Home | History | Annotate | Download | only in libaudioclient
      1 /*
      2 **
      3 ** Copyright 2007, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 //#define LOG_NDEBUG 0
     19 #define LOG_TAG "AudioTrack"
     20 
     21 #include <inttypes.h>
     22 #include <math.h>
     23 #include <sys/resource.h>
     24 
     25 #include <android-base/macros.h>
     26 #include <audio_utils/clock.h>
     27 #include <audio_utils/primitives.h>
     28 #include <binder/IPCThreadState.h>
     29 #include <media/AudioTrack.h>
     30 #include <utils/Log.h>
     31 #include <private/media/AudioTrackShared.h>
     32 #include <processgroup/sched_policy.h>
     33 #include <media/IAudioFlinger.h>
     34 #include <media/IAudioPolicyService.h>
     35 #include <media/AudioParameter.h>
     36 #include <media/AudioResamplerPublic.h>
     37 #include <media/AudioSystem.h>
     38 #include <media/MediaAnalyticsItem.h>
     39 #include <media/TypeConverter.h>
     40 
     41 #define WAIT_PERIOD_MS                  10
     42 #define WAIT_STREAM_END_TIMEOUT_SEC     120
     43 static const int kMaxLoopCountNotifications = 32;
     44 
     45 namespace android {
     46 // ---------------------------------------------------------------------------
     47 
     48 using media::VolumeShaper;
     49 
     50 // TODO: Move to a separate .h
     51 
     52 template <typename T>
     53 static inline const T &min(const T &x, const T &y) {
     54     return x < y ? x : y;
     55 }
     56 
     57 template <typename T>
     58 static inline const T &max(const T &x, const T &y) {
     59     return x > y ? x : y;
     60 }
     61 
     62 static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed)
     63 {
     64     return ((double)frames * 1000000000) / ((double)sampleRate * speed);
     65 }
     66 
     67 static int64_t convertTimespecToUs(const struct timespec &tv)
     68 {
     69     return tv.tv_sec * 1000000LL + tv.tv_nsec / 1000;
     70 }
     71 
     72 // TODO move to audio_utils.
     73 static inline struct timespec convertNsToTimespec(int64_t ns) {
     74     struct timespec tv;
     75     tv.tv_sec = static_cast<time_t>(ns / NANOS_PER_SECOND);
     76     tv.tv_nsec = static_cast<long>(ns % NANOS_PER_SECOND);
     77     return tv;
     78 }
     79 
     80 // current monotonic time in microseconds.
     81 static int64_t getNowUs()
     82 {
     83     struct timespec tv;
     84     (void) clock_gettime(CLOCK_MONOTONIC, &tv);
     85     return convertTimespecToUs(tv);
     86 }
     87 
     88 // FIXME: we don't use the pitch setting in the time stretcher (not working);
     89 // instead we emulate it using our sample rate converter.
     90 static const bool kFixPitch = true; // enable pitch fix
     91 static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch)
     92 {
     93     return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate;
     94 }
     95 
     96 static inline float adjustSpeed(float speed, float pitch)
     97 {
     98     return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed;
     99 }
    100 
    101 static inline float adjustPitch(float pitch)
    102 {
    103     return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch;
    104 }
    105 
    106 // static
    107 status_t AudioTrack::getMinFrameCount(
    108         size_t* frameCount,
    109         audio_stream_type_t streamType,
    110         uint32_t sampleRate)
    111 {
    112     if (frameCount == NULL) {
    113         return BAD_VALUE;
    114     }
    115 
    116     // FIXME handle in server, like createTrack_l(), possible missing info:
    117     //          audio_io_handle_t output
    118     //          audio_format_t format
    119     //          audio_channel_mask_t channelMask
    120     //          audio_output_flags_t flags (FAST)
    121     uint32_t afSampleRate;
    122     status_t status;
    123     status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType);
    124     if (status != NO_ERROR) {
    125         ALOGE("%s(): Unable to query output sample rate for stream type %d; status %d",
    126                 __func__, streamType, status);
    127         return status;
    128     }
    129     size_t afFrameCount;
    130     status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType);
    131     if (status != NO_ERROR) {
    132         ALOGE("%s(): Unable to query output frame count for stream type %d; status %d",
    133                 __func__, streamType, status);
    134         return status;
    135     }
    136     uint32_t afLatency;
    137     status = AudioSystem::getOutputLatency(&afLatency, streamType);
    138     if (status != NO_ERROR) {
    139         ALOGE("%s(): Unable to query output latency for stream type %d; status %d",
    140                 __func__, streamType, status);
    141         return status;
    142     }
    143 
    144     // When called from createTrack, speed is 1.0f (normal speed).
    145     // This is rechecked again on setting playback rate (TODO: on setting sample rate, too).
    146     *frameCount = AudioSystem::calculateMinFrameCount(afLatency, afFrameCount, afSampleRate,
    147                                               sampleRate, 1.0f /*, 0 notificationsPerBufferReq*/);
    148 
    149     // The formula above should always produce a non-zero value under normal circumstances:
    150     // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX.
    151     // Return error in the unlikely event that it does not, as that's part of the API contract.
    152     if (*frameCount == 0) {
    153         ALOGE("%s(): failed for streamType %d, sampleRate %u",
    154                 __func__, streamType, sampleRate);
    155         return BAD_VALUE;
    156     }
    157     ALOGV("%s(): getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u",
    158             __func__, *frameCount, afFrameCount, afSampleRate, afLatency);
    159     return NO_ERROR;
    160 }
    161 
    162 // static
    163 bool AudioTrack::isDirectOutputSupported(const audio_config_base_t& config,
    164                                          const audio_attributes_t& attributes) {
    165     ALOGV("%s()", __FUNCTION__);
    166     const sp<IAudioPolicyService>& aps = AudioSystem::get_audio_policy_service();
    167     if (aps == 0) return false;
    168     return aps->isDirectOutputSupported(config, attributes);
    169 }
    170 
    171 // ---------------------------------------------------------------------------
    172 
    173 void AudioTrack::MediaMetrics::gather(const AudioTrack *track)
    174 {
    175     // only if we're in a good state...
    176     // XXX: shall we gather alternative info if failing?
    177     const status_t lstatus = track->initCheck();
    178     if (lstatus != NO_ERROR) {
    179         ALOGD("%s(): no metrics gathered, track status=%d", __func__, (int) lstatus);
    180         return;
    181     }
    182 
    183 #define MM_PREFIX "android.media.audiotrack." // avoid cut-n-paste errors.
    184 
    185     // Java API 28 entries, do not change.
    186     mAnalyticsItem->setCString(MM_PREFIX "streamtype", toString(track->streamType()).c_str());
    187     mAnalyticsItem->setCString(MM_PREFIX "type",
    188             toString(track->mAttributes.content_type).c_str());
    189     mAnalyticsItem->setCString(MM_PREFIX "usage", toString(track->mAttributes.usage).c_str());
    190 
    191     // Non-API entries, these can change due to a Java string mistake.
    192     mAnalyticsItem->setInt32(MM_PREFIX "sampleRate", (int32_t)track->mSampleRate);
    193     mAnalyticsItem->setInt64(MM_PREFIX "channelMask", (int64_t)track->mChannelMask);
    194     // Non-API entries, these can change.
    195     mAnalyticsItem->setInt32(MM_PREFIX "portId", (int32_t)track->mPortId);
    196     mAnalyticsItem->setCString(MM_PREFIX "encoding", toString(track->mFormat).c_str());
    197     mAnalyticsItem->setInt32(MM_PREFIX "frameCount", (int32_t)track->mFrameCount);
    198     mAnalyticsItem->setCString(MM_PREFIX "attributes", toString(track->mAttributes).c_str());
    199 }
    200 
    201 // hand the user a snapshot of the metrics.
    202 status_t AudioTrack::getMetrics(MediaAnalyticsItem * &item)
    203 {
    204     mMediaMetrics.gather(this);
    205     MediaAnalyticsItem *tmp = mMediaMetrics.dup();
    206     if (tmp == nullptr) {
    207         return BAD_VALUE;
    208     }
    209     item = tmp;
    210     return NO_ERROR;
    211 }
    212 
    213 AudioTrack::AudioTrack()
    214     : mStatus(NO_INIT),
    215       mState(STATE_STOPPED),
    216       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
    217       mPreviousSchedulingGroup(SP_DEFAULT),
    218       mPausedPosition(0),
    219       mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE),
    220       mRoutedDeviceId(AUDIO_PORT_HANDLE_NONE)
    221 {
    222     mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN;
    223     mAttributes.usage = AUDIO_USAGE_UNKNOWN;
    224     mAttributes.flags = 0x0;
    225     strcpy(mAttributes.tags, "");
    226 }
    227 
    228 AudioTrack::AudioTrack(
    229         audio_stream_type_t streamType,
    230         uint32_t sampleRate,
    231         audio_format_t format,
    232         audio_channel_mask_t channelMask,
    233         size_t frameCount,
    234         audio_output_flags_t flags,
    235         callback_t cbf,
    236         void* user,
    237         int32_t notificationFrames,
    238         audio_session_t sessionId,
    239         transfer_type transferType,
    240         const audio_offload_info_t *offloadInfo,
    241         uid_t uid,
    242         pid_t pid,
    243         const audio_attributes_t* pAttributes,
    244         bool doNotReconnect,
    245         float maxRequiredSpeed,
    246         audio_port_handle_t selectedDeviceId)
    247     : mStatus(NO_INIT),
    248       mState(STATE_STOPPED),
    249       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
    250       mPreviousSchedulingGroup(SP_DEFAULT),
    251       mPausedPosition(0)
    252 {
    253     mAttributes = AUDIO_ATTRIBUTES_INITIALIZER;
    254 
    255     (void)set(streamType, sampleRate, format, channelMask,
    256             frameCount, flags, cbf, user, notificationFrames,
    257             0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType,
    258             offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed, selectedDeviceId);
    259 }
    260 
    261 AudioTrack::AudioTrack(
    262         audio_stream_type_t streamType,
    263         uint32_t sampleRate,
    264         audio_format_t format,
    265         audio_channel_mask_t channelMask,
    266         const sp<IMemory>& sharedBuffer,
    267         audio_output_flags_t flags,
    268         callback_t cbf,
    269         void* user,
    270         int32_t notificationFrames,
    271         audio_session_t sessionId,
    272         transfer_type transferType,
    273         const audio_offload_info_t *offloadInfo,
    274         uid_t uid,
    275         pid_t pid,
    276         const audio_attributes_t* pAttributes,
    277         bool doNotReconnect,
    278         float maxRequiredSpeed)
    279     : mStatus(NO_INIT),
    280       mState(STATE_STOPPED),
    281       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
    282       mPreviousSchedulingGroup(SP_DEFAULT),
    283       mPausedPosition(0),
    284       mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
    285 {
    286     mAttributes = AUDIO_ATTRIBUTES_INITIALIZER;
    287 
    288     (void)set(streamType, sampleRate, format, channelMask,
    289             0 /*frameCount*/, flags, cbf, user, notificationFrames,
    290             sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo,
    291             uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
    292 }
    293 
    294 AudioTrack::~AudioTrack()
    295 {
    296     // pull together the numbers, before we clean up our structures
    297     mMediaMetrics.gather(this);
    298 
    299     if (mStatus == NO_ERROR) {
    300         // Make sure that callback function exits in the case where
    301         // it is looping on buffer full condition in obtainBuffer().
    302         // Otherwise the callback thread will never exit.
