1 /* 2 ** 3 ** Copyright 2007, The Android Open Source Project 4 ** 5 ** Licensed under the Apache License, Version 2.0 (the "License"); 6 ** you may not use this file except in compliance with the License. 7 ** You may obtain a copy of the License at 8 ** 9 ** http://www.apache.org/licenses/LICENSE-2.0 10 ** 11 ** Unless required by applicable law or agreed to in writing, software 12 ** distributed under the License is distributed on an "AS IS" BASIS, 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 ** See the License for the specific language governing permissions and 15 ** limitations under the License. 16 */ 17 18 //#define LOG_NDEBUG 0 19 #define LOG_TAG "AudioTrack" 20 21 #include <inttypes.h> 22 #include <math.h> 23 #include <sys/resource.h> 24 25 #include <android-base/macros.h> 26 #include <audio_utils/clock.h> 27 #include <audio_utils/primitives.h> 28 #include <binder/IPCThreadState.h> 29 #include <media/AudioTrack.h> 30 #include <utils/Log.h> 31 #include <private/media/AudioTrackShared.h> 32 #include <processgroup/sched_policy.h> 33 #include <media/IAudioFlinger.h> 34 #include <media/IAudioPolicyService.h> 35 #include <media/AudioParameter.h> 36 #include <media/AudioResamplerPublic.h> 37 #include <media/AudioSystem.h> 38 #include <media/MediaAnalyticsItem.h> 39 #include <media/TypeConverter.h> 40 41 #define WAIT_PERIOD_MS 10 42 #define WAIT_STREAM_END_TIMEOUT_SEC 120 43 static const int kMaxLoopCountNotifications = 32; 44 45 namespace android { 46 // --------------------------------------------------------------------------- 47 48 using media::VolumeShaper; 49 50 // TODO: Move to a separate .h 51 52 template <typename T> 53 static inline const T &min(const T &x, const T &y) { 54 return x < y ? x : y; 55 } 56 57 template <typename T> 58 static inline const T &max(const T &x, const T &y) { 59 return x > y ? x : y; 60 } 61 62 static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed) 63 { 64 return ((double)frames * 1000000000) / ((double)sampleRate * speed); 65 } 66 67 static int64_t convertTimespecToUs(const struct timespec &tv) 68 { 69 return tv.tv_sec * 1000000LL + tv.tv_nsec / 1000; 70 } 71 72 // TODO move to audio_utils. 73 static inline struct timespec convertNsToTimespec(int64_t ns) { 74 struct timespec tv; 75 tv.tv_sec = static_cast<time_t>(ns / NANOS_PER_SECOND); 76 tv.tv_nsec = static_cast<long>(ns % NANOS_PER_SECOND); 77 return tv; 78 } 79 80 // current monotonic time in microseconds. 81 static int64_t getNowUs() 82 { 83 struct timespec tv; 84 (void) clock_gettime(CLOCK_MONOTONIC, &tv); 85 return convertTimespecToUs(tv); 86 } 87 88 // FIXME: we don't use the pitch setting in the time stretcher (not working); 89 // instead we emulate it using our sample rate converter. 90 static const bool kFixPitch = true; // enable pitch fix 91 static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch) 92 { 93 return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate; 94 } 95 96 static inline float adjustSpeed(float speed, float pitch) 97 { 98 return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed; 99 } 100 101 static inline float adjustPitch(float pitch) 102 { 103 return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch; 104 } 105 106 // static 107 status_t AudioTrack::getMinFrameCount( 108 size_t* frameCount, 109 audio_stream_type_t streamType, 110 uint32_t sampleRate) 111 { 112 if (frameCount == NULL) { 113 return BAD_VALUE; 114 } 115 116 // FIXME handle in server, like createTrack_l(), possible missing info: 117 // audio_io_handle_t output 118 // audio_format_t format 119 // audio_channel_mask_t channelMask 120 // audio_output_flags_t flags (FAST) 121 uint32_t afSampleRate; 122 status_t status; 123 status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType); 124 if (status != NO_ERROR) { 125 ALOGE("%s(): Unable to query output sample rate for stream type %d; status %d", 126 __func__, streamType, status); 127 return status; 128 } 129 size_t afFrameCount; 130 status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType); 131 if (status != NO_ERROR) { 132 ALOGE("%s(): Unable to query output frame count for stream type %d; status %d", 133 __func__, streamType, status); 134 return status; 135 } 136 uint32_t afLatency; 137 status = AudioSystem::getOutputLatency(&afLatency, streamType); 138 if (status != NO_ERROR) { 139 ALOGE("%s(): Unable to query output latency for stream type %d; status %d", 140 __func__, streamType, status); 141 return status; 142 } 143 144 // When called from createTrack, speed is 1.0f (normal speed). 145 // This is rechecked again on setting playback rate (TODO: on setting sample rate, too). 146 *frameCount = AudioSystem::calculateMinFrameCount(afLatency, afFrameCount, afSampleRate, 147 sampleRate, 1.0f /*, 0 notificationsPerBufferReq*/); 148 149 // The formula above should always produce a non-zero value under normal circumstances: 150 // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX. 151 // Return error in the unlikely event that it does not, as that's part of the API contract. 152 if (*frameCount == 0) { 153 ALOGE("%s(): failed for streamType %d, sampleRate %u", 154 __func__, streamType, sampleRate); 155 return BAD_VALUE; 156 } 157 ALOGV("%s(): getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u", 158 __func__, *frameCount, afFrameCount, afSampleRate, afLatency); 159 return NO_ERROR; 160 } 161 162 // static 163 bool AudioTrack::isDirectOutputSupported(const audio_config_base_t& config, 164 const audio_attributes_t& attributes) { 165 ALOGV("%s()", __FUNCTION__); 166 const sp<IAudioPolicyService>& aps = AudioSystem::get_audio_policy_service(); 167 if (aps == 0) return false; 168 return aps->isDirectOutputSupported(config, attributes); 169 } 170 171 // --------------------------------------------------------------------------- 172 173 void AudioTrack::MediaMetrics::gather(const AudioTrack *track) 174 { 175 // only if we're in a good state... 176 // XXX: shall we gather alternative info if failing? 177 const status_t lstatus = track->initCheck(); 178 if (lstatus != NO_ERROR) { 179 ALOGD("%s(): no metrics gathered, track status=%d", __func__, (int) lstatus); 180 return; 181 } 182 183 #define MM_PREFIX "android.media.audiotrack." // avoid cut-n-paste errors. 184 185 // Java API 28 entries, do not change. 186 mAnalyticsItem->setCString(MM_PREFIX "streamtype", toString(track->streamType()).c_str()); 187 mAnalyticsItem->setCString(MM_PREFIX "type", 188 toString(track->mAttributes.content_type).c_str()); 189 mAnalyticsItem->setCString(MM_PREFIX "usage", toString(track->mAttributes.usage).c_str()); 190 191 // Non-API entries, these can change due to a Java string mistake. 192 mAnalyticsItem->setInt32(MM_PREFIX "sampleRate", (int32_t)track->mSampleRate); 193 mAnalyticsItem->setInt64(MM_PREFIX "channelMask", (int64_t)track->mChannelMask); 194 // Non-API entries, these can change. 195 mAnalyticsItem->setInt32(MM_PREFIX "portId", (int32_t)track->mPortId); 196 mAnalyticsItem->setCString(MM_PREFIX "encoding", toString(track->mFormat).c_str()); 197 mAnalyticsItem->setInt32(MM_PREFIX "frameCount", (int32_t)track->mFrameCount); 198 mAnalyticsItem->setCString(MM_PREFIX "attributes", toString(track->mAttributes).c_str()); 199 } 200 201 // hand the user a snapshot of the metrics. 202 status_t AudioTrack::getMetrics(MediaAnalyticsItem * &item) 203 { 204 mMediaMetrics.gather(this); 205 MediaAnalyticsItem *tmp = mMediaMetrics.dup(); 206 if (tmp == nullptr) { 207 return BAD_VALUE; 208 } 209 item = tmp; 210 return NO_ERROR; 211 } 212 213 AudioTrack::AudioTrack() 214 : mStatus(NO_INIT), 215 mState(STATE_STOPPED), 216 mPreviousPriority(ANDROID_PRIORITY_NORMAL), 217 mPreviousSchedulingGroup(SP_DEFAULT), 218 mPausedPosition(0), 219 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE), 220 mRoutedDeviceId(AUDIO_PORT_HANDLE_NONE) 221 { 222 mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN; 223 mAttributes.usage = AUDIO_USAGE_UNKNOWN; 224 mAttributes.flags = 0x0; 225 strcpy(mAttributes.tags, ""); 226 } 227 228 AudioTrack::AudioTrack( 229 audio_stream_type_t streamType, 230 uint32_t sampleRate, 231 audio_format_t format, 232 audio_channel_mask_t channelMask, 233 size_t frameCount, 234 audio_output_flags_t flags, 235 callback_t cbf, 236 void* user, 237 int32_t notificationFrames, 238 audio_session_t sessionId, 239 transfer_type transferType, 240 const audio_offload_info_t *offloadInfo, 241 uid_t uid, 242 pid_t pid, 243 const audio_attributes_t* pAttributes, 244 bool doNotReconnect, 245 float maxRequiredSpeed, 246 audio_port_handle_t selectedDeviceId) 247 : mStatus(NO_INIT), 248 mState(STATE_STOPPED), 249 mPreviousPriority(ANDROID_PRIORITY_NORMAL), 250 mPreviousSchedulingGroup(SP_DEFAULT), 251 mPausedPosition(0) 252 { 253 mAttributes = AUDIO_ATTRIBUTES_INITIALIZER; 254 255 (void)set(streamType, sampleRate, format, channelMask, 256 frameCount, flags, cbf, user, notificationFrames, 257 0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType, 258 offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed, selectedDeviceId); 259 } 260 261 AudioTrack::AudioTrack( 262 audio_stream_type_t streamType, 263 uint32_t sampleRate, 264 audio_format_t format, 265 audio_channel_mask_t channelMask, 266 const sp<IMemory>& sharedBuffer, 267 audio_output_flags_t flags, 268 callback_t cbf, 269 void* user, 270 int32_t notificationFrames, 271 audio_session_t sessionId, 272 transfer_type transferType, 273 const audio_offload_info_t *offloadInfo, 274 uid_t uid, 275 pid_t pid, 276 const audio_attributes_t* pAttributes, 277 bool doNotReconnect, 278 float maxRequiredSpeed) 279 : mStatus(NO_INIT), 280 mState(STATE_STOPPED), 281 mPreviousPriority(ANDROID_PRIORITY_NORMAL), 282 mPreviousSchedulingGroup(SP_DEFAULT), 283 mPausedPosition(0), 284 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE) 285 { 286 mAttributes = AUDIO_ATTRIBUTES_INITIALIZER; 287 288 (void)set(streamType, sampleRate, format, channelMask, 289 0 /*frameCount*/, flags, cbf, user, notificationFrames, 290 sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo, 291 uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed); 292 } 293 294 AudioTrack::~AudioTrack() 295 { 296 // pull together the numbers, before we clean up our structures 297 mMediaMetrics.gather(this); 298 299 if (mStatus == NO_ERROR) { 300 // Make sure that callback function exits in the case where 301 // it is looping on buffer full condition in obtainBuffer(). 302 // Otherwise the callback thread will never exit. 303 stop(); 304 if (mAudioTrackThread != 0) { 305 mProxy->interrupt(); 306 mAudioTrackThread->requestExit(); // see comment in AudioTrack.h 307 mAudioTrackThread->requestExitAndWait(); 308 mAudioTrackThread.clear(); 309 } 310 // No lock here: worst case we remove a NULL callback which will be a nop 311 if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) { 312 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId); 313 } 314 IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this); 315 mAudioTrack.clear(); 316 mCblkMemory.clear(); 317 mSharedBuffer.clear(); 318 IPCThreadState::self()->flushCommands(); 319 ALOGV("%s(%d), releasing session id %d from %d on behalf of %d", 320 __func__, mPortId, 321 mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid); 322 AudioSystem::releaseAudioSessionId(mSessionId, mClientPid); 323 } 324 } 325 326 status_t AudioTrack::set( 327 audio_stream_type_t streamType, 328 uint32_t sampleRate, 329 audio_format_t format, 330 audio_channel_mask_t channelMask, 331 size_t frameCount, 332 audio_output_flags_t flags, 333 callback_t cbf, 334 void* user, 335 int32_t notificationFrames, 336 const sp<IMemory>& sharedBuffer, 337 bool threadCanCallJava, 338 audio_session_t sessionId, 339 transfer_type transferType, 340 const audio_offload_info_t *offloadInfo, 341 uid_t uid, 342 pid_t pid, 343 const audio_attributes_t* pAttributes, 344 bool doNotReconnect, 345 float maxRequiredSpeed, 346 audio_port_handle_t selectedDeviceId) 347 { 348 status_t status; 349 uint32_t channelCount; 350 pid_t callingPid; 351 pid_t myPid; 352 353 // Note mPortId is not valid until the track is created, so omit mPortId in ALOG for set. 354 ALOGV("%s(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, " 355 "flags #%x, notificationFrames %d, sessionId %d, transferType %d, uid %d, pid %d", 356 __func__, 357 streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames, 358 sessionId, transferType, uid, pid); 359 360 mThreadCanCallJava = threadCanCallJava; 361 mSelectedDeviceId = selectedDeviceId; 362 mSessionId = sessionId; 363 364 switch (transferType) { 365 case TRANSFER_DEFAULT: 366 if (sharedBuffer != 0) { 367 transferType = TRANSFER_SHARED; 368 } else if (cbf == NULL || threadCanCallJava) { 369 transferType = TRANSFER_SYNC; 370 } else { 371 transferType = TRANSFER_CALLBACK; 372 } 373 break; 374 case TRANSFER_CALLBACK: 375 case TRANSFER_SYNC_NOTIF_CALLBACK: 376 if (cbf == NULL || sharedBuffer != 0) { 377 ALOGE("%s(): Transfer type %s but cbf == NULL || sharedBuffer != 0", 378 convertTransferToText(transferType), __func__); 379 status = BAD_VALUE; 380 goto exit; 381 } 382 break; 383 case TRANSFER_OBTAIN: 384 case TRANSFER_SYNC: 385 if (sharedBuffer != 0) { 386 ALOGE("%s(): Transfer type TRANSFER_OBTAIN but sharedBuffer != 0", __func__); 387 status = BAD_VALUE; 388 goto exit; 389 } 390 break; 391 case TRANSFER_SHARED: 392 if (sharedBuffer == 0) { 393 ALOGE("%s(): Transfer type TRANSFER_SHARED but sharedBuffer == 0", __func__); 394 status = BAD_VALUE; 395 goto exit; 396 } 397 break; 398 default: 399 ALOGE("%s(): Invalid transfer type %d", 400 __func__, transferType); 401 status = BAD_VALUE; 402 goto exit; 403 } 404 mSharedBuffer = sharedBuffer; 405 mTransfer = transferType; 406 mDoNotReconnect = doNotReconnect; 407 408 ALOGV_IF(sharedBuffer != 0, "%s(): sharedBuffer: %p, size: %zu", 409 __func__, sharedBuffer->pointer(), sharedBuffer->size()); 410 411 ALOGV("%s(): streamType %d frameCount %zu flags %04x", 412 __func__, streamType, frameCount, flags); 413 414 // invariant that mAudioTrack != 0 is true only after set() returns successfully 415 if (mAudioTrack != 0) { 416 ALOGE("%s(): Track already in use", __func__); 417 status = INVALID_OPERATION; 418 goto exit; 419 } 420 421 // handle default values first. 