 void
   2186 ir_to_mesa_visitor::visit(ir_return *ir)
   2187 {
   2188    /* Non-void functions should have been inlined.  We may still emit RETs
   2189     * from main() unless the EmitNoMainReturn option is set.
   2190     */
   2191    assert(!ir->get_value());
   2192    emit(ir, OPCODE_RET);
   2193 }
   2194 
   2195 void
   2196 ir_to_mesa_visitor::visit(ir_discard *ir)
   2197 {
   2198    if (!ir->condition)
   2199       ir->condition = new(mem_ctx) ir_constant(true);
   2200 
   2201    ir->condition->accept(this);
   2202    this->result.negate = ~this->result.negate;
   2203    emit(ir, OPCODE_KIL, undef_dst, this->result);
   2204 }
   2205 
   2206 void
   2207 ir_to_mesa_visitor::visit(ir_if *ir)
   2208 {
   2209    ir_to_mesa_instruction *if_inst;
   2210 
   2211    ir->condition->accept(this);
   2212    assert(this->result.file != PROGRAM_UNDEFINED);
   2213 
   2214    if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
   2215 
   2216    this->instructions.push_tail(if_inst);
   2217 
   2218    visit_exec_list(&ir->then_instructions, this);
   2219 
   2220    if (!ir->else_instructions.is_empty()) {
   2221       emit(ir->condition, OPCODE_ELSE);
   2222       visit_exec_list(&ir->else_instructions, this);
   2223    }
   2224 
   2225    emit(ir->condition, OPCODE_ENDIF);
   2226 }
   2227 
   2228 void
   2229 ir_to_mesa_visitor::visit(ir_emit_vertex *)
   2230 {
   2231    assert(!"Geometry shaders not supported.");
   2232 }
   2233 
   2234 void
   2235 ir_to_mesa_visitor::visit(ir_end_primitive *)
   2236 {
   2237    assert(!"Geometry shaders not supported.");
   2238 }
   2239 
   2240 void
   2241 ir_to_mesa_visitor::visit(ir_barrier *)
   2242 {
   2243    unreachable("GLSL barrier() not supported.");
   2244 }
   2245 
   2246 ir_to_mesa_visitor::ir_to_mesa_visitor()
   2247 {
   2248    result.file = PROGRAM_UNDEFINED;
   2249    next_temp = 1;
   2250    next_signature_id = 1;
   2251    current_function = NULL;
   2252    mem_ctx = ralloc_context(NULL);
   2253 }
   2254 
   2255 ir_to_mesa_visitor::~ir_to_mesa_visitor()
   2256 {
   2257    ralloc_free(mem_ctx);
   2258 }
   2259 
   2260 static struct prog_src_register
   2261 mesa_src_reg_from_ir_src_reg(src_reg reg)
   2262 {
   2263    struct prog_src_register mesa_reg;
   2264 
   2265    mesa_reg.File = reg.file;
   2266    assert(reg.index < (1 << INST_INDEX_BITS));
   2267    mesa_reg.Index = reg.index;
   2268    mesa_reg.Swizzle = reg.swizzle;
   2269    mesa_reg.RelAddr = reg.reladdr != NULL;
   2270    mesa_reg.Negate = reg.negate;
   2271 
   2272    return mesa_reg;
   2273 }
   2274 
   2275 static void
   2276 set_branchtargets(ir_to_mesa_visitor *v,
   2277 		  struct prog_instruction *mesa_instructions,
   2278 		  int num_instructions)
   2279 {
   2280    int if_count = 0, loop_count = 0;
   2281    int *if_stack, *loop_stack;
   2282    int if_stack_pos = 0, loop_stack_pos = 0;
   2283    int i, j;
   2284 
   2285    for (i = 0; i < num_instructions; i++) {
   2286       switch (mesa_instructions[i].Opcode) {
   2287       case OPCODE_IF:
   2288 	 if_count++;
   2289 	 break;
   2290       case OPCODE_BGNLOOP:
   2291 	 loop_count++;
   2292 	 break;
   2293       case OPCODE_BRK:
   2294       case OPCODE_CONT:
   2295 	 mesa_instructions[i].BranchTarget = -1;
   2296 	 break;
   2297       default:
   2298 	 break;
   2299       }
   2300    }
   2301 
   2302    if_stack = rzalloc_array(v->mem_ctx, int, if_count);
   2303    loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
   2304 
   2305    for (i = 0; i < num_instructions; i++) {
   2306       switch (mesa_instructions[i].Opcode) {
   2307       case OPCODE_IF:
   2308 	 if_stack[if_stack_pos] = i;
   2309 	 if_stack_pos++;
   2310 	 break;
   2311       case OPCODE_ELSE:
   2312 	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
   2313 	 if_stack[if_stack_pos - 1] = i;
   2314 	 break;
   2315       case OPCODE_ENDIF:
   2316 	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
   2317 	 if_stack_pos--;
   2318 	 break;
   2319       case OPCODE_BGNLOOP:
   2320 	 loop_stack[loop_stack_pos] = i;
   2321 	 loop_stack_pos++;
   2322 	 break;
   2323       case OPCODE_ENDLOOP:
   2324 	 loop_stack_pos--;
   2325 	 /* Rewrite any breaks/conts at this nesting level (haven't
   2326 	  * already had a BranchTarget assigned) to point to the end
   2327 	  * of the loop.