    303         stop();
    304         if (mAudioTrackThread != 0) {
    305             mProxy->interrupt();
    306             mAudioTrackThread->requestExit();   // see comment in AudioTrack.h
    307             mAudioTrackThread->requestExitAndWait();
    308             mAudioTrackThread.clear();
    309         }
    310         // No lock here: worst case we remove a NULL callback which will be a nop
    311         if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
    312             AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
    313         }
    314         IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
    315         mAudioTrack.clear();
    316         mCblkMemory.clear();
    317         mSharedBuffer.clear();
    318         IPCThreadState::self()->flushCommands();
    319         ALOGV("%s(%d), releasing session id %d from %d on behalf of %d",
    320                 __func__, mPortId,
    321                 mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid);
    322         AudioSystem::releaseAudioSessionId(mSessionId, mClientPid);
    323     }
    324 }
    325 
    326 status_t AudioTrack::set(
    327         audio_stream_type_t streamType,
    328         uint32_t sampleRate,
    329         audio_format_t format,
    330         audio_channel_mask_t channelMask,
    331         size_t frameCount,
    332         audio_output_flags_t flags,
    333         callback_t cbf,
    334         void* user,
    335         int32_t notificationFrames,
    336         const sp<IMemory>& sharedBuffer,
    337         bool threadCanCallJava,
    338         audio_session_t sessionId,
    339         transfer_type transferType,
    340         const audio_offload_info_t *offloadInfo,
    341         uid_t uid,
    342         pid_t pid,
    343         const audio_attributes_t* pAttributes,
    344         bool doNotReconnect,
    345         float maxRequiredSpeed,
    346         audio_port_handle_t selectedDeviceId)
    347 {
    348     status_t status;
    349     uint32_t channelCount;
    350     pid_t callingPid;
    351     pid_t myPid;
    352 
    353     // Note mPortId is not valid until the track is created, so omit mPortId in ALOG for set.
    354     ALOGV("%s(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, "
    355           "flags #%x, notificationFrames %d, sessionId %d, transferType %d, uid %d, pid %d",
    356           __func__,
    357           streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames,
    358           sessionId, transferType, uid, pid);
    359 
    360     mThreadCanCallJava = threadCanCallJava;
    361     mSelectedDeviceId = selectedDeviceId;
    362     mSessionId = sessionId;
    363 
    364     switch (transferType) {
    365     case TRANSFER_DEFAULT:
    366         if (sharedBuffer != 0) {
    367             transferType = TRANSFER_SHARED;
    368         } else if (cbf == NULL || threadCanCallJava) {
    369             transferType = TRANSFER_SYNC;
    370         } else {
    371             transferType = TRANSFER_CALLBACK;
    372         }
    373         break;
    374     case TRANSFER_CALLBACK:
    375     case TRANSFER_SYNC_NOTIF_CALLBACK:
    376         if (cbf == NULL || sharedBuffer != 0) {
    377             ALOGE("%s(): Transfer type %s but cbf == NULL || sharedBuffer != 0",
    378                     convertTransferToText(transferType), __func__);
    379             status = BAD_VALUE;
    380             goto exit;
    381         }
    382         break;
    383     case TRANSFER_OBTAIN:
    384     case TRANSFER_SYNC:
    385         if (sharedBuffer != 0) {
    386             ALOGE("%s(): Transfer type TRANSFER_OBTAIN but sharedBuffer != 0", __func__);
    387             status = BAD_VALUE;
    388             goto exit;
    389         }
    390         break;
    391     case TRANSFER_SHARED:
    392         if (sharedBuffer == 0) {
    393             ALOGE("%s(): Transfer type TRANSFER_SHARED but sharedBuffer == 0", __func__);
    394             status = BAD_VALUE;
    395             goto exit;
    396         }
    397         break;
    398     default:
    399         ALOGE("%s(): Invalid transfer type %d",
    400                 __func__, transferType);
    401         status = BAD_VALUE;
    402         goto exit;
    403     }
    404     mSharedBuffer = sharedBuffer;
    405     mTransfer = transferType;
    406     mDoNotReconnect = doNotReconnect;
    407 
    408     ALOGV_IF(sharedBuffer != 0, "%s(): sharedBuffer: %p, size: %zu",
    409             __func__, sharedBuffer->pointer(), sharedBuffer->size());
    410 
    411     ALOGV("%s(): streamType %d frameCount %zu flags %04x",
    412             __func__, streamType, frameCount, flags);
    413 
    414     // invariant that mAudioTrack != 0 is true only after set() returns successfully
    415     if (mAudioTrack != 0) {
    416         ALOGE("%s(): Track already in use", __func__);
    417         status = INVALID_OPERATION;
    418         goto exit;
    419     }
    420 
    421     // handle default values first.
    422     if (streamType == AUDIO_STREAM_DEFAULT) {
    423         streamType = AUDIO_STREAM_MUSIC;
    424     }
    425     if (pAttributes == NULL) {
    426         if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) {
    427             ALOGE("%s(): Invalid stream type %d", __func__, streamType);
    428             status = BAD_VALUE;
    429             goto exit;
    430         }
    431         mStreamType = streamType;
    432 
    433     } else {
    434         // stream type shouldn't be looked at, this track has audio attributes
    435         memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t));
    436         ALOGV("%s(): Building AudioTrack with attributes:"
    437                 " usage=%d content=%d flags=0x%x tags=[%s]",
    438                 __func__,
    439                  mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags);
    440         mStreamType = AUDIO_STREAM_DEFAULT;
    441         audio_flags_to_audio_output_flags(mAttributes.flags, &flags);
    442     }
    443 
    444     // these below should probably come from the audioFlinger too...
    445     if (format == AUDIO_FORMAT_DEFAULT) {
    446         format = AUDIO_FORMAT_PCM_16_BIT;
    447     } else if (format == AUDIO_FORMAT_IEC61937) { // HDMI pass-through?
    448         mAttributes.flags |= AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO;
    449     }
    450 
    451     // validate parameters
    452     if (!audio_is_valid_format(format)) {
    453         ALOGE("%s(): Invalid format %#x", __func__, format);
    454         status = BAD_VALUE;
    455         goto exit;
    456     }
    457     mFormat = format;
    458 
    459     if (!audio_is_output_channel(channelMask)) {
    460         ALOGE("%s(): Invalid channel mask %#x",  __func__, channelMask);
    461         status = BAD_VALUE;
    462         goto exit;
    463     }
    464     mChannelMask = channelMask;
    465     channelCount = audio_channel_count_from_out_mask(channelMask);
    466     mChannelCount = channelCount;
    467 
    468     // force direct flag if format is not linear PCM
    469     // or offload was requested
    470     if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
    471             || !audio_is_linear_pcm(format)) {
    472         ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
    473                     ? "%s(): Offload request, forcing to Direct Output"
    474                     : "%s(): Not linear PCM, forcing to Direct Output",
    475                     __func__);
    476         flags = (audio_output_flags_t)
    477                 // FIXME why can't we allow direct AND fast?
    478                 ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST);
    479     }
    480 
    481     // force direct flag if HW A/V sync requested
    482     if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) {
    483         flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT);
    484     }
    485 
    486     if (flags & AUDIO_OUTPUT_FLAG_DIRECT) {
    487         if (audio_has_proportional_frames(format)) {
    488             mFrameSize = channelCount * audio_bytes_per_sample(format);
    489         } else {
    490             mFrameSize = sizeof(uint8_t);
    491         }
    492     } else {
    493         ALOG_ASSERT(audio_has_proportional_frames(format));
    494         mFrameSize = channelCount * audio_bytes_per_sample(format);
    495         // createTrack will return an error if PCM format is not supported by server,
    496         // so no need to check for specific PCM formats here
    497     }
    498 
    499     // sampling rate must be specified for direct outputs
    500     if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) {
    501         status = BAD_VALUE;
    502         goto exit;
    503     }
    504     mSampleRate = sampleRate;
    505     mOriginalSampleRate = sampleRate;
    506     mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
    507     // 1.0 <= mMaxRequiredSpeed <= AUDIO_TIMESTRETCH_SPEED_MAX
    508     mMaxRequiredSpeed = min(max(maxRequiredSpeed, 1.0f), AUDIO_TIMESTRETCH_SPEED_MAX);
    509 
    510     // Make copy of input parameter offloadInfo so that in the future:
    511     //  (a) createTrack_l doesn't need it as an input parameter
    512     //  (b) we can support re-creation of offloaded tracks
    513     if (offloadInfo != NULL) {
    514         mOffloadInfoCopy = *offloadInfo;
    515         mOffloadInfo = &mOffloadInfoCopy;
    516     } else {
    517         mOffloadInfo = NULL;
    518         memset(&mOffloadInfoCopy, 0, sizeof(audio_offload_info_t));
    519     }
    520 
    521     mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f;
    522     mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f;
    523     mSendLevel = 0.0f;
    524     // mFrameCount is initialized in createTrack_l
    525     mReqFrameCount = frameCount;
    526     if (notificationFrames >= 0) {
    527         mNotificationFramesReq = notificationFrames;
    528         mNotificationsPerBufferReq = 0;
    529     } else {
    530         if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) {
    531             ALOGE("%s(): notificationFrames=%d not permitted for non-fast track",
    532                     __func__, notificationFrames);
    533             status = BAD_VALUE;
    534             goto exit;
    535         }
    536         if (frameCount > 0) {
    537             ALOGE("%s(): notificationFrames=%d not permitted with non-zero frameCount=%zu",
    538                     __func__, notificationFrames, frameCount);
    539             status = BAD_VALUE;
    540             goto exit;
    541         }
    542         mNotificationFramesReq = 0;
    543         const uint32_t minNotificationsPerBuffer = 1;
    544         const uint32_t maxNotificationsPerBuffer = 8;
    545         mNotificationsPerBufferReq = min(maxNotificationsPerBuffer,
    546                 max((uint32_t) -notificationFrames, minNotificationsPerBuffer));
    547         ALOGW_IF(mNotificationsPerBufferReq != (uint32_t) -notificationFrames,
    548                 "%s(): notificationFrames=%d clamped to the range -%u to -%u",
    549                 __func__,
    550                 notificationFrames, minNotificationsPerBuffer, maxNotificationsPerBuffer);
    551     }
    552     mNotificationFramesAct = 0;
    553     callingPid = IPCThreadState::self()->getCallingPid();
    554     myPid = getpid();
    555     if (uid == AUDIO_UID_INVALID || (callingPid != myPid)) {
    556         mClientUid = IPCThreadState::self()->getCallingUid();
    557     } else {
    558         mClientUid = uid;
    559     }
    560     if (pid == -1 || (callingPid != myPid)) {
    561         mClientPid = callingPid;
    562     } else {
    563         mClientPid = pid;
    564     }
    565     mAuxEffectId = 0;
    566     mOrigFlags = mFlags = flags;
    567     mCbf = cbf;
    568 
    569     if (cbf != NULL) {
    570         mAudioTrackThread = new AudioTrackThread(*this);
    571         mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/);
    572         // thread begins in paused state, and will not reference us until start()
    573     }
    574 
    575     // create the IAudioTrack
    576     {
    577         AutoMutex lock(mLock);
    578         status = createTrack_l();
    579     }
    580     if (status != NO_ERROR) {
    581         if (mAudioTrackThread != 0) {
    582             mAudioTrackThread->requestExit();   // see comment in AudioTrack.h
    583             mAudioTrackThread->requestExitAndWait();
    584             mAudioTrackThread.clear();
    585         }
    586         goto exit;
    587     }
    588 
    589     mUserData = user;
    590     mLoopCount = 0;
    591     mLoopStart = 0;
    592     mLoopEnd = 0;
    593     mLoopCountNotified = 0;
    594     mMarkerPosition = 0;
    595     mMarkerReached = false;
    596     mNewPosition = 0;
    597     mUpdatePeriod = 0;
    598     mPosition = 0;
    599     mReleased = 0;
    600     mStartNs = 0;
    601     mStartFromZeroUs = 0;
    602     AudioSystem::acquireAudioSessionId(mSessionId, mClientPid);
    603     mSequence = 1;
    604     mObservedSequence = mSequence;
    605     mInUnderrun = false;
    606     mPreviousTimestampValid = false;
    607     mTimestampStartupGlitchReported = false;
    608     mTimestampRetrogradePositionReported = false;
    609     mTimestampRetrogradeTimeReported = false;
    610     mTimestampStallReported = false;
    611     mTimestampStaleTimeReported = false;
    612     mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
    613     mStartTs.mPosition = 0;
    614     mUnderrunCountOffset = 0;
    615     mFramesWritten = 0;
    616     mFramesWrittenServerOffset = 0;
    617     mFramesWrittenAtRestore = -1; // -1 is a unique initializer.
