Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the target machine instruction set to the code generator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
     15 #define LLVM_TARGET_TARGETINSTRINFO_H
     16 
     17 #include "llvm/ADT/ArrayRef.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/DenseMapInfo.h"
     20 #include "llvm/ADT/None.h"
     21 #include "llvm/CodeGen/LiveRegUnits.h"
     22 #include "llvm/CodeGen/MachineBasicBlock.h"
     23 #include "llvm/CodeGen/MachineCombinerPattern.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineInstr.h"
     26 #include "llvm/CodeGen/MachineLoopInfo.h"
     27 #include "llvm/CodeGen/MachineOperand.h"
     28 #include "llvm/CodeGen/MachineOutliner.h"
     29 #include "llvm/CodeGen/PseudoSourceValue.h"
     30 #include "llvm/MC/MCInstrInfo.h"
     31 #include "llvm/Support/BranchProbability.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include <cassert>
     34 #include <cstddef>
     35 #include <cstdint>
     36 #include <utility>
     37 #include <vector>
     38 
     39 namespace llvm {
     40 
     41 class DFAPacketizer;
     42 class InstrItineraryData;
     43 class LiveIntervals;
     44 class LiveVariables;
     45 class MachineMemOperand;
     46 class MachineRegisterInfo;
     47 class MCAsmInfo;
     48 class MCInst;
     49 struct MCSchedModel;
     50 class Module;
     51 class ScheduleDAG;
     52 class ScheduleHazardRecognizer;
     53 class SDNode;
     54 class SelectionDAG;
     55 class RegScavenger;
     56 class TargetRegisterClass;
     57 class TargetRegisterInfo;
     58 class TargetSchedModel;
     59 class TargetSubtargetInfo;
     60 
     61 template <class T> class SmallVectorImpl;
     62 
     63 //---------------------------------------------------------------------------
     64 ///
     65 /// TargetInstrInfo - Interface to description of machine instruction set
     66 ///
     67 class TargetInstrInfo : public MCInstrInfo {
     68 public:
     69   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
     70                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
     71       : CallFrameSetupOpcode(CFSetupOpcode),
     72         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
     73         ReturnOpcode(ReturnOpcode) {}
     74   TargetInstrInfo(const TargetInstrInfo &) = delete;
     75   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
     76   virtual ~TargetInstrInfo();
     77 
     78   static bool isGenericOpcode(unsigned Opc) {
     79     return Opc <= TargetOpcode::GENERIC_OP_END;
     80   }
     81 
     82   /// Given a machine instruction descriptor, returns the register
     83   /// class constraint for OpNum, or NULL.
     84   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
     85                                          const TargetRegisterInfo *TRI,
     86                                          const MachineFunction &MF) const;
     87 
     88   /// Return true if the instruction is trivially rematerializable, meaning it
     89   /// has no side effects and requires no operands that aren't always available.
     90   /// This means the only allowed uses are constants and unallocatable physical
     91   /// registers so that the instructions result is independent of the place
     92   /// in the function.
     93   bool isTriviallyReMaterializable(const MachineInstr &MI,
     94                                    AliasAnalysis *AA = nullptr) const {
     95     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
     96            (MI.getDesc().isRematerializable() &&
     97             (isReallyTriviallyReMaterializable(MI, AA) ||
     98              isReallyTriviallyReMaterializableGeneric(MI, AA)));
     99   }
    100 
    101 protected:
    102   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
    103   /// set, this hook lets the target specify whether the instruction is actually
    104   /// trivially rematerializable, taking into consideration its operands. This
    105   /// predicate must return false if the instruction has any side effects other
    106   /// than producing a value, or if it requres any address registers that are
    107   /// not always available.
    108   /// Requirements must be check as stated in isTriviallyReMaterializable() .
    109   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
    110                                                  AliasAnalysis *AA) const {
    111     return false;
    112   }
    113 
    114   /// This method commutes the operands of the given machine instruction MI.
    115   /// The operands to be commuted are specified by their indices OpIdx1 and
    116   /// OpIdx2.
    117   ///
    118   /// If a target has any instructions that are commutable but require
    119   /// converting to different instructions or making non-trivial changes
    120   /// to commute them, this method can be overloaded to do that.
    121   /// The default implementation simply swaps the commutable operands.
    122   ///
    123   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    124   /// new machine instruction is created and returned.
    125   ///
    126   /// Do not call this method for a non-commutable instruction.
    127   /// Even though the instruction is commutable, the method may still
    128   /// fail to commute the operands, null pointer is returned in such cases.
    129   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
    130                                                unsigned OpIdx1,
    131                                                unsigned OpIdx2) const;
    132 
    133   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
    134   /// operand indices to (ResultIdx1, ResultIdx2).
    135   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
    136   /// predefined to some indices or be undefined (designated by the special
    137   /// value 'CommuteAnyOperandIndex').
    138   /// The predefined result indices cannot be re-defined.
    139   /// The function returns true iff after the result pair redefinition
    140   /// the fixed result pair is equal to or equivalent to the source pair of
    141   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
    142   /// the pairs (x,y) and (y,x) are equivalent.
    143   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
    144                                    unsigned CommutableOpIdx1,
    145                                    unsigned CommutableOpIdx2);
    146 
    147 private:
    148   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
    149   /// set and the target hook isReallyTriviallyReMaterializable returns false,
    150   /// this function does target-independent tests to determine if the
    151   /// instruction is really trivially rematerializable.
    152   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
    153                                                 AliasAnalysis *AA) const;
    154 
    155 public:
    156   /// These methods return the opcode of the frame setup/destroy instructions
    157   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
    158   /// order to abstract away the difference between operating with a frame
    159   /// pointer and operating without, through the use of these two instructions.
    160   ///
    161   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
    162   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
    163 
    164   /// Returns true if the argument is a frame pseudo instruction.
    165   bool isFrameInstr(const MachineInstr &I) const {
    166     return I.getOpcode() == getCallFrameSetupOpcode() ||
    167            I.getOpcode() == getCallFrameDestroyOpcode();
    168   }
    169 
    170   /// Returns true if the argument is a frame setup pseudo instruction.
    171   bool isFrameSetup(const MachineInstr &I) const {
    172     return I.getOpcode() == getCallFrameSetupOpcode();
    173   }
    174 
    175   /// Returns size of the frame associated with the given frame instruction.
    176   /// For frame setup instruction this is frame that is set up space set up
    177   /// after the instruction. For frame destroy instruction this is the frame
    178   /// freed by the caller.
    179   /// Note, in some cases a call frame (or a part of it) may be prepared prior
    180   /// to the frame setup instruction. It occurs in the calls that involve
    181   /// inalloca arguments. This function reports only the size of the frame part
    182   /// that is set up between the frame setup and destroy pseudo instructions.
    183   int64_t getFrameSize(const MachineInstr &I) const {
    184     assert(isFrameInstr(I) && "Not a frame instruction");
    185     assert(I.getOperand(0).getImm() >= 0);
    186     return I.getOperand(0).getImm();
    187   }
    188 
    189   /// Returns the total frame size, which is made up of the space set up inside
    190   /// the pair of frame start-stop instructions and the space that is set up
    191   /// prior to the pair.
    192   int64_t getFrameTotalSize(const MachineInstr &I) const {
    193     if (isFrameSetup(I)) {
    194       assert(I.getOperand(1).getImm() >= 0 &&
    195              "Frame size must not be negative");
    196       return getFrameSize(I) + I.getOperand(1).getImm();
    197     }
    198     return getFrameSize(I);
    199   }
    200 
    201   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
    202   unsigned getReturnOpcode() const { return ReturnOpcode; }
    203 
    204   /// Returns the actual stack pointer adjustment made by an instruction
    205   /// as part of a call sequence. By default, only call frame setup/destroy
    206   /// instructions adjust the stack, but targets may want to override this
    207   /// to enable more fine-grained adjustment, or adjust by a different value.
    208   virtual int getSPAdjust(const MachineInstr &MI) const;
    209 
    210   /// Return true if the instruction is a "coalescable" extension instruction.
    211   /// That is, it's like a copy where it's legal for the source to overlap the
    212   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
    213   /// expected the pre-extension value is available as a subreg of the result
    214   /// register. This also returns the sub-register index in SubIdx.