   2328 	  */
   2329 	 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
   2330 	    if (mesa_instructions[j].Opcode == OPCODE_BRK ||
   2331 		mesa_instructions[j].Opcode == OPCODE_CONT) {
   2332 	       if (mesa_instructions[j].BranchTarget == -1) {
   2333 		  mesa_instructions[j].BranchTarget = i;
   2334 	       }
   2335 	    }
   2336 	 }
   2337 	 /* The loop ends point at each other. */
   2338 	 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
   2339 	 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
   2340 	 break;
   2341       case OPCODE_CAL:
   2342 	 foreach_in_list(function_entry, entry, &v->function_signatures) {
   2343 	    if (entry->sig_id == mesa_instructions[i].BranchTarget) {
   2344 	       mesa_instructions[i].BranchTarget = entry->inst;
   2345 	       break;
   2346 	    }
   2347 	 }
   2348 	 break;
   2349       default:
   2350 	 break;
   2351       }
   2352    }
   2353 }
   2354 
   2355 static void
   2356 print_program(struct prog_instruction *mesa_instructions,
   2357 	      ir_instruction **mesa_instruction_annotation,
   2358 	      int num_instructions)
   2359 {
   2360    ir_instruction *last_ir = NULL;
   2361    int i;
   2362    int indent = 0;
   2363 
   2364    for (i = 0; i < num_instructions; i++) {
   2365       struct prog_instruction *mesa_inst = mesa_instructions + i;
   2366       ir_instruction *ir = mesa_instruction_annotation[i];
   2367 
   2368       fprintf(stdout, "%3d: ", i);
   2369 
   2370       if (last_ir != ir && ir) {
   2371 	 int j;
   2372 
   2373 	 for (j = 0; j < indent; j++) {
   2374 	    fprintf(stdout, " ");
   2375 	 }
   2376 	 ir->print();
   2377 	 printf("\n");
   2378 	 last_ir = ir;
   2379 
   2380 	 fprintf(stdout, "     "); /* line number spacing. */
   2381       }
   2382 
   2383       indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
   2384 					    PROG_PRINT_DEBUG, NULL);
   2385    }
   2386 }
   2387 
   2388 namespace {
   2389 
   2390 class add_uniform_to_shader : public program_resource_visitor {
   2391 public:
   2392    add_uniform_to_shader(struct gl_context *ctx,
   2393                          struct gl_shader_program *shader_program,
   2394 			 struct gl_program_parameter_list *params)
   2395       : ctx(ctx), params(params), idx(-1)
   2396    {
   2397       /* empty */
   2398    }
   2399 
   2400    void process(ir_variable *var)
   2401    {
   2402       this->idx = -1;
   2403       this->var = var;
   2404       this->program_resource_visitor::process(var,
   2405                                          ctx->Const.UseSTD430AsDefaultPacking);
   2406       var->data.param_index = this->idx;
   2407    }
   2408 
   2409 private:
   2410    virtual void visit_field(const glsl_type *type, const char *name,
   2411                             bool row_major, const glsl_type *record_type,
   2412                             const enum glsl_interface_packing packing,
   2413                             bool last_field);
   2414 
   2415    struct gl_context *ctx;
   2416    struct gl_program_parameter_list *params;
   2417    int idx;
   2418    ir_variable *var;
   2419 };
   2420 
   2421 } /* anonymous namespace */
   2422 
   2423 void
   2424 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
   2425                                    bool /* row_major */,
   2426                                    const glsl_type * /* record_type */,
   2427                                    const enum glsl_interface_packing,
   2428                                    bool /* last_field */)
   2429 {
   2430    /* opaque types don't use storage in the param list unless they are
   2431     * bindless samplers or images.