422 if (streamType == AUDIO_STREAM_DEFAULT) { 423 streamType = AUDIO_STREAM_MUSIC; 424 } 425 if (pAttributes == NULL) { 426 if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) { 427 ALOGE("%s(): Invalid stream type %d", __func__, streamType); 428 status = BAD_VALUE; 429 goto exit; 430 } 431 mStreamType = streamType; 432 433 } else { 434 // stream type shouldn't be looked at, this track has audio attributes 435 memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t)); 436 ALOGV("%s(): Building AudioTrack with attributes:" 437 " usage=%d content=%d flags=0x%x tags=[%s]", 438 __func__, 439 mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags); 440 mStreamType = AUDIO_STREAM_DEFAULT; 441 audio_flags_to_audio_output_flags(mAttributes.flags, &flags); 442 } 443 444 // these below should probably come from the audioFlinger too... 445 if (format == AUDIO_FORMAT_DEFAULT) { 446 format = AUDIO_FORMAT_PCM_16_BIT; 447 } else if (format == AUDIO_FORMAT_IEC61937) { // HDMI pass-through? 448 mAttributes.flags |= AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO; 449 } 450 451 // validate parameters 452 if (!audio_is_valid_format(format)) { 453 ALOGE("%s(): Invalid format %#x", __func__, format); 454 status = BAD_VALUE; 455 goto exit; 456 } 457 mFormat = format; 458 459 if (!audio_is_output_channel(channelMask)) { 460 ALOGE("%s(): Invalid channel mask %#x", __func__, channelMask); 461 status = BAD_VALUE; 462 goto exit; 463 } 464 mChannelMask = channelMask; 465 channelCount = audio_channel_count_from_out_mask(channelMask); 466 mChannelCount = channelCount; 467 468 // force direct flag if format is not linear PCM 469 // or offload was requested 470 if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) 471 || !audio_is_linear_pcm(format)) { 472 ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) 473 ? "%s(): Offload request, forcing to Direct Output" 474 : "%s(): Not linear PCM, forcing to Direct Output", 475 __func__); 476 flags = (audio_output_flags_t) 477 // FIXME why can't we allow direct AND fast? 478 ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST); 479 } 480 481 // force direct flag if HW A/V sync requested 482 if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) { 483 flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT); 484 } 485 486 if (flags & AUDIO_OUTPUT_FLAG_DIRECT) { 487 if (audio_has_proportional_frames(format)) { 488 mFrameSize = channelCount * audio_bytes_per_sample(format); 489 } else { 490 mFrameSize = sizeof(uint8_t); 491 } 492 } else { 493 ALOG_ASSERT(audio_has_proportional_frames(format)); 494 mFrameSize = channelCount * audio_bytes_per_sample(format); 495 // createTrack will return an error if PCM format is not supported by server, 496 // so no need to check for specific PCM formats here 497 } 498 499 // sampling rate must be specified for direct outputs 500 if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) { 501 status = BAD_VALUE; 502 goto exit; 503 } 504 mSampleRate = sampleRate; 505 mOriginalSampleRate = sampleRate; 506 mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT; 507 // 1.0 <= mMaxRequiredSpeed <= AUDIO_TIMESTRETCH_SPEED_MAX 508 mMaxRequiredSpeed = min(max(maxRequiredSpeed, 1.0f), AUDIO_TIMESTRETCH_SPEED_MAX); 509 510 // Make copy of input parameter offloadInfo so that in the future: 511 // (a) createTrack_l doesn't need it as an input parameter 512 // (b) we can support re-creation of offloaded tracks 513 if (offloadInfo != NULL) { 514 mOffloadInfoCopy = *offloadInfo; 515 mOffloadInfo = &mOffloadInfoCopy; 516 } else { 517 mOffloadInfo = NULL; 518 memset(&mOffloadInfoCopy, 0, sizeof(audio_offload_info_t)); 519 } 520 521 mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f; 522 mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f; 523 mSendLevel = 0.0f; 524 // mFrameCount is initialized in createTrack_l 525 mReqFrameCount = frameCount; 526 if (notificationFrames >= 0) { 527 mNotificationFramesReq = notificationFrames; 528 mNotificationsPerBufferReq = 0; 529 } else { 530 if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) { 531 ALOGE("%s(): notificationFrames=%d not permitted for non-fast track", 532 __func__, notificationFrames); 533 status = BAD_VALUE; 534 goto exit; 535 } 536 if (frameCount > 0) { 537 ALOGE("%s(): notificationFrames=%d not permitted with non-zero frameCount=%zu", 538 __func__, notificationFrames, frameCount); 539 status = BAD_VALUE; 540 goto exit; 541 } 542 mNotificationFramesReq = 0; 543 const uint32_t minNotificationsPerBuffer = 1; 544 const uint32_t maxNotificationsPerBuffer = 8; 545 mNotificationsPerBufferReq = min(maxNotificationsPerBuffer, 546 max((uint32_t) -notificationFrames, minNotificationsPerBuffer)); 547 ALOGW_IF(mNotificationsPerBufferReq != (uint32_t) -notificationFrames, 548 "%s(): notificationFrames=%d clamped to the range -%u to -%u", 549 __func__, 550 notificationFrames, minNotificationsPerBuffer, maxNotificationsPerBuffer); 551 } 552 mNotificationFramesAct = 0; 553 callingPid = IPCThreadState::self()->getCallingPid(); 554 myPid = getpid(); 555 if (uid == AUDIO_UID_INVALID || (callingPid != myPid)) { 556 mClientUid = IPCThreadState::self()->getCallingUid(); 557 } else { 558 mClientUid = uid; 559 } 560 if (pid == -1 || (callingPid != myPid)) { 561 mClientPid = callingPid; 562 } else { 563 mClientPid = pid; 564 } 565 mAuxEffectId = 0; 566 mOrigFlags = mFlags = flags; 567 mCbf = cbf; 568 569 if (cbf != NULL) { 570 mAudioTrackThread = new AudioTrackThread(*this); 571 mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/); 572 // thread begins in paused state, and will not reference us until start() 573 } 574 575 // create the IAudioTrack 576 { 577 AutoMutex lock(mLock); 578 status = createTrack_l(); 579 } 580 if (status != NO_ERROR) { 581 if (mAudioTrackThread != 0) { 582 mAudioTrackThread->requestExit(); // see comment in AudioTrack.h 583 mAudioTrackThread->requestExitAndWait(); 584 mAudioTrackThread.clear(); 585 } 586 goto exit; 587 } 588 589 mUserData = user; 590 mLoopCount = 0; 591 mLoopStart = 0; 592 mLoopEnd = 0; 593 mLoopCountNotified = 0; 594 mMarkerPosition = 0; 595 mMarkerReached = false; 596 mNewPosition = 0; 597 mUpdatePeriod = 0; 598 mPosition = 0; 599 mReleased = 0; 600 mStartNs = 0; 601 mStartFromZeroUs = 0; 602 AudioSystem::acquireAudioSessionId(mSessionId, mClientPid); 603 mSequence = 1; 604 mObservedSequence = mSequence; 605 mInUnderrun = false; 606 mPreviousTimestampValid = false; 607 mTimestampStartupGlitchReported = false; 608 mTimestampRetrogradePositionReported = false; 609 mTimestampRetrogradeTimeReported = false; 610 mTimestampStallReported = false; 611 mTimestampStaleTimeReported = false; 612 mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID; 613 mStartTs.mPosition = 0; 614 mUnderrunCountOffset = 0; 615 mFramesWritten = 0; 616 mFramesWrittenServerOffset = 0; 617 mFramesWrittenAtRestore = -1; // -1 is a unique initializer. 618 mVolumeHandler = new media::VolumeHandler(); 619 620 exit: 621 mStatus = status; 622 return status; 623 } 624 625 // ------------------------------------------------------------------------- 626 627 status_t AudioTrack::start() 628 { 629 AutoMutex lock(mLock); 630 ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState)); 631 632 if (mState == STATE_ACTIVE) { 633 return INVALID_OPERATION; 634 } 635 636 mInUnderrun = true; 637 638 State previousState = mState; 639 if (previousState == STATE_PAUSED_STOPPING) { 640 mState = STATE_STOPPING; 641 } else { 642 mState = STATE_ACTIVE; 643 } 644 (void) updateAndGetPosition_l(); 645 646 // save start timestamp 647 if (isOffloadedOrDirect_l()) { 648 if (getTimestamp_l(mStartTs) != OK) { 649 mStartTs.mPosition = 0; 650 } 651 } else { 652 if (getTimestamp_l(&mStartEts) != OK) { 653 mStartEts.clear(); 654 } 655 } 656 mStartNs = systemTime(); // save this for timestamp adjustment after starting. 657 if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) { 658 // reset current position as seen by client to 0 659 mPosition = 0; 660 mPreviousTimestampValid = false; 661 mTimestampStartupGlitchReported = false; 662 mTimestampRetrogradePositionReported = false; 663 mTimestampRetrogradeTimeReported = false; 664 mTimestampStallReported = false; 665 mTimestampStaleTimeReported = false; 666 mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID; 667 668 if (!isOffloadedOrDirect_l() 669 && mStartEts.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] > 0) { 670 // Server side has consumed something, but is it finished consuming? 671 // It is possible since flush and stop are asynchronous that the server 672 // is still active at this point. 673 ALOGV("%s(%d): server read:%lld cumulative flushed:%lld client written:%lld", 674 __func__, mPortId, 675 (long long)(mFramesWrittenServerOffset 676 + mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER]), 677 (long long)mStartEts.mFlushed, 678 (long long)mFramesWritten); 679 // mStartEts is already adjusted by mFramesWrittenServerOffset, so we delta adjust. 680 mFramesWrittenServerOffset -= mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER]; 681 } 682 mFramesWritten = 0; 683 mProxy->clearTimestamp(); // need new server push for valid timestamp 684 mMarkerReached = false; 685 686 // For offloaded tracks, we don't know if the hardware counters are really zero here, 687 // since the flush is asynchronous and stop may not fully drain. 688 // We save the time when the track is started to later verify whether 689 // the counters are realistic (i.e. start from zero after this time). 690 mStartFromZeroUs = mStartNs / 1000; 691 692 // force refresh of remaining frames by processAudioBuffer() as last 693 // write before stop could be partial. 694 mRefreshRemaining = true; 695 696 // for static track, clear the old flags when starting from stopped state 697 if (mSharedBuffer != 0) { 698 android_atomic_and( 699 ~(CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), 700 &mCblk->mFlags); 701 } 702 } 703 mNewPosition = mPosition + mUpdatePeriod; 704 int32_t flags = android_atomic_and(~(CBLK_STREAM_END_DONE | CBLK_DISABLED), &mCblk->mFlags); 705 706 status_t status = NO_ERROR; 707 if (!(flags & CBLK_INVALID)) { 708 status = mAudioTrack->start(); 709 if (status == DEAD_OBJECT) { 710 flags |= CBLK_INVALID; 711 } 712 } 713 if (flags & CBLK_INVALID) { 714 status = restoreTrack_l("start"); 715 } 716 717 // resume or pause the callback thread as needed. 718 sp<AudioTrackThread> t = mAudioTrackThread; 719 if (status == NO_ERROR) { 720 if (t != 0) { 721 if (previousState == STATE_STOPPING) { 722 mProxy->interrupt(); 723 } else { 724 t->resume(); 725 } 726 } else { 727 mPreviousPriority = getpriority(PRIO_PROCESS, 0); 728 get_sched_policy(0, &mPreviousSchedulingGroup); 729 androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO); 730 } 731 732 // Start our local VolumeHandler for restoration purposes. 733 mVolumeHandler->setStarted(); 734 } else { 735 ALOGE("%s(%d): status %d", __func__, mPortId, status); 736 mState = previousState; 737 if (t != 0) { 738 if (previousState != STATE_STOPPING) { 739 t->pause(); 740 } 741 } else { 742 setpriority(PRIO_PROCESS, 0, mPreviousPriority); 743 set_sched_policy(0, mPreviousSchedulingGroup); 744 } 745 } 746 747 return status; 748 } 749 750 void AudioTrack::stop() 751 { 752 AutoMutex lock(mLock); 753 ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState)); 754 755 if (mState != STATE_ACTIVE && mState != STATE_PAUSED) { 756 return; 757 } 758 759 if (isOffloaded_l()) { 760 mState = STATE_STOPPING; 761 } else { 762 mState = STATE_STOPPED; 763 ALOGD_IF(mSharedBuffer == nullptr, 764 "%s(%d): called with %u frames delivered", __func__, mPortId, mReleased.value()); 765 mReleased = 0; 766 } 767 768 mProxy->stop(); // notify server not to read beyond current client position until start(). 769 mProxy->interrupt(); 770 mAudioTrack->stop(); 771 772 // Note: legacy handling - stop does not clear playback marker 773 // and periodic update counter, but flush does for streaming tracks. 774 775 if (mSharedBuffer != 0) { 776 // clear buffer position and loop count. 777 mStaticProxy->setBufferPositionAndLoop(0 /* position */, 778 0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */); 779 } 780 781 sp<AudioTrackThread> t = mAudioTrackThread; 782 if (t != 0) { 783 if (!isOffloaded_l()) { 784 t->pause(); 785 } else if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) { 786 // causes wake up of the playback thread, that will callback the client for 787 // EVENT_STREAM_END in processAudioBuffer() 788 t->wake(); 789 } 790 } else { 791 setpriority(PRIO_PROCESS, 0, mPreviousPriority); 792 set_sched_policy(0, mPreviousSchedulingGroup); 793 } 794 } 795 796 bool AudioTrack::stopped() const 797 { 798 AutoMutex lock(mLock); 799 return mState != STATE_ACTIVE; 800 } 801 802 void AudioTrack::flush() 803 { 804 AutoMutex lock(mLock); 805 ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState)); 806 807 if (mSharedBuffer != 0) { 808 return; 809 } 810 if (mState == STATE_ACTIVE) { 811 return; 812 } 813 flush_l(); 814 } 815 816 void AudioTrack::flush_l() 817 { 818 ALOG_ASSERT(mState != STATE_ACTIVE); 819 820 // clear playback marker and periodic update counter 821 mMarkerPosition = 0; 822 mMarkerReached = false; 823 mUpdatePeriod = 0; 824 mRefreshRemaining = true; 825 826 mState = STATE_FLUSHED; 827 mReleased = 0; 828 if (isOffloaded_l()) { 829 mProxy->interrupt(); 830 } 831 mProxy->flush(); 832 mAudioTrack->flush(); 833 } 834 835 void AudioTrack::pause() 836 { 837 AutoMutex lock(mLock); 838 ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState)); 839 840 if (mState == STATE_ACTIVE) { 841 mState = STATE_PAUSED; 842 } else if (mState == STATE_STOPPING) { 843 mState = STATE_PAUSED_STOPPING; 844 } else { 845 return; 846 } 847 mProxy->interrupt(); 848 mAudioTrack->pause(); 849 850 if (isOffloaded_l()) { 851 if (mOutput != AUDIO_IO_HANDLE_NONE) { 852 // An offload output can be re-used between two audio tracks having 853 // the same configuration. A timestamp query for a paused track 854 // while the other is running would return an incorrect time. 855 // To fix this, cache the playback position on a pause() and return 856 // this time when requested until the track is resumed. 857 858 // OffloadThread sends HAL pause in its threadLoop. Time saved 859 // here can be slightly off. 860 861 // TODO: check return code for getRenderPosition. 