    618     mVolumeHandler = new media::VolumeHandler();
    619 
    620 exit:
    621     mStatus = status;
    622     return status;
    623 }
    624 
    625 // -------------------------------------------------------------------------
    626 
    627 status_t AudioTrack::start()
    628 {
    629     AutoMutex lock(mLock);
    630     ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState));
    631 
    632     if (mState == STATE_ACTIVE) {
    633         return INVALID_OPERATION;
    634     }
    635 
    636     mInUnderrun = true;
    637 
    638     State previousState = mState;
    639     if (previousState == STATE_PAUSED_STOPPING) {
    640         mState = STATE_STOPPING;
    641     } else {
    642         mState = STATE_ACTIVE;
    643     }
    644     (void) updateAndGetPosition_l();
    645 
    646     // save start timestamp
    647     if (isOffloadedOrDirect_l()) {
    648         if (getTimestamp_l(mStartTs) != OK) {
    649             mStartTs.mPosition = 0;
    650         }
    651     } else {
    652         if (getTimestamp_l(&mStartEts) != OK) {
    653             mStartEts.clear();
    654         }
    655     }
    656     mStartNs = systemTime(); // save this for timestamp adjustment after starting.
    657     if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) {
    658         // reset current position as seen by client to 0
    659         mPosition = 0;
    660         mPreviousTimestampValid = false;
    661         mTimestampStartupGlitchReported = false;
    662         mTimestampRetrogradePositionReported = false;
    663         mTimestampRetrogradeTimeReported = false;
    664         mTimestampStallReported = false;
    665         mTimestampStaleTimeReported = false;
    666         mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
    667 
    668         if (!isOffloadedOrDirect_l()
    669                 && mStartEts.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] > 0) {
    670             // Server side has consumed something, but is it finished consuming?
    671             // It is possible since flush and stop are asynchronous that the server
    672             // is still active at this point.
    673             ALOGV("%s(%d): server read:%lld  cumulative flushed:%lld  client written:%lld",
    674                     __func__, mPortId,
    675                     (long long)(mFramesWrittenServerOffset
    676                             + mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER]),
    677                     (long long)mStartEts.mFlushed,
    678                     (long long)mFramesWritten);
    679             // mStartEts is already adjusted by mFramesWrittenServerOffset, so we delta adjust.
    680             mFramesWrittenServerOffset -= mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER];
    681         }
    682         mFramesWritten = 0;
    683         mProxy->clearTimestamp(); // need new server push for valid timestamp
    684         mMarkerReached = false;
    685 
    686         // For offloaded tracks, we don't know if the hardware counters are really zero here,
    687         // since the flush is asynchronous and stop may not fully drain.
    688         // We save the time when the track is started to later verify whether
    689         // the counters are realistic (i.e. start from zero after this time).
    690         mStartFromZeroUs = mStartNs / 1000;
    691 
    692         // force refresh of remaining frames by processAudioBuffer() as last
    693         // write before stop could be partial.
    694         mRefreshRemaining = true;
    695 
    696         // for static track, clear the old flags when starting from stopped state
    697         if (mSharedBuffer != 0) {
    698             android_atomic_and(
    699             ~(CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
    700             &mCblk->mFlags);
    701         }
    702     }
    703     mNewPosition = mPosition + mUpdatePeriod;
    704     int32_t flags = android_atomic_and(~(CBLK_STREAM_END_DONE | CBLK_DISABLED), &mCblk->mFlags);
    705 
    706     status_t status = NO_ERROR;
    707     if (!(flags & CBLK_INVALID)) {
    708         status = mAudioTrack->start();
    709         if (status == DEAD_OBJECT) {
    710             flags |= CBLK_INVALID;
    711         }
    712     }
    713     if (flags & CBLK_INVALID) {
    714         status = restoreTrack_l("start");
    715     }
    716 
    717     // resume or pause the callback thread as needed.
    718     sp<AudioTrackThread> t = mAudioTrackThread;
    719     if (status == NO_ERROR) {
    720         if (t != 0) {
    721             if (previousState == STATE_STOPPING) {
    722                 mProxy->interrupt();
    723             } else {
    724                 t->resume();
    725             }
    726         } else {
    727             mPreviousPriority = getpriority(PRIO_PROCESS, 0);
    728             get_sched_policy(0, &mPreviousSchedulingGroup);
    729             androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
    730         }
    731 
    732         // Start our local VolumeHandler for restoration purposes.
    733         mVolumeHandler->setStarted();
    734     } else {
    735         ALOGE("%s(%d): status %d", __func__, mPortId, status);
    736         mState = previousState;
    737         if (t != 0) {
    738             if (previousState != STATE_STOPPING) {
    739                 t->pause();
    740             }
    741         } else {
    742             setpriority(PRIO_PROCESS, 0, mPreviousPriority);
    743             set_sched_policy(0, mPreviousSchedulingGroup);
    744         }
    745     }
    746 
    747     return status;
    748 }
    749 
    750 void AudioTrack::stop()
    751 {
    752     AutoMutex lock(mLock);
    753     ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState));
    754 
    755     if (mState != STATE_ACTIVE && mState != STATE_PAUSED) {
    756         return;
    757     }
    758 
    759     if (isOffloaded_l()) {
    760         mState = STATE_STOPPING;
    761     } else {
    762         mState = STATE_STOPPED;
    763         ALOGD_IF(mSharedBuffer == nullptr,
    764                 "%s(%d): called with %u frames delivered", __func__, mPortId, mReleased.value());
    765         mReleased = 0;
    766     }
    767 
    768     mProxy->stop(); // notify server not to read beyond current client position until start().
    769     mProxy->interrupt();
    770     mAudioTrack->stop();
    771 
    772     // Note: legacy handling - stop does not clear playback marker
    773     // and periodic update counter, but flush does for streaming tracks.
    774 
    775     if (mSharedBuffer != 0) {
    776         // clear buffer position and loop count.
    777         mStaticProxy->setBufferPositionAndLoop(0 /* position */,
    778                 0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */);
    779     }
    780 
    781     sp<AudioTrackThread> t = mAudioTrackThread;
    782     if (t != 0) {
    783         if (!isOffloaded_l()) {
    784             t->pause();
    785         } else if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) {
    786             // causes wake up of the playback thread, that will callback the client for
    787             // EVENT_STREAM_END in processAudioBuffer()
    788             t->wake();
    789         }
    790     } else {
    791         setpriority(PRIO_PROCESS, 0, mPreviousPriority);
    792         set_sched_policy(0, mPreviousSchedulingGroup);
    793     }
    794 }
    795 
    796 bool AudioTrack::stopped() const
    797 {
    798     AutoMutex lock(mLock);
    799     return mState != STATE_ACTIVE;
    800 }
    801 
    802 void AudioTrack::flush()
    803 {
    804     AutoMutex lock(mLock);
    805     ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState));
    806 
    807     if (mSharedBuffer != 0) {
    808         return;
    809     }
    810     if (mState == STATE_ACTIVE) {
    811         return;
    812     }
    813     flush_l();
    814 }
    815 
    816 void AudioTrack::flush_l()
    817 {
    818     ALOG_ASSERT(mState != STATE_ACTIVE);
    819 
    820     // clear playback marker and periodic update counter
    821     mMarkerPosition = 0;
    822     mMarkerReached = false;
    823     mUpdatePeriod = 0;
    824     mRefreshRemaining = true;
    825 
    826     mState = STATE_FLUSHED;
    827     mReleased = 0;
    828     if (isOffloaded_l()) {
    829         mProxy->interrupt();
    830     }
    831     mProxy->flush();
    832     mAudioTrack->flush();
    833 }
    834 
    835 void AudioTrack::pause()
    836 {
    837     AutoMutex lock(mLock);
    838     ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState));
    839 
    840     if (mState == STATE_ACTIVE) {
    841         mState = STATE_PAUSED;
    842     } else if (mState == STATE_STOPPING) {
    843         mState = STATE_PAUSED_STOPPING;
    844     } else {
    845         return;
    846     }
    847     mProxy->interrupt();
    848     mAudioTrack->pause();
    849 
    850     if (isOffloaded_l()) {
    851         if (mOutput != AUDIO_IO_HANDLE_NONE) {
    852             // An offload output can be re-used between two audio tracks having
    853             // the same configuration. A timestamp query for a paused track
    854             // while the other is running would return an incorrect time.
    855             // To fix this, cache the playback position on a pause() and return
    856             // this time when requested until the track is resumed.
    857 
    858             // OffloadThread sends HAL pause in its threadLoop. Time saved
    859             // here can be slightly off.
    860 
    861             // TODO: check return code for getRenderPosition.
    862 
    863             uint32_t halFrames;
    864             AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition);
    865             ALOGV("%s(%d): for offload, cache current position %u",
    866                     __func__, mPortId, mPausedPosition);
    867         }
    868     }
    869 }
    870 
    871 status_t AudioTrack::setVolume(float left, float right)
    872 {
    873     // This duplicates a test by AudioTrack JNI, but that is not the only caller
    874     if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY ||
    875             isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) {
    876         return BAD_VALUE;
    877     }
    878 
    879     AutoMutex lock(mLock);
    880     mVolume[AUDIO_INTERLEAVE_LEFT] = left;
    881     mVolume[AUDIO_INTERLEAVE_RIGHT] = right;
    882 
    883     mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right)));
    884 
    885     if (isOffloaded_l()) {
    886         mAudioTrack->signal();
    887     }
    888     return NO_ERROR;
    889 }
    890 
    891 status_t AudioTrack::setVolume(float volume)
    892 {
    893     return setVolume(volume, volume);
    894 }
    895 
    896 status_t AudioTrack::setAuxEffectSendLevel(float level)
    897 {
    898     // This duplicates a test by AudioTrack JNI, but that is not the only caller
    899     if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) {
    900         return BAD_VALUE;
    901     }
    902 
    903     AutoMutex lock(mLock);
    904     mSendLevel = level;
    905     mProxy->setSendLevel(level);
    906 
    907     return NO_ERROR;
    908 }
    909 
    910 void AudioTrack::getAuxEffectSendLevel(float* level) const
    911 {
    912     if (level != NULL) {
    913         *level = mSendLevel;
    914     }
    915 }
    916 
    917 status_t AudioTrack::setSampleRate(uint32_t rate)
    918 {
    919     AutoMutex lock(mLock);
    920     ALOGV("%s(%d): prior state:%s rate:%u", __func__, mPortId, stateToString(mState), rate);
    921 
    922     if (rate == mSampleRate) {
    923         return NO_ERROR;
    924     }
    925     if (isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST)
    926             || (mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL)) {
    927         return INVALID_OPERATION;
    928     }
    929     if (mOutput == AUDIO_IO_HANDLE_NONE) {
    930         return NO_INIT;
    931     }
    932     // NOTE: it is theoretically possible, but highly unlikely, that a device change
    933     // could mean a previously allowed sampling rate is no longer allowed.
    934     uint32_t afSamplingRate;
    935     if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) {
    936         return NO_INIT;
    937     }
    938     // pitch is emulated by adjusting speed and sampleRate
    939     const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch);
    940     if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
    941         return BAD_VALUE;
    942     }
    943     // TODO: Should we also check if the buffer size is compatible?
    944 
    945     mSampleRate = rate;
    946     mProxy->setSampleRate(effectiveSampleRate);
    947 
    948     return NO_ERROR;
    949 }
    950 
    951 uint32_t AudioTrack::getSampleRate() const
    952 {
    953     AutoMutex lock(mLock);
    954 
    955     // sample rate can be updated during playback by the offloaded decoder so we need to
    956     // query the HAL and update if needed.