   2432     */
   2433    if (type->contains_opaque() && !var->data.bindless)
   2434       return;
   2435 
   2436    /* Add the uniform to the param list */
   2437    assert(_mesa_lookup_parameter_index(params, name) < 0);
   2438    int index = _mesa_lookup_parameter_index(params, name);
   2439 
   2440    unsigned num_params = type->arrays_of_arrays_size();
   2441    num_params = MAX2(num_params, 1);
   2442    num_params *= type->without_array()->matrix_columns;
   2443 
   2444    bool is_dual_slot = type->without_array()->is_dual_slot();
   2445    if (is_dual_slot)
   2446       num_params *= 2;
   2447 
   2448    _mesa_reserve_parameter_storage(params, num_params);
   2449    index = params->NumParameters;
   2450    for (unsigned i = 0; i < num_params; i++) {
   2451       unsigned comps = 4;
   2452       _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
   2453                           type->gl_type, NULL, NULL);
   2454    }
   2455 
   2456    /* The first part of the uniform that's processed determines the base
   2457     * location of the whole uniform (for structures).
   2458     */
   2459    if (this->idx < 0)
   2460       this->idx = index;
   2461 }
   2462 
   2463 /**
   2464  * Generate the program parameters list for the user uniforms in a shader
   2465  *
   2466  * \param shader_program Linked shader program.  This is only used to
   2467  *                       emit possible link errors to the info log.
   2468  * \param sh             Shader whose uniforms are to be processed.
   2469  * \param params         Parameter list to be filled in.
   2470  */
   2471 void
   2472 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
   2473                                             struct gl_shader_program
   2474 					    *shader_program,
   2475 					    struct gl_linked_shader *sh,
   2476 					    struct gl_program_parameter_list
   2477 					    *params)
   2478 {
   2479    add_uniform_to_shader add(ctx, shader_program, params);
   2480 
   2481    foreach_in_list(ir_instruction, node, sh->ir) {
   2482       ir_variable *var = node->as_variable();
   2483 
   2484       if ((var == NULL) || (var->data.mode != ir_var_uniform)
   2485 	  || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
   2486 	 continue;
   2487 
   2488       add.process(var);
   2489    }
   2490 }
   2491 
   2492 void
   2493 _mesa_associate_uniform_storage(struct gl_context *ctx,
   2494                                 struct gl_shader_program *shader_program,
   2495                                 struct gl_program *prog,
   2496                                 bool propagate_to_storage)
   2497 {
   2498    struct gl_program_parameter_list *params = prog->Parameters;
   2499    gl_shader_stage shader_type = prog->info.stage;
   2500 
   2501    /* After adding each uniform to the parameter list, connect the storage for
   2502     * the parameter with the tracking structure used by the API for the
   2503     * uniform.
   2504     */
   2505    unsigned last_location = unsigned(~0);
   2506    for (unsigned i = 0; i < params->NumParameters; i++) {
   2507       if (params->Parameters[i].Type != PROGRAM_UNIFORM)
   2508          continue;
   2509 
   2510       unsigned location;
   2511       const bool found =
   2512          shader_program->UniformHash->get(location, params->Parameters[i].Name);
   2513       assert(found);
   2514 
   2515       if (!found)
   2516          continue;
   2517 
   2518       struct gl_uniform_storage *storage =
   2519          &shader_program->data->UniformStorage[location];
   2520 
   2521       /* Do not associate any uniform storage to built-in uniforms */
   2522       if (storage->builtin)
   2523          continue;
   2524 
   2525       if (location != last_location) {
   2526          enum gl_uniform_driver_format format = uniform_native;
   2527          unsigned columns = 0;
   2528          int dmul = 4 * sizeof(float);
   2529 
   2530          switch (storage->type->base_type) {
   2531          case GLSL_TYPE_UINT64:
   2532             if (storage->type->vector_elements > 2)
   2533                dmul *= 2;
   2534             /* fallthrough */
   2535          case GLSL_TYPE_UINT:
   2536          case GLSL_TYPE_UINT16:
   2537             assert(ctx->Const.NativeIntegers);
   2538             format = uniform_native;
   2539             columns = 1;
   2540             break;
   2541          case GLSL_TYPE_INT64:
   2542             if (storage->type->vector_elements > 2)
   2543                dmul *= 2;
   2544             /* fallthrough */
   2545          case GLSL_TYPE_INT:
   2546          case GLSL_TYPE_INT16:
   2547             format =
   2548                (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
   2549             columns = 1;
   2550             break;
   2551          case GLSL_TYPE_DOUBLE:
   2552             if (storage->type->vector_elements > 2)
   2553                dmul *= 2;
   2554             /* fallthrough */
   2555          case GLSL_TYPE_FLOAT:
   2556          case GLSL_TYPE_FLOAT16:
   2557             format = uniform_native;
   2558             columns = storage->type->matrix_columns;
   2559             break;
   2560          case GLSL_TYPE_BOOL:
   2561             format = uniform_native;
   2562             columns = 1;
   2563             break;
   2564          case GLSL_TYPE_SAMPLER:
   2565          case GLSL_TYPE_IMAGE:
   2566          case GLSL_TYPE_SUBROUTINE:
   2567             format = uniform_native;
   2568             columns = 1;
   2569             break;
   2570          case GLSL_TYPE_ATOMIC_UINT:
   2571          case GLSL_TYPE_ARRAY:
   2572          case GLSL_TYPE_VOID:
   2573          case GLSL_TYPE_STRUCT:
   2574          case GLSL_TYPE_ERROR:
   2575          case GLSL_TYPE_INTERFACE:
   2576          case GLSL_TYPE_FUNCTION:
   2577             assert(!"Should not get here.");
   2578             break;
   2579          }
   2580 
   2581          _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
   2582                                              format,
   2583                                              &params->ParameterValues[i]);
   2584 
   2585          /* When a bindless sampler/image is bound to a texture/image unit, we
   2586           * have to overwrite the constant value by the resident handle
   2587           * directly in the constant buffer before the next draw. One solution
   2588           * is to keep track a pointer to the base of the data.
   2589           */
   2590          if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
   2591                                       prog->sh.NumBindlessImages)) {
   2592             unsigned array_elements = MAX2(1, storage->array_elements);
   2593 
   2594             for (unsigned j = 0; j < array_elements; ++j) {
   2595                unsigned unit = storage->opaque[shader_type].index + j;
   2596 
   2597                if (storage->type->without_array()->is_sampler()) {
   2598                   assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
   2599                   prog->sh.BindlessSamplers[unit].data =
   2600                      &params->ParameterValues[i] + j;
   2601                } else if (storage->type->without_array()->is_image()) {
   2602                   assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
   2603                   prog->sh.BindlessImages[unit].data =
   2604                      &params->ParameterValues[i] + j;
   2605                }
   2606             }
   2607          }
   2608 
   2609          /* After attaching the driver's storage to the uniform, propagate any
   2610           * data from the linker's backing store.  This will cause values from
   2611           * initializers in the source code to be copied over.
   2612           */
   2613          if (propagate_to_storage) {
   2614             unsigned array_elements = MAX2(1, storage->array_elements);
   2615             _mesa_propagate_uniforms_to_driver_storage(storage, 0,
   2616                                                        array_elements);
   2617          }
   2618 
   2619 	      last_location = location;
   2620       }
   2621    }
   2622 }
   2623 
   2624 /*
   2625  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
   2626  * channels for copy propagation and updates following instructions to
   2627  * use the original versions.
   2628  *
   2629  * The ir_to_mesa_visitor lazily produces code assuming that this pass
   2630  * will occur.  As an example, a TXP production before this pass:
   2631  *
   2632  * 0: MOV TEMP[1], INPUT[4].xyyy;
   2633  * 1: MOV TEMP[1].w, INPUT[4].wwww;
   2634  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
   2635  *
   2636  * and after:
   2637  *
   2638  * 0: MOV TEMP[1], INPUT[4].xyyy;
   2639  * 1: MOV TEMP[1].w, INPUT[4].wwww;
   2640  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
   2641  *
   2642  * which allows for dead code elimination on TEMP[1]'s writes.
   2643  */
   2644 void
   2645 ir_to_mesa_visitor::copy_propagate(void)
   2646 {
   2647    ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
   2648 						    ir_to_mesa_instruction *,
   2649 						    this->next_temp * 4);
   2650    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
   2651    int level = 0;
   2652 
   2653    foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
   2654       assert(inst->dst.file != PROGRAM_TEMPORARY
   2655 	     || inst->dst.index < this->next_temp);
   2656 
   2657       /* First, do any copy propagation possible into the src regs. */
   2658       for (int r = 0; r < 3; r++) {
   2659 	 ir_to_mesa_instruction *first = NULL;
   2660 	 bool good = true;
   2661 	 int acp_base = inst->src[r].index * 4;
   2662 
   2663 	 if (inst->src[r].file != PROGRAM_TEMPORARY ||
   2664 	     inst->src[r].reladdr)
   2665 	    continue;
   2666 
   2667 	 /* See if we can find entries in the ACP consisting of MOVs
   2668 	  * from the same src register for all the swizzled channels
   2669 	  * of this src register reference.