862 863 uint32_t halFrames; 864 AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition); 865 ALOGV("%s(%d): for offload, cache current position %u", 866 __func__, mPortId, mPausedPosition); 867 } 868 } 869 } 870 871 status_t AudioTrack::setVolume(float left, float right) 872 { 873 // This duplicates a test by AudioTrack JNI, but that is not the only caller 874 if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY || 875 isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) { 876 return BAD_VALUE; 877 } 878 879 AutoMutex lock(mLock); 880 mVolume[AUDIO_INTERLEAVE_LEFT] = left; 881 mVolume[AUDIO_INTERLEAVE_RIGHT] = right; 882 883 mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right))); 884 885 if (isOffloaded_l()) { 886 mAudioTrack->signal(); 887 } 888 return NO_ERROR; 889 } 890 891 status_t AudioTrack::setVolume(float volume) 892 { 893 return setVolume(volume, volume); 894 } 895 896 status_t AudioTrack::setAuxEffectSendLevel(float level) 897 { 898 // This duplicates a test by AudioTrack JNI, but that is not the only caller 899 if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) { 900 return BAD_VALUE; 901 } 902 903 AutoMutex lock(mLock); 904 mSendLevel = level; 905 mProxy->setSendLevel(level); 906 907 return NO_ERROR; 908 } 909 910 void AudioTrack::getAuxEffectSendLevel(float* level) const 911 { 912 if (level != NULL) { 913 *level = mSendLevel; 914 } 915 } 916 917 status_t AudioTrack::setSampleRate(uint32_t rate) 918 { 919 AutoMutex lock(mLock); 920 ALOGV("%s(%d): prior state:%s rate:%u", __func__, mPortId, stateToString(mState), rate); 921 922 if (rate == mSampleRate) { 923 return NO_ERROR; 924 } 925 if (isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST) 926 || (mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL)) { 927 return INVALID_OPERATION; 928 } 929 if (mOutput == AUDIO_IO_HANDLE_NONE) { 930 return NO_INIT; 931 } 932 // NOTE: it is theoretically possible, but highly unlikely, that a device change 933 // could mean a previously allowed sampling rate is no longer allowed. 934 uint32_t afSamplingRate; 935 if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) { 936 return NO_INIT; 937 } 938 // pitch is emulated by adjusting speed and sampleRate 939 const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch); 940 if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) { 941 return BAD_VALUE; 942 } 943 // TODO: Should we also check if the buffer size is compatible? 944 945 mSampleRate = rate; 946 mProxy->setSampleRate(effectiveSampleRate); 947 948 return NO_ERROR; 949 } 950 951 uint32_t AudioTrack::getSampleRate() const 952 { 953 AutoMutex lock(mLock); 954 955 // sample rate can be updated during playback by the offloaded decoder so we need to 956 // query the HAL and update if needed. 957 // FIXME use Proxy return channel to update the rate from server and avoid polling here 958 if (isOffloadedOrDirect_l()) { 959 if (mOutput != AUDIO_IO_HANDLE_NONE) { 960 uint32_t sampleRate = 0; 961 status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate); 962 if (status == NO_ERROR) { 963 mSampleRate = sampleRate; 964 } 965 } 966 } 967 return mSampleRate; 968 } 969 970 uint32_t AudioTrack::getOriginalSampleRate() const 971 { 972 return mOriginalSampleRate; 973 } 974 975 status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate) 976 { 977 AutoMutex lock(mLock); 978 if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) { 979 return NO_ERROR; 980 } 981 if (isOffloadedOrDirect_l()) { 982 return INVALID_OPERATION; 983 } 984 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) { 985 return INVALID_OPERATION; 986 } 987 988 ALOGV("%s(%d): mSampleRate:%u mSpeed:%f mPitch:%f", 989 __func__, mPortId, mSampleRate, playbackRate.mSpeed, playbackRate.mPitch); 990 // pitch is emulated by adjusting speed and sampleRate 991 const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch); 992 const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch); 993 const float effectivePitch = adjustPitch(playbackRate.mPitch); 994 AudioPlaybackRate playbackRateTemp = playbackRate; 995 playbackRateTemp.mSpeed = effectiveSpeed; 996 playbackRateTemp.mPitch = effectivePitch; 997 998 ALOGV("%s(%d) (effective) mSampleRate:%u mSpeed:%f mPitch:%f", 999 __func__, mPortId, effectiveRate, effectiveSpeed, effectivePitch); 1000 1001 if (!isAudioPlaybackRateValid(playbackRateTemp)) { 1002 ALOGW("%s(%d) (%f, %f) failed (effective rate out of bounds)", 1003 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch); 1004 return BAD_VALUE; 1005 } 1006 // Check if the buffer size is compatible. 1007 if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) { 1008 ALOGW("%s(%d) (%f, %f) failed (buffer size)", 1009 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch); 1010 return BAD_VALUE; 1011 } 1012 1013 // Check resampler ratios are within bounds 1014 if ((uint64_t)effectiveRate > (uint64_t)mSampleRate * 1015 (uint64_t)AUDIO_RESAMPLER_DOWN_RATIO_MAX) { 1016 ALOGW("%s(%d) (%f, %f) failed. Resample rate exceeds max accepted value", 1017 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch); 1018 return BAD_VALUE; 1019 } 1020 1021 if ((uint64_t)effectiveRate * (uint64_t)AUDIO_RESAMPLER_UP_RATIO_MAX < (uint64_t)mSampleRate) { 1022 ALOGW("%s(%d) (%f, %f) failed. Resample rate below min accepted value", 1023 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch); 1024 return BAD_VALUE; 1025 } 1026 mPlaybackRate = playbackRate; 1027 //set effective rates 1028 mProxy->setPlaybackRate(playbackRateTemp); 1029 mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate 1030 return NO_ERROR; 1031 } 1032 1033 const AudioPlaybackRate& AudioTrack::getPlaybackRate() const 1034 { 1035 AutoMutex lock(mLock); 1036 return mPlaybackRate; 1037 } 1038 1039 ssize_t AudioTrack::getBufferSizeInFrames() 1040 { 1041 AutoMutex lock(mLock); 1042 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) { 1043 return NO_INIT; 1044 } 1045 return (ssize_t) mProxy->getBufferSizeInFrames(); 1046 } 1047 1048 status_t AudioTrack::getBufferDurationInUs(int64_t *duration) 1049 { 1050 if (duration == nullptr) { 1051 return BAD_VALUE; 1052 } 1053 AutoMutex lock(mLock); 1054 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) { 1055 return NO_INIT; 1056 } 1057 ssize_t bufferSizeInFrames = (ssize_t) mProxy->getBufferSizeInFrames(); 1058 if (bufferSizeInFrames < 0) { 1059 return (status_t)bufferSizeInFrames; 1060 } 1061 *duration = (int64_t)((double)bufferSizeInFrames * 1000000 1062 / ((double)mSampleRate * mPlaybackRate.mSpeed)); 1063 return NO_ERROR; 1064 } 1065 1066 ssize_t AudioTrack::setBufferSizeInFrames(size_t bufferSizeInFrames) 1067 { 1068 AutoMutex lock(mLock); 1069 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) { 1070 return NO_INIT; 1071 } 1072 // Reject if timed track or compressed audio. 1073 if (!audio_is_linear_pcm(mFormat)) { 1074 return INVALID_OPERATION; 1075 } 1076 return (ssize_t) mProxy->setBufferSizeInFrames((uint32_t) bufferSizeInFrames); 1077 } 1078 1079 status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount) 1080 { 1081 if (mSharedBuffer == 0 || isOffloadedOrDirect()) { 1082 return INVALID_OPERATION; 1083 } 1084 1085 if (loopCount == 0) { 1086 ; 1087 } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount && 1088 loopEnd - loopStart >= MIN_LOOP) { 1089 ; 1090 } else { 1091 return BAD_VALUE; 1092 } 1093 1094 AutoMutex lock(mLock); 1095 // See setPosition() regarding setting parameters such as loop points or position while active 1096 if (mState == STATE_ACTIVE) { 1097 return INVALID_OPERATION; 1098 } 1099 setLoop_l(loopStart, loopEnd, loopCount); 1100 return NO_ERROR; 1101 } 1102 1103 void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount) 1104 { 1105 // We do not update the periodic notification point. 1106 // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod; 1107 mLoopCount = loopCount; 1108 mLoopEnd = loopEnd; 1109 mLoopStart = loopStart; 1110 mLoopCountNotified = loopCount; 1111 mStaticProxy->setLoop(loopStart, loopEnd, loopCount); 1112 1113 // Waking the AudioTrackThread is not needed as this cannot be called when active. 1114 } 1115 1116 status_t AudioTrack::setMarkerPosition(uint32_t marker) 1117 { 1118 // The only purpose of setting marker position is to get a callback 1119 if (mCbf == NULL || isOffloadedOrDirect()) { 1120 return INVALID_OPERATION; 1121 } 1122 1123 AutoMutex lock(mLock); 1124 mMarkerPosition = marker; 1125 mMarkerReached = false; 1126 1127 sp<AudioTrackThread> t = mAudioTrackThread; 1128 if (t != 0) { 1129 t->wake(); 1130 } 1131 return NO_ERROR; 1132 } 1133 1134 status_t AudioTrack::getMarkerPosition(uint32_t *marker) const 1135 { 1136 if (isOffloadedOrDirect()) { 1137 return INVALID_OPERATION; 1138 } 1139 if (marker == NULL) { 1140 return BAD_VALUE; 1141 } 1142 1143 AutoMutex lock(mLock); 1144 mMarkerPosition.getValue(marker); 1145 1146 return NO_ERROR; 1147 } 1148 1149 status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod) 1150 { 1151 // The only purpose of setting position update period is to get a callback 1152 if (mCbf == NULL || isOffloadedOrDirect()) { 1153 return INVALID_OPERATION; 1154 } 1155 1156 AutoMutex lock(mLock); 1157 mNewPosition = updateAndGetPosition_l() + updatePeriod; 1158 mUpdatePeriod = updatePeriod; 1159 1160 sp<AudioTrackThread> t = mAudioTrackThread; 1161 if (t != 0) { 1162 t->wake(); 1163 } 1164 return NO_ERROR; 1165 } 1166 1167 status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const 1168 { 1169 if (isOffloadedOrDirect()) { 1170 return INVALID_OPERATION; 1171 } 1172 if (updatePeriod == NULL) { 1173 return BAD_VALUE; 1174 } 1175 1176 AutoMutex lock(mLock); 1177 *updatePeriod = mUpdatePeriod; 1178 1179 return NO_ERROR; 1180 } 1181 1182 status_t AudioTrack::setPosition(uint32_t position) 1183 { 1184 if (mSharedBuffer == 0 || isOffloadedOrDirect()) { 1185 return INVALID_OPERATION; 1186 } 1187 if (position > mFrameCount) { 1188 return BAD_VALUE; 1189 } 1190 1191 AutoMutex lock(mLock); 1192 // Currently we require that the player is inactive before setting parameters such as position 1193 // or loop points. Otherwise, there could be a race condition: the application could read the 1194 // current position, compute a new position or loop parameters, and then set that position or 1195 // loop parameters but it would do the "wrong" thing since the position has continued to advance 1196 // in the mean time. If we ever provide a sequencer in server, we could allow a way for the app 1197 // to specify how it wants to handle such scenarios. 1198 if (mState == STATE_ACTIVE) { 1199 return INVALID_OPERATION; 1200 } 1201 // After setting the position, use full update period before notification. 1202 mNewPosition = updateAndGetPosition_l() + mUpdatePeriod; 1203 mStaticProxy->setBufferPosition(position); 1204 1205 // Waking the AudioTrackThread is not needed as this cannot be called when active. 1206 return NO_ERROR; 1207 } 1208 1209 status_t AudioTrack::getPosition(uint32_t *position) 1210 { 1211 if (position == NULL) { 1212 return BAD_VALUE; 1213 } 1214 1215 AutoMutex lock(mLock); 1216 // FIXME: offloaded and direct tracks call into the HAL for render positions 1217 // for compressed/synced data; however, we use proxy position for pure linear pcm data 1218 // as we do not know the capability of the HAL for pcm position support and standby. 1219 // There may be some latency differences between the HAL position and the proxy position. 1220 if (isOffloadedOrDirect_l() && !isPurePcmData_l()) { 1221 uint32_t dspFrames = 0; 1222 1223 if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) { 1224 ALOGV("%s(%d): called in paused state, return cached position %u", 1225 __func__, mPortId, mPausedPosition); 1226 *position = mPausedPosition; 1227 return NO_ERROR; 1228 } 1229 1230 if (mOutput != AUDIO_IO_HANDLE_NONE) { 1231 uint32_t halFrames; // actually unused 1232 (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames); 1233 // FIXME: on getRenderPosition() error, we return OK with frame position 0. 1234 } 1235 // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED) 1236 // due to hardware latency. We leave this behavior for now. 1237 *position = dspFrames; 1238 } else { 1239 if (mCblk->mFlags & CBLK_INVALID) { 1240 (void) restoreTrack_l("getPosition"); 1241 // FIXME: for compatibility with the Java API we ignore the restoreTrack_l() 1242 // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position. 1243 } 1244 1245 // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes 1246 *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ? 1247 0 : updateAndGetPosition_l().value(); 1248 } 1249 return NO_ERROR; 1250 } 1251 1252 status_t AudioTrack::getBufferPosition(uint32_t *position) 1253 { 1254 if (mSharedBuffer == 0) { 1255 return INVALID_OPERATION; 1256 } 1257 if (position == NULL) { 1258 return BAD_VALUE; 1259 } 1260 1261 AutoMutex lock(mLock); 1262 *position = mStaticProxy->getBufferPosition(); 1263 return NO_ERROR; 1264 } 1265 1266 status_t AudioTrack::reload() 1267 { 1268 if (mSharedBuffer == 0 || isOffloadedOrDirect()) { 1269 return INVALID_OPERATION; 1270 } 1271 1272 AutoMutex lock(mLock); 1273 // See setPosition() regarding setting parameters such as loop points or position while active 1274 if (mState == STATE_ACTIVE) { 1275 return INVALID_OPERATION; 1276 } 1277 mNewPosition = mUpdatePeriod; 1278 (void) updateAndGetPosition_l(); 1279 mPosition = 0; 1280 mPreviousTimestampValid = false; 1281 #if 0 1282 // The documentation is not clear on the behavior of reload() and the restoration 1283 // of loop count. Historically we have not restored loop count, start, end, 1284 // but it makes sense if one desires to repeat playing a particular sound. 1285 if (mLoopCount != 0) { 1286 mLoopCountNotified = mLoopCount; 1287 mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount); 1288 } 1289 #endif 1290 mStaticProxy->setBufferPosition(0); 1291 return NO_ERROR; 1292 } 1293 1294 audio_io_handle_t AudioTrack::getOutput() const 1295 { 1296 AutoMutex lock(mLock); 1297 return mOutput; 1298 } 1299 1300 status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) { 1301 AutoMutex lock(mLock); 1302 if (mSelectedDeviceId != deviceId) { 1303 mSelectedDeviceId = deviceId; 1304 if (mStatus == NO_ERROR) { 1305 android_atomic_or(CBLK_INVALID, &mCblk->mFlags); 1306 mProxy->interrupt(); 1307 } 1308 } 1309 return NO_ERROR; 1310 } 1311 1312 audio_port_handle_t AudioTrack::getOutputDevice() { 1313 AutoMutex lock(mLock); 1314 return mSelectedDeviceId; 1315 } 1316 1317 // must be called with mLock held 1318 void AudioTrack::updateRoutedDeviceId_l() 1319 { 1320 // if the track is inactive, do not update actual device as the output stream maybe routed 1321 // to a device not relevant to this client because of other active use cases. 