    957 // FIXME use Proxy return channel to update the rate from server and avoid polling here
    958     if (isOffloadedOrDirect_l()) {
    959         if (mOutput != AUDIO_IO_HANDLE_NONE) {
    960             uint32_t sampleRate = 0;
    961             status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate);
    962             if (status == NO_ERROR) {
    963                 mSampleRate = sampleRate;
    964             }
    965         }
    966     }
    967     return mSampleRate;
    968 }
    969 
    970 uint32_t AudioTrack::getOriginalSampleRate() const
    971 {
    972     return mOriginalSampleRate;
    973 }
    974 
    975 status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate)
    976 {
    977     AutoMutex lock(mLock);
    978     if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
    979         return NO_ERROR;
    980     }
    981     if (isOffloadedOrDirect_l()) {
    982         return INVALID_OPERATION;
    983     }
    984     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
    985         return INVALID_OPERATION;
    986     }
    987 
    988     ALOGV("%s(%d): mSampleRate:%u  mSpeed:%f  mPitch:%f",
    989             __func__, mPortId, mSampleRate, playbackRate.mSpeed, playbackRate.mPitch);
    990     // pitch is emulated by adjusting speed and sampleRate
    991     const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch);
    992     const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch);
    993     const float effectivePitch = adjustPitch(playbackRate.mPitch);
    994     AudioPlaybackRate playbackRateTemp = playbackRate;
    995     playbackRateTemp.mSpeed = effectiveSpeed;
    996     playbackRateTemp.mPitch = effectivePitch;
    997 
    998     ALOGV("%s(%d) (effective) mSampleRate:%u  mSpeed:%f  mPitch:%f",
    999             __func__, mPortId, effectiveRate, effectiveSpeed, effectivePitch);
   1000 
   1001     if (!isAudioPlaybackRateValid(playbackRateTemp)) {
   1002         ALOGW("%s(%d) (%f, %f) failed (effective rate out of bounds)",
   1003                 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch);
   1004         return BAD_VALUE;
   1005     }
   1006     // Check if the buffer size is compatible.
   1007     if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) {
   1008         ALOGW("%s(%d) (%f, %f) failed (buffer size)",
   1009                 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch);
   1010         return BAD_VALUE;
   1011     }
   1012 
   1013     // Check resampler ratios are within bounds
   1014     if ((uint64_t)effectiveRate > (uint64_t)mSampleRate *
   1015             (uint64_t)AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
   1016         ALOGW("%s(%d) (%f, %f) failed. Resample rate exceeds max accepted value",
   1017                 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch);
   1018         return BAD_VALUE;
   1019     }
   1020 
   1021     if ((uint64_t)effectiveRate * (uint64_t)AUDIO_RESAMPLER_UP_RATIO_MAX < (uint64_t)mSampleRate) {
   1022         ALOGW("%s(%d) (%f, %f) failed. Resample rate below min accepted value",
   1023                 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch);
   1024         return BAD_VALUE;
   1025     }
   1026     mPlaybackRate = playbackRate;
   1027     //set effective rates
   1028     mProxy->setPlaybackRate(playbackRateTemp);
   1029     mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate
   1030     return NO_ERROR;
   1031 }
   1032 
   1033 const AudioPlaybackRate& AudioTrack::getPlaybackRate() const
   1034 {
   1035     AutoMutex lock(mLock);
   1036     return mPlaybackRate;
   1037 }
   1038 
   1039 ssize_t AudioTrack::getBufferSizeInFrames()
   1040 {
   1041     AutoMutex lock(mLock);
   1042     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
   1043         return NO_INIT;
   1044     }
   1045     return (ssize_t) mProxy->getBufferSizeInFrames();
   1046 }
   1047 
   1048 status_t AudioTrack::getBufferDurationInUs(int64_t *duration)
   1049 {
   1050     if (duration == nullptr) {
   1051         return BAD_VALUE;
   1052     }
   1053     AutoMutex lock(mLock);
   1054     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
   1055         return NO_INIT;
   1056     }
   1057     ssize_t bufferSizeInFrames = (ssize_t) mProxy->getBufferSizeInFrames();
   1058     if (bufferSizeInFrames < 0) {
   1059         return (status_t)bufferSizeInFrames;
   1060     }
   1061     *duration = (int64_t)((double)bufferSizeInFrames * 1000000
   1062             / ((double)mSampleRate * mPlaybackRate.mSpeed));
   1063     return NO_ERROR;
   1064 }
   1065 
   1066 ssize_t AudioTrack::setBufferSizeInFrames(size_t bufferSizeInFrames)
   1067 {
   1068     AutoMutex lock(mLock);
   1069     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
   1070         return NO_INIT;
   1071     }
   1072     // Reject if timed track or compressed audio.
   1073     if (!audio_is_linear_pcm(mFormat)) {
   1074         return INVALID_OPERATION;
   1075     }
   1076     return (ssize_t) mProxy->setBufferSizeInFrames((uint32_t) bufferSizeInFrames);
   1077 }
   1078 
   1079 status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount)
   1080 {
   1081     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
   1082         return INVALID_OPERATION;
   1083     }
   1084 
   1085     if (loopCount == 0) {
   1086         ;
   1087     } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount &&
   1088             loopEnd - loopStart >= MIN_LOOP) {
   1089         ;
   1090     } else {
   1091         return BAD_VALUE;
   1092     }
   1093 
   1094     AutoMutex lock(mLock);
   1095     // See setPosition() regarding setting parameters such as loop points or position while active
   1096     if (mState == STATE_ACTIVE) {
   1097         return INVALID_OPERATION;
   1098     }
   1099     setLoop_l(loopStart, loopEnd, loopCount);
   1100     return NO_ERROR;
   1101 }
   1102 
   1103 void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount)
   1104 {
   1105     // We do not update the periodic notification point.
   1106     // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
   1107     mLoopCount = loopCount;
   1108     mLoopEnd = loopEnd;
   1109     mLoopStart = loopStart;
   1110     mLoopCountNotified = loopCount;
   1111     mStaticProxy->setLoop(loopStart, loopEnd, loopCount);
   1112 
   1113     // Waking the AudioTrackThread is not needed as this cannot be called when active.
   1114 }
   1115 
   1116 status_t AudioTrack::setMarkerPosition(uint32_t marker)
   1117 {
   1118     // The only purpose of setting marker position is to get a callback
   1119     if (mCbf == NULL || isOffloadedOrDirect()) {
   1120         return INVALID_OPERATION;
   1121     }
   1122 
   1123     AutoMutex lock(mLock);
   1124     mMarkerPosition = marker;
   1125     mMarkerReached = false;
   1126 
   1127     sp<AudioTrackThread> t = mAudioTrackThread;
   1128     if (t != 0) {
   1129         t->wake();
   1130     }
   1131     return NO_ERROR;
   1132 }
   1133 
   1134 status_t AudioTrack::getMarkerPosition(uint32_t *marker) const
   1135 {
   1136     if (isOffloadedOrDirect()) {
   1137         return INVALID_OPERATION;
   1138     }
   1139     if (marker == NULL) {
   1140         return BAD_VALUE;
   1141     }
   1142 
   1143     AutoMutex lock(mLock);
   1144     mMarkerPosition.getValue(marker);
   1145 
   1146     return NO_ERROR;
   1147 }
   1148 
   1149 status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod)
   1150 {
   1151     // The only purpose of setting position update period is to get a callback
   1152     if (mCbf == NULL || isOffloadedOrDirect()) {
   1153         return INVALID_OPERATION;
   1154     }
   1155 
   1156     AutoMutex lock(mLock);
   1157     mNewPosition = updateAndGetPosition_l() + updatePeriod;
   1158     mUpdatePeriod = updatePeriod;
   1159 
   1160     sp<AudioTrackThread> t = mAudioTrackThread;
   1161     if (t != 0) {
   1162         t->wake();
   1163     }
   1164     return NO_ERROR;
   1165 }
   1166 
   1167 status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const
   1168 {
   1169     if (isOffloadedOrDirect()) {
   1170         return INVALID_OPERATION;
   1171     }
   1172     if (updatePeriod == NULL) {
   1173         return BAD_VALUE;
   1174     }
   1175 
   1176     AutoMutex lock(mLock);
   1177     *updatePeriod = mUpdatePeriod;
   1178 
   1179     return NO_ERROR;
   1180 }
   1181 
   1182 status_t AudioTrack::setPosition(uint32_t position)
   1183 {
   1184     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
   1185         return INVALID_OPERATION;
   1186     }
   1187     if (position > mFrameCount) {
   1188         return BAD_VALUE;
   1189     }
   1190 
   1191     AutoMutex lock(mLock);
   1192     // Currently we require that the player is inactive before setting parameters such as position
   1193     // or loop points.  Otherwise, there could be a race condition: the application could read the
   1194     // current position, compute a new position or loop parameters, and then set that position or
   1195     // loop parameters but it would do the "wrong" thing since the position has continued to advance
   1196     // in the mean time.  If we ever provide a sequencer in server, we could allow a way for the app
   1197     // to specify how it wants to handle such scenarios.
   1198     if (mState == STATE_ACTIVE) {
   1199         return INVALID_OPERATION;
   1200     }
   1201     // After setting the position, use full update period before notification.
   1202     mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
   1203     mStaticProxy->setBufferPosition(position);
   1204 
   1205     // Waking the AudioTrackThread is not needed as this cannot be called when active.
   1206     return NO_ERROR;
   1207 }
   1208 
   1209 status_t AudioTrack::getPosition(uint32_t *position)
   1210 {
   1211     if (position == NULL) {
   1212         return BAD_VALUE;
   1213     }
   1214 
   1215     AutoMutex lock(mLock);
   1216     // FIXME: offloaded and direct tracks call into the HAL for render positions
   1217     // for compressed/synced data; however, we use proxy position for pure linear pcm data
   1218     // as we do not know the capability of the HAL for pcm position support and standby.
   1219     // There may be some latency differences between the HAL position and the proxy position.
   1220     if (isOffloadedOrDirect_l() && !isPurePcmData_l()) {
   1221         uint32_t dspFrames = 0;
   1222 
   1223         if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) {
   1224             ALOGV("%s(%d): called in paused state, return cached position %u",
   1225                 __func__, mPortId, mPausedPosition);
   1226             *position = mPausedPosition;
   1227             return NO_ERROR;
   1228         }
   1229 
   1230         if (mOutput != AUDIO_IO_HANDLE_NONE) {
   1231             uint32_t halFrames; // actually unused
   1232             (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames);
   1233             // FIXME: on getRenderPosition() error, we return OK with frame position 0.
   1234         }
   1235         // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED)
   1236         // due to hardware latency. We leave this behavior for now.
   1237         *position = dspFrames;
   1238     } else {
   1239         if (mCblk->mFlags & CBLK_INVALID) {
   1240             (void) restoreTrack_l("getPosition");
   1241             // FIXME: for compatibility with the Java API we ignore the restoreTrack_l()
   1242             // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position.
   1243         }
   1244 
   1245         // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes
   1246         *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ?
   1247                 0 : updateAndGetPosition_l().value();
   1248     }
   1249     return NO_ERROR;
   1250 }
   1251 
   1252 status_t AudioTrack::getBufferPosition(uint32_t *position)
   1253 {
   1254     if (mSharedBuffer == 0) {
   1255         return INVALID_OPERATION;
   1256     }
   1257     if (position == NULL) {
   1258         return BAD_VALUE;
   1259     }
   1260 
   1261     AutoMutex lock(mLock);
   1262     *position = mStaticProxy->getBufferPosition();
   1263     return NO_ERROR;
   1264 }
   1265 
   1266 status_t AudioTrack::reload()
   1267 {
   1268     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
   1269         return INVALID_OPERATION;
   1270     }
   1271 
   1272     AutoMutex lock(mLock);
   1273     // See setPosition() regarding setting parameters such as loop points or position while active
   1274     if (mState == STATE_ACTIVE) {
   1275         return INVALID_OPERATION;
   1276     }
   1277     mNewPosition = mUpdatePeriod;
   1278     (void) updateAndGetPosition_l();
   1279     mPosition = 0;
   1280     mPreviousTimestampValid = false;
   1281 #if 0
   1282     // The documentation is not clear on the behavior of reload() and the restoration
   1283     // of loop count. Historically we have not restored loop count, start, end,
   1284     // but it makes sense if one desires to repeat playing a particular sound.