    215   virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
    216                                      unsigned &DstReg, unsigned &SubIdx) const {
    217     return false;
    218   }
    219 
    220   /// If the specified machine instruction is a direct
    221   /// load from a stack slot, return the virtual or physical register number of
    222   /// the destination along with the FrameIndex of the loaded stack slot.  If
    223   /// not, return 0.  This predicate must return 0 if the instruction has
    224   /// any side effects other than loading from the stack slot.
    225   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
    226                                        int &FrameIndex) const {
    227     return 0;
    228   }
    229 
    230   /// Optional extension of isLoadFromStackSlot that returns the number of
    231   /// bytes loaded from the stack. This must be implemented if a backend
    232   /// supports partial stack slot spills/loads to further disambiguate
    233   /// what the load does.
    234   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
    235                                        int &FrameIndex,
    236                                        unsigned &MemBytes) const {
    237     MemBytes = 0;
    238     return isLoadFromStackSlot(MI, FrameIndex);
    239   }
    240 
    241   /// Check for post-frame ptr elimination stack locations as well.
    242   /// This uses a heuristic so it isn't reliable for correctness.
    243   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
    244                                              int &FrameIndex) const {
    245     return 0;
    246   }
    247 
    248   /// If the specified machine instruction has a load from a stack slot,
    249   /// return true along with the FrameIndex of the loaded stack slot and the
    250   /// machine mem operand containing the reference.
    251   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
    252   /// any instructions that loads from the stack.  This is just a hint, as some
    253   /// cases may be missed.
    254   virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
    255                                     const MachineMemOperand *&MMO,
    256                                     int &FrameIndex) const;
    257 
    258   /// If the specified machine instruction is a direct
    259   /// store to a stack slot, return the virtual or physical register number of
    260   /// the source reg along with the FrameIndex of the loaded stack slot.  If
    261   /// not, return 0.  This predicate must return 0 if the instruction has
    262   /// any side effects other than storing to the stack slot.
    263   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
    264                                       int &FrameIndex) const {
    265     return 0;
    266   }
    267 
    268   /// Optional extension of isStoreToStackSlot that returns the number of
    269   /// bytes stored to the stack. This must be implemented if a backend
    270   /// supports partial stack slot spills/loads to further disambiguate
    271   /// what the store does.
    272   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
    273                                       int &FrameIndex,
    274                                       unsigned &MemBytes) const {
    275     MemBytes = 0;
    276     return isStoreToStackSlot(MI, FrameIndex);
    277   }
    278 
    279   /// Check for post-frame ptr elimination stack locations as well.
    280   /// This uses a heuristic, so it isn't reliable for correctness.
    281   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
    282                                             int &FrameIndex) const {
    283     return 0;
    284   }
    285 
    286   /// If the specified machine instruction has a store to a stack slot,
    287   /// return true along with the FrameIndex of the loaded stack slot and the
    288   /// machine mem operand containing the reference.
    289   /// If not, return false.  Unlike isStoreToStackSlot,
    290   /// this returns true for any instructions that stores to the
    291   /// stack.  This is just a hint, as some cases may be missed.
    292   virtual bool hasStoreToStackSlot(const MachineInstr &MI,
    293                                    const MachineMemOperand *&MMO,
    294                                    int &FrameIndex) const;
    295 
    296   /// Return true if the specified machine instruction
    297   /// is a copy of one stack slot to another and has no other effect.
    298   /// Provide the identity of the two frame indices.
    299   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
    300                                int &SrcFrameIndex) const {
    301     return false;
    302   }
    303 
    304   /// Compute the size in bytes and offset within a stack slot of a spilled
    305   /// register or subregister.
    306   ///
    307   /// \param [out] Size in bytes of the spilled value.
    308   /// \param [out] Offset in bytes within the stack slot.
    309   /// \returns true if both Size and Offset are successfully computed.
    310   ///
    311   /// Not all subregisters have computable spill slots. For example,
    312   /// subregisters registers may not be byte-sized, and a pair of discontiguous
    313   /// subregisters has no single offset.
    314   ///
    315   /// Targets with nontrivial bigendian implementations may need to override
    316   /// this, particularly to support spilled vector registers.
    317   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
    318                                  unsigned &Size, unsigned &Offset,
    319                                  const MachineFunction &MF) const;
    320 
    321   /// Returns the size in bytes of the specified MachineInstr, or ~0U
    322   /// when this function is not implemented by a target.
    323   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
    324     return ~0U;
    325   }
    326 
    327   /// Return true if the instruction is as cheap as a move instruction.
    328   ///
    329   /// Targets for different archs need to override this, and different
    330   /// micro-architectures can also be finely tuned inside.
    331   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
    332     return MI.isAsCheapAsAMove();
    333   }
    334 
    335   /// Return true if the instruction should be sunk by MachineSink.
    336   ///
    337   /// MachineSink determines on its own whether the instruction is safe to sink;
    338   /// this gives the target a hook to override the default behavior with regards
    339   /// to which instructions should be sunk.
    340   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
    341 
    342   /// Re-issue the specified 'original' instruction at the
    343   /// specific location targeting a new destination register.
    344   /// The register in Orig->getOperand(0).getReg() will be substituted by
    345   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
    346   /// SubIdx.
    347   virtual void reMaterialize(MachineBasicBlock &MBB,
    348                              MachineBasicBlock::iterator MI, unsigned DestReg,
    349                              unsigned SubIdx, const MachineInstr &Orig,
    350                              const TargetRegisterInfo &TRI) const;
    351 
    352   /// Clones instruction or the whole instruction bundle \p Orig and
    353   /// insert into \p MBB before \p InsertBefore. The target may update operands
    354   /// that are required to be unique.
    355   ///
    356   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
    357   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
    358                                   MachineBasicBlock::iterator InsertBefore,
    359                                   const MachineInstr &Orig) const;
    360 
    361   /// This method must be implemented by targets that
    362   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    363   /// may be able to convert a two-address instruction into one or more true
    364   /// three-address instructions on demand.  This allows the X86 target (for
    365   /// example) to convert ADD and SHL instructions into LEA instructions if they
    366   /// would require register copies due to two-addressness.
    367   ///
    368   /// This method returns a null pointer if the transformation cannot be
    369   /// performed, otherwise it returns the last new instruction.
    370   ///
    371   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
    372                                               MachineInstr &MI,
    373                                               LiveVariables *LV) const {
    374     return nullptr;
    375   }
    376 
    377   // This constant can be used as an input value of operand index passed to
    378   // the method findCommutedOpIndices() to tell the method that the
    379   // corresponding operand index is not pre-defined and that the method
    380   // can pick any commutable operand.
    381   static const unsigned CommuteAnyOperandIndex = ~0U;
    382 
    383   /// This method commutes the operands of the given machine instruction MI.
    384   ///
    385   /// The operands to be commuted are specified by their indices OpIdx1 and
    386   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
    387   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
    388   /// any arbitrarily chosen commutable operand. If both arguments are set to
    389   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
    390   /// operands; then commutes them if such operands could be found.
    391   ///
    392   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    393   /// new machine instruction is created and returned.
    394   ///
    395   /// Do not call this method for a non-commutable instruction or
    396   /// for non-commuable operands.
    397   /// Even though the instruction is commutable, the method may still
    398   /// fail to commute the operands, null pointer is returned in such cases.
    399   MachineInstr *
    400   commuteInstruction(MachineInstr &MI, bool NewMI = false,
    401                      unsigned OpIdx1 = CommuteAnyOperandIndex,
    402                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
    403 
    404   /// Returns true iff the routine could find two commutable operands in the
    405   /// given machine instruction.
    406   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
    407   /// If any of the INPUT values is set to the special value
    408   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
    409   /// operand, then returns its index in the corresponding argument.
    410   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
    411   /// looks for 2 commutable operands.
    412   /// If INPUT values refer to some operands of MI, then the method simply
    413   /// returns true if the corresponding operands are commutable and returns
    414   /// false otherwise.
    415   ///
    416   /// For example, calling this method this way:
    417   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
    418   ///     findCommutedOpIndices(MI, Op1, Op2);
    419   /// can be interpreted as a query asking to find an operand that would be
    420   /// commutable with the operand#1.
    421   virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
    422                                      unsigned &SrcOpIdx2) const;
    423 
    424   /// A pair composed of a register and a sub-register index.
    425   /// Used to give some type checking when modeling Reg:SubReg.