1322 if (mState != STATE_ACTIVE) { 1323 return; 1324 } 1325 if (mOutput != AUDIO_IO_HANDLE_NONE) { 1326 audio_port_handle_t deviceId = AudioSystem::getDeviceIdForIo(mOutput); 1327 if (deviceId != AUDIO_PORT_HANDLE_NONE) { 1328 mRoutedDeviceId = deviceId; 1329 } 1330 } 1331 } 1332 1333 audio_port_handle_t AudioTrack::getRoutedDeviceId() { 1334 AutoMutex lock(mLock); 1335 updateRoutedDeviceId_l(); 1336 return mRoutedDeviceId; 1337 } 1338 1339 status_t AudioTrack::attachAuxEffect(int effectId) 1340 { 1341 AutoMutex lock(mLock); 1342 status_t status = mAudioTrack->attachAuxEffect(effectId); 1343 if (status == NO_ERROR) { 1344 mAuxEffectId = effectId; 1345 } 1346 return status; 1347 } 1348 1349 audio_stream_type_t AudioTrack::streamType() const 1350 { 1351 if (mStreamType == AUDIO_STREAM_DEFAULT) { 1352 return AudioSystem::attributesToStreamType(mAttributes); 1353 } 1354 return mStreamType; 1355 } 1356 1357 uint32_t AudioTrack::latency() 1358 { 1359 AutoMutex lock(mLock); 1360 updateLatency_l(); 1361 return mLatency; 1362 } 1363 1364 // ------------------------------------------------------------------------- 1365 1366 // must be called with mLock held 1367 void AudioTrack::updateLatency_l() 1368 { 1369 status_t status = AudioSystem::getLatency(mOutput, &mAfLatency); 1370 if (status != NO_ERROR) { 1371 ALOGW("%s(%d): getLatency(%d) failed status %d", __func__, mPortId, mOutput, status); 1372 } else { 1373 // FIXME don't believe this lie 1374 mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate; 1375 } 1376 } 1377 1378 // TODO Move this macro to a common header file for enum to string conversion in audio framework. 1379 #define MEDIA_CASE_ENUM(name) case name: return #name 1380 const char * AudioTrack::convertTransferToText(transfer_type transferType) { 1381 switch (transferType) { 1382 MEDIA_CASE_ENUM(TRANSFER_DEFAULT); 1383 MEDIA_CASE_ENUM(TRANSFER_CALLBACK); 1384 MEDIA_CASE_ENUM(TRANSFER_OBTAIN); 1385 MEDIA_CASE_ENUM(TRANSFER_SYNC); 1386 MEDIA_CASE_ENUM(TRANSFER_SHARED); 1387 MEDIA_CASE_ENUM(TRANSFER_SYNC_NOTIF_CALLBACK); 1388 default: 1389 return "UNRECOGNIZED"; 1390 } 1391 } 1392 1393 status_t AudioTrack::createTrack_l() 1394 { 1395 status_t status; 1396 bool callbackAdded = false; 1397 1398 const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger(); 1399 if (audioFlinger == 0) { 1400 ALOGE("%s(%d): Could not get audioflinger", 1401 __func__, mPortId); 1402 status = NO_INIT; 1403 goto exit; 1404 } 1405 1406 { 1407 // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted. 1408 // After fast request is denied, we will request again if IAudioTrack is re-created. 1409 // Client can only express a preference for FAST. Server will perform additional tests. 1410 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) { 1411 // either of these use cases: 1412 // use case 1: shared buffer 1413 bool sharedBuffer = mSharedBuffer != 0; 1414 bool transferAllowed = 1415 // use case 2: callback transfer mode 1416 (mTransfer == TRANSFER_CALLBACK) || 1417 // use case 3: obtain/release mode 1418 (mTransfer == TRANSFER_OBTAIN) || 1419 // use case 4: synchronous write 1420 ((mTransfer == TRANSFER_SYNC || mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) 1421 && mThreadCanCallJava); 1422 1423 bool fastAllowed = sharedBuffer || transferAllowed; 1424 if (!fastAllowed) { 1425 ALOGW("%s(%d): AUDIO_OUTPUT_FLAG_FAST denied by client," 1426 " not shared buffer and transfer = %s", 1427 __func__, mPortId, 1428 convertTransferToText(mTransfer)); 1429 mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST); 1430 } 1431 } 1432 1433 IAudioFlinger::CreateTrackInput input; 1434 if (mStreamType != AUDIO_STREAM_DEFAULT) { 1435 input.attr = AudioSystem::streamTypeToAttributes(mStreamType); 1436 } else { 1437 input.attr = mAttributes; 1438 } 1439 input.config = AUDIO_CONFIG_INITIALIZER; 1440 input.config.sample_rate = mSampleRate; 1441 input.config.channel_mask = mChannelMask; 1442 input.config.format = mFormat; 1443 input.config.offload_info = mOffloadInfoCopy; 1444 input.clientInfo.clientUid = mClientUid; 1445 input.clientInfo.clientPid = mClientPid; 1446 input.clientInfo.clientTid = -1; 1447 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) { 1448 // It is currently meaningless to request SCHED_FIFO for a Java thread. Even if the 1449 // application-level code follows all non-blocking design rules, the language runtime 1450 // doesn't also follow those rules, so the thread will not benefit overall. 1451 if (mAudioTrackThread != 0 && !mThreadCanCallJava) { 1452 input.clientInfo.clientTid = mAudioTrackThread->getTid(); 1453 } 1454 } 1455 input.sharedBuffer = mSharedBuffer; 1456 input.notificationsPerBuffer = mNotificationsPerBufferReq; 1457 input.speed = 1.0; 1458 if (audio_has_proportional_frames(mFormat) && mSharedBuffer == 0 && 1459 (mFlags & AUDIO_OUTPUT_FLAG_FAST) == 0) { 1460 input.speed = !isPurePcmData_l() || isOffloadedOrDirect_l() ? 1.0f : 1461 max(mMaxRequiredSpeed, mPlaybackRate.mSpeed); 1462 } 1463 input.flags = mFlags; 1464 input.frameCount = mReqFrameCount; 1465 input.notificationFrameCount = mNotificationFramesReq; 1466 input.selectedDeviceId = mSelectedDeviceId; 1467 input.sessionId = mSessionId; 1468 1469 IAudioFlinger::CreateTrackOutput output; 1470 1471 sp<IAudioTrack> track = audioFlinger->createTrack(input, 1472 output, 1473 &status); 1474 1475 if (status != NO_ERROR || output.outputId == AUDIO_IO_HANDLE_NONE) { 1476 ALOGE("%s(%d): AudioFlinger could not create track, status: %d output %d", 1477 __func__, mPortId, status, output.outputId); 1478 if (status == NO_ERROR) { 1479 status = NO_INIT; 1480 } 1481 goto exit; 1482 } 1483 ALOG_ASSERT(track != 0); 1484 1485 mFrameCount = output.frameCount; 1486 mNotificationFramesAct = (uint32_t)output.notificationFrameCount; 1487 mRoutedDeviceId = output.selectedDeviceId; 1488 mSessionId = output.sessionId; 1489 1490 mSampleRate = output.sampleRate; 1491 if (mOriginalSampleRate == 0) { 1492 mOriginalSampleRate = mSampleRate; 1493 } 1494 1495 mAfFrameCount = output.afFrameCount; 1496 mAfSampleRate = output.afSampleRate; 1497 mAfLatency = output.afLatencyMs; 1498 1499 mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate; 1500 1501 // AudioFlinger now owns the reference to the I/O handle, 1502 // so we are no longer responsible for releasing it. 1503 1504 // FIXME compare to AudioRecord 1505 sp<IMemory> iMem = track->getCblk(); 1506 if (iMem == 0) { 1507 ALOGE("%s(%d): Could not get control block", __func__, mPortId); 1508 status = NO_INIT; 1509 goto exit; 1510 } 1511 void *iMemPointer = iMem->pointer(); 1512 if (iMemPointer == NULL) { 1513 ALOGE("%s(%d): Could not get control block pointer", __func__, mPortId); 1514 status = NO_INIT; 1515 goto exit; 1516 } 1517 // invariant that mAudioTrack != 0 is true only after set() returns successfully 1518 if (mAudioTrack != 0) { 1519 IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this); 1520 mDeathNotifier.clear(); 1521 } 1522 mAudioTrack = track; 1523 mCblkMemory = iMem; 1524 IPCThreadState::self()->flushCommands(); 1525 1526 audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer); 1527 mCblk = cblk; 1528 1529 mAwaitBoost = false; 1530 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) { 1531 if (output.flags & AUDIO_OUTPUT_FLAG_FAST) { 1532 ALOGI("%s(%d): AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu -> %zu", 1533 __func__, mPortId, mReqFrameCount, mFrameCount); 1534 if (!mThreadCanCallJava) { 1535 mAwaitBoost = true; 1536 } 1537 } else { 1538 ALOGW("%s(%d): AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu -> %zu", 1539 __func__, mPortId, mReqFrameCount, mFrameCount); 1540 } 1541 } 1542 mFlags = output.flags; 1543 1544 //mOutput != output includes the case where mOutput == AUDIO_IO_HANDLE_NONE for first creation 1545 if (mDeviceCallback != 0) { 1546 if (mOutput != AUDIO_IO_HANDLE_NONE) { 1547 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId); 1548 } 1549 AudioSystem::addAudioDeviceCallback(this, output.outputId, output.portId); 1550 callbackAdded = true; 1551 } 1552 1553 mPortId = output.portId; 1554 // We retain a copy of the I/O handle, but don't own the reference 1555 mOutput = output.outputId; 1556 mRefreshRemaining = true; 1557 1558 // Starting address of buffers in shared memory. If there is a shared buffer, buffers 1559 // is the value of pointer() for the shared buffer, otherwise buffers points 1560 // immediately after the control block. This address is for the mapping within client 1561 // address space. AudioFlinger::TrackBase::mBuffer is for the server address space. 1562 void* buffers; 1563 if (mSharedBuffer == 0) { 1564 buffers = cblk + 1; 1565 } else { 1566 buffers = mSharedBuffer->pointer(); 1567 if (buffers == NULL) { 1568 ALOGE("%s(%d): Could not get buffer pointer", __func__, mPortId); 1569 status = NO_INIT; 1570 goto exit; 1571 } 1572 } 1573 1574 mAudioTrack->attachAuxEffect(mAuxEffectId); 1575 1576 // If IAudioTrack is re-created, don't let the requested frameCount 1577 // decrease. This can confuse clients that cache frameCount(). 1578 if (mFrameCount > mReqFrameCount) { 1579 mReqFrameCount = mFrameCount; 1580 } 1581 1582 // reset server position to 0 as we have new cblk. 1583 mServer = 0; 1584 1585 // update proxy 1586 if (mSharedBuffer == 0) { 1587 mStaticProxy.clear(); 1588 mProxy = new AudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize); 1589 } else { 1590 mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize); 1591 mProxy = mStaticProxy; 1592 } 1593 1594 mProxy->setVolumeLR(gain_minifloat_pack( 1595 gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]), 1596 gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT]))); 1597 1598 mProxy->setSendLevel(mSendLevel); 1599 const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch); 1600 const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch); 1601 const float effectivePitch = adjustPitch(mPlaybackRate.mPitch); 1602 mProxy->setSampleRate(effectiveSampleRate); 1603 1604 AudioPlaybackRate playbackRateTemp = mPlaybackRate; 1605 playbackRateTemp.mSpeed = effectiveSpeed; 1606 playbackRateTemp.mPitch = effectivePitch; 1607 mProxy->setPlaybackRate(playbackRateTemp); 1608 mProxy->setMinimum(mNotificationFramesAct); 1609 1610 mDeathNotifier = new DeathNotifier(this); 1611 IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this); 1612 1613 } 1614 1615 exit: 1616 if (status != NO_ERROR && callbackAdded) { 1617 // note: mOutput is always valid is callbackAdded is true 1618 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId); 1619 } 1620 1621 mStatus = status; 1622 1623 // sp<IAudioTrack> track destructor will cause releaseOutput() to be called by AudioFlinger 1624 return status; 1625 } 1626 1627 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig) 1628 { 1629 if (audioBuffer == NULL) { 1630 if (nonContig != NULL) { 1631 *nonContig = 0; 1632 } 1633 return BAD_VALUE; 1634 } 1635 if (mTransfer != TRANSFER_OBTAIN) { 1636 audioBuffer->frameCount = 0; 1637 audioBuffer->size = 0; 1638 audioBuffer->raw = NULL; 1639 if (nonContig != NULL) { 1640 *nonContig = 0; 1641 } 1642 return INVALID_OPERATION; 1643 } 1644 1645 const struct timespec *requested; 1646 struct timespec timeout; 1647 if (waitCount == -1) { 1648 requested = &ClientProxy::kForever; 1649 } else if (waitCount == 0) { 1650 requested = &ClientProxy::kNonBlocking; 1651 } else if (waitCount > 0) { 1652 time_t ms = WAIT_PERIOD_MS * (time_t) waitCount; 1653 timeout.tv_sec = ms / 1000; 1654 timeout.tv_nsec = (long) (ms % 1000) * 1000000; 1655 requested = &timeout; 1656 } else { 1657 ALOGE("%s(%d): invalid waitCount %d", __func__, mPortId, waitCount); 1658 requested = NULL; 1659 } 1660 return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig); 1661 } 1662 1663 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested, 1664 struct timespec *elapsed, size_t *nonContig) 1665 { 1666 // previous and new IAudioTrack sequence numbers are used to detect track re-creation 1667 uint32_t oldSequence = 0; 1668 uint32_t newSequence; 1669 1670 Proxy::Buffer buffer; 1671 status_t status = NO_ERROR; 1672 1673 static const int32_t kMaxTries = 5; 1674 int32_t tryCounter = kMaxTries; 1675 1676 do { 1677 // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to 1678 // keep them from going away if another thread re-creates the track during obtainBuffer() 1679 sp<AudioTrackClientProxy> proxy; 1680 sp<IMemory> iMem; 1681 1682 { // start of lock scope 1683 AutoMutex lock(mLock); 1684 1685 newSequence = mSequence; 1686 // did previous obtainBuffer() fail due to media server death or voluntary invalidation? 