   1285     if (mLoopCount != 0) {
   1286         mLoopCountNotified = mLoopCount;
   1287         mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount);
   1288     }
   1289 #endif
   1290     mStaticProxy->setBufferPosition(0);
   1291     return NO_ERROR;
   1292 }
   1293 
   1294 audio_io_handle_t AudioTrack::getOutput() const
   1295 {
   1296     AutoMutex lock(mLock);
   1297     return mOutput;
   1298 }
   1299 
   1300 status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) {
   1301     AutoMutex lock(mLock);
   1302     if (mSelectedDeviceId != deviceId) {
   1303         mSelectedDeviceId = deviceId;
   1304         if (mStatus == NO_ERROR) {
   1305             android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
   1306             mProxy->interrupt();
   1307         }
   1308     }
   1309     return NO_ERROR;
   1310 }
   1311 
   1312 audio_port_handle_t AudioTrack::getOutputDevice() {
   1313     AutoMutex lock(mLock);
   1314     return mSelectedDeviceId;
   1315 }
   1316 
   1317 // must be called with mLock held
   1318 void AudioTrack::updateRoutedDeviceId_l()
   1319 {
   1320     // if the track is inactive, do not update actual device as the output stream maybe routed
   1321     // to a device not relevant to this client because of other active use cases.
   1322     if (mState != STATE_ACTIVE) {
   1323         return;
   1324     }
   1325     if (mOutput != AUDIO_IO_HANDLE_NONE) {
   1326         audio_port_handle_t deviceId = AudioSystem::getDeviceIdForIo(mOutput);
   1327         if (deviceId != AUDIO_PORT_HANDLE_NONE) {
   1328             mRoutedDeviceId = deviceId;
   1329         }
   1330     }
   1331 }
   1332 
   1333 audio_port_handle_t AudioTrack::getRoutedDeviceId() {
   1334     AutoMutex lock(mLock);
   1335     updateRoutedDeviceId_l();
   1336     return mRoutedDeviceId;
   1337 }
   1338 
   1339 status_t AudioTrack::attachAuxEffect(int effectId)
   1340 {
   1341     AutoMutex lock(mLock);
   1342     status_t status = mAudioTrack->attachAuxEffect(effectId);
   1343     if (status == NO_ERROR) {
   1344         mAuxEffectId = effectId;
   1345     }
   1346     return status;
   1347 }
   1348 
   1349 audio_stream_type_t AudioTrack::streamType() const
   1350 {
   1351     if (mStreamType == AUDIO_STREAM_DEFAULT) {
   1352         return AudioSystem::attributesToStreamType(mAttributes);
   1353     }
   1354     return mStreamType;
   1355 }
   1356 
   1357 uint32_t AudioTrack::latency()
   1358 {
   1359     AutoMutex lock(mLock);
   1360     updateLatency_l();
   1361     return mLatency;
   1362 }
   1363 
   1364 // -------------------------------------------------------------------------
   1365 
   1366 // must be called with mLock held
   1367 void AudioTrack::updateLatency_l()
   1368 {
   1369     status_t status = AudioSystem::getLatency(mOutput, &mAfLatency);
   1370     if (status != NO_ERROR) {
   1371         ALOGW("%s(%d): getLatency(%d) failed status %d", __func__, mPortId, mOutput, status);
   1372     } else {
   1373         // FIXME don't believe this lie
   1374         mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate;
   1375     }
   1376 }
   1377 
   1378 // TODO Move this macro to a common header file for enum to string conversion in audio framework.
   1379 #define MEDIA_CASE_ENUM(name) case name: return #name
   1380 const char * AudioTrack::convertTransferToText(transfer_type transferType) {
   1381     switch (transferType) {
   1382         MEDIA_CASE_ENUM(TRANSFER_DEFAULT);
   1383         MEDIA_CASE_ENUM(TRANSFER_CALLBACK);
   1384         MEDIA_CASE_ENUM(TRANSFER_OBTAIN);
   1385         MEDIA_CASE_ENUM(TRANSFER_SYNC);
   1386         MEDIA_CASE_ENUM(TRANSFER_SHARED);
   1387         MEDIA_CASE_ENUM(TRANSFER_SYNC_NOTIF_CALLBACK);
   1388         default:
   1389             return "UNRECOGNIZED";
   1390     }
   1391 }
   1392 
   1393 status_t AudioTrack::createTrack_l()
   1394 {
   1395     status_t status;
   1396     bool callbackAdded = false;
   1397 
   1398     const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();
   1399     if (audioFlinger == 0) {
   1400         ALOGE("%s(%d): Could not get audioflinger",
   1401                 __func__, mPortId);
   1402         status = NO_INIT;
   1403         goto exit;
   1404     }
   1405 
   1406     {
   1407     // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted.
   1408     // After fast request is denied, we will request again if IAudioTrack is re-created.
   1409     // Client can only express a preference for FAST.  Server will perform additional tests.
   1410     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
   1411         // either of these use cases:
   1412         // use case 1: shared buffer
   1413         bool sharedBuffer = mSharedBuffer != 0;
   1414         bool transferAllowed =
   1415             // use case 2: callback transfer mode
   1416             (mTransfer == TRANSFER_CALLBACK) ||
   1417             // use case 3: obtain/release mode
   1418             (mTransfer == TRANSFER_OBTAIN) ||
   1419             // use case 4: synchronous write
   1420             ((mTransfer == TRANSFER_SYNC || mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK)
   1421                     && mThreadCanCallJava);
   1422 
   1423         bool fastAllowed = sharedBuffer || transferAllowed;
   1424         if (!fastAllowed) {
   1425             ALOGW("%s(%d): AUDIO_OUTPUT_FLAG_FAST denied by client,"
   1426                   " not shared buffer and transfer = %s",
   1427                   __func__, mPortId,
   1428                   convertTransferToText(mTransfer));
   1429             mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
   1430         }
   1431     }
   1432 
   1433     IAudioFlinger::CreateTrackInput input;
   1434     if (mStreamType != AUDIO_STREAM_DEFAULT) {
   1435         input.attr = AudioSystem::streamTypeToAttributes(mStreamType);
   1436     } else {
   1437         input.attr = mAttributes;
   1438     }
   1439     input.config = AUDIO_CONFIG_INITIALIZER;
   1440     input.config.sample_rate = mSampleRate;
   1441     input.config.channel_mask = mChannelMask;
   1442     input.config.format = mFormat;
   1443     input.config.offload_info = mOffloadInfoCopy;
   1444     input.clientInfo.clientUid = mClientUid;
   1445     input.clientInfo.clientPid = mClientPid;
   1446     input.clientInfo.clientTid = -1;
   1447     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
   1448         // It is currently meaningless to request SCHED_FIFO for a Java thread.  Even if the
   1449         // application-level code follows all non-blocking design rules, the language runtime
   1450         // doesn't also follow those rules, so the thread will not benefit overall.
   1451         if (mAudioTrackThread != 0 && !mThreadCanCallJava) {
   1452             input.clientInfo.clientTid = mAudioTrackThread->getTid();
   1453         }
   1454     }
   1455     input.sharedBuffer = mSharedBuffer;
   1456     input.notificationsPerBuffer = mNotificationsPerBufferReq;
   1457     input.speed = 1.0;
   1458     if (audio_has_proportional_frames(mFormat) && mSharedBuffer == 0 &&
   1459             (mFlags & AUDIO_OUTPUT_FLAG_FAST) == 0) {
   1460         input.speed  = !isPurePcmData_l() || isOffloadedOrDirect_l() ? 1.0f :
   1461                         max(mMaxRequiredSpeed, mPlaybackRate.mSpeed);
   1462     }
   1463     input.flags = mFlags;
   1464     input.frameCount = mReqFrameCount;
   1465     input.notificationFrameCount = mNotificationFramesReq;
   1466     input.selectedDeviceId = mSelectedDeviceId;
   1467     input.sessionId = mSessionId;
   1468 
   1469     IAudioFlinger::CreateTrackOutput output;
   1470 
   1471     sp<IAudioTrack> track = audioFlinger->createTrack(input,
   1472                                                       output,
   1473                                                       &status);
   1474 
   1475     if (status != NO_ERROR || output.outputId == AUDIO_IO_HANDLE_NONE) {
   1476         ALOGE("%s(%d): AudioFlinger could not create track, status: %d output %d",
   1477                 __func__, mPortId, status, output.outputId);
   1478         if (status == NO_ERROR) {
   1479             status = NO_INIT;
   1480         }
   1481         goto exit;
   1482     }
   1483     ALOG_ASSERT(track != 0);
   1484 
   1485     mFrameCount = output.frameCount;
   1486     mNotificationFramesAct = (uint32_t)output.notificationFrameCount;
   1487     mRoutedDeviceId = output.selectedDeviceId;
   1488     mSessionId = output.sessionId;
   1489 
   1490     mSampleRate = output.sampleRate;
   1491     if (mOriginalSampleRate == 0) {
   1492         mOriginalSampleRate = mSampleRate;
   1493     }
   1494 
   1495     mAfFrameCount = output.afFrameCount;
   1496     mAfSampleRate = output.afSampleRate;
   1497     mAfLatency = output.afLatencyMs;
   1498 
   1499     mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate;
   1500 
   1501     // AudioFlinger now owns the reference to the I/O handle,
   1502     // so we are no longer responsible for releasing it.
   1503 
   1504     // FIXME compare to AudioRecord
   1505     sp<IMemory> iMem = track->getCblk();
   1506     if (iMem == 0) {
   1507         ALOGE("%s(%d): Could not get control block", __func__, mPortId);
   1508         status = NO_INIT;
   1509         goto exit;
   1510     }
   1511     void *iMemPointer = iMem->pointer();
   1512     if (iMemPointer == NULL) {
   1513         ALOGE("%s(%d): Could not get control block pointer", __func__, mPortId);
   1514         status = NO_INIT;
   1515         goto exit;
   1516     }
   1517     // invariant that mAudioTrack != 0 is true only after set() returns successfully
   1518     if (mAudioTrack != 0) {
   1519         IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
   1520         mDeathNotifier.clear();
   1521     }
   1522     mAudioTrack = track;
   1523     mCblkMemory = iMem;
   1524     IPCThreadState::self()->flushCommands();
   1525 
   1526     audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer);
   1527     mCblk = cblk;
   1528 
   1529     mAwaitBoost = false;
   1530     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
   1531         if (output.flags & AUDIO_OUTPUT_FLAG_FAST) {
   1532             ALOGI("%s(%d): AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu -> %zu",
   1533                   __func__, mPortId, mReqFrameCount, mFrameCount);
   1534             if (!mThreadCanCallJava) {
   1535                 mAwaitBoost = true;
   1536             }
   1537         } else {
   1538             ALOGW("%s(%d): AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu -> %zu",
   1539                   __func__, mPortId, mReqFrameCount, mFrameCount);
   1540         }
   1541     }
   1542     mFlags = output.flags;
   1543 
   1544     //mOutput != output includes the case where mOutput == AUDIO_IO_HANDLE_NONE for first creation
   1545     if (mDeviceCallback != 0) {
   1546         if (mOutput != AUDIO_IO_HANDLE_NONE) {
   1547             AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
   1548         }
   1549         AudioSystem::addAudioDeviceCallback(this, output.outputId, output.portId);
   1550         callbackAdded = true;
   1551     }
   1552 
   1553     mPortId = output.portId;
   1554     // We retain a copy of the I/O handle, but don't own the reference
   1555     mOutput = output.outputId;
   1556     mRefreshRemaining = true;
   1557 
   1558     // Starting address of buffers in shared memory.  If there is a shared buffer, buffers
   1559     // is the value of pointer() for the shared buffer, otherwise buffers points
   1560     // immediately after the control block.  This address is for the mapping within client
   1561     // address space.  AudioFlinger::TrackBase::mBuffer is for the server address space.