   2670 	  */
   2671 	 for (int i = 0; i < 4; i++) {
   2672 	    int src_chan = GET_SWZ(inst->src[r].swizzle, i);
   2673 	    ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
   2674 
   2675 	    if (!copy_chan) {
   2676 	       good = false;
   2677 	       break;
   2678 	    }
   2679 
   2680 	    assert(acp_level[acp_base + src_chan] <= level);
   2681 
   2682 	    if (!first) {
   2683 	       first = copy_chan;
   2684 	    } else {
   2685 	       if (first->src[0].file != copy_chan->src[0].file ||
   2686 		   first->src[0].index != copy_chan->src[0].index) {
   2687 		  good = false;
   2688 		  break;
   2689 	       }
   2690 	    }
   2691 	 }
   2692 
   2693 	 if (good) {
   2694 	    /* We've now validated that we can copy-propagate to
   2695 	     * replace this src register reference.  Do it.
   2696 	     */
   2697 	    inst->src[r].file = first->src[0].file;
   2698 	    inst->src[r].index = first->src[0].index;
   2699 
   2700 	    int swizzle = 0;
   2701 	    for (int i = 0; i < 4; i++) {
   2702 	       int src_chan = GET_SWZ(inst->src[r].swizzle, i);
   2703 	       ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
   2704 	       swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
   2705 			   (3 * i));
   2706 	    }
   2707 	    inst->src[r].swizzle = swizzle;
   2708 	 }
   2709       }
   2710 
   2711       switch (inst->op) {
   2712       case OPCODE_BGNLOOP:
   2713       case OPCODE_ENDLOOP:
   2714 	 /* End of a basic block, clear the ACP entirely. */
   2715 	 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
   2716 	 break;
   2717 
   2718       case OPCODE_IF:
   2719 	 ++level;
   2720 	 break;
   2721 
   2722       case OPCODE_ENDIF:
   2723       case OPCODE_ELSE:
   2724 	 /* Clear all channels written inside the block from the ACP, but
   2725 	  * leaving those that were not touched.
   2726 	  */
   2727 	 for (int r = 0; r < this->next_temp; r++) {
   2728 	    for (int c = 0; c < 4; c++) {
   2729 	       if (!acp[4 * r + c])
   2730 		  continue;
   2731 
   2732 	       if (acp_level[4 * r + c] >= level)
   2733 		  acp[4 * r + c] = NULL;
   2734 	    }
   2735 	 }
   2736 	 if (inst->op == OPCODE_ENDIF)
   2737 	    --level;
   2738 	 break;
   2739 
   2740       default:
   2741 	 /* Continuing the block, clear any written channels from
   2742 	  * the ACP.
   2743 	  */
   2744 	 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
   2745 	    /* Any temporary might be written, so no copy propagation
   2746 	     * across this instruction.
   2747 	     */
   2748 	    memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
   2749 	 } else if (inst->dst.file == PROGRAM_OUTPUT &&
   2750 		    inst->dst.reladdr) {
   2751 	    /* Any output might be written, so no copy propagation
   2752 	     * from outputs across this instruction.