1687 if (status == DEAD_OBJECT) { 1688 // re-create track, unless someone else has already done so 1689 if (newSequence == oldSequence) { 1690 status = restoreTrack_l("obtainBuffer"); 1691 if (status != NO_ERROR) { 1692 buffer.mFrameCount = 0; 1693 buffer.mRaw = NULL; 1694 buffer.mNonContig = 0; 1695 break; 1696 } 1697 } 1698 } 1699 oldSequence = newSequence; 1700 1701 if (status == NOT_ENOUGH_DATA) { 1702 restartIfDisabled(); 1703 } 1704 1705 // Keep the extra references 1706 proxy = mProxy; 1707 iMem = mCblkMemory; 1708 1709 if (mState == STATE_STOPPING) { 1710 status = -EINTR; 1711 buffer.mFrameCount = 0; 1712 buffer.mRaw = NULL; 1713 buffer.mNonContig = 0; 1714 break; 1715 } 1716 1717 // Non-blocking if track is stopped or paused 1718 if (mState != STATE_ACTIVE) { 1719 requested = &ClientProxy::kNonBlocking; 1720 } 1721 1722 } // end of lock scope 1723 1724 buffer.mFrameCount = audioBuffer->frameCount; 1725 // FIXME starts the requested timeout and elapsed over from scratch 1726 status = proxy->obtainBuffer(&buffer, requested, elapsed); 1727 } while (((status == DEAD_OBJECT) || (status == NOT_ENOUGH_DATA)) && (tryCounter-- > 0)); 1728 1729 audioBuffer->frameCount = buffer.mFrameCount; 1730 audioBuffer->size = buffer.mFrameCount * mFrameSize; 1731 audioBuffer->raw = buffer.mRaw; 1732 if (nonContig != NULL) { 1733 *nonContig = buffer.mNonContig; 1734 } 1735 return status; 1736 } 1737 1738 void AudioTrack::releaseBuffer(const Buffer* audioBuffer) 1739 { 1740 // FIXME add error checking on mode, by adding an internal version 1741 if (mTransfer == TRANSFER_SHARED) { 1742 return; 1743 } 1744 1745 size_t stepCount = audioBuffer->size / mFrameSize; 1746 if (stepCount == 0) { 1747 return; 1748 } 1749 1750 Proxy::Buffer buffer; 1751 buffer.mFrameCount = stepCount; 1752 buffer.mRaw = audioBuffer->raw; 1753 1754 AutoMutex lock(mLock); 1755 mReleased += stepCount; 1756 mInUnderrun = false; 1757 mProxy->releaseBuffer(&buffer); 1758 1759 // restart track if it was disabled by audioflinger due to previous underrun 1760 restartIfDisabled(); 1761 } 1762 1763 void AudioTrack::restartIfDisabled() 1764 { 1765 int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags); 1766 if ((mState == STATE_ACTIVE) && (flags & CBLK_DISABLED)) { 1767 ALOGW("%s(%d): releaseBuffer() track %p disabled due to previous underrun, restarting", 1768 __func__, mPortId, this); 1769 // FIXME ignoring status 1770 mAudioTrack->start(); 1771 } 1772 } 1773 1774 // ------------------------------------------------------------------------- 1775 1776 ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking) 1777 { 1778 if (mTransfer != TRANSFER_SYNC && mTransfer != TRANSFER_SYNC_NOTIF_CALLBACK) { 1779 return INVALID_OPERATION; 1780 } 1781 1782 if (isDirect()) { 1783 AutoMutex lock(mLock); 1784 int32_t flags = android_atomic_and( 1785 ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), 1786 &mCblk->mFlags); 1787 if (flags & CBLK_INVALID) { 1788 return DEAD_OBJECT; 1789 } 1790 } 1791 1792 if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) { 1793 // Sanity-check: user is most-likely passing an error code, and it would 1794 // make the return value ambiguous (actualSize vs error). 1795 ALOGE("%s(%d): AudioTrack::write(buffer=%p, size=%zu (%zd)", 1796 __func__, mPortId, buffer, userSize, userSize); 1797 return BAD_VALUE; 1798 } 1799 1800 size_t written = 0; 1801 Buffer audioBuffer; 1802 1803 while (userSize >= mFrameSize) { 1804 audioBuffer.frameCount = userSize / mFrameSize; 1805 1806 status_t err = obtainBuffer(&audioBuffer, 1807 blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking); 1808 if (err < 0) { 1809 if (written > 0) { 1810 break; 1811 } 1812 if (err == TIMED_OUT || err == -EINTR) { 1813 err = WOULD_BLOCK; 1814 } 1815 return ssize_t(err); 1816 } 1817 1818 size_t toWrite = audioBuffer.size; 1819 memcpy(audioBuffer.i8, buffer, toWrite); 1820 buffer = ((const char *) buffer) + toWrite; 1821 userSize -= toWrite; 1822 written += toWrite; 1823 1824 releaseBuffer(&audioBuffer); 1825 } 1826 1827 if (written > 0) { 1828 mFramesWritten += written / mFrameSize; 1829 1830 if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) { 1831 const sp<AudioTrackThread> t = mAudioTrackThread; 1832 if (t != 0) { 1833 // causes wake up of the playback thread, that will callback the client for 1834 // more data (with EVENT_CAN_WRITE_MORE_DATA) in processAudioBuffer() 1835 t->wake(); 1836 } 1837 } 1838 } 1839 1840 return written; 1841 } 1842 1843 // ------------------------------------------------------------------------- 1844 1845 nsecs_t AudioTrack::processAudioBuffer() 1846 { 1847 // Currently the AudioTrack thread is not created if there are no callbacks. 1848 // Would it ever make sense to run the thread, even without callbacks? 1849 // If so, then replace this by checks at each use for mCbf != NULL. 1850 LOG_ALWAYS_FATAL_IF(mCblk == NULL); 1851 1852 mLock.lock(); 1853 if (mAwaitBoost) { 1854 mAwaitBoost = false; 1855 mLock.unlock(); 1856 static const int32_t kMaxTries = 5; 1857 int32_t tryCounter = kMaxTries; 1858 uint32_t pollUs = 10000; 1859 do { 1860 int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK; 1861 if (policy == SCHED_FIFO || policy == SCHED_RR) { 1862 break; 1863 } 1864 usleep(pollUs); 1865 pollUs <<= 1; 1866 } while (tryCounter-- > 0); 1867 if (tryCounter < 0) { 1868 ALOGE("%s(%d): did not receive expected priority boost on time", 1869 __func__, mPortId); 1870 } 1871 // Run again immediately 1872 return 0; 1873 } 1874 1875 // Can only reference mCblk while locked 1876 int32_t flags = android_atomic_and( 1877 ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags); 1878 1879 // Check for track invalidation 1880 if (flags & CBLK_INVALID) { 1881 // for offloaded tracks restoreTrack_l() will just update the sequence and clear 1882 // AudioSystem cache. We should not exit here but after calling the callback so 1883 // that the upper layers can recreate the track 1884 if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) { 1885 status_t status __unused = restoreTrack_l("processAudioBuffer"); 1886 // FIXME unused status 1887 // after restoration, continue below to make sure that the loop and buffer events 1888 // are notified because they have been cleared from mCblk->mFlags above. 1889 } 1890 } 1891 1892 bool waitStreamEnd = mState == STATE_STOPPING; 1893 bool active = mState == STATE_ACTIVE; 1894 1895 // Manage underrun callback, must be done under lock to avoid race with releaseBuffer() 1896 bool newUnderrun = false; 1897 if (flags & CBLK_UNDERRUN) { 1898 #if 0 1899 // Currently in shared buffer mode, when the server reaches the end of buffer, 1900 // the track stays active in continuous underrun state. It's up to the application 1901 // to pause or stop the track, or set the position to a new offset within buffer. 1902 // This was some experimental code to auto-pause on underrun. Keeping it here 1903 // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content. 1904 if (mTransfer == TRANSFER_SHARED) { 1905 mState = STATE_PAUSED; 1906 active = false; 1907 } 1908 #endif 1909 if (!mInUnderrun) { 1910 mInUnderrun = true; 1911 newUnderrun = true; 1912 } 1913 } 1914 1915 // Get current position of server 1916 Modulo<uint32_t> position(updateAndGetPosition_l()); 1917 1918 // Manage marker callback 1919 bool markerReached = false; 1920 Modulo<uint32_t> markerPosition(mMarkerPosition); 1921 // uses 32 bit wraparound for comparison with position. 1922 if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) { 1923 mMarkerReached = markerReached = true; 1924 } 1925 1926 // Determine number of new position callback(s) that will be needed, while locked 1927 size_t newPosCount = 0; 1928 Modulo<uint32_t> newPosition(mNewPosition); 1929 uint32_t updatePeriod = mUpdatePeriod; 1930 // FIXME fails for wraparound, need 64 bits 1931 if (updatePeriod > 0 && position >= newPosition) { 1932 newPosCount = ((position - newPosition).value() / updatePeriod) + 1; 1933 mNewPosition += updatePeriod * newPosCount; 1934 } 1935 1936 // Cache other fields that will be needed soon 1937 uint32_t sampleRate = mSampleRate; 1938 float speed = mPlaybackRate.mSpeed; 1939 const uint32_t notificationFrames = mNotificationFramesAct; 1940 if (mRefreshRemaining) { 1941 mRefreshRemaining = false; 1942 mRemainingFrames = notificationFrames; 1943 mRetryOnPartialBuffer = false; 1944 } 1945 size_t misalignment = mProxy->getMisalignment(); 1946 uint32_t sequence = mSequence; 1947 sp<AudioTrackClientProxy> proxy = mProxy; 1948 1949 // Determine the number of new loop callback(s) that will be needed, while locked. 1950 int loopCountNotifications = 0; 1951 uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END 1952 1953 if (mLoopCount > 0) { 1954 int loopCount; 1955 size_t bufferPosition; 1956 mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount); 1957 loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition; 1958 loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications); 1959 mLoopCountNotified = loopCount; // discard any excess notifications 1960 } else if (mLoopCount < 0) { 1961 // FIXME: We're not accurate with notification count and position with infinite looping 1962 // since loopCount from server side will always return -1 (we could decrement it). 1963 size_t bufferPosition = mStaticProxy->getBufferPosition(); 1964 loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0); 1965 loopPeriod = mLoopEnd - bufferPosition; 1966 } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) { 1967 size_t bufferPosition = mStaticProxy->getBufferPosition(); 1968 loopPeriod = mFrameCount - bufferPosition; 1969 } 1970 1971 // These fields don't need to be cached, because they are assigned only by set(): 1972 // mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags 1973 // mFlags is also assigned by createTrack_l(), but not the bit we care about. 1974 1975 mLock.unlock(); 1976 1977 // get anchor time to account for callbacks. 1978 const nsecs_t timeBeforeCallbacks = systemTime(); 1979 1980 if (waitStreamEnd) { 1981 // FIXME: Instead of blocking in proxy->waitStreamEndDone(), Callback thread 1982 // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function 1983 // (and make sure we don't callback for more data while we're stopping). 1984 // This helps with position, marker notifications, and track invalidation. 1985 struct timespec timeout; 1986 timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC; 1987 timeout.tv_nsec = 0; 1988 1989 status_t status = proxy->waitStreamEndDone(&timeout); 1990 switch (status) { 1991 case NO_ERROR: 1992 case DEAD_OBJECT: 1993 case TIMED_OUT: 1994 if (status != DEAD_OBJECT) { 1995 // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop(); 1996 // instead, the application should handle the EVENT_NEW_IAUDIOTRACK. 1997 mCbf(EVENT_STREAM_END, mUserData, NULL); 1998 } 1999 { 2000 AutoMutex lock(mLock); 2001 // The previously assigned value of waitStreamEnd is no longer valid, 2002 // since the mutex has been unlocked and either the callback handler 2003 // or another thread could have re-started the AudioTrack during that time. 2004 waitStreamEnd = mState == STATE_STOPPING; 2005 if (waitStreamEnd) { 2006 mState = STATE_STOPPED; 2007 mReleased = 0; 2008 } 2009 } 2010 if (waitStreamEnd && status != DEAD_OBJECT) { 2011 return NS_INACTIVE; 2012 } 2013 break; 2014 } 2015 return 0; 2016 } 2017 2018 // perform callbacks while unlocked 2019 if (newUnderrun) { 2020 mCbf(EVENT_UNDERRUN, mUserData, NULL); 2021 } 2022 while (loopCountNotifications > 0) { 2023 mCbf(EVENT_LOOP_END, mUserData, NULL); 2024 --loopCountNotifications; 2025 } 2026 if (flags & CBLK_BUFFER_END) { 2027 mCbf(EVENT_BUFFER_END, mUserData, NULL); 2028 } 2029 if (markerReached) { 2030 mCbf(EVENT_MARKER, mUserData, &markerPosition); 2031 } 2032 while (newPosCount > 0) { 2033 size_t temp = newPosition.value(); // FIXME size_t != uint32_t 2034 mCbf(EVENT_NEW_POS, mUserData, &temp); 2035 newPosition += updatePeriod; 2036 newPosCount--; 2037 } 2038 2039 if (mObservedSequence != sequence) { 2040 mObservedSequence = sequence; 2041 mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL); 2042 // for offloaded tracks, just wait for the upper layers to recreate the track 2043 if (isOffloadedOrDirect()) { 2044 return NS_INACTIVE; 2045 } 2046 } 2047 2048 // if inactive, then don't run me again until re-started 2049 if (!active) { 2050 return NS_INACTIVE; 2051 } 2052 2053 // Compute the estimated time until the next timed event (position, markers, loops) 2054 // FIXME only for non-compressed audio 2055 uint32_t minFrames = ~0; 2056 if (!markerReached && position < markerPosition) { 2057 minFrames = (markerPosition - position).value(); 2058 } 2059 if (loopPeriod > 0 && loopPeriod < minFrames) { 2060 // loopPeriod is already adjusted for actual position. 2061 minFrames = loopPeriod; 2062 } 2063 if (updatePeriod > 0) { 2064 minFrames = min(minFrames, (newPosition - position).value()); 2065 } 2066 2067 // If > 0, poll periodically to recover from a stuck server. A good value is 2. 2068 static const uint32_t kPoll = 0; 2069 if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) { 2070 minFrames = kPoll * notificationFrames; 2071 } 2072 2073 // This "fudge factor" avoids soaking CPU, and compensates for late progress by server 2074 static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL; 2075 const nsecs_t timeAfterCallbacks = systemTime(); 2076 2077 // Convert frame units to time units 2078 nsecs_t ns = NS_WHENEVER; 2079 if (minFrames != (uint32_t) ~0) { 2080 // AudioFlinger consumption of client data may be irregular when coming out of device 2081 // standby since the kernel buffers require filling. This is throttled to no more than 2x 2082 // the expected rate in the MixerThread. Hence, we reduce the estimated time to wait by one 2083 // half (but no more than half a second) to improve callback accuracy during these temporary 2084 // data surges. 2085 const nsecs_t estimatedNs = framesToNanoseconds(minFrames, sampleRate, speed); 2086 constexpr nsecs_t maxThrottleCompensationNs = 500000000LL; 2087 ns = estimatedNs - min(estimatedNs / 2, maxThrottleCompensationNs) + kWaitPeriodNs; 2088 ns -= (timeAfterCallbacks - timeBeforeCallbacks); // account for callback time 2089 // TODO: Should we warn if the callback time is too long? 2090 if (ns < 0) ns = 0; 2091 } 2092 2093 // If not supplying data by EVENT_MORE_DATA or EVENT_CAN_WRITE_MORE_DATA, then we're done 2094 if (mTransfer != TRANSFER_CALLBACK && mTransfer != TRANSFER_SYNC_NOTIF_CALLBACK) { 2095 return ns; 2096 } 2097 2098 // EVENT_MORE_DATA callback handling. 2099 // Timing for linear pcm audio data formats can be derived directly from the 2100 // buffer fill level. 2101 // Timing for compressed data is not directly available from the buffer fill level, 2102 // rather indirectly from waiting for blocking mode callbacks or waiting for obtain() 2103 // to return a certain fill level. 2104 2105 struct timespec timeout; 2106 const struct timespec *requested = &ClientProxy::kForever; 2107 if (ns != NS_WHENEVER) { 2108 timeout.tv_sec = ns / 1000000000LL; 2109 timeout.tv_nsec = ns % 1000000000LL; 2110 ALOGV("%s(%d): timeout %ld.