    426   struct RegSubRegPair {
    427     unsigned Reg;
    428     unsigned SubReg;
    429 
    430     RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
    431         : Reg(Reg), SubReg(SubReg) {}
    432   };
    433 
    434   /// A pair composed of a pair of a register and a sub-register index,
    435   /// and another sub-register index.
    436   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
    437   struct RegSubRegPairAndIdx : RegSubRegPair {
    438     unsigned SubIdx;
    439 
    440     RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
    441                         unsigned SubIdx = 0)
    442         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
    443   };
    444 
    445   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
    446   /// and \p DefIdx.
    447   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
    448   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
    449   /// flag are not added to this list.
    450   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
    451   /// two elements:
    452   /// - %1:sub1, sub0
    453   /// - %2<:0>, sub1
    454   ///
    455   /// \returns true if it is possible to build such an input sequence
    456   /// with the pair \p MI, \p DefIdx. False otherwise.
    457   ///
    458   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
    459   ///
    460   /// \note The generic implementation does not provide any support for
    461   /// MI.isRegSequenceLike(). In other words, one has to override
    462   /// getRegSequenceLikeInputs for target specific instructions.
    463   bool
    464   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
    465                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
    466 
    467   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
    468   /// and \p DefIdx.
    469   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
    470   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
    471   /// - %1:sub1, sub0
    472   ///
    473   /// \returns true if it is possible to build such an input sequence
    474   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
    475   /// False otherwise.
    476   ///
    477   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
    478   ///
    479   /// \note The generic implementation does not provide any support for
    480   /// MI.isExtractSubregLike(). In other words, one has to override
    481   /// getExtractSubregLikeInputs for target specific instructions.
    482   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
    483                               RegSubRegPairAndIdx &InputReg) const;
    484 
    485   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
    486   /// and \p DefIdx.
    487   /// \p [out] BaseReg and \p [out] InsertedReg contain
    488   /// the equivalent inputs of INSERT_SUBREG.
    489   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
    490   /// - BaseReg: %0:sub0
    491   /// - InsertedReg: %1:sub1, sub3
    492   ///
    493   /// \returns true if it is possible to build such an input sequence
    494   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
    495   /// False otherwise.
    496   ///
    497   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
    498   ///
    499   /// \note The generic implementation does not provide any support for
    500   /// MI.isInsertSubregLike(). In other words, one has to override
    501   /// getInsertSubregLikeInputs for target specific instructions.
    502   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
    503                              RegSubRegPair &BaseReg,
    504                              RegSubRegPairAndIdx &InsertedReg) const;
    505 
    506   /// Return true if two machine instructions would produce identical values.
    507   /// By default, this is only true when the two instructions
    508   /// are deemed identical except for defs. If this function is called when the
    509   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
    510   /// aggressive checks.
    511   virtual bool produceSameValue(const MachineInstr &MI0,
    512                                 const MachineInstr &MI1,
    513                                 const MachineRegisterInfo *MRI = nullptr) const;
    514 
    515   /// \returns true if a branch from an instruction with opcode \p BranchOpc
    516   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
    517   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
    518                                      int64_t BrOffset) const {
    519     llvm_unreachable("target did not implement");
    520   }
    521 
    522   /// \returns The block that branch instruction \p MI jumps to.
    523   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
    524     llvm_unreachable("target did not implement");
    525   }
    526 
    527   /// Insert an unconditional indirect branch at the end of \p MBB to \p
    528   /// NewDestBB.  \p BrOffset indicates the offset of \p NewDestBB relative to
    529   /// the offset of the position to insert the new branch.
    530   ///
    531   /// \returns The number of bytes added to the block.
    532   virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
    533                                         MachineBasicBlock &NewDestBB,
    534                                         const DebugLoc &DL,
    535                                         int64_t BrOffset = 0,
    536                                         RegScavenger *RS = nullptr) const {
    537     llvm_unreachable("target did not implement");
    538   }
    539 
    540   /// Analyze the branching code at the end of MBB, returning
    541   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
    542   /// implemented for a target).  Upon success, this returns false and returns
    543   /// with the following information in various cases:
    544   ///
    545   /// 1. If this block ends with no branches (it just falls through to its succ)
    546   ///    just return false, leaving TBB/FBB null.
    547   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
    548   ///    the destination block.
    549   /// 3. If this block ends with a conditional branch and it falls through to a
    550   ///    successor block, it sets TBB to be the branch destination block and a
    551   ///    list of operands that evaluate the condition. These operands can be
    552   ///    passed to other TargetInstrInfo methods to create new branches.
    553   /// 4. If this block ends with a conditional branch followed by an
    554   ///    unconditional branch, it returns the 'true' destination in TBB, the
    555   ///    'false' destination in FBB, and a list of operands that evaluate the
    556   ///    condition.  These operands can be passed to other TargetInstrInfo
    557   ///    methods to create new branches.
    558   ///
    559   /// Note that removeBranch and insertBranch must be implemented to support
    560   /// cases where this method returns success.
    561   ///
    562   /// If AllowModify is true, then this routine is allowed to modify the basic
    563   /// block (e.g. delete instructions after the unconditional branch).
    564   ///
    565   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
    566   /// before calling this function.
    567   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    568                              MachineBasicBlock *&FBB,
    569                              SmallVectorImpl<MachineOperand> &Cond,
    570                              bool AllowModify = false) const {
    571     return true;
    572   }
    573 
    574   /// Represents a predicate at the MachineFunction level.  The control flow a
    575   /// MachineBranchPredicate represents is:
    576   ///
    577   ///  Reg = LHS `Predicate` RHS         == ConditionDef
    578   ///  if Reg then goto TrueDest else goto FalseDest
    579   ///
    580   struct MachineBranchPredicate {
    581     enum ComparePredicate {
    582       PRED_EQ,     // True if two values are equal
    583       PRED_NE,     // True if two values are not equal
    584       PRED_INVALID // Sentinel value
    585     };
    586 
    587     ComparePredicate Predicate = PRED_INVALID;
    588     MachineOperand LHS = MachineOperand::CreateImm(0);
    589     MachineOperand RHS = MachineOperand::CreateImm(0);
    590     MachineBasicBlock *TrueDest = nullptr;
    591     MachineBasicBlock *FalseDest = nullptr;
    592     MachineInstr *ConditionDef = nullptr;
    593 
    594     /// SingleUseCondition is true if ConditionDef is dead except for the
    595     /// branch(es) at the end of the basic block.
    596     ///
    597     bool SingleUseCondition = false;
    598 
    599     explicit MachineBranchPredicate() = default;
    600   };
    601 
    602   /// Analyze the branching code at the end of MBB and parse it into the
    603   /// MachineBranchPredicate structure if possible.  Returns false on success
    604   /// and true on failure.
    605   ///
    606   /// If AllowModify is true, then this routine is allowed to modify the basic
    607   /// block (e.g. delete instructions after the unconditional branch).
    608   ///
    609   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
    610                                       MachineBranchPredicate &MBP,
    611                                       bool AllowModify = false) const {
    612     return true;
    613   }
    614 
    615   /// Remove the branching code at the end of the specific MBB.
    616   /// This is only invoked in cases where AnalyzeBranch returns success. It
    617   /// returns the number of instructions that were removed.
    618   /// If \p BytesRemoved is non-null, report the change in code size from the
    619   /// removed instructions.
    620   virtual unsigned removeBranch(MachineBasicBlock &MBB,
    621                                 int *BytesRemoved = nullptr) const {
    622     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
    623   }
    624 
    625   /// Insert branch code into the end of the specified MachineBasicBlock. The
    626   /// operands to this method are the same as those returned by AnalyzeBranch.
    627   /// This is only invoked in cases where AnalyzeBranch returns success. It
    628   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
    629   /// report the change in code size from the added instructions.
    630   ///
    631   /// It is also invoked by tail merging to add unconditional branches in
    632   /// cases where AnalyzeBranch doesn't apply because there was no original
    633   /// branch to analyze.  At least this much must be implemented, else tail
    634   /// merging needs to be disabled.
    635   ///
    636   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
    637   /// before calling this function.