   2753 	     */
   2754 	    for (int r = 0; r < this->next_temp; r++) {
   2755 	       for (int c = 0; c < 4; c++) {
   2756 		  if (!acp[4 * r + c])
   2757 		     continue;
   2758 
   2759 		  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
   2760 		     acp[4 * r + c] = NULL;
   2761 	       }
   2762 	    }
   2763 	 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
   2764 		    inst->dst.file == PROGRAM_OUTPUT) {
   2765 	    /* Clear where it's used as dst. */
   2766 	    if (inst->dst.file == PROGRAM_TEMPORARY) {
   2767 	       for (int c = 0; c < 4; c++) {
   2768 		  if (inst->dst.writemask & (1 << c)) {
   2769 		     acp[4 * inst->dst.index + c] = NULL;
   2770 		  }
   2771 	       }
   2772 	    }
   2773 
   2774 	    /* Clear where it's used as src. */
   2775 	    for (int r = 0; r < this->next_temp; r++) {
   2776 	       for (int c = 0; c < 4; c++) {
   2777 		  if (!acp[4 * r + c])
   2778 		     continue;
   2779 
   2780 		  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
   2781 
   2782 		  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
   2783 		      acp[4 * r + c]->src[0].index == inst->dst.index &&
   2784 		      inst->dst.writemask & (1 << src_chan))
   2785 		  {
   2786 		     acp[4 * r + c] = NULL;
   2787 		  }
   2788 	       }
   2789 	    }
   2790 	 }
   2791 	 break;
   2792       }
   2793 
   2794       /* If this is a copy, add it to the ACP. */
   2795       if (inst->op == OPCODE_MOV &&
   2796 	  inst->dst.file == PROGRAM_TEMPORARY &&
   2797 	  !(inst->dst.file == inst->src[0].file &&
   2798 	    inst->dst.index == inst->src[0].index) &&
   2799 	  !inst->dst.reladdr &&
   2800 	  !inst->saturate &&
   2801 	  !inst->src[0].reladdr &&
   2802 	  !inst->src[0].negate) {
   2803 	 for (int i = 0; i < 4; i++) {
   2804 	    if (inst->dst.writemask & (1 << i)) {
   2805 	       acp[4 * inst->dst.index + i] = inst;
   2806 	       acp_level[4 * inst->dst.index + i] = level;
   2807 	    }
   2808 	 }
   2809       }
   2810    }
   2811 
   2812    ralloc_free(acp_level);
   2813    ralloc_free(acp);
   2814 }
   2815 
   2816 
   2817 /**
   2818  * Convert a shader's GLSL IR into a Mesa gl_program.
   2819  */
   2820 static struct gl_program *
   2821 get_mesa_program(struct gl_context *ctx,
   2822                  struct gl_shader_program *shader_program,
   2823 		 struct gl_linked_shader *shader)
   2824 {
   2825    ir_to_mesa_visitor v;
   2826    struct prog_instruction *mesa_instructions, *mesa_inst;
   2827    ir_instruction **mesa_instruction_annotation;
   2828    int i;
   2829    struct gl_program *prog;
   2830    GLenum target = _mesa_shader_stage_to_program(shader->Stage);
   2831    const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
   2832    struct gl_shader_compiler_options *options =
   2833          &ctx->Const.ShaderCompilerOptions[shader->Stage];
   2834 
   2835    validate_ir_tree(shader->ir);
   2836 
   2837    prog = shader->Program;
   2838    prog->Parameters = _mesa_new_parameter_list();
   2839    v.ctx = ctx;
   2840    v.prog = prog;
   2841    v.shader_program = shader_program;
   2842    v.options = options;
   2843 
   2844    _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
   2845 					       prog->Parameters);
   2846 
   2847    /* Emit Mesa IR for main(). */
   2848    visit_exec_list(shader->ir, &v);
   2849    v.emit(NULL, OPCODE_END);
   2850 
   2851    prog->arb.NumTemporaries = v.next_temp;
   2852 
   2853    unsigned num_instructions = v.instructions.length();
   2854 
   2855    mesa_instructions = rzalloc_array(prog, struct prog_instruction,
   2856                                      num_instructions);
   2857    mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
   2858 					      num_instructions);
   2859 
   2860    v.copy_propagate();
   2861 
   2862    /* Convert ir_mesa_instructions into prog_instructions.
   2863     */
   2864    mesa_inst = mesa_instructions;
   2865    i = 0;
   2866    foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
   2867       mesa_inst->Opcode = inst->op;
   2868       if (inst->saturate)
   2869 	 mesa_inst->Saturate = GL_TRUE;
   2870       mesa_inst->DstReg.File = inst->dst.file;
   2871       mesa_inst->DstReg.Index = inst->dst.index;
   2872       mesa_inst->DstReg.WriteMask = inst->dst.writemask;
   2873       mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
   2874       mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
   2875       mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
   2876       mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
   2877       mesa_inst->TexSrcUnit = inst->sampler;
   2878       mesa_inst->TexSrcTarget = inst->tex_target;
   2879       mesa_inst->TexShadow = inst->tex_shadow;
   2880       mesa_instruction_annotation[i] = inst->ir;
   2881 
   2882       /* Set IndirectRegisterFiles. */
   2883       if (mesa_inst->DstReg.RelAddr)
   2884          prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
   2885 
   2886       /* Update program's bitmask of indirectly accessed register files */
   2887       for (unsigned src = 0; src < 3; src++)
   2888          if (mesa_inst->SrcReg[src].RelAddr)