%03d", 2111 __func__, mPortId, timeout.tv_sec, (int) timeout.tv_nsec / 1000000); 2112 requested = &timeout; 2113 } 2114 2115 size_t writtenFrames = 0; 2116 while (mRemainingFrames > 0) { 2117 2118 Buffer audioBuffer; 2119 audioBuffer.frameCount = mRemainingFrames; 2120 size_t nonContig; 2121 status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig); 2122 LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0), 2123 "%s(%d): obtainBuffer() err=%d frameCount=%zu", 2124 __func__, mPortId, err, audioBuffer.frameCount); 2125 requested = &ClientProxy::kNonBlocking; 2126 size_t avail = audioBuffer.frameCount + nonContig; 2127 ALOGV("%s(%d): obtainBuffer(%u) returned %zu = %zu + %zu err %d", 2128 __func__, mPortId, mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err); 2129 if (err != NO_ERROR) { 2130 if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR || 2131 (isOffloaded() && (err == DEAD_OBJECT))) { 2132 // FIXME bug 25195759 2133 return 1000000; 2134 } 2135 ALOGE("%s(%d): Error %d obtaining an audio buffer, giving up.", 2136 __func__, mPortId, err); 2137 return NS_NEVER; 2138 } 2139 2140 if (mRetryOnPartialBuffer && audio_has_proportional_frames(mFormat)) { 2141 mRetryOnPartialBuffer = false; 2142 if (avail < mRemainingFrames) { 2143 if (ns > 0) { // account for obtain time 2144 const nsecs_t timeNow = systemTime(); 2145 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks)); 2146 } 2147 2148 // delayNs is first computed by the additional frames required in the buffer. 2149 nsecs_t delayNs = framesToNanoseconds( 2150 mRemainingFrames - avail, sampleRate, speed); 2151 2152 // afNs is the AudioFlinger mixer period in ns. 2153 const nsecs_t afNs = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed); 2154 2155 // If the AudioTrack is double buffered based on the AudioFlinger mixer period, 2156 // we may have a race if we wait based on the number of frames desired. 2157 // This is a possible issue with resampling and AAudio. 2158 // 2159 // The granularity of audioflinger processing is one mixer period; if 2160 // our wait time is less than one mixer period, wait at most half the period. 2161 if (delayNs < afNs) { 2162 delayNs = std::min(delayNs, afNs / 2); 2163 } 2164 2165 // adjust our ns wait by delayNs. 2166 if (ns < 0 /* NS_WHENEVER */ || delayNs < ns) { 2167 ns = delayNs; 2168 } 2169 return ns; 2170 } 2171 } 2172 2173 size_t reqSize = audioBuffer.size; 2174 if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) { 2175 // when notifying client it can write more data, pass the total size that can be 2176 // written in the next write() call, since it's not passed through the callback 2177 audioBuffer.size += nonContig; 2178 } 2179 mCbf(mTransfer == TRANSFER_CALLBACK ? EVENT_MORE_DATA : EVENT_CAN_WRITE_MORE_DATA, 2180 mUserData, &audioBuffer); 2181 size_t writtenSize = audioBuffer.size; 2182 2183 // Sanity check on returned size 2184 if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) { 2185 ALOGE("%s(%d): EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes", 2186 __func__, mPortId, reqSize, ssize_t(writtenSize)); 2187 return NS_NEVER; 2188 } 2189 2190 if (writtenSize == 0) { 2191 if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) { 2192 // The callback EVENT_CAN_WRITE_MORE_DATA was processed in the JNI of 2193 // android.media.AudioTrack. The JNI is not using the callback to provide data, 2194 // it only signals to the Java client that it can provide more data, which 2195 // this track is read to accept now. 2196 // The playback thread will be awaken at the next ::write() 2197 return NS_WHENEVER; 2198 } 2199 // The callback is done filling buffers 2200 // Keep this thread going to handle timed events and 2201 // still try to get more data in intervals of WAIT_PERIOD_MS 2202 // but don't just loop and block the CPU, so wait 2203 2204 // mCbf(EVENT_MORE_DATA, ...) might either 2205 // (1) Block until it can fill the buffer, returning 0 size on EOS. 2206 // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS. 2207 // (3) Return 0 size when no data is available, does not wait for more data. 2208 // 2209 // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer. 2210 // We try to compute the wait time to avoid a tight sleep-wait cycle, 2211 // especially for case (3). 2212 // 2213 // The decision to support (1) and (2) affect the sizing of mRemainingFrames 2214 // and this loop; whereas for case (3) we could simply check once with the full 2215 // buffer size and skip the loop entirely. 2216 2217 nsecs_t myns; 2218 if (audio_has_proportional_frames(mFormat)) { 2219 // time to wait based on buffer occupancy 2220 const nsecs_t datans = mRemainingFrames <= avail ? 0 : 2221 framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed); 2222 // audio flinger thread buffer size (TODO: adjust for fast tracks) 2223 // FIXME: use mAfFrameCountHAL instead of mAfFrameCount below for fast tracks. 2224 const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed); 2225 // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0. 2226 myns = datans + (afns / 2); 2227 } else { 2228 // FIXME: This could ping quite a bit if the buffer isn't full. 2229 // Note that when mState is stopping we waitStreamEnd, so it never gets here. 2230 myns = kWaitPeriodNs; 2231 } 2232 if (ns > 0) { // account for obtain and callback time 2233 const nsecs_t timeNow = systemTime(); 2234 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks)); 2235 } 2236 if (ns < 0 /* NS_WHENEVER */ || myns < ns) { 2237 ns = myns; 2238 } 2239 return ns; 2240 } 2241 2242 size_t releasedFrames = writtenSize / mFrameSize; 2243 audioBuffer.frameCount = releasedFrames; 2244 mRemainingFrames -= releasedFrames; 2245 if (misalignment >= releasedFrames) { 2246 misalignment -= releasedFrames; 2247 } else { 2248 misalignment = 0; 2249 } 2250 2251 releaseBuffer(&audioBuffer); 2252 writtenFrames += releasedFrames; 2253 2254 // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer 2255 // if callback doesn't like to accept the full chunk 2256 if (writtenSize < reqSize) { 2257 continue; 2258 } 2259 2260 // There could be enough non-contiguous frames available to satisfy the remaining request 2261 if (mRemainingFrames <= nonContig) { 2262 continue; 2263 } 2264 2265 #if 0 2266 // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a 2267 // sum <= notificationFrames. It replaces that series by at most two EVENT_MORE_DATA 2268 // that total to a sum == notificationFrames. 2269 if (0 < misalignment && misalignment <= mRemainingFrames) { 2270 mRemainingFrames = misalignment; 2271 return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed); 2272 } 2273 #endif 2274 2275 } 2276 if (writtenFrames > 0) { 2277 AutoMutex lock(mLock); 2278 mFramesWritten += writtenFrames; 2279 } 2280 mRemainingFrames = notificationFrames; 2281 mRetryOnPartialBuffer = true; 2282 2283 // A lot has transpired since ns was calculated, so run again immediately and re-calculate 2284 return 0; 2285 } 2286 2287 status_t AudioTrack::restoreTrack_l(const char *from) 2288 { 2289 ALOGW("%s(%d): dead IAudioTrack, %s, creating a new one from %s()", 2290 __func__, mPortId, isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from); 2291 ++mSequence; 2292 2293 // refresh the audio configuration cache in this process to make sure we get new 2294 // output parameters and new IAudioFlinger in createTrack_l() 2295 AudioSystem::clearAudioConfigCache(); 2296 2297 if (isOffloadedOrDirect_l() || mDoNotReconnect) { 2298 // FIXME re-creation of offloaded and direct tracks is not yet implemented; 2299 // reconsider enabling for linear PCM encodings when position can be preserved. 2300 return DEAD_OBJECT; 2301 } 2302 2303 // Save so we can return count since creation. 2304 mUnderrunCountOffset = getUnderrunCount_l(); 2305 2306 // save the old static buffer position 2307 uint32_t staticPosition = 0; 2308 size_t bufferPosition = 0; 2309 int loopCount = 0; 2310 if (mStaticProxy != 0) { 2311 mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount); 2312 staticPosition = mStaticProxy->getPosition().unsignedValue(); 2313 } 2314 2315 // See b/74409267. Connecting to a BT A2DP device supporting multiple codecs 2316 // causes a lot of churn on the service side, and it can reject starting 2317 // playback of a previously created track. May also apply to other cases. 2318 const int INITIAL_RETRIES = 3; 2319 int retries = INITIAL_RETRIES; 2320 retry: 2321 if (retries < INITIAL_RETRIES) { 2322 // See the comment for clearAudioConfigCache at the start of the function. 2323 AudioSystem::clearAudioConfigCache(); 2324 } 2325 mFlags = mOrigFlags; 2326 2327 // If a new IAudioTrack is successfully created, createTrack_l() will modify the 2328 // following member variables: mAudioTrack, mCblkMemory and mCblk. 2329 // It will also delete the strong references on previous IAudioTrack and IMemory. 2330 // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact. 2331 status_t result = createTrack_l(); 2332 2333 if (result == NO_ERROR) { 2334 // take the frames that will be lost by track recreation into account in saved position 2335 // For streaming tracks, this is the amount we obtained from the user/client 2336 // (not the number actually consumed at the server - those are already lost). 2337 if (mStaticProxy == 0) { 2338 mPosition = mReleased; 2339 } 2340 // Continue playback from last known position and restore loop. 2341 if (mStaticProxy != 0) { 2342 if (loopCount != 0) { 2343 mStaticProxy->setBufferPositionAndLoop(bufferPosition, 2344 mLoopStart, mLoopEnd, loopCount); 2345 } else { 2346 mStaticProxy->setBufferPosition(bufferPosition); 2347 if (bufferPosition == mFrameCount) { 2348 ALOGD("%s(%d): restoring track at end of static buffer", __func__, mPortId); 2349 } 2350 } 2351 } 2352 // restore volume handler 2353 mVolumeHandler->forall([this](const VolumeShaper &shaper) -> VolumeShaper::Status { 2354 sp<VolumeShaper::Operation> operationToEnd = 2355 new VolumeShaper::Operation(shaper.mOperation); 2356 // TODO: Ideally we would restore to the exact xOffset position 2357 // as returned by getVolumeShaperState(), but we don't have that 2358 // information when restoring at the client unless we periodically poll 2359 // the server or create shared memory state. 2360 // 2361 // For now, we simply advance to the end of the VolumeShaper effect 2362 // if it has been started. 2363 if (shaper.isStarted()) { 2364 operationToEnd->setNormalizedTime(1.f); 2365 } 2366 return mAudioTrack->applyVolumeShaper(shaper.mConfiguration, operationToEnd); 2367 }); 2368 2369 if (mState == STATE_ACTIVE) { 2370 result = mAudioTrack->start(); 2371 } 2372 // server resets to zero so we offset 2373 mFramesWrittenServerOffset = 2374 mStaticProxy.get() != nullptr ? staticPosition : mFramesWritten; 2375 mFramesWrittenAtRestore = mFramesWrittenServerOffset; 2376 } 2377 if (result != NO_ERROR) { 2378 ALOGW("%s(%d): failed status %d, retries %d", __func__, mPortId, result, retries); 2379 if (--retries > 0) { 2380 // leave time for an eventual race condition to clear before retrying 2381 usleep(500000); 2382 goto retry; 2383 } 2384 // if no retries left, set invalid bit to force restoring at next occasion 2385 // and avoid inconsistent active state on client and server sides 2386 if (mCblk != nullptr) { 2387 android_atomic_or(CBLK_INVALID, &mCblk->mFlags); 2388 } 2389 } 2390 return result; 2391 } 2392 2393 Modulo<uint32_t> AudioTrack::updateAndGetPosition_l() 2394 { 2395 // This is the sole place to read server consumed frames 2396 Modulo<uint32_t> newServer(mProxy->getPosition()); 2397 const int32_t delta = (newServer - mServer).signedValue(); 2398 // TODO There is controversy about whether there can be "negative jitter" in server position. 2399 // This should be investigated further, and if possible, it should be addressed. 2400 // A more definite failure mode is infrequent polling by client. 2401 // One could call (void)getPosition_l() in releaseBuffer(), 2402 // so mReleased and mPosition are always lock-step as best possible. 2403 // That should ensure delta never goes negative for infrequent polling 2404 // unless the server has more than 2^31 frames in its buffer, 2405 // in which case the use of uint32_t for these counters has bigger issues. 2406 ALOGE_IF(delta < 0, 2407 "%s(%d): detected illegal retrograde motion by the server: mServer advanced by %d", 2408 __func__, mPortId, delta); 2409 mServer = newServer; 2410 if (delta > 0) { // avoid retrograde 2411 mPosition += delta; 2412 } 2413 return mPosition; 2414 } 2415 2416 bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed) 2417 { 2418 updateLatency_l(); 2419 // applicable for mixing tracks only (not offloaded or direct) 2420 if (mStaticProxy != 0) { 2421 return true; // static tracks do not have issues with buffer sizing. 2422 } 2423 const size_t minFrameCount = 2424 AudioSystem::calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate, 2425 sampleRate, speed /*, 0 mNotificationsPerBufferReq*/); 2426 const bool allowed = mFrameCount >= minFrameCount; 2427 ALOGD_IF(!allowed, 2428 "%s(%d): denied " 2429 "mAfLatency:%u mAfFrameCount:%zu mAfSampleRate:%u sampleRate:%u speed:%f " 2430 "mFrameCount:%zu < minFrameCount:%zu", 2431 __func__, mPortId, 2432 mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed, 2433 mFrameCount, minFrameCount); 2434 return allowed; 2435 } 2436 2437 status_t AudioTrack::setParameters(const String8& keyValuePairs) 2438 { 2439 AutoMutex lock(mLock); 2440 return mAudioTrack->setParameters(keyValuePairs); 2441 } 2442 2443 status_t AudioTrack::selectPresentation(int presentationId, int programId) 2444 { 2445 AutoMutex lock(mLock); 2446 AudioParameter param = AudioParameter(); 2447 param.addInt(String8(AudioParameter::keyPresentationId), presentationId); 2448 param.addInt(String8(AudioParameter::keyProgramId), programId); 2449 ALOGV("%s(%d): PresentationId/ProgramId[%s]", 2450 __func__, mPortId, param.toString().string()); 2451 2452 return mAudioTrack->setParameters(param.toString()); 2453 } 2454 2455 VolumeShaper::Status AudioTrack::applyVolumeShaper( 2456 const sp<VolumeShaper::Configuration>& configuration, 2457 const sp<VolumeShaper::Operation>& operation) 2458 { 2459 AutoMutex lock(mLock); 2460 mVolumeHandler->setIdIfNecessary(configuration); 2461 VolumeShaper::Status status = mAudioTrack->applyVolumeShaper(configuration, operation); 2462 2463 if (status == DEAD_OBJECT) { 2464 if (restoreTrack_l("applyVolumeShaper") == OK) { 2465 status = mAudioTrack->applyVolumeShaper(configuration, operation); 2466 } 2467 } 2468 if (status >= 0) { 2469 // save VolumeShaper for restore 2470 mVolumeHandler->applyVolumeShaper(configuration, operation); 2471 if (mState == STATE_ACTIVE || mState == STATE_STOPPING) { 2472 mVolumeHandler->setStarted(); 2473 } 2474 } else { 2475 // warn only if not an expected restore failure. 