    638   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    639                                 MachineBasicBlock *FBB,
    640                                 ArrayRef<MachineOperand> Cond,
    641                                 const DebugLoc &DL,
    642                                 int *BytesAdded = nullptr) const {
    643     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
    644   }
    645 
    646   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
    647                                      MachineBasicBlock *DestBB,
    648                                      const DebugLoc &DL,
    649                                      int *BytesAdded = nullptr) const {
    650     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
    651                         BytesAdded);
    652   }
    653 
    654   /// Analyze the loop code, return true if it cannot be understoo. Upon
    655   /// success, this function returns false and returns information about the
    656   /// induction variable and compare instruction used at the end.
    657   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
    658                            MachineInstr *&CmpInst) const {
    659     return true;
    660   }
    661 
    662   /// Generate code to reduce the loop iteration by one and check if the loop
    663   /// is finished.  Return the value/register of the new loop count.  We need
    664   /// this function when peeling off one or more iterations of a loop. This
    665   /// function assumes the nth iteration is peeled first.
    666   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar,
    667                                    MachineInstr &Cmp,
    668                                    SmallVectorImpl<MachineOperand> &Cond,
    669                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
    670                                    unsigned Iter, unsigned MaxIter) const {
    671     llvm_unreachable("Target didn't implement ReduceLoopCount");
    672   }
    673 
    674   /// Delete the instruction OldInst and everything after it, replacing it with
    675   /// an unconditional branch to NewDest. This is used by the tail merging pass.
    676   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    677                                        MachineBasicBlock *NewDest) const;
    678 
    679   /// Return true if it's legal to split the given basic
    680   /// block at the specified instruction (i.e. instruction would be the start
    681   /// of a new basic block).
    682   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
    683                                    MachineBasicBlock::iterator MBBI) const {
    684     return true;
    685   }
    686 
    687   /// Return true if it's profitable to predicate
    688   /// instructions with accumulated instruction latency of "NumCycles"
    689   /// of the specified basic block, where the probability of the instructions
    690   /// being executed is given by Probability, and Confidence is a measure
    691   /// of our confidence that it will be properly predicted.
    692   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    693                                    unsigned ExtraPredCycles,
    694                                    BranchProbability Probability) const {
    695     return false;
    696   }
    697 
    698   /// Second variant of isProfitableToIfCvt. This one
    699   /// checks for the case where two basic blocks from true and false path
    700   /// of a if-then-else (diamond) are predicated on mutally exclusive
    701   /// predicates, where the probability of the true path being taken is given
    702   /// by Probability, and Confidence is a measure of our confidence that it
    703   /// will be properly predicted.
    704   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
    705                                    unsigned ExtraTCycles,
    706                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
    707                                    unsigned ExtraFCycles,
    708                                    BranchProbability Probability) const {
    709     return false;
    710   }
    711 
    712   /// Return true if it's profitable for if-converter to duplicate instructions
    713   /// of specified accumulated instruction latencies in the specified MBB to
    714   /// enable if-conversion.
    715   /// The probability of the instructions being executed is given by
    716   /// Probability, and Confidence is a measure of our confidence that it
    717   /// will be properly predicted.
    718   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
    719                                          unsigned NumCycles,
    720                                          BranchProbability Probability) const {
    721     return false;
    722   }
    723 
    724   /// Return true if it's profitable to unpredicate
    725   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
    726   /// exclusive predicates.
    727   /// e.g.
    728   ///   subeq  r0, r1, #1
    729   ///   addne  r0, r1, #1
    730   /// =>
    731   ///   sub    r0, r1, #1
    732   ///   addne  r0, r1, #1
    733   ///
    734   /// This may be profitable is conditional instructions are always executed.
    735   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
    736                                          MachineBasicBlock &FMBB) const {
    737     return false;
    738   }
    739 
    740   /// Return true if it is possible to insert a select
    741   /// instruction that chooses between TrueReg and FalseReg based on the
    742   /// condition code in Cond.
    743   ///
    744   /// When successful, also return the latency in cycles from TrueReg,
    745   /// FalseReg, and Cond to the destination register. In most cases, a select
    746   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
    747   ///
    748   /// Some x86 implementations have 2-cycle cmov instructions.
    749   ///
    750   /// @param MBB         Block where select instruction would be inserted.
    751   /// @param Cond        Condition returned by AnalyzeBranch.
    752   /// @param TrueReg     Virtual register to select when Cond is true.
    753   /// @param FalseReg    Virtual register to select when Cond is false.
    754   /// @param CondCycles  Latency from Cond+Branch to select output.
    755   /// @param TrueCycles  Latency from TrueReg to select output.
    756   /// @param FalseCycles Latency from FalseReg to select output.
    757   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
    758                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
    759                                unsigned FalseReg, int &CondCycles,
    760                                int &TrueCycles, int &FalseCycles) const {
    761     return false;
    762   }
    763 
    764   /// Insert a select instruction into MBB before I that will copy TrueReg to
    765   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
    766   ///
    767   /// This function can only be called after canInsertSelect() returned true.
    768   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
    769   /// that the same flags or registers required by Cond are available at the
    770   /// insertion point.
    771   ///
    772   /// @param MBB      Block where select instruction should be inserted.
    773   /// @param I        Insertion point.
    774   /// @param DL       Source location for debugging.
    775   /// @param DstReg   Virtual register to be defined by select instruction.
    776   /// @param Cond     Condition as computed by AnalyzeBranch.
    777   /// @param TrueReg  Virtual register to copy when Cond is true.
    778   /// @param FalseReg Virtual register to copy when Cons is false.
    779   virtual void insertSelect(MachineBasicBlock &MBB,
    780                             MachineBasicBlock::iterator I, const DebugLoc &DL,
    781                             unsigned DstReg, ArrayRef<MachineOperand> Cond,
    782                             unsigned TrueReg, unsigned FalseReg) const {
    783     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
    784   }
    785 
    786   /// Analyze the given select instruction, returning true if
    787   /// it cannot be understood. It is assumed that MI->isSelect() is true.
    788   ///
    789   /// When successful, return the controlling condition and the operands that
    790   /// determine the true and false result values.
    791   ///
    792   ///   Result = SELECT Cond, TrueOp, FalseOp
    793   ///
    794   /// Some targets can optimize select instructions, for example by predicating
    795   /// the instruction defining one of the operands. Such targets should set
    796   /// Optimizable.
    797   ///
    798   /// @param         MI Select instruction to analyze.
    799   /// @param Cond    Condition controlling the select.
    800   /// @param TrueOp  Operand number of the value selected when Cond is true.
    801   /// @param FalseOp Operand number of the value selected when Cond is false.
    802   /// @param Optimizable Returned as true if MI is optimizable.
    803   /// @returns False on success.
    804   virtual bool analyzeSelect(const MachineInstr &MI,
    805                              SmallVectorImpl<MachineOperand> &Cond,
    806                              unsigned &TrueOp, unsigned &FalseOp,
    807                              bool &Optimizable) const {
    808     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
    809     return true;
    810   }
    811 
    812   /// Given a select instruction that was understood by
    813   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
    814   /// merging it with one of its operands. Returns NULL on failure.
    815   ///
    816   /// When successful, returns the new select instruction. The client is
    817   /// responsible for deleting MI.
    818   ///
    819   /// If both sides of the select can be optimized, PreferFalse is used to pick
    820   /// a side.
    821   ///
    822   /// @param MI          Optimizable select instruction.
    823   /// @param NewMIs     Set that record all MIs in the basic block up to \p
    824   /// MI. Has to be updated with any newly created MI or deleted ones.
    825   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
    826   /// @returns Optimized instruction or NULL.
    827   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
    828                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
    829                                        bool PreferFalse = false) const {
    830     // This function must be implemented if Optimizable is ever set.
    831     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
    832   }
    833 
    834   /// Emit instructions to copy a pair of physical registers.
    835   ///
    836   /// This function should support copies within any legal register class as
    837   /// well as any cross-class copies created during instruction selection.
    838   ///
    839   /// The source and destination registers may overlap, which may require a
    840   /// careful implementation when multiple copy instructions are required for
    841   /// large registers. See for example the ARM target.
    842   virtual void copyPhysReg(MachineBasicBlock &MBB,
    843                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
    844                            unsigned DestReg, unsigned SrcReg,
    845                            bool KillSrc) const {
    846     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
    847   }
    848 
    849   /// If the specific machine instruction is a instruction that moves/copies
    850   /// value from one register to another register return true along with
    851   /// @Source machine operand and @Destination machine operand.