   2889             prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
   2890 
   2891       switch (mesa_inst->Opcode) {
   2892       case OPCODE_IF:
   2893 	 if (options->MaxIfDepth == 0) {
   2894 	    linker_warning(shader_program,
   2895 			   "Couldn't flatten if-statement.  "
   2896 			   "This will likely result in software "
   2897 			   "rasterization.\n");
   2898 	 }
   2899 	 break;
   2900       case OPCODE_BGNLOOP:
   2901 	 if (options->EmitNoLoops) {
   2902 	    linker_warning(shader_program,
   2903 			   "Couldn't unroll loop.  "
   2904 			   "This will likely result in software "
   2905 			   "rasterization.\n");
   2906 	 }
   2907 	 break;
   2908       case OPCODE_CONT:
   2909 	 if (options->EmitNoCont) {
   2910 	    linker_warning(shader_program,
   2911 			   "Couldn't lower continue-statement.  "
   2912 			   "This will likely result in software "
   2913 			   "rasterization.\n");
   2914 	 }
   2915 	 break;
   2916       case OPCODE_ARL:
   2917          prog->arb.NumAddressRegs = 1;
   2918 	 break;
   2919       default:
   2920 	 break;
   2921       }
   2922 
   2923       mesa_inst++;
   2924       i++;
   2925 
   2926       if (!shader_program->data->LinkStatus)
   2927          break;
   2928    }
   2929 
   2930    if (!shader_program->data->LinkStatus) {
   2931       goto fail_exit;
   2932    }
   2933 
   2934    set_branchtargets(&v, mesa_instructions, num_instructions);
   2935 
   2936    if (ctx->_Shader->Flags & GLSL_DUMP) {
   2937       fprintf(stderr, "\n");
   2938       fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
   2939 	      shader_program->Name);
   2940       _mesa_print_ir(stderr, shader->ir, NULL);
   2941       fprintf(stderr, "\n");
   2942       fprintf(stderr, "\n");
   2943       fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
   2944 	      shader_program->Name);
   2945       print_program(mesa_instructions, mesa_instruction_annotation,
   2946 		    num_instructions);
   2947       fflush(stderr);
   2948    }
   2949 
   2950    prog->arb.Instructions = mesa_instructions;
   2951    prog->arb.NumInstructions = num_instructions;
   2952 
   2953    /* Setting this to NULL prevents a possible double free in the fail_exit
   2954     * path (far below).
   2955     */
   2956    mesa_instructions = NULL;
   2957 
   2958    do_set_program_inouts(shader->ir, prog, shader->Stage);
   2959 
   2960    prog->ShadowSamplers = shader->shadow_samplers;
   2961    prog->ExternalSamplersUsed = gl_external_samplers(prog);
   2962    _mesa_update_shader_textures_used(shader_program, prog);
   2963 
   2964    /* Set the gl_FragDepth layout. */
   2965    if (target == GL_FRAGMENT_PROGRAM_ARB) {
   2966       prog->info.fs.depth_layout = shader_program->FragDepthLayout;
   2967    }
   2968 
   2969    _mesa_optimize_program(prog, prog);
   2970 
   2971    /* This has to be done last.  Any operation that can cause
   2972     * prog->ParameterValues to get reallocated (e.g., anything that adds a
   2973     * program constant) has to happen before creating this linkage.
   2974     */
   2975    _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
   2976    if (!shader_program->data->LinkStatus) {
   2977       goto fail_exit;
   2978    }
   2979 
   2980    return prog;
   2981 
   2982 fail_exit:
   2983    ralloc_free(mesa_instructions);
   2984    _mesa_reference_program(ctx, &shader->Program, NULL);
   2985    return NULL;
   2986 }
   2987 
   2988 extern "C" {
   2989 
   2990 /**
   2991  * Link a shader.
   2992  * Called via ctx->Driver.LinkShader()
   2993  * This actually involves converting GLSL IR into Mesa gl_programs with
   2994  * code lowering and other optimizations.
   2995  */
   2996 GLboolean
   2997 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
   2998 {
   2999    assert(prog->data->LinkStatus);
   3000 
   3001    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   3002       if (prog->_LinkedShaders[i] == NULL)
   3003 	 continue;
   3004 
   3005       bool progress;
   3006       exec_list *ir = prog->_LinkedShaders[i]->ir;
   3007       const struct gl_shader_compiler_options *options =
   3008             &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
   3009 
   3010       do {
   3011 	 progress = false;
   3012 
   3013 	 /* Lowering */
   3014 	 do_mat_op_to_vec(ir);
   3015 	 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
   3016 				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
   3017 				 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
   3018 
   3019 	 progress = do_common_optimization(ir, true, true,
   3020                                            options, ctx->Const.NativeIntegers)
   3021 	   || progress;
   3022 
   3023 	 progress = lower_quadop_vector(ir, true) || progress;
   3024 
   3025 	 if (options->MaxIfDepth == 0)
   3026 	    progress = lower_discard(ir) || progress;
   3027 
   3028 	 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
   3029                                             options->MaxIfDepth) || progress;
   3030 
   3031          progress = lower_noise(ir) || progress;
   3032 
   3033 	 /* If there are forms of indirect addressing that the driver
   3034 	  * cannot handle, perform the lowering pass.