   1562     void* buffers;
   1563     if (mSharedBuffer == 0) {
   1564         buffers = cblk + 1;
   1565     } else {
   1566         buffers = mSharedBuffer->pointer();
   1567         if (buffers == NULL) {
   1568             ALOGE("%s(%d): Could not get buffer pointer", __func__, mPortId);
   1569             status = NO_INIT;
   1570             goto exit;
   1571         }
   1572     }
   1573 
   1574     mAudioTrack->attachAuxEffect(mAuxEffectId);
   1575 
   1576     // If IAudioTrack is re-created, don't let the requested frameCount
   1577     // decrease.  This can confuse clients that cache frameCount().
   1578     if (mFrameCount > mReqFrameCount) {
   1579         mReqFrameCount = mFrameCount;
   1580     }
   1581 
   1582     // reset server position to 0 as we have new cblk.
   1583     mServer = 0;
   1584 
   1585     // update proxy
   1586     if (mSharedBuffer == 0) {
   1587         mStaticProxy.clear();
   1588         mProxy = new AudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize);
   1589     } else {
   1590         mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize);
   1591         mProxy = mStaticProxy;
   1592     }
   1593 
   1594     mProxy->setVolumeLR(gain_minifloat_pack(
   1595             gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]),
   1596             gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT])));
   1597 
   1598     mProxy->setSendLevel(mSendLevel);
   1599     const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch);
   1600     const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch);
   1601     const float effectivePitch = adjustPitch(mPlaybackRate.mPitch);
   1602     mProxy->setSampleRate(effectiveSampleRate);
   1603 
   1604     AudioPlaybackRate playbackRateTemp = mPlaybackRate;
   1605     playbackRateTemp.mSpeed = effectiveSpeed;
   1606     playbackRateTemp.mPitch = effectivePitch;
   1607     mProxy->setPlaybackRate(playbackRateTemp);
   1608     mProxy->setMinimum(mNotificationFramesAct);
   1609 
   1610     mDeathNotifier = new DeathNotifier(this);
   1611     IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this);
   1612 
   1613     }
   1614 
   1615 exit:
   1616     if (status != NO_ERROR && callbackAdded) {
   1617         // note: mOutput is always valid is callbackAdded is true
   1618         AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
   1619     }
   1620 
   1621     mStatus = status;
   1622 
   1623     // sp<IAudioTrack> track destructor will cause releaseOutput() to be called by AudioFlinger
   1624     return status;
   1625 }
   1626 
   1627 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig)
   1628 {
   1629     if (audioBuffer == NULL) {
   1630         if (nonContig != NULL) {
   1631             *nonContig = 0;
   1632         }
   1633         return BAD_VALUE;
   1634     }
   1635     if (mTransfer != TRANSFER_OBTAIN) {
   1636         audioBuffer->frameCount = 0;
   1637         audioBuffer->size = 0;
   1638         audioBuffer->raw = NULL;
   1639         if (nonContig != NULL) {
   1640             *nonContig = 0;
   1641         }
   1642         return INVALID_OPERATION;
   1643     }
   1644 
   1645     const struct timespec *requested;
   1646     struct timespec timeout;
   1647     if (waitCount == -1) {
   1648         requested = &ClientProxy::kForever;
   1649     } else if (waitCount == 0) {
   1650         requested = &ClientProxy::kNonBlocking;
   1651     } else if (waitCount > 0) {
   1652         time_t ms = WAIT_PERIOD_MS * (time_t) waitCount;
   1653         timeout.tv_sec = ms / 1000;
   1654         timeout.tv_nsec = (long) (ms % 1000) * 1000000;
   1655         requested = &timeout;
   1656     } else {
   1657         ALOGE("%s(%d): invalid waitCount %d", __func__, mPortId, waitCount);
   1658         requested = NULL;
   1659     }
   1660     return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig);
   1661 }
   1662 
   1663 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested,
   1664         struct timespec *elapsed, size_t *nonContig)
   1665 {
   1666     // previous and new IAudioTrack sequence numbers are used to detect track re-creation
   1667     uint32_t oldSequence = 0;
   1668     uint32_t newSequence;
   1669 
   1670     Proxy::Buffer buffer;
   1671     status_t status = NO_ERROR;
   1672 
   1673     static const int32_t kMaxTries = 5;
   1674     int32_t tryCounter = kMaxTries;
   1675 
   1676     do {
   1677         // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to
   1678         // keep them from going away if another thread re-creates the track during obtainBuffer()
   1679         sp<AudioTrackClientProxy> proxy;
   1680         sp<IMemory> iMem;
   1681 
   1682         {   // start of lock scope
   1683             AutoMutex lock(mLock);
   1684 
   1685             newSequence = mSequence;
   1686             // did previous obtainBuffer() fail due to media server death or voluntary invalidation?
   1687             if (status == DEAD_OBJECT) {
   1688                 // re-create track, unless someone else has already done so
   1689                 if (newSequence == oldSequence) {
   1690                     status = restoreTrack_l("obtainBuffer");
   1691                     if (status != NO_ERROR) {
   1692                         buffer.mFrameCount = 0;
   1693                         buffer.mRaw = NULL;
   1694                         buffer.mNonContig = 0;
   1695                         break;
   1696                     }
   1697                 }
   1698             }
   1699             oldSequence = newSequence;
   1700 
   1701             if (status == NOT_ENOUGH_DATA) {
   1702                 restartIfDisabled();
   1703             }
   1704 
   1705             // Keep the extra references
   1706             proxy = mProxy;
   1707             iMem = mCblkMemory;
   1708 
   1709             if (mState == STATE_STOPPING) {
   1710                 status = -EINTR;
   1711                 buffer.mFrameCount = 0;
   1712                 buffer.mRaw = NULL;
   1713                 buffer.mNonContig = 0;
   1714                 break;
   1715             }
   1716 
   1717             // Non-blocking if track is stopped or paused
   1718             if (mState != STATE_ACTIVE) {
   1719                 requested = &ClientProxy::kNonBlocking;
   1720             }
   1721 
   1722         }   // end of lock scope
   1723 
   1724         buffer.mFrameCount = audioBuffer->frameCount;
   1725         // FIXME starts the requested timeout and elapsed over from scratch
   1726         status = proxy->obtainBuffer(&buffer, requested, elapsed);
   1727     } while (((status == DEAD_OBJECT) || (status == NOT_ENOUGH_DATA)) && (tryCounter-- > 0));
   1728 
   1729     audioBuffer->frameCount = buffer.mFrameCount;
   1730     audioBuffer->size = buffer.mFrameCount * mFrameSize;
   1731     audioBuffer->raw = buffer.mRaw;
   1732     if (nonContig != NULL) {
   1733         *nonContig = buffer.mNonContig;
   1734     }
   1735     return status;
   1736 }
   1737 
   1738 void AudioTrack::releaseBuffer(const Buffer* audioBuffer)
   1739 {
   1740     // FIXME add error checking on mode, by adding an internal version
   1741     if (mTransfer == TRANSFER_SHARED) {
   1742         return;
   1743     }
   1744 
   1745     size_t stepCount = audioBuffer->size / mFrameSize;
   1746     if (stepCount == 0) {
   1747         return;
   1748     }
   1749 
   1750     Proxy::Buffer buffer;
   1751     buffer.mFrameCount = stepCount;
   1752     buffer.mRaw = audioBuffer->raw;
   1753 
   1754     AutoMutex lock(mLock);
   1755     mReleased += stepCount;
   1756     mInUnderrun = false;
   1757     mProxy->releaseBuffer(&buffer);
   1758 
   1759     // restart track if it was disabled by audioflinger due to previous underrun
   1760     restartIfDisabled();
   1761 }
   1762 
   1763 void AudioTrack::restartIfDisabled()
   1764 {
   1765     int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
   1766     if ((mState == STATE_ACTIVE) && (flags & CBLK_DISABLED)) {
   1767         ALOGW("%s(%d): releaseBuffer() track %p disabled due to previous underrun, restarting",
   1768                 __func__, mPortId, this);
   1769         // FIXME ignoring status
   1770         mAudioTrack->start();
   1771     }
   1772 }
   1773 
   1774 // -------------------------------------------------------------------------
   1775 
   1776 ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking)
   1777 {
   1778     if (mTransfer != TRANSFER_SYNC && mTransfer != TRANSFER_SYNC_NOTIF_CALLBACK) {
   1779         return INVALID_OPERATION;
   1780     }
   1781 
   1782     if (isDirect()) {
   1783         AutoMutex lock(mLock);
   1784         int32_t flags = android_atomic_and(
   1785                             ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
   1786                             &mCblk->mFlags);
   1787         if (flags & CBLK_INVALID) {
   1788             return DEAD_OBJECT;
   1789         }
   1790     }
   1791 
   1792     if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) {
   1793         // Sanity-check: user is most-likely passing an error code, and it would
   1794         // make the return value ambiguous (actualSize vs error).
   1795         ALOGE("%s(%d): AudioTrack::write(buffer=%p, size=%zu (%zd)",
   1796                 __func__, mPortId, buffer, userSize, userSize);
   1797         return BAD_VALUE;
   1798     }
   1799 
   1800     size_t written = 0;
   1801     Buffer audioBuffer;
   1802 
   1803     while (userSize >= mFrameSize) {
   1804         audioBuffer.frameCount = userSize / mFrameSize;
   1805 
   1806         status_t err = obtainBuffer(&audioBuffer,
   1807                 blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking);
   1808         if (err < 0) {
   1809             if (written > 0) {
   1810                 break;
   1811             }
   1812             if (err == TIMED_OUT || err == -EINTR) {
   1813                 err = WOULD_BLOCK;
   1814             }
   1815             return ssize_t(err);
   1816         }
   1817 
   1818         size_t toWrite = audioBuffer.size;
   1819         memcpy(audioBuffer.i8, buffer, toWrite);
   1820         buffer = ((const char *) buffer) + toWrite;
   1821         userSize -= toWrite;
   1822         written += toWrite;
   1823 
   1824         releaseBuffer(&audioBuffer);
   1825     }
   1826 
   1827     if (written > 0) {
   1828         mFramesWritten += written / mFrameSize;
   1829 
   1830         if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) {
   1831             const sp<AudioTrackThread> t = mAudioTrackThread;
   1832             if (t != 0) {
   1833                 // causes wake up of the playback thread, that will callback the client for
   1834                 // more data (with EVENT_CAN_WRITE_MORE_DATA) in processAudioBuffer()
   1835                 t->wake();
   1836             }
   1837         }
   1838     }
   1839 
   1840     return written;
   1841 }
   1842 
   1843 // -------------------------------------------------------------------------
   1844 
   1845 nsecs_t AudioTrack::processAudioBuffer()
   1846 {
   1847     // Currently the AudioTrack thread is not created if there are no callbacks.
   1848     // Would it ever make sense to run the thread, even without callbacks?
   1849     // If so, then replace this by checks at each use for mCbf != NULL.
   1850     LOG_ALWAYS_FATAL_IF(mCblk == NULL);
   1851 
   1852     mLock.lock();
   1853     if (mAwaitBoost) {
   1854         mAwaitBoost = false;
   1855         mLock.unlock();
   1856         static const int32_t kMaxTries = 5;
   1857         int32_t tryCounter = kMaxTries;
   1858         uint32_t pollUs = 10000;
   1859         do {
   1860             int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK;
   1861             if (policy == SCHED_FIFO || policy == SCHED_RR) {
   1862                 break;
   1863             }
   1864             usleep(pollUs);
   1865             pollUs <<= 1;
   1866         } while (tryCounter-- > 0);
   1867         if (tryCounter < 0) {
   1868             ALOGE("%s(%d): did not receive expected priority boost on time",
   1869                     __func__, mPortId);
   1870         }
   1871         // Run again immediately
   1872         return 0;
   1873     }
   1874 
   1875     // Can only reference mCblk while locked
   1876     int32_t flags = android_atomic_and(
   1877         ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags);
   1878 
   1879     // Check for track invalidation
   1880     if (flags & CBLK_INVALID) {
   1881         // for offloaded tracks restoreTrack_l() will just update the sequence and clear
   1882         // AudioSystem cache. We should not exit here but after calling the callback so
   1883         // that the upper layers can recreate the track
   1884         if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) {
   1885             status_t status __unused = restoreTrack_l("processAudioBuffer");
   1886             // FIXME unused status
   1887             // after restoration, continue below to make sure that the loop and buffer events
   1888             // are notified because they have been cleared from mCblk->mFlags above.