    852   virtual bool isCopyInstr(const MachineInstr &MI,
    853                            const MachineOperand *&SourceOpNum,
    854                            const MachineOperand *&Destination) const {
    855     return false;
    856   }
    857 
    858   /// Store the specified register of the given register class to the specified
    859   /// stack frame index. The store instruction is to be added to the given
    860   /// machine basic block before the specified machine instruction. If isKill
    861   /// is true, the register operand is the last use and must be marked kill.
    862   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    863                                    MachineBasicBlock::iterator MI,
    864                                    unsigned SrcReg, bool isKill, int FrameIndex,
    865                                    const TargetRegisterClass *RC,
    866                                    const TargetRegisterInfo *TRI) const {
    867     llvm_unreachable("Target didn't implement "
    868                      "TargetInstrInfo::storeRegToStackSlot!");
    869   }
    870 
    871   /// Load the specified register of the given register class from the specified
    872   /// stack frame index. The load instruction is to be added to the given
    873   /// machine basic block before the specified machine instruction.
    874   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    875                                     MachineBasicBlock::iterator MI,
    876                                     unsigned DestReg, int FrameIndex,
    877                                     const TargetRegisterClass *RC,
    878                                     const TargetRegisterInfo *TRI) const {
    879     llvm_unreachable("Target didn't implement "
    880                      "TargetInstrInfo::loadRegFromStackSlot!");
    881   }
    882 
    883   /// This function is called for all pseudo instructions
    884   /// that remain after register allocation. Many pseudo instructions are
    885   /// created to help register allocation. This is the place to convert them
    886   /// into real instructions. The target can edit MI in place, or it can insert
    887   /// new instructions and erase MI. The function should return true if
    888   /// anything was changed.
    889   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
    890 
    891   /// Check whether the target can fold a load that feeds a subreg operand
    892   /// (or a subreg operand that feeds a store).
    893   /// For example, X86 may want to return true if it can fold
    894   /// movl (%esp), %eax
    895   /// subb, %al, ...
    896   /// Into:
    897   /// subb (%esp), ...
    898   ///
    899   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
    900   /// reject subregs - but since this behavior used to be enforced in the
    901   /// target-independent code, moving this responsibility to the targets
    902   /// has the potential of causing nasty silent breakage in out-of-tree targets.
    903   virtual bool isSubregFoldable() const { return false; }
    904 
    905   /// Attempt to fold a load or store of the specified stack
    906   /// slot into the specified machine instruction for the specified operand(s).
    907   /// If this is possible, a new instruction is returned with the specified
    908   /// operand folded, otherwise NULL is returned.
    909   /// The new instruction is inserted before MI, and the client is responsible
    910   /// for removing the old instruction.
    911   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
    912                                   int FI,
    913                                   LiveIntervals *LIS = nullptr) const;
    914 
    915   /// Same as the previous version except it allows folding of any load and
    916   /// store from / to any address, not just from a specific stack slot.
    917   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
    918                                   MachineInstr &LoadMI,
    919                                   LiveIntervals *LIS = nullptr) const;
    920 
    921   /// Return true when there is potentially a faster code sequence
    922   /// for an instruction chain ending in \p Root. All potential patterns are
    923   /// returned in the \p Pattern vector. Pattern should be sorted in priority
    924   /// order since the pattern evaluator stops checking as soon as it finds a
    925   /// faster sequence.
    926   /// \param Root - Instruction that could be combined with one of its operands
    927   /// \param Patterns - Vector of possible combination patterns
    928   virtual bool getMachineCombinerPatterns(
    929       MachineInstr &Root,
    930       SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
    931 
    932   /// Return true when a code sequence can improve throughput. It
    933   /// should be called only for instructions in loops.
    934   /// \param Pattern - combiner pattern
    935   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
    936 
    937   /// Return true if the input \P Inst is part of a chain of dependent ops
    938   /// that are suitable for reassociation, otherwise return false.
    939   /// If the instruction's operands must be commuted to have a previous
    940   /// instruction of the same type define the first source operand, \P Commuted
    941   /// will be set to true.
    942   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
    943 
    944   /// Return true when \P Inst is both associative and commutative.
    945   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
    946     return false;
    947   }
    948 
    949   /// Return true when \P Inst has reassociable operands in the same \P MBB.
    950   virtual bool hasReassociableOperands(const MachineInstr &Inst,
    951                                        const MachineBasicBlock *MBB) const;
    952 
    953   /// Return true when \P Inst has reassociable sibling.
    954   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
    955 
    956   /// When getMachineCombinerPatterns() finds patterns, this function generates
    957   /// the instructions that could replace the original code sequence. The client
    958   /// has to decide whether the actual replacement is beneficial or not.
    959   /// \param Root - Instruction that could be combined with one of its operands
    960   /// \param Pattern - Combination pattern for Root
    961   /// \param InsInstrs - Vector of new instructions that implement P
    962   /// \param DelInstrs - Old instructions, including Root, that could be
    963   /// replaced by InsInstr
    964   /// \param InstIdxForVirtReg - map of virtual register to instruction in
    965   /// InsInstr that defines it
    966   virtual void genAlternativeCodeSequence(
    967       MachineInstr &Root, MachineCombinerPattern Pattern,
    968       SmallVectorImpl<MachineInstr *> &InsInstrs,
    969       SmallVectorImpl<MachineInstr *> &DelInstrs,
    970       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
    971 
    972   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
    973   /// reduce critical path length.
    974   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
    975                       MachineCombinerPattern Pattern,
    976                       SmallVectorImpl<MachineInstr *> &InsInstrs,
    977                       SmallVectorImpl<MachineInstr *> &DelInstrs,
    978                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
    979 
    980   /// This is an architecture-specific helper function of reassociateOps.
    981   /// Set special operand attributes for new instructions after reassociation.
    982   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
    983                                      MachineInstr &NewMI1,
    984                                      MachineInstr &NewMI2) const {}
    985 
    986   /// Return true when a target supports MachineCombiner.
    987   virtual bool useMachineCombiner() const { return false; }
    988 
    989   /// Return true if the given SDNode can be copied during scheduling
    990   /// even if it has glue.
    991   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
    992 
    993 protected:
    994   /// Target-dependent implementation for foldMemoryOperand.
    995   /// Target-independent code in foldMemoryOperand will
    996   /// take care of adding a MachineMemOperand to the newly created instruction.
    997   /// The instruction and any auxiliary instructions necessary will be inserted
    998   /// at InsertPt.
    999   virtual MachineInstr *
   1000   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
   1001                         ArrayRef<unsigned> Ops,
   1002                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
   1003                         LiveIntervals *LIS = nullptr) const {
   1004     return nullptr;
   1005   }
   1006 
   1007   /// Target-dependent implementation for foldMemoryOperand.
   1008   /// Target-independent code in foldMemoryOperand will
   1009   /// take care of adding a MachineMemOperand to the newly created instruction.
   1010   /// The instruction and any auxiliary instructions necessary will be inserted
   1011   /// at InsertPt.
   1012   virtual MachineInstr *foldMemoryOperandImpl(
   1013       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
   1014       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
   1015       LiveIntervals *LIS = nullptr) const {
   1016     return nullptr;
   1017   }
   1018 
   1019   /// Target-dependent implementation of getRegSequenceInputs.
   1020   ///
   1021   /// \returns true if it is possible to build the equivalent
   1022   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
   1023   ///
   1024   /// \pre MI.isRegSequenceLike().
   1025   ///
   1026   /// \see TargetInstrInfo::getRegSequenceInputs.
   1027   virtual bool getRegSequenceLikeInputs(
   1028       const MachineInstr &MI, unsigned DefIdx,
   1029       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
   1030     return false;
   1031   }
   1032 
   1033   /// Target-dependent implementation of getExtractSubregInputs.
   1034   ///
   1035   /// \returns true if it is possible to build the equivalent
   1036   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
   1037   ///
   1038   /// \pre MI.isExtractSubregLike().
   1039   ///
   1040   /// \see TargetInstrInfo::getExtractSubregInputs.
   1041   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
   1042                                           unsigned DefIdx,
   1043                                           RegSubRegPairAndIdx &InputReg) const {
   1044     return false;
   1045   }
   1046 
   1047   /// Target-dependent implementation of getInsertSubregInputs.