   3035 	  */
   3036 	 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
   3037 	     || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
   3038 	   progress =
   3039 	     lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
   3040 						 options->EmitNoIndirectInput,
   3041 						 options->EmitNoIndirectOutput,
   3042 						 options->EmitNoIndirectTemp,
   3043 						 options->EmitNoIndirectUniform)
   3044 	     || progress;
   3045 
   3046 	 progress = do_vec_index_to_cond_assign(ir) || progress;
   3047          progress = lower_vector_insert(ir, true) || progress;
   3048       } while (progress);
   3049 
   3050       validate_ir_tree(ir);
   3051    }
   3052 
   3053    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   3054       struct gl_program *linked_prog;
   3055 
   3056       if (prog->_LinkedShaders[i] == NULL)
   3057 	 continue;
   3058 
   3059       linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
   3060 
   3061       if (linked_prog) {
   3062          _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
   3063 
   3064          if (!ctx->Driver.ProgramStringNotify(ctx,
   3065                                               _mesa_shader_stage_to_program(i),
   3066                                               linked_prog)) {
   3067             _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
   3068                                     NULL);
   3069             return GL_FALSE;
   3070          }
   3071       }
   3072    }
   3073 
   3074    build_program_resource_list(ctx, prog);
   3075    return prog->data->LinkStatus;
   3076 }
   3077 
   3078 /**
   3079  * Link a GLSL shader program.  Called via glLinkProgram().
   3080  */
   3081 void
   3082 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
   3083 {
   3084    unsigned int i;
   3085    bool spirv;
   3086 
   3087    _mesa_clear_shader_program_data(ctx, prog);
   3088 
   3089    prog->data = _mesa_create_shader_program_data();
   3090 
   3091    prog->data->LinkStatus = linking_success;
   3092 
   3093    for (i = 0; i < prog->NumShaders; i++) {
   3094       if (!prog->Shaders[i]->CompileStatus) {
   3095 	 linker_error(prog, "linking with uncompiled/unspecialized shader");
   3096       }
   3097 
   3098       if (!i) {
   3099          spirv = (prog->Shaders[i]->spirv_data != NULL);
   3100       } else if (spirv && !prog->Shaders[i]->spirv_data) {
   3101          /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
   3102           * reasons LinkProgram can fail:
   3103           *
   3104           *    "All the shader objects attached to <program> do not have the
   3105           *     same value for the SPIR_V_BINARY_ARB state."
   3106           */
   3107          linker_error(prog,
   3108                       "not all attached shaders have the same "
   3109                       "SPIR_V_BINARY_ARB state");
   3110       }
   3111    }
   3112 
   3113    if (prog->data->LinkStatus) {
   3114       link_shaders(ctx, prog);
   3115    }
   3116 
   3117    /* If LinkStatus is linking_success, then reset sampler validated to true.
   3118     * Validation happens via the LinkShader call below. If LinkStatus is
   3119     * linking_skipped, then SamplersValidated will have been restored from the
   3120     * shader cache.
   3121     */
   3122    if (prog->data->LinkStatus == linking_success) {
   3123       prog->SamplersValidated = GL_TRUE;
   3124    }
   3125 
   3126    if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
   3127       prog->data->LinkStatus = linking_failure;
   3128    }
   3129 
   3130    /* Return early if we are loading the shader from on-disk cache */
   3131    if (prog->data->LinkStatus == linking_skipped)
   3132       return;
   3133 
   3134    if (ctx->_Shader->Flags & GLSL_DUMP) {
   3135       if (!prog->data->LinkStatus) {
   3136 	 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
   3137       }
   3138 
   3139       if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
   3140 	 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
   3141          fprintf(stderr, "%s\n", prog->data->InfoLog);
   3142       }
   3143    }
   3144 
   3145 #ifdef ENABLE_SHADER_CACHE
   3146    if (prog->data->LinkStatus)
   3147       shader_cache_write_program_metadata(ctx, prog);
   3148 #endif
   3149 }
   3150 
   3151 } /* extern "C" */
   3152