2476 ALOGW_IF(!((isOffloadedOrDirect_l() || mDoNotReconnect) && status == DEAD_OBJECT), 2477 "%s(%d): applyVolumeShaper failed: %d", __func__, mPortId, status); 2478 } 2479 return status; 2480 } 2481 2482 sp<VolumeShaper::State> AudioTrack::getVolumeShaperState(int id) 2483 { 2484 AutoMutex lock(mLock); 2485 sp<VolumeShaper::State> state = mAudioTrack->getVolumeShaperState(id); 2486 if (state.get() == nullptr && (mCblk->mFlags & CBLK_INVALID) != 0) { 2487 if (restoreTrack_l("getVolumeShaperState") == OK) { 2488 state = mAudioTrack->getVolumeShaperState(id); 2489 } 2490 } 2491 return state; 2492 } 2493 2494 status_t AudioTrack::getTimestamp(ExtendedTimestamp *timestamp) 2495 { 2496 if (timestamp == nullptr) { 2497 return BAD_VALUE; 2498 } 2499 AutoMutex lock(mLock); 2500 return getTimestamp_l(timestamp); 2501 } 2502 2503 status_t AudioTrack::getTimestamp_l(ExtendedTimestamp *timestamp) 2504 { 2505 if (mCblk->mFlags & CBLK_INVALID) { 2506 const status_t status = restoreTrack_l("getTimestampExtended"); 2507 if (status != OK) { 2508 // per getTimestamp() API doc in header, we return DEAD_OBJECT here, 2509 // recommending that the track be recreated. 2510 return DEAD_OBJECT; 2511 } 2512 } 2513 // check for offloaded/direct here in case restoring somehow changed those flags. 2514 if (isOffloadedOrDirect_l()) { 2515 return INVALID_OPERATION; // not supported 2516 } 2517 status_t status = mProxy->getTimestamp(timestamp); 2518 LOG_ALWAYS_FATAL_IF(status != OK, "%s(%d): status %d not allowed from proxy getTimestamp", 2519 __func__, mPortId, status); 2520 bool found = false; 2521 timestamp->mPosition[ExtendedTimestamp::LOCATION_CLIENT] = mFramesWritten; 2522 timestamp->mTimeNs[ExtendedTimestamp::LOCATION_CLIENT] = 0; 2523 // server side frame offset in case AudioTrack has been restored. 2524 for (int i = ExtendedTimestamp::LOCATION_SERVER; 2525 i < ExtendedTimestamp::LOCATION_MAX; ++i) { 2526 if (timestamp->mTimeNs[i] >= 0) { 2527 // apply server offset (frames flushed is ignored 2528 // so we don't report the jump when the flush occurs). 2529 timestamp->mPosition[i] += mFramesWrittenServerOffset; 2530 found = true; 2531 } 2532 } 2533 return found ? OK : WOULD_BLOCK; 2534 } 2535 2536 status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp) 2537 { 2538 AutoMutex lock(mLock); 2539 return getTimestamp_l(timestamp); 2540 } 2541 2542 status_t AudioTrack::getTimestamp_l(AudioTimestamp& timestamp) 2543 { 2544 bool previousTimestampValid = mPreviousTimestampValid; 2545 // Set false here to cover all the error return cases. 2546 mPreviousTimestampValid = false; 2547 2548 switch (mState) { 2549 case STATE_ACTIVE: 2550 case STATE_PAUSED: 2551 break; // handle below 2552 case STATE_FLUSHED: 2553 case STATE_STOPPED: 2554 return WOULD_BLOCK; 2555 case STATE_STOPPING: 2556 case STATE_PAUSED_STOPPING: 2557 if (!isOffloaded_l()) { 2558 return INVALID_OPERATION; 2559 } 2560 break; // offloaded tracks handled below 2561 default: 2562 LOG_ALWAYS_FATAL("%s(%d): Invalid mState in getTimestamp(): %d", 2563 __func__, mPortId, mState); 2564 break; 2565 } 2566 2567 if (mCblk->mFlags & CBLK_INVALID) { 2568 const status_t status = restoreTrack_l("getTimestamp"); 2569 if (status != OK) { 2570 // per getTimestamp() API doc in header, we return DEAD_OBJECT here, 2571 // recommending that the track be recreated. 2572 return DEAD_OBJECT; 2573 } 2574 } 2575 2576 // The presented frame count must always lag behind the consumed frame count. 2577 // To avoid a race, read the presented frames first. This ensures that presented <= consumed. 2578 2579 status_t status; 2580 if (isOffloadedOrDirect_l()) { 2581 // use Binder to get timestamp 2582 status = mAudioTrack->getTimestamp(timestamp); 2583 } else { 2584 // read timestamp from shared memory 2585 ExtendedTimestamp ets; 2586 status = mProxy->getTimestamp(&ets); 2587 if (status == OK) { 2588 ExtendedTimestamp::Location location; 2589 status = ets.getBestTimestamp(×tamp, &location); 2590 2591 if (status == OK) { 2592 updateLatency_l(); 2593 // It is possible that the best location has moved from the kernel to the server. 2594 // In this case we adjust the position from the previous computed latency. 2595 if (location == ExtendedTimestamp::LOCATION_SERVER) { 2596 ALOGW_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_KERNEL, 2597 "%s(%d): location moved from kernel to server", 2598 __func__, mPortId); 2599 // check that the last kernel OK time info exists and the positions 2600 // are valid (if they predate the current track, the positions may 2601 // be zero or negative). 2602 const int64_t frames = 2603 (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 || 2604 ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0 || 2605 ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] <= 0 || 2606 ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] <= 0) 2607 ? 2608 int64_t((double)mAfLatency * mSampleRate * mPlaybackRate.mSpeed 2609 / 1000) 2610 : 2611 (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] 2612 - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]); 2613 ALOGV("%s(%d): frame adjustment:%lld timestamp:%s", 2614 __func__, mPortId, (long long)frames, ets.toString().c_str()); 2615 if (frames >= ets.mPosition[location]) { 2616 timestamp.mPosition = 0; 2617 } else { 2618 timestamp.mPosition = (uint32_t)(ets.mPosition[location] - frames); 2619 } 2620 } else if (location == ExtendedTimestamp::LOCATION_KERNEL) { 2621 ALOGV_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_SERVER, 2622 "%s(%d): location moved from server to kernel", 2623 __func__, mPortId); 2624 2625 if (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER] == 2626 ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL]) { 2627 // In Q, we don't return errors as an invalid time 2628 // but instead we leave the last kernel good timestamp alone. 2629 // 2630 // If server is identical to kernel, the device data pipeline is idle. 2631 // A better start time is now. The retrograde check ensures 2632 // timestamp monotonicity. 2633 const int64_t nowNs = systemTime(); 2634 if (!mTimestampStallReported) { 2635 ALOGD("%s(%d): device stall time corrected using current time %lld", 2636 __func__, mPortId, (long long)nowNs); 2637 mTimestampStallReported = true; 2638 } 2639 timestamp.mTime = convertNsToTimespec(nowNs); 2640 } else { 2641 mTimestampStallReported = false; 2642 } 2643 } 2644 2645 // We update the timestamp time even when paused. 2646 if (mState == STATE_PAUSED /* not needed: STATE_PAUSED_STOPPING */) { 2647 const int64_t now = systemTime(); 2648 const int64_t at = audio_utils_ns_from_timespec(×tamp.mTime); 2649 const int64_t lag = 2650 (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 || 2651 ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0) 2652 ? int64_t(mAfLatency * 1000000LL) 2653 : (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] 2654 - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]) 2655 * NANOS_PER_SECOND / mSampleRate; 2656 const int64_t limit = now - lag; // no earlier than this limit 2657 if (at < limit) { 2658 ALOGV("timestamp pause lag:%lld adjusting from %lld to %lld", 2659 (long long)lag, (long long)at, (long long)limit); 2660 timestamp.mTime = convertNsToTimespec(limit); 2661 } 2662 } 2663 mPreviousLocation = location; 2664 } else { 2665 // right after AudioTrack is started, one may not find a timestamp 2666 ALOGV("%s(%d): getBestTimestamp did not find timestamp", __func__, mPortId); 2667 } 2668 } 2669 if (status == INVALID_OPERATION) { 2670 // INVALID_OPERATION occurs when no timestamp has been issued by the server; 2671 // other failures are signaled by a negative time. 2672 // If we come out of FLUSHED or STOPPED where the position is known 2673 // to be zero we convert this to WOULD_BLOCK (with the implicit meaning of 2674 // "zero" for NuPlayer). We don't convert for track restoration as position 2675 // does not reset. 2676 ALOGV("%s(%d): timestamp server offset:%lld restore frames:%lld", 2677 __func__, mPortId, 2678 (long long)mFramesWrittenServerOffset, (long long)mFramesWrittenAtRestore); 2679 if (mFramesWrittenServerOffset != mFramesWrittenAtRestore) { 2680 status = WOULD_BLOCK; 2681 } 2682 } 2683 } 2684 if (status != NO_ERROR) { 2685 ALOGV_IF(status != WOULD_BLOCK, "%s(%d): getTimestamp error:%#x", __func__, mPortId, status); 2686 return status; 2687 } 2688 if (isOffloadedOrDirect_l()) { 2689 if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) { 2690 // use cached paused position in case another offloaded track is running. 2691 timestamp.mPosition = mPausedPosition; 2692 clock_gettime(CLOCK_MONOTONIC, ×tamp.mTime); 2693 // TODO: adjust for delay 2694 return NO_ERROR; 2695 } 2696 2697 // Check whether a pending flush or stop has completed, as those commands may 2698 // be asynchronous or return near finish or exhibit glitchy behavior. 2699 // 2700 // Originally this showed up as the first timestamp being a continuation of 2701 // the previous song under gapless playback. 2702 // However, we sometimes see zero timestamps, then a glitch of 2703 // the previous song's position, and then correct timestamps afterwards. 2704 if (mStartFromZeroUs != 0 && mSampleRate != 0) { 2705 static const int kTimeJitterUs = 100000; // 100 ms 2706 static const int k1SecUs = 1000000; 2707 2708 const int64_t timeNow = getNowUs(); 2709 2710 if (timeNow < mStartFromZeroUs + k1SecUs) { // within first second of starting 2711 const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime); 2712 if (timestampTimeUs < mStartFromZeroUs) { 2713 return WOULD_BLOCK; // stale timestamp time, occurs before start. 2714 } 2715 const int64_t deltaTimeUs = timestampTimeUs - mStartFromZeroUs; 2716 const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000 2717 / ((double)mSampleRate * mPlaybackRate.mSpeed); 2718 2719 if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) { 2720 // Verify that the counter can't count faster than the sample rate 2721 // since the start time. If greater, then that means we may have failed 2722 // to completely flush or stop the previous playing track. 2723 ALOGW_IF(!mTimestampStartupGlitchReported, 2724 "%s(%d): startup glitch detected" 2725 " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)", 2726 __func__, mPortId, 2727 (long long)deltaTimeUs, (long long)deltaPositionByUs, 2728 timestamp.mPosition); 2729 mTimestampStartupGlitchReported = true; 2730 if (previousTimestampValid 2731 && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) { 2732 timestamp = mPreviousTimestamp; 2733 mPreviousTimestampValid = true; 2734 return NO_ERROR; 2735 } 2736 return WOULD_BLOCK; 2737 } 2738 if (deltaPositionByUs != 0) { 2739 mStartFromZeroUs = 0; // don't check again, we got valid nonzero position. 2740 } 2741 } else { 2742 mStartFromZeroUs = 0; // don't check again, start time expired. 2743 } 2744 mTimestampStartupGlitchReported = false; 2745 } 2746 } else { 2747 // Update the mapping between local consumed (mPosition) and server consumed (mServer) 2748 (void) updateAndGetPosition_l(); 2749 // Server consumed (mServer) and presented both use the same server time base, 2750 // and server consumed is always >= presented. 2751 // The delta between these represents the number of frames in the buffer pipeline. 2752 // If this delta between these is greater than the client position, it means that 2753 // actually presented is still stuck at the starting line (figuratively speaking), 2754 // waiting for the first frame to go by. So we can't report a valid timestamp yet. 2755 // Note: We explicitly use non-Modulo comparison here - potential wrap issue when 2756 // mPosition exceeds 32 bits. 2757 // TODO Remove when timestamp is updated to contain pipeline status info. 2758 const int32_t pipelineDepthInFrames = (mServer - timestamp.mPosition).signedValue(); 2759 if (pipelineDepthInFrames > 0 /* should be true, but we check anyways */ 2760 && (uint32_t)pipelineDepthInFrames > mPosition.value()) { 2761 return INVALID_OPERATION; 2762 } 2763 // Convert timestamp position from server time base to client time base. 2764 // TODO The following code should work OK now because timestamp.mPosition is 32-bit. 2765 // But if we change it to 64-bit then this could fail. 2766 // Use Modulo computation here. 2767 timestamp.mPosition = (mPosition - mServer + timestamp.mPosition).value(); 2768 // Immediately after a call to getPosition_l(), mPosition and 2769 // mServer both represent the same frame position. mPosition is 2770 // in client's point of view, and mServer is in server's point of 2771 // view. So the difference between them is the "fudge factor" 2772 // between client and server views due to stop() and/or new 2773 // IAudioTrack. And timestamp.mPosition is initially in server's 2774 // point of view, so we need to apply the same fudge factor to it. 2775 } 2776 2777 // Prevent retrograde motion in timestamp. 2778 // This is sometimes caused by erratic reports of the available space in the ALSA drivers. 2779 if (status == NO_ERROR) { 2780 // Fix stale time when checking timestamp right after start(). 2781 // The position is at the last reported location but the time can be stale 2782 // due to pause or standby or cold start latency. 2783 // 2784 // We keep advancing the time (but not the position) to ensure that the 2785 // stale value does not confuse the application. 2786 // 2787 // For offload compatibility, use a default lag value here. 2788 // Any time discrepancy between this update and the pause timestamp is handled 2789 // by the retrograde check afterwards. 2790 int64_t currentTimeNanos = audio_utils_ns_from_timespec(×tamp.mTime); 2791 const int64_t lagNs = int64_t(mAfLatency * 1000000LL); 2792 const int64_t limitNs = mStartNs - lagNs; 2793 if (currentTimeNanos < limitNs) { 2794 if (!mTimestampStaleTimeReported) { 2795 ALOGD("%s(%d): stale timestamp time corrected, " 2796 "currentTimeNanos: %lld < limitNs: %lld < mStartNs: %lld", 2797 __func__, mPortId, 2798 (long long)currentTimeNanos, (long long)limitNs, (long long)mStartNs); 2799 mTimestampStaleTimeReported = true; 2800 } 2801 timestamp.mTime = convertNsToTimespec(limitNs); 2802 currentTimeNanos = limitNs; 2803 } else { 2804 mTimestampStaleTimeReported = false; 2805 } 2806 2807 // previousTimestampValid is set to false when starting after a stop or flush. 