   1889         }
   1890     }
   1891 
   1892     bool waitStreamEnd = mState == STATE_STOPPING;
   1893     bool active = mState == STATE_ACTIVE;
   1894 
   1895     // Manage underrun callback, must be done under lock to avoid race with releaseBuffer()
   1896     bool newUnderrun = false;
   1897     if (flags & CBLK_UNDERRUN) {
   1898 #if 0
   1899         // Currently in shared buffer mode, when the server reaches the end of buffer,
   1900         // the track stays active in continuous underrun state.  It's up to the application
   1901         // to pause or stop the track, or set the position to a new offset within buffer.
   1902         // This was some experimental code to auto-pause on underrun.   Keeping it here
   1903         // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content.
   1904         if (mTransfer == TRANSFER_SHARED) {
   1905             mState = STATE_PAUSED;
   1906             active = false;
   1907         }
   1908 #endif
   1909         if (!mInUnderrun) {
   1910             mInUnderrun = true;
   1911             newUnderrun = true;
   1912         }
   1913     }
   1914 
   1915     // Get current position of server
   1916     Modulo<uint32_t> position(updateAndGetPosition_l());
   1917 
   1918     // Manage marker callback
   1919     bool markerReached = false;
   1920     Modulo<uint32_t> markerPosition(mMarkerPosition);
   1921     // uses 32 bit wraparound for comparison with position.
   1922     if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) {
   1923         mMarkerReached = markerReached = true;
   1924     }
   1925 
   1926     // Determine number of new position callback(s) that will be needed, while locked
   1927     size_t newPosCount = 0;
   1928     Modulo<uint32_t> newPosition(mNewPosition);
   1929     uint32_t updatePeriod = mUpdatePeriod;
   1930     // FIXME fails for wraparound, need 64 bits
   1931     if (updatePeriod > 0 && position >= newPosition) {
   1932         newPosCount = ((position - newPosition).value() / updatePeriod) + 1;
   1933         mNewPosition += updatePeriod * newPosCount;
   1934     }
   1935 
   1936     // Cache other fields that will be needed soon
   1937     uint32_t sampleRate = mSampleRate;
   1938     float speed = mPlaybackRate.mSpeed;
   1939     const uint32_t notificationFrames = mNotificationFramesAct;
   1940     if (mRefreshRemaining) {
   1941         mRefreshRemaining = false;
   1942         mRemainingFrames = notificationFrames;
   1943         mRetryOnPartialBuffer = false;
   1944     }
   1945     size_t misalignment = mProxy->getMisalignment();
   1946     uint32_t sequence = mSequence;
   1947     sp<AudioTrackClientProxy> proxy = mProxy;
   1948 
   1949     // Determine the number of new loop callback(s) that will be needed, while locked.
   1950     int loopCountNotifications = 0;
   1951     uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END
   1952 
   1953     if (mLoopCount > 0) {
   1954         int loopCount;
   1955         size_t bufferPosition;
   1956         mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
   1957         loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition;
   1958         loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications);
   1959         mLoopCountNotified = loopCount; // discard any excess notifications
   1960     } else if (mLoopCount < 0) {
   1961         // FIXME: We're not accurate with notification count and position with infinite looping
   1962         // since loopCount from server side will always return -1 (we could decrement it).
   1963         size_t bufferPosition = mStaticProxy->getBufferPosition();
   1964         loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0);
   1965         loopPeriod = mLoopEnd - bufferPosition;
   1966     } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) {
   1967         size_t bufferPosition = mStaticProxy->getBufferPosition();
   1968         loopPeriod = mFrameCount - bufferPosition;
   1969     }
   1970 
   1971     // These fields don't need to be cached, because they are assigned only by set():
   1972     //     mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags
   1973     // mFlags is also assigned by createTrack_l(), but not the bit we care about.
   1974 
   1975     mLock.unlock();
   1976 
   1977     // get anchor time to account for callbacks.
   1978     const nsecs_t timeBeforeCallbacks = systemTime();
   1979 
   1980     if (waitStreamEnd) {
   1981         // FIXME:  Instead of blocking in proxy->waitStreamEndDone(), Callback thread
   1982         // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function
   1983         // (and make sure we don't callback for more data while we're stopping).
   1984         // This helps with position, marker notifications, and track invalidation.
   1985         struct timespec timeout;
   1986         timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC;
   1987         timeout.tv_nsec = 0;
   1988 
   1989         status_t status = proxy->waitStreamEndDone(&timeout);
   1990         switch (status) {
   1991         case NO_ERROR:
   1992         case DEAD_OBJECT:
   1993         case TIMED_OUT:
   1994             if (status != DEAD_OBJECT) {
   1995                 // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop();
   1996                 // instead, the application should handle the EVENT_NEW_IAUDIOTRACK.
   1997                 mCbf(EVENT_STREAM_END, mUserData, NULL);
   1998             }
   1999             {
   2000                 AutoMutex lock(mLock);
   2001                 // The previously assigned value of waitStreamEnd is no longer valid,
   2002                 // since the mutex has been unlocked and either the callback handler
   2003                 // or another thread could have re-started the AudioTrack during that time.
   2004                 waitStreamEnd = mState == STATE_STOPPING;
   2005                 if (waitStreamEnd) {
   2006                     mState = STATE_STOPPED;
   2007                     mReleased = 0;
   2008                 }
   2009             }
   2010             if (waitStreamEnd && status != DEAD_OBJECT) {
   2011                return NS_INACTIVE;
   2012             }
   2013             break;
   2014         }
   2015         return 0;
   2016     }
   2017 
   2018     // perform callbacks while unlocked
   2019     if (newUnderrun) {
   2020         mCbf(EVENT_UNDERRUN, mUserData, NULL);
   2021     }
   2022     while (loopCountNotifications > 0) {
   2023         mCbf(EVENT_LOOP_END, mUserData, NULL);
   2024         --loopCountNotifications;
   2025     }
   2026     if (flags & CBLK_BUFFER_END) {
   2027         mCbf(EVENT_BUFFER_END, mUserData, NULL);
   2028     }
   2029     if (markerReached) {
   2030         mCbf(EVENT_MARKER, mUserData, &markerPosition);
   2031     }
   2032     while (newPosCount > 0) {
   2033         size_t temp = newPosition.value(); // FIXME size_t != uint32_t
   2034         mCbf(EVENT_NEW_POS, mUserData, &temp);
   2035         newPosition += updatePeriod;
   2036         newPosCount--;
   2037     }
   2038 
   2039     if (mObservedSequence != sequence) {
   2040         mObservedSequence = sequence;
   2041         mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL);
   2042         // for offloaded tracks, just wait for the upper layers to recreate the track
   2043         if (isOffloadedOrDirect()) {
   2044             return NS_INACTIVE;
   2045         }
   2046     }
   2047 
   2048     // if inactive, then don't run me again until re-started
   2049     if (!active) {
   2050         return NS_INACTIVE;
   2051     }
   2052 
   2053     // Compute the estimated time until the next timed event (position, markers, loops)
   2054     // FIXME only for non-compressed audio
   2055     uint32_t minFrames = ~0;
   2056     if (!markerReached && position < markerPosition) {
   2057         minFrames = (markerPosition - position).value();
   2058     }
   2059     if (loopPeriod > 0 && loopPeriod < minFrames) {
   2060         // loopPeriod is already adjusted for actual position.
   2061         minFrames = loopPeriod;
   2062     }
   2063     if (updatePeriod > 0) {
   2064         minFrames = min(minFrames, (newPosition - position).value());
   2065     }
   2066 
   2067     // If > 0, poll periodically to recover from a stuck server.  A good value is 2.
   2068     static const uint32_t kPoll = 0;
   2069     if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
   2070         minFrames = kPoll * notificationFrames;
   2071     }
   2072 
   2073     // This "fudge factor" avoids soaking CPU, and compensates for late progress by server
   2074     static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL;
   2075     const nsecs_t timeAfterCallbacks = systemTime();
   2076 
   2077     // Convert frame units to time units
   2078     nsecs_t ns = NS_WHENEVER;
   2079     if (minFrames != (uint32_t) ~0) {
   2080         // AudioFlinger consumption of client data may be irregular when coming out of device
   2081         // standby since the kernel buffers require filling. This is throttled to no more than 2x
   2082         // the expected rate in the MixerThread. Hence, we reduce the estimated time to wait by one
   2083         // half (but no more than half a second) to improve callback accuracy during these temporary
   2084         // data surges.
   2085         const nsecs_t estimatedNs = framesToNanoseconds(minFrames, sampleRate, speed);
   2086         constexpr nsecs_t maxThrottleCompensationNs = 500000000LL;
   2087         ns = estimatedNs - min(estimatedNs / 2, maxThrottleCompensationNs) + kWaitPeriodNs;
   2088         ns -= (timeAfterCallbacks - timeBeforeCallbacks);  // account for callback time
   2089         // TODO: Should we warn if the callback time is too long?
   2090         if (ns < 0) ns = 0;
   2091     }
   2092 
   2093     // If not supplying data by EVENT_MORE_DATA or EVENT_CAN_WRITE_MORE_DATA, then we're done
   2094     if (mTransfer != TRANSFER_CALLBACK && mTransfer != TRANSFER_SYNC_NOTIF_CALLBACK) {
   2095         return ns;
   2096     }
   2097 
   2098     // EVENT_MORE_DATA callback handling.
   2099     // Timing for linear pcm audio data formats can be derived directly from the
   2100     // buffer fill level.
   2101     // Timing for compressed data is not directly available from the buffer fill level,
   2102     // rather indirectly from waiting for blocking mode callbacks or waiting for obtain()
   2103     // to return a certain fill level.
   2104 
   2105     struct timespec timeout;
   2106     const struct timespec *requested = &ClientProxy::kForever;
   2107     if (ns != NS_WHENEVER) {
   2108         timeout.tv_sec = ns / 1000000000LL;
   2109         timeout.tv_nsec = ns % 1000000000LL;
   2110         ALOGV("%s(%d): timeout %ld.%03d",
   2111                 __func__, mPortId, timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
   2112         requested = &timeout;
   2113     }
   2114 
   2115     size_t writtenFrames = 0;
   2116     while (mRemainingFrames > 0) {
   2117 
   2118         Buffer audioBuffer;
   2119         audioBuffer.frameCount = mRemainingFrames;
   2120         size_t nonContig;
   2121         status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig);
   2122         LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
   2123                 "%s(%d): obtainBuffer() err=%d frameCount=%zu",
   2124                  __func__, mPortId, err, audioBuffer.frameCount);
   2125         requested = &ClientProxy::kNonBlocking;
   2126         size_t avail = audioBuffer.frameCount + nonContig;
   2127         ALOGV("%s(%d): obtainBuffer(%u) returned %zu = %zu + %zu err %d",
   2128                 __func__, mPortId, mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
   2129         if (err != NO_ERROR) {
   2130             if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR ||
   2131                     (isOffloaded() && (err == DEAD_OBJECT))) {
   2132                 // FIXME bug 25195759
   2133                 return 1000000;
   2134             }
   2135             ALOGE("%s(%d): Error %d obtaining an audio buffer, giving up.",
   2136                     __func__, mPortId, err);
   2137             return NS_NEVER;
   2138         }
   2139 
   2140         if (mRetryOnPartialBuffer && audio_has_proportional_frames(mFormat)) {
   2141             mRetryOnPartialBuffer = false;
   2142             if (avail < mRemainingFrames) {
   2143                 if (ns > 0) { // account for obtain time
   2144                     const nsecs_t timeNow = systemTime();
   2145                     ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
   2146                 }
   2147 
   2148                 // delayNs is first computed by the additional frames required in the buffer.