   1048   ///
   1049   /// \returns true if it is possible to build the equivalent
   1050   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
   1051   ///
   1052   /// \pre MI.isInsertSubregLike().
   1053   ///
   1054   /// \see TargetInstrInfo::getInsertSubregInputs.
   1055   virtual bool
   1056   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
   1057                             RegSubRegPair &BaseReg,
   1058                             RegSubRegPairAndIdx &InsertedReg) const {
   1059     return false;
   1060   }
   1061 
   1062 public:
   1063   /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
   1064   /// (e.g. stack) the target returns the corresponding address space.
   1065   virtual unsigned
   1066   getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind) const {
   1067     return 0;
   1068   }
   1069 
   1070   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
   1071   /// a store or a load and a store into two or more instruction. If this is
   1072   /// possible, returns true as well as the new instructions by reference.
   1073   virtual bool
   1074   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
   1075                       bool UnfoldLoad, bool UnfoldStore,
   1076                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
   1077     return false;
   1078   }
   1079 
   1080   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   1081                                    SmallVectorImpl<SDNode *> &NewNodes) const {
   1082     return false;
   1083   }
   1084 
   1085   /// Returns the opcode of the would be new
   1086   /// instruction after load / store are unfolded from an instruction of the
   1087   /// specified opcode. It returns zero if the specified unfolding is not
   1088   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
   1089   /// index of the operand which will hold the register holding the loaded
   1090   /// value.
   1091   virtual unsigned
   1092   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
   1093                              unsigned *LoadRegIndex = nullptr) const {
   1094     return 0;
   1095   }
   1096 
   1097   /// This is used by the pre-regalloc scheduler to determine if two loads are
   1098   /// loading from the same base address. It should only return true if the base
   1099   /// pointers are the same and the only differences between the two addresses
   1100   /// are the offset. It also returns the offsets by reference.
   1101   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   1102                                        int64_t &Offset1,
   1103                                        int64_t &Offset2) const {
   1104     return false;
   1105   }
   1106 
   1107   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
   1108   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
   1109   /// On some targets if two loads are loading from
   1110   /// addresses in the same cache line, it's better if they are scheduled
   1111   /// together. This function takes two integers that represent the load offsets
   1112   /// from the common base address. It returns true if it decides it's desirable
   1113   /// to schedule the two loads together. "NumLoads" is the number of loads that
   1114   /// have already been scheduled after Load1.
   1115   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   1116                                        int64_t Offset1, int64_t Offset2,
   1117                                        unsigned NumLoads) const {
   1118     return false;
   1119   }
   1120 
   1121   /// Get the base register and byte offset of an instruction that reads/writes
   1122   /// memory.
   1123   virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
   1124                                      int64_t &Offset,
   1125                                      const TargetRegisterInfo *TRI) const {
   1126     return false;
   1127   }
   1128 
   1129   /// Return true if the instruction contains a base register and offset. If
   1130   /// true, the function also sets the operand position in the instruction
   1131   /// for the base register and offset.
   1132   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
   1133                                         unsigned &BasePos,
   1134                                         unsigned &OffsetPos) const {
   1135     return false;
   1136   }
   1137 
   1138   /// If the instruction is an increment of a constant value, return the amount.
   1139   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
   1140     return false;
   1141   }
   1142 
   1143   /// Returns true if the two given memory operations should be scheduled
   1144   /// adjacent. Note that you have to add:
   1145   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
   1146   /// or
   1147   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
   1148   /// to TargetPassConfig::createMachineScheduler() to have an effect.
   1149   virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1,
   1150                                    MachineInstr &SecondLdSt, unsigned BaseReg2,
   1151                                    unsigned NumLoads) const {
   1152     llvm_unreachable("target did not implement shouldClusterMemOps()");
   1153   }
   1154 
   1155   /// Reverses the branch condition of the specified condition list,
   1156   /// returning false on success and true if it cannot be reversed.
   1157   virtual bool
   1158   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   1159     return true;
   1160   }
   1161 
   1162   /// Insert a noop into the instruction stream at the specified point.
   1163   virtual void insertNoop(MachineBasicBlock &MBB,
   1164                           MachineBasicBlock::iterator MI) const;
   1165 
   1166   /// Return the noop instruction to use for a noop.
   1167   virtual void getNoop(MCInst &NopInst) const;
   1168 
   1169   /// Return true for post-incremented instructions.
   1170   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
   1171 
   1172   /// Returns true if the instruction is already predicated.
   1173   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
   1174 
   1175   /// Returns true if the instruction is a
   1176   /// terminator instruction that has not been predicated.
   1177   virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
   1178 
   1179   /// Returns true if MI is an unconditional tail call.
   1180   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
   1181     return false;
   1182   }
   1183 
   1184   /// Returns true if the tail call can be made conditional on BranchCond.
   1185   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
   1186                                           const MachineInstr &TailCall) const {
   1187     return false;
   1188   }
   1189 
   1190   /// Replace the conditional branch in MBB with a conditional tail call.
   1191   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
   1192                                          SmallVectorImpl<MachineOperand> &Cond,
   1193                                          const MachineInstr &TailCall) const {
   1194     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
   1195   }
   1196 
   1197   /// Convert the instruction into a predicated instruction.
   1198   /// It returns true if the operation was successful.
   1199   virtual bool PredicateInstruction(MachineInstr &MI,
   1200                                     ArrayRef<MachineOperand> Pred) const;
   1201 
   1202   /// Returns true if the first specified predicate
   1203   /// subsumes the second, e.g. GE subsumes GT.
   1204   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
   1205                                  ArrayRef<MachineOperand> Pred2) const {
   1206     return false;
   1207   }
   1208 
   1209   /// If the specified instruction defines any predicate
   1210   /// or condition code register(s) used for predication, returns true as well
   1211   /// as the definition predicate(s) by reference.
   1212   virtual bool DefinesPredicate(MachineInstr &MI,
   1213                                 std::vector<MachineOperand> &Pred) const {
   1214     return false;
   1215   }
   1216 
   1217   /// Return true if the specified instruction can be predicated.
   1218   /// By default, this returns true for every instruction with a
   1219   /// PredicateOperand.
   1220   virtual bool isPredicable(const MachineInstr &MI) const {
   1221     return MI.getDesc().isPredicable();
   1222   }
   1223 
   1224   /// Return true if it's safe to move a machine
   1225   /// instruction that defines the specified register class.
   1226   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
   1227     return true;
   1228   }
   1229 
   1230   /// Test if the given instruction should be considered a scheduling boundary.
   1231   /// This primarily includes labels and terminators.
   1232   virtual bool isSchedulingBoundary(const MachineInstr &MI,
   1233                                     const MachineBasicBlock *MBB,
   1234                                     const MachineFunction &MF) const;
   1235 
   1236   /// Measure the specified inline asm to determine an approximation of its
   1237   /// length.
   1238   virtual unsigned getInlineAsmLength(const char *Str,
   1239                                       const MCAsmInfo &MAI) const;
   1240 
   1241   /// Allocate and return a hazard recognizer to use for this target when
   1242   /// scheduling the machine instructions before register allocation.
   1243   virtual ScheduleHazardRecognizer *
   1244   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
   1245                                const ScheduleDAG *DAG) const;
   1246 
   1247   /// Allocate and return a hazard recognizer to use for this target when
   1248   /// scheduling the machine instructions before register allocation.
   1249   virtual ScheduleHazardRecognizer *
   1250   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
   1251                                  const ScheduleDAG *DAG) const;
   1252 
   1253   /// Allocate and return a hazard recognizer to use for this target when
   1254   /// scheduling the machine instructions after register allocation.
   1255   virtual ScheduleHazardRecognizer *
   1256   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
   1257                                      const ScheduleDAG *DAG) const;
   1258 
   1259   /// Allocate and return a hazard recognizer to use for by non-scheduling
   1260   /// passes.
   1261   virtual ScheduleHazardRecognizer *
   1262   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
   1263     return nullptr;
   1264   }
   1265 
   1266   /// Provide a global flag for disabling the PreRA hazard recognizer that
   1267   /// targets may choose to honor.
   1268   bool usePreRAHazardRecognizer() const;
   1269 
   1270   /// For a comparison instruction, return the source registers
   1271   /// in SrcReg and SrcReg2 if having two register operands, and the value it
   1272   /// compares against in CmpValue. Return true if the comparison instruction
   1273   /// can be analyzed.