2808 if (previousTimestampValid) { 2809 const int64_t previousTimeNanos = 2810 audio_utils_ns_from_timespec(&mPreviousTimestamp.mTime); 2811 2812 // retrograde check 2813 if (currentTimeNanos < previousTimeNanos) { 2814 if (!mTimestampRetrogradeTimeReported) { 2815 ALOGW("%s(%d): retrograde timestamp time corrected, %lld < %lld", 2816 __func__, mPortId, 2817 (long long)currentTimeNanos, (long long)previousTimeNanos); 2818 mTimestampRetrogradeTimeReported = true; 2819 } 2820 timestamp.mTime = mPreviousTimestamp.mTime; 2821 } else { 2822 mTimestampRetrogradeTimeReported = false; 2823 } 2824 2825 // Looking at signed delta will work even when the timestamps 2826 // are wrapping around. 2827 int32_t deltaPosition = (Modulo<uint32_t>(timestamp.mPosition) 2828 - mPreviousTimestamp.mPosition).signedValue(); 2829 if (deltaPosition < 0) { 2830 // Only report once per position instead of spamming the log. 2831 if (!mTimestampRetrogradePositionReported) { 2832 ALOGW("%s(%d): retrograde timestamp position corrected, %d = %u - %u", 2833 __func__, mPortId, 2834 deltaPosition, 2835 timestamp.mPosition, 2836 mPreviousTimestamp.mPosition); 2837 mTimestampRetrogradePositionReported = true; 2838 } 2839 } else { 2840 mTimestampRetrogradePositionReported = false; 2841 } 2842 if (deltaPosition < 0) { 2843 timestamp.mPosition = mPreviousTimestamp.mPosition; 2844 deltaPosition = 0; 2845 } 2846 #if 0 2847 // Uncomment this to verify audio timestamp rate. 2848 const int64_t deltaTime = 2849 audio_utils_ns_from_timespec(×tamp.mTime) - previousTimeNanos; 2850 if (deltaTime != 0) { 2851 const int64_t computedSampleRate = 2852 deltaPosition * (long long)NANOS_PER_SECOND / deltaTime; 2853 ALOGD("%s(%d): computedSampleRate:%u sampleRate:%u", 2854 __func__, mPortId, 2855 (unsigned)computedSampleRate, mSampleRate); 2856 } 2857 #endif 2858 } 2859 mPreviousTimestamp = timestamp; 2860 mPreviousTimestampValid = true; 2861 } 2862 2863 return status; 2864 } 2865 2866 String8 AudioTrack::getParameters(const String8& keys) 2867 { 2868 audio_io_handle_t output = getOutput(); 2869 if (output != AUDIO_IO_HANDLE_NONE) { 2870 return AudioSystem::getParameters(output, keys); 2871 } else { 2872 return String8::empty(); 2873 } 2874 } 2875 2876 bool AudioTrack::isOffloaded() const 2877 { 2878 AutoMutex lock(mLock); 2879 return isOffloaded_l(); 2880 } 2881 2882 bool AudioTrack::isDirect() const 2883 { 2884 AutoMutex lock(mLock); 2885 return isDirect_l(); 2886 } 2887 2888 bool AudioTrack::isOffloadedOrDirect() const 2889 { 2890 AutoMutex lock(mLock); 2891 return isOffloadedOrDirect_l(); 2892 } 2893 2894 2895 status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const 2896 { 2897 String8 result; 2898 2899 result.append(" AudioTrack::dump\n"); 2900 result.appendFormat(" id(%d) status(%d), state(%d), session Id(%d), flags(%#x)\n", 2901 mPortId, mStatus, mState, mSessionId, mFlags); 2902 result.appendFormat(" stream type(%d), left - right volume(%f, %f)\n", 2903 (mStreamType == AUDIO_STREAM_DEFAULT) ? 2904 AudioSystem::attributesToStreamType(mAttributes) : 2905 mStreamType, 2906 mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]); 2907 result.appendFormat(" format(%#x), channel mask(%#x), channel count(%u)\n", 2908 mFormat, mChannelMask, mChannelCount); 2909 result.appendFormat(" sample rate(%u), original sample rate(%u), speed(%f)\n", 2910 mSampleRate, mOriginalSampleRate, mPlaybackRate.mSpeed); 2911 result.appendFormat(" frame count(%zu), req. frame count(%zu)\n", 2912 mFrameCount, mReqFrameCount); 2913 result.appendFormat(" notif. frame count(%u), req. notif. frame count(%u)," 2914 " req. notif. per buff(%u)\n", 2915 mNotificationFramesAct, mNotificationFramesReq, mNotificationsPerBufferReq); 2916 result.appendFormat(" latency (%d), selected device Id(%d), routed device Id(%d)\n", 2917 mLatency, mSelectedDeviceId, mRoutedDeviceId); 2918 result.appendFormat(" output(%d) AF latency (%u) AF frame count(%zu) AF SampleRate(%u)\n", 2919 mOutput, mAfLatency, mAfFrameCount, mAfSampleRate); 2920 ::write(fd, result.string(), result.size()); 2921 return NO_ERROR; 2922 } 2923 2924 uint32_t AudioTrack::getUnderrunCount() const 2925 { 2926 AutoMutex lock(mLock); 2927 return getUnderrunCount_l(); 2928 } 2929 2930 uint32_t AudioTrack::getUnderrunCount_l() const 2931 { 2932 return mProxy->getUnderrunCount() + mUnderrunCountOffset; 2933 } 2934 2935 uint32_t AudioTrack::getUnderrunFrames() const 2936 { 2937 AutoMutex lock(mLock); 2938 return mProxy->getUnderrunFrames(); 2939 } 2940 2941 status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback) 2942 { 2943 2944 if (callback == 0) { 2945 ALOGW("%s(%d): adding NULL callback!", __func__, mPortId); 2946 return BAD_VALUE; 2947 } 2948 AutoMutex lock(mLock); 2949 if (mDeviceCallback.unsafe_get() == callback.get()) { 2950 ALOGW("%s(%d): adding same callback!", __func__, mPortId); 2951 return INVALID_OPERATION; 2952 } 2953 status_t status = NO_ERROR; 2954 if (mOutput != AUDIO_IO_HANDLE_NONE) { 2955 if (mDeviceCallback != 0) { 2956 ALOGW("%s(%d): callback already present!", __func__, mPortId); 2957 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId); 2958 } 2959 status = AudioSystem::addAudioDeviceCallback(this, mOutput, mPortId); 2960 } 2961 mDeviceCallback = callback; 2962 return status; 2963 } 2964 2965 status_t AudioTrack::removeAudioDeviceCallback( 2966 const sp<AudioSystem::AudioDeviceCallback>& callback) 2967 { 2968 if (callback == 0) { 2969 ALOGW("%s(%d): removing NULL callback!", __func__, mPortId); 2970 return BAD_VALUE; 2971 } 2972 AutoMutex lock(mLock); 2973 if (mDeviceCallback.unsafe_get() != callback.get()) { 2974 ALOGW("%s removing different callback!", __FUNCTION__); 2975 return INVALID_OPERATION; 2976 } 2977 mDeviceCallback.clear(); 2978 if (mOutput != AUDIO_IO_HANDLE_NONE) { 2979 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId); 2980 } 2981 return NO_ERROR; 2982 } 2983 2984 2985 void AudioTrack::onAudioDeviceUpdate(audio_io_handle_t audioIo, 2986 audio_port_handle_t deviceId) 2987 { 2988 sp<AudioSystem::AudioDeviceCallback> callback; 2989 { 2990 AutoMutex lock(mLock); 2991 if (audioIo != mOutput) { 2992 return; 2993 } 2994 callback = mDeviceCallback.promote(); 2995 // only update device if the track is active as route changes due to other use cases are 2996 // irrelevant for this client 2997 if (mState == STATE_ACTIVE) { 2998 mRoutedDeviceId = deviceId; 2999 } 3000 } 3001 3002 if (callback.get() != nullptr) { 3003 callback->onAudioDeviceUpdate(mOutput, mRoutedDeviceId); 3004 } 3005 } 3006 3007 status_t AudioTrack::pendingDuration(int32_t *msec, ExtendedTimestamp::Location location) 3008 { 3009 if (msec == nullptr || 3010 (location != ExtendedTimestamp::LOCATION_SERVER 3011 && location != ExtendedTimestamp::LOCATION_KERNEL)) { 3012 return BAD_VALUE; 3013 } 3014 AutoMutex lock(mLock); 3015 // inclusive of offloaded and direct tracks. 3016 // 3017 // It is possible, but not enabled, to allow duration computation for non-pcm 3018 // audio_has_proportional_frames() formats because currently they have 3019 // the drain rate equivalent to the pcm sample rate * framesize. 3020 if (!isPurePcmData_l()) { 3021 return INVALID_OPERATION; 3022 } 3023 ExtendedTimestamp ets; 3024 if (getTimestamp_l(&ets) == OK 3025 && ets.mTimeNs[location] > 0) { 3026 int64_t diff = ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT] 3027 - ets.mPosition[location]; 3028 if (diff < 0) { 3029 *msec = 0; 3030 } else { 3031 // ms is the playback time by frames 3032 int64_t ms = (int64_t)((double)diff * 1000 / 3033 ((double)mSampleRate * mPlaybackRate.mSpeed)); 3034 // clockdiff is the timestamp age (negative) 3035 int64_t clockdiff = (mState != STATE_ACTIVE) ? 0 : 3036 ets.mTimeNs[location] 3037 + ets.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_MONOTONIC] 3038 - systemTime(SYSTEM_TIME_MONOTONIC); 3039 3040 //ALOGV("ms: %lld clockdiff: %lld", (long long)ms, (long long)clockdiff); 3041 static const int NANOS_PER_MILLIS = 1000000; 3042 *msec = (int32_t)(ms + clockdiff / NANOS_PER_MILLIS); 3043 } 3044 return NO_ERROR; 3045 } 3046 if (location != ExtendedTimestamp::LOCATION_SERVER) { 3047 return INVALID_OPERATION; // LOCATION_KERNEL is not available 3048 } 3049 // use server position directly (offloaded and direct arrive here) 3050 updateAndGetPosition_l(); 3051 int32_t diff = (Modulo<uint32_t>(mFramesWritten) - mPosition).signedValue(); 3052 *msec = (diff <= 0) ? 0 3053 : (int32_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed)); 3054 return NO_ERROR; 3055 } 3056 3057 bool AudioTrack::hasStarted() 3058 { 3059 AutoMutex lock(mLock); 3060 switch (mState) { 3061 case STATE_STOPPED: 3062 if (isOffloadedOrDirect_l()) { 3063 // check if we have started in the past to return true. 3064 return mStartFromZeroUs > 0; 3065 } 3066 // A normal audio track may still be draining, so 3067 // check if stream has ended. This covers fasttrack position 3068 // instability and start/stop without any data written. 3069 if (mProxy->getStreamEndDone()) { 3070 return true; 3071 } 3072 FALLTHROUGH_INTENDED; 3073 case STATE_ACTIVE: 3074 case STATE_STOPPING: 3075 break; 3076 case STATE_PAUSED: 3077 case STATE_PAUSED_STOPPING: 3078 case STATE_FLUSHED: 3079 return false; // we're not active 3080 default: 3081 LOG_ALWAYS_FATAL("%s(%d): Invalid mState in hasStarted(): %d", __func__, mPortId, mState); 3082 break; 3083 } 3084 3085 // wait indicates whether we need to wait for a timestamp. 3086 // This is conservatively figured - if we encounter an unexpected error 3087 // then we will not wait. 3088 bool wait = false; 3089 if (isOffloadedOrDirect_l()) { 3090 AudioTimestamp ts; 3091 status_t status = getTimestamp_l(ts); 3092 if (status == WOULD_BLOCK) { 3093 wait = true; 3094 } else if (status == OK) { 3095 wait = (ts.mPosition == 0 || ts.mPosition == mStartTs.mPosition); 3096 } 3097 ALOGV("%s(%d): hasStarted wait:%d ts:%u start position:%lld", 3098 __func__, mPortId, 3099 (int)wait, 3100 ts.mPosition, 3101 (long long)mStartTs.mPosition); 3102 } else { 3103 int location = ExtendedTimestamp::LOCATION_SERVER; // for ALOG 3104 ExtendedTimestamp ets; 3105 status_t status = getTimestamp_l(&ets); 3106 if (status == WOULD_BLOCK) { // no SERVER or KERNEL frame info in ets 3107 wait = true; 3108 } else if (status == OK) { 3109 for (location = ExtendedTimestamp::LOCATION_KERNEL; 3110 location >= ExtendedTimestamp::LOCATION_SERVER; --location) { 3111 if (ets.mTimeNs[location] < 0 || mStartEts.mTimeNs[location] < 0) { 3112 continue; 3113 } 3114 wait = ets.mPosition[location] == 0 3115 || ets.mPosition[location] == mStartEts.mPosition[location]; 3116 break; 3117 } 3118 } 3119 ALOGV("%s(%d): hasStarted wait:%d ets:%lld start position:%lld", 3120 __func__, mPortId, 3121 (int)wait, 3122 (long long)ets.mPosition[location], 3123 (long long)mStartEts.mPosition[location]); 3124 } 3125 return !wait; 3126 } 3127 3128 // ========================================================================= 3129 3130 void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused) 3131 { 3132 sp<AudioTrack> audioTrack = mAudioTrack.promote(); 3133 if (audioTrack != 0) { 3134 AutoMutex lock(audioTrack->mLock); 3135 audioTrack->mProxy->binderDied(); 3136 } 3137 } 3138 3139 // ========================================================================= 3140 3141 AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver) 3142 : Thread(true /* bCanCallJava */) // binder recursion on restoreTrack_l() may call Java. 3143 , mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL), 3144 mIgnoreNextPausedInt(false) 3145 { 3146 } 3147 3148 AudioTrack::AudioTrackThread::~AudioTrackThread() 3149 { 3150 } 3151 3152 bool AudioTrack::AudioTrackThread::threadLoop() 3153 { 3154 { 3155 AutoMutex _l(mMyLock); 3156 if (mPaused) { 3157 // TODO check return value and handle or log 3158 mMyCond.wait(mMyLock); 3159 // caller will check for exitPending() 3160 return true; 3161 } 3162 if (mIgnoreNextPausedInt) { 3163 mIgnoreNextPausedInt = false; 3164 mPausedInt = false; 3165 } 3166 if (mPausedInt) { 3167 // TODO use futex instead of condition, for event flag "or" 3168 if (mPausedNs > 0) { 3169 // TODO check return value and handle or log 3170 (void) mMyCond.waitRelative(mMyLock, mPausedNs); 3171 } else { 3172 // TODO check return value and handle or log 3173 mMyCond.wait(mMyLock); 3174 } 3175 mPausedInt = false; 3176 return true; 3177 } 3178 } 3179 if (exitPending()) { 3180 return false; 3181 } 3182 nsecs_t ns = mReceiver.processAudioBuffer(); 3183 switch (ns) { 3184 case 0: 3185 return true; 3186 case NS_INACTIVE: 3187 pauseInternal(); 3188 return true; 3189 case NS_NEVER: 3190 return false; 3191 case NS_WHENEVER: 3192 // Event driven: call wake() when callback notifications conditions change. 3193 ns = INT64_MAX; 3194 FALLTHROUGH_INTENDED; 3195 default: 3196 LOG_ALWAYS_FATAL_IF(ns < 0, "%s(%d): processAudioBuffer() returned %lld", 3197 __func__, mReceiver.mPortId, (long long)ns); 3198 pauseInternal(ns); 3199 return true; 3200 } 3201 } 3202 3203 void AudioTrack::AudioTrackThread::requestExit() 3204 { 3205 // must be in this order to avoid a race condition 3206 Thread::requestExit(); 3207 resume(); 3208 } 3209 3210 void AudioTrack::AudioTrackThread::pause() 3211 { 3212 AutoMutex _l(mMyLock); 3213 mPaused = true; 3214 } 3215 3216 void AudioTrack::AudioTrackThread::resume() 3217 { 3218 AutoMutex _l(mMyLock); 3219 mIgnoreNextPausedInt = true; 3220 if (mPaused || mPausedInt) { 3221 mPaused = false; 3222 mPausedInt = false; 3223 mMyCond.signal(); 3224 } 3225 } 3226 3227 void AudioTrack::AudioTrackThread::wake() 3228 { 3229 AutoMutex _l(mMyLock); 3230 if (!mPaused) { 3231 // wake() might be called while servicing a callback - ignore the next 3232 // pause time and call processAudioBuffer. 3233 mIgnoreNextPausedInt = true; 3234 if (mPausedInt && mPausedNs > 0) { 3235 // audio track is active and internally paused with timeout. 3236 mPausedInt = false; 3237 mMyCond.signal(); 3238 } 3239 } 3240 } 3241 3242 void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns) 3243 { 3244 AutoMutex _l(mMyLock); 3245 mPausedInt = true; 3246 mPausedNs = ns; 3247 } 3248 3249 } // namespace android 3250