   1274   virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
   1275                               unsigned &SrcReg2, int &Mask, int &Value) const {
   1276     return false;
   1277   }
   1278 
   1279   /// See if the comparison instruction can be converted
   1280   /// into something more efficient. E.g., on ARM most instructions can set the
   1281   /// flags register, obviating the need for a separate CMP.
   1282   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
   1283                                     unsigned SrcReg2, int Mask, int Value,
   1284                                     const MachineRegisterInfo *MRI) const {
   1285     return false;
   1286   }
   1287   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
   1288 
   1289   /// Try to remove the load by folding it to a register operand at the use.
   1290   /// We fold the load instructions if and only if the
   1291   /// def and use are in the same BB. We only look at one load and see
   1292   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
   1293   /// defined by the load we are trying to fold. DefMI returns the machine
   1294   /// instruction that defines FoldAsLoadDefReg, and the function returns
   1295   /// the machine instruction generated due to folding.
   1296   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
   1297                                           const MachineRegisterInfo *MRI,
   1298                                           unsigned &FoldAsLoadDefReg,
   1299                                           MachineInstr *&DefMI) const {
   1300     return nullptr;
   1301   }
   1302 
   1303   /// 'Reg' is known to be defined by a move immediate instruction,
   1304   /// try to fold the immediate into the use instruction.
   1305   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
   1306   /// then the caller may assume that DefMI has been erased from its parent
   1307   /// block. The caller may assume that it will not be erased by this
   1308   /// function otherwise.
   1309   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
   1310                              unsigned Reg, MachineRegisterInfo *MRI) const {
   1311     return false;
   1312   }
   1313 
   1314   /// Return the number of u-operations the given machine
   1315   /// instruction will be decoded to on the target cpu. The itinerary's
   1316   /// IssueWidth is the number of microops that can be dispatched each
   1317   /// cycle. An instruction with zero microops takes no dispatch resources.
   1318   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
   1319                                   const MachineInstr &MI) const;
   1320 
   1321   /// Return true for pseudo instructions that don't consume any
   1322   /// machine resources in their current form. These are common cases that the
   1323   /// scheduler should consider free, rather than conservatively handling them
   1324   /// as instructions with no itinerary.
   1325   bool isZeroCost(unsigned Opcode) const {
   1326     return Opcode <= TargetOpcode::COPY;
   1327   }
   1328 
   1329   virtual int getOperandLatency(const InstrItineraryData *ItinData,
   1330                                 SDNode *DefNode, unsigned DefIdx,
   1331                                 SDNode *UseNode, unsigned UseIdx) const;
   1332 
   1333   /// Compute and return the use operand latency of a given pair of def and use.
   1334   /// In most cases, the static scheduling itinerary was enough to determine the
   1335   /// operand latency. But it may not be possible for instructions with variable
   1336   /// number of defs / uses.
   1337   ///
   1338   /// This is a raw interface to the itinerary that may be directly overridden
   1339   /// by a target. Use computeOperandLatency to get the best estimate of
   1340   /// latency.
   1341   virtual int getOperandLatency(const InstrItineraryData *ItinData,
   1342                                 const MachineInstr &DefMI, unsigned DefIdx,
   1343                                 const MachineInstr &UseMI,
   1344                                 unsigned UseIdx) const;
   1345 
   1346   /// Compute the instruction latency of a given instruction.
   1347   /// If the instruction has higher cost when predicated, it's returned via
   1348   /// PredCost.
   1349   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
   1350                                    const MachineInstr &MI,
   1351                                    unsigned *PredCost = nullptr) const;
   1352 
   1353   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
   1354 
   1355   virtual int getInstrLatency(const InstrItineraryData *ItinData,
   1356                               SDNode *Node) const;
   1357 
   1358   /// Return the default expected latency for a def based on its opcode.
   1359   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
   1360                              const MachineInstr &DefMI) const;
   1361 
   1362   int computeDefOperandLatency(const InstrItineraryData *ItinData,
   1363                                const MachineInstr &DefMI) const;
   1364 
   1365   /// Return true if this opcode has high latency to its result.
   1366   virtual bool isHighLatencyDef(int opc) const { return false; }
   1367 
   1368   /// Compute operand latency between a def of 'Reg'
   1369   /// and a use in the current loop. Return true if the target considered
   1370   /// it 'high'. This is used by optimization passes such as machine LICM to
   1371   /// determine whether it makes sense to hoist an instruction out even in a
   1372   /// high register pressure situation.
   1373   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
   1374                                      const MachineRegisterInfo *MRI,
   1375                                      const MachineInstr &DefMI, unsigned DefIdx,
   1376                                      const MachineInstr &UseMI,
   1377                                      unsigned UseIdx) const {
   1378     return false;
   1379   }
   1380 
   1381   /// Compute operand latency of a def of 'Reg'. Return true
   1382   /// if the target considered it 'low'.
   1383   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
   1384                                 const MachineInstr &DefMI,
   1385                                 unsigned DefIdx) const;
   1386 
   1387   /// Perform target-specific instruction verification.
   1388   virtual bool verifyInstruction(const MachineInstr &MI,
   1389                                  StringRef &ErrInfo) const {
   1390     return true;
   1391   }
   1392 
   1393   /// Return the current execution domain and bit mask of
   1394   /// possible domains for instruction.
   1395   ///
   1396   /// Some micro-architectures have multiple execution domains, and multiple
   1397   /// opcodes that perform the same operation in different domains.  For
   1398   /// example, the x86 architecture provides the por, orps, and orpd
   1399   /// instructions that all do the same thing.  There is a latency penalty if a
   1400   /// register is written in one domain and read in another.
   1401   ///
   1402   /// This function returns a pair (domain, mask) containing the execution
   1403   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
   1404   /// function can be used to change the opcode to one of the domains in the
   1405   /// bit mask.  Instructions whose execution domain can't be changed should
   1406   /// return a 0 mask.
   1407   ///
   1408   /// The execution domain numbers don't have any special meaning except domain
   1409   /// 0 is used for instructions that are not associated with any interesting
   1410   /// execution domain.
   1411   ///
   1412   virtual std::pair<uint16_t, uint16_t>
   1413   getExecutionDomain(const MachineInstr &MI) const {
   1414     return std::make_pair(0, 0);
   1415   }
   1416 
   1417   /// Change the opcode of MI to execute in Domain.
   1418   ///
   1419   /// The bit (1 << Domain) must be set in the mask returned from
   1420   /// getExecutionDomain(MI).
   1421   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
   1422 
   1423   /// Returns the preferred minimum clearance
   1424   /// before an instruction with an unwanted partial register update.
   1425   ///
   1426   /// Some instructions only write part of a register, and implicitly need to
   1427   /// read the other parts of the register.  This may cause unwanted stalls
   1428   /// preventing otherwise unrelated instructions from executing in parallel in
   1429   /// an out-of-order CPU.
   1430   ///
   1431   /// For example, the x86 instruction cvtsi2ss writes its result to bits
   1432   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
   1433   /// the instruction needs to wait for the old value of the register to become
   1434   /// available:
   1435   ///
   1436   ///   addps %xmm1, %xmm0
   1437   ///   movaps %xmm0, (%rax)
   1438   ///   cvtsi2ss %rbx, %xmm0
   1439   ///
   1440   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
   1441   /// instruction before it can issue, even though the high bits of %xmm0
   1442   /// probably aren't needed.
   1443   ///
   1444   /// This hook returns the preferred clearance before MI, measured in
   1445   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
   1446   /// instructions before MI.  It should only return a positive value for
   1447   /// unwanted dependencies.  If the old bits of the defined register have
   1448   /// useful values, or if MI is determined to otherwise read the dependency,
   1449   /// the hook should return 0.
   1450   ///
   1451   /// The unwanted dependency may be handled by:
   1452   ///
   1453   /// 1. Allocating the same register for an MI def and use.  That makes the
   1454   ///    unwanted dependency identical to a required dependency.
   1455   ///
   1456   /// 2. Allocating a register for the def that has no defs in the previous N
   1457   ///    instructions.
   1458   ///
   1459   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
   1460   ///    allows the target to insert a dependency breaking instruction.
   1461   ///
   1462   virtual unsigned
   1463   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
   1464                                const TargetRegisterInfo *TRI) const {
   1465     // The default implementation returns 0 for no partial register dependency.
   1466     return 0;
   1467   }
   1468 
   1469   /// Return the minimum clearance before an instruction that reads an
   1470   /// unused register.
   1471   ///
   1472   /// For example, AVX instructions may copy part of a register operand into
   1473   /// the unused high bits of the destination register.
   1474   ///
   1475   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
   1476   ///
   1477   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
   1478   /// false dependence on any previous write to %xmm0.
   1479   ///
   1480   /// This hook works similarly to getPartialRegUpdateClearance, except that it
   1481   /// does not take an operand index. Instead sets \p OpNum to the index of the
   1482   /// unused register.
   1483   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
   1484                                         const TargetRegisterInfo *TRI) const {
   1485     // The default implementation returns 0 for no undef register dependency.
   1486     return 0;
   1487   }
   1488 
   1489   /// Insert a dependency-breaking instruction
   1490   /// before MI to eliminate an unwanted dependency on OpNum.
   1491   ///
   1492   /// If it wasn't possible to avoid a def in the last N instructions before MI
   1493   /// (see getPartialRegUpdateClearance), this hook will be called to break the
   1494   /// unwanted dependency.
   1495   ///
   1496   /// On x86, an xorps instruction can be used as a dependency breaker:
   1497   ///
   1498   ///   addps %xmm1, %xmm0
   1499   ///   movaps %xmm0, (%rax)
   1500   ///   xorps %xmm0, %xmm0
   1501   ///   cvtsi2ss %rbx, %xmm0
   1502   ///
   1503   /// An <imp-kill> operand should be added to MI if an instruction was
   1504   /// inserted.  This ties the instructions together in the post-ra scheduler.
   1505   ///
   1506   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
   1507                                          const TargetRegisterInfo *TRI) const {}
   1508 
   1509   /// Create machine specific model for scheduling.
   1510   virtual DFAPacketizer *
   1511   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
   1512     return nullptr;
   1513   }
   1514 
   1515   /// Sometimes, it is possible for the target
   1516   /// to tell, even without aliasing information, that two MIs access different
   1517   /// memory addresses. This function returns true if two MIs access different
   1518   /// memory addresses and false otherwise.
   1519   ///
   1520   /// Assumes any physical registers used to compute addresses have the same
   1521   /// value for both instructions. (This is the most useful assumption for
   1522   /// post-RA scheduling.)
   1523   ///
   1524   /// See also MachineInstr::mayAlias, which is implemented on top of this
   1525   /// function.
   1526   virtual bool
   1527   areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
   1528                                   AliasAnalysis *AA = nullptr) const {
   1529     assert((MIa.mayLoad() || MIa.mayStore()) &&
   1530            "MIa must load from or modify a memory location");
   1531     assert((MIb.mayLoad() || MIb.mayStore()) &&
   1532            "MIb must load from or modify a memory location");
   1533     return false;
   1534   }
   1535 
   1536   /// Return the value to use for the MachineCSE's LookAheadLimit,
   1537   /// which is a heuristic used for CSE'ing phys reg defs.
   1538   virtual unsigned getMachineCSELookAheadLimit() const {
   1539     // The default lookahead is small to prevent unprofitable quadratic
   1540     // behavior.
   1541     return 5;
   1542   }
   1543 
   1544   /// Return an array that contains the ids of the target indices (used for the
   1545   /// TargetIndex machine operand) and their names.
   1546   ///
   1547   /// MIR Serialization is able to serialize only the target indices that are
   1548   /// defined by this method.
   1549   virtual ArrayRef<std::pair<int, const char *>>
   1550   getSerializableTargetIndices() const {
   1551     return None;
   1552   }
   1553 
   1554   /// Decompose the machine operand's target flags into two values - the direct
   1555   /// target flag value and any of bit flags that are applied.
   1556   virtual std::pair<unsigned, unsigned>
   1557   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
   1558     return std::make_pair(0u, 0u);
   1559   }
   1560 
   1561   /// Return an array that contains the direct target flag values and their
   1562   /// names.
   1563   ///
   1564   /// MIR Serialization is able to serialize only the target flags that are
   1565   /// defined by this method.
   1566   virtual ArrayRef<std::pair<unsigned, const char *>>
   1567   getSerializableDirectMachineOperandTargetFlags() const {
   1568     return None;
   1569   }
   1570 
   1571   /// Return an array that contains the bitmask target flag values and their
   1572   /// names.
   1573   ///
   1574   /// MIR Serialization is able to serialize only the target flags that are
   1575   /// defined by this method.
   1576   virtual ArrayRef<std::pair<unsigned, const char *>>
   1577   getSerializableBitmaskMachineOperandTargetFlags() const {
   1578     return None;
   1579   }
   1580 
   1581   /// Return an array that contains the MMO target flag values and their
   1582   /// names.
   1583   ///
   1584   /// MIR Serialization is able to serialize only the MMO target flags that are
   1585   /// defined by this method.
   1586   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
   1587   getSerializableMachineMemOperandTargetFlags() const {
   1588     return None;
   1589   }
   1590 
   1591   /// Determines whether \p Inst is a tail call instruction. Override this
   1592   /// method on targets that do not properly set MCID::Return and MCID::Call on
   1593   /// tail call instructions."
   1594   virtual bool isTailCall(const MachineInstr &Inst) const {
   1595     return Inst.isReturn() && Inst.isCall();
   1596   }
   1597 
   1598   /// True if the instruction is bound to the top of its basic block and no
   1599   /// other instructions shall be inserted before it. This can be implemented
   1600   /// to prevent register allocator to insert spills before such instructions.
   1601   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
   1602     return false;
   1603   }
   1604 
   1605   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
   1606   /// information for a set of outlining candidates.
   1607   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
   1608       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
   1609     llvm_unreachable(
   1610         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
   1611   }
   1612 
   1613   /// Returns how or if \p MI should be outlined.
   1614   virtual outliner::InstrType
   1615   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
   1616     llvm_unreachable(
   1617         "Target didn't implement TargetInstrInfo::getOutliningType!");
   1618   }
   1619 
   1620   /// Returns target-defined flags defining properties of the MBB for
   1621   /// the outliner.
   1622   virtual unsigned getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const {
   1623     return 0x0;
   1624   }
   1625 
   1626   /// Insert a custom frame for outlined functions.
   1627   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
   1628                                   const outliner::OutlinedFunction &OF) const {
   1629     llvm_unreachable(
   1630         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
   1631   }
   1632 
   1633   /// Insert a call to an outlined function into the program.
   1634   /// Returns an iterator to the spot where we inserted the call. This must be
   1635   /// implemented by the target.
   1636   virtual MachineBasicBlock::iterator
   1637   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
   1638                      MachineBasicBlock::iterator &It, MachineFunction &MF,
   1639                      const outliner::Candidate &C) const {
   1640     llvm_unreachable(
   1641         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
   1642   }
   1643 
   1644   /// Return true if the function can safely be outlined from.
   1645   /// A function \p MF is considered safe for outlining if an outlined function
   1646   /// produced from instructions in F will produce a program which produces the
   1647   /// same output for any set of given inputs.
   1648   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
   1649                                            bool OutlineFromLinkOnceODRs) const {
   1650     llvm_unreachable("Target didn't implement "
   1651                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
   1652   }
   1653 
   1654   /// Return true if the function should be outlined from by default.
   1655   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
   1656     return false;
   1657   }
   1658 
   1659 private:
   1660   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
   1661   unsigned CatchRetOpcode;
   1662   unsigned ReturnOpcode;
   1663 };
   1664 
   1665 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
   1666 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
   1667   using RegInfo = DenseMapInfo<unsigned>;
   1668 
   1669   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
   1670     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
   1671                                           RegInfo::getEmptyKey());
   1672   }
   1673 
   1674   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
   1675     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
   1676                                           RegInfo::getTombstoneKey());
   1677   }
   1678 
   1679   /// Reuse getHashValue implementation from
   1680   /// std::pair<unsigned, unsigned>.
   1681   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
   1682     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
   1683     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
   1684   }
   1685 
   1686   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
   1687                       const TargetInstrInfo::RegSubRegPair &RHS) {
   1688     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
   1689            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
   1690   }
   1691 };
   1692 
   1693 } // end namespace llvm
   1694 
   1695 #endif // LLVM_TARGET_TARGETINSTRINFO_H
   1696