   2149                 nsecs_t delayNs = framesToNanoseconds(
   2150                         mRemainingFrames - avail, sampleRate, speed);
   2151 
   2152                 // afNs is the AudioFlinger mixer period in ns.
   2153                 const nsecs_t afNs = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
   2154 
   2155                 // If the AudioTrack is double buffered based on the AudioFlinger mixer period,
   2156                 // we may have a race if we wait based on the number of frames desired.
   2157                 // This is a possible issue with resampling and AAudio.
   2158                 //
   2159                 // The granularity of audioflinger processing is one mixer period; if
   2160                 // our wait time is less than one mixer period, wait at most half the period.
   2161                 if (delayNs < afNs) {
   2162                     delayNs = std::min(delayNs, afNs / 2);
   2163                 }
   2164 
   2165                 // adjust our ns wait by delayNs.
   2166                 if (ns < 0 /* NS_WHENEVER */ || delayNs < ns) {
   2167                     ns = delayNs;
   2168                 }
   2169                 return ns;
   2170             }
   2171         }
   2172 
   2173         size_t reqSize = audioBuffer.size;
   2174         if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) {
   2175             // when notifying client it can write more data, pass the total size that can be
   2176             // written in the next write() call, since it's not passed through the callback
   2177             audioBuffer.size += nonContig;
   2178         }
   2179         mCbf(mTransfer == TRANSFER_CALLBACK ? EVENT_MORE_DATA : EVENT_CAN_WRITE_MORE_DATA,
   2180                 mUserData, &audioBuffer);
   2181         size_t writtenSize = audioBuffer.size;
   2182 
   2183         // Sanity check on returned size
   2184         if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) {
   2185             ALOGE("%s(%d): EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
   2186                     __func__, mPortId, reqSize, ssize_t(writtenSize));
   2187             return NS_NEVER;
   2188         }
   2189 
   2190         if (writtenSize == 0) {
   2191             if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) {
   2192                 // The callback EVENT_CAN_WRITE_MORE_DATA was processed in the JNI of
   2193                 // android.media.AudioTrack. The JNI is not using the callback to provide data,
   2194                 // it only signals to the Java client that it can provide more data, which
   2195                 // this track is read to accept now.
   2196                 // The playback thread will be awaken at the next ::write()
   2197                 return NS_WHENEVER;
   2198             }
   2199             // The callback is done filling buffers
   2200             // Keep this thread going to handle timed events and
   2201             // still try to get more data in intervals of WAIT_PERIOD_MS
   2202             // but don't just loop and block the CPU, so wait
   2203 
   2204             // mCbf(EVENT_MORE_DATA, ...) might either
   2205             // (1) Block until it can fill the buffer, returning 0 size on EOS.
   2206             // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS.
   2207             // (3) Return 0 size when no data is available, does not wait for more data.
   2208             //
   2209             // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer.
   2210             // We try to compute the wait time to avoid a tight sleep-wait cycle,
   2211             // especially for case (3).
   2212             //
   2213             // The decision to support (1) and (2) affect the sizing of mRemainingFrames
   2214             // and this loop; whereas for case (3) we could simply check once with the full
   2215             // buffer size and skip the loop entirely.
   2216 
   2217             nsecs_t myns;
   2218             if (audio_has_proportional_frames(mFormat)) {
   2219                 // time to wait based on buffer occupancy
   2220                 const nsecs_t datans = mRemainingFrames <= avail ? 0 :
   2221                         framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
   2222                 // audio flinger thread buffer size (TODO: adjust for fast tracks)
   2223                 // FIXME: use mAfFrameCountHAL instead of mAfFrameCount below for fast tracks.
   2224                 const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
   2225                 // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0.
   2226                 myns = datans + (afns / 2);
   2227             } else {
   2228                 // FIXME: This could ping quite a bit if the buffer isn't full.
   2229                 // Note that when mState is stopping we waitStreamEnd, so it never gets here.
   2230                 myns = kWaitPeriodNs;
   2231             }
   2232             if (ns > 0) { // account for obtain and callback time
   2233                 const nsecs_t timeNow = systemTime();
   2234                 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
   2235             }
   2236             if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
   2237                 ns = myns;
   2238             }
   2239             return ns;
   2240         }
   2241 
   2242         size_t releasedFrames = writtenSize / mFrameSize;
   2243         audioBuffer.frameCount = releasedFrames;
   2244         mRemainingFrames -= releasedFrames;
   2245         if (misalignment >= releasedFrames) {
   2246             misalignment -= releasedFrames;
   2247         } else {
   2248             misalignment = 0;
   2249         }
   2250 
   2251         releaseBuffer(&audioBuffer);
   2252         writtenFrames += releasedFrames;
   2253 
   2254         // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
   2255         // if callback doesn't like to accept the full chunk
   2256         if (writtenSize < reqSize) {
   2257             continue;
   2258         }
   2259 
   2260         // There could be enough non-contiguous frames available to satisfy the remaining request
   2261         if (mRemainingFrames <= nonContig) {
   2262             continue;
   2263         }
   2264 
   2265 #if 0
   2266         // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
   2267         // sum <= notificationFrames.  It replaces that series by at most two EVENT_MORE_DATA
   2268         // that total to a sum == notificationFrames.
   2269         if (0 < misalignment && misalignment <= mRemainingFrames) {
   2270             mRemainingFrames = misalignment;
   2271             return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed);
   2272         }
   2273 #endif
   2274 
   2275     }
   2276     if (writtenFrames > 0) {
   2277         AutoMutex lock(mLock);
   2278         mFramesWritten += writtenFrames;
   2279     }
   2280     mRemainingFrames = notificationFrames;
   2281     mRetryOnPartialBuffer = true;
   2282 
   2283     // A lot has transpired since ns was calculated, so run again immediately and re-calculate
   2284     return 0;
   2285 }
   2286 
   2287 status_t AudioTrack::restoreTrack_l(const char *from)
   2288 {
   2289     ALOGW("%s(%d): dead IAudioTrack, %s, creating a new one from %s()",
   2290             __func__, mPortId, isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from);
   2291     ++mSequence;
   2292 
   2293     // refresh the audio configuration cache in this process to make sure we get new
   2294     // output parameters and new IAudioFlinger in createTrack_l()
   2295     AudioSystem::clearAudioConfigCache();
   2296 
   2297     if (isOffloadedOrDirect_l() || mDoNotReconnect) {
   2298         // FIXME re-creation of offloaded and direct tracks is not yet implemented;
   2299         // reconsider enabling for linear PCM encodings when position can be preserved.
   2300         return DEAD_OBJECT;
   2301     }
   2302 
   2303     // Save so we can return count since creation.
   2304     mUnderrunCountOffset = getUnderrunCount_l();
   2305 
   2306     // save the old static buffer position
   2307     uint32_t staticPosition = 0;
   2308     size_t bufferPosition = 0;
   2309     int loopCount = 0;
   2310     if (mStaticProxy != 0) {
   2311         mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
   2312         staticPosition = mStaticProxy->getPosition().unsignedValue();
   2313     }
   2314 
   2315     // See b/74409267. Connecting to a BT A2DP device supporting multiple codecs
   2316     // causes a lot of churn on the service side, and it can reject starting
   2317     // playback of a previously created track. May also apply to other cases.
   2318     const int INITIAL_RETRIES = 3;
   2319     int retries = INITIAL_RETRIES;
   2320 retry:
   2321     if (retries < INITIAL_RETRIES) {
   2322         // See the comment for clearAudioConfigCache at the start of the function.
   2323         AudioSystem::clearAudioConfigCache();
   2324     }
   2325     mFlags = mOrigFlags;
   2326 
   2327     // If a new IAudioTrack is successfully created, createTrack_l() will modify the
   2328     // following member variables: mAudioTrack, mCblkMemory and mCblk.
   2329     // It will also delete the strong references on previous IAudioTrack and IMemory.
   2330     // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact.
   2331     status_t result = createTrack_l();
   2332 
   2333     if (result == NO_ERROR) {
   2334         // take the frames that will be lost by track recreation into account in saved position
   2335         // For streaming tracks, this is the amount we obtained from the user/client
   2336         // (not the number actually consumed at the server - those are already lost).
   2337         if (mStaticProxy == 0) {
   2338             mPosition = mReleased;
   2339         }
   2340         // Continue playback from last known position and restore loop.
   2341         if (mStaticProxy != 0) {
   2342             if (loopCount != 0) {
   2343                 mStaticProxy->setBufferPositionAndLoop(bufferPosition,
   2344                         mLoopStart, mLoopEnd, loopCount);
   2345             } else {
   2346                 mStaticProxy->setBufferPosition(bufferPosition);
   2347                 if (bufferPosition == mFrameCount) {
   2348                     ALOGD("%s(%d): restoring track at end of static buffer", __func__, mPortId);
   2349                 }
   2350             }
   2351         }
   2352         // restore volume handler
   2353         mVolumeHandler->forall([this](const VolumeShaper &shaper) -> VolumeShaper::Status {
   2354             sp<VolumeShaper::Operation> operationToEnd =
   2355                     new VolumeShaper::Operation(shaper.mOperation);
   2356             // TODO: Ideally we would restore to the exact xOffset position
   2357             // as returned by getVolumeShaperState(), but we don't have that
   2358             // information when restoring at the client unless we periodically poll
   2359             // the server or create shared memory state.
   2360             //
   2361             // For now, we simply advance to the end of the VolumeShaper effect
   2362             // if it has been started.
   2363             if (shaper.isStarted()) {
   2364                 operationToEnd->setNormalizedTime(1.f);
   2365             }
   2366             return mAudioTrack->applyVolumeShaper(shaper.mConfiguration, operationToEnd);
   2367         });
   2368 
   2369         if (mState == STATE_ACTIVE) {
   2370             result = mAudioTrack->start();
   2371         }
   2372         // server resets to zero so we offset
   2373         mFramesWrittenServerOffset =
   2374                 mStaticProxy.get() != nullptr ? staticPosition : mFramesWritten;
   2375         mFramesWrittenAtRestore = mFramesWrittenServerOffset;
   2376     }
   2377     if (result != NO_ERROR) {
   2378         ALOGW("%s(%d): failed status %d, retries %d", __func__, mPortId, result, retries);
   2379         if (--retries > 0) {
   2380             // leave time for an eventual race condition to clear before retrying
   2381             usleep(500000);
   2382             goto retry;
   2383         }
   2384         // if no retries left, set invalid bit to force restoring at next occasion
   2385         // and avoid inconsistent active state on client and server sides
   2386         if (mCblk != nullptr) {
   2387             android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
   2388         }
   2389     }
   2390     return result;
   2391 }
   2392 
   2393 Modulo<uint32_t> AudioTrack::updateAndGetPosition_l()
   2394 {
   2395     // This is the sole place to read server consumed frames
   2396     Modulo<uint32_t> newServer(mProxy->getPosition());
   2397     const int32_t delta = (newServer - mServer).signedValue();
   2398     // TODO There is controversy about whether there can be "negative jitter" in server position.
   2399     //      This should be investigated further, and if possible, it should be addressed.
   2400     //      A more definite failure mode is infrequent polling by client.
   2401     //      One could call (void)getPosition_l() in releaseBuffer(),
   2402     //      so mReleased and mPosition are always lock-step as best possible.
   2403     //      That should ensure delta never goes negative for infrequent polling
   2404     //      unless the server has more than 2^31 frames in its buffer,
   2405     //      in which case the use of uint32_t for these counters has bigger issues.
   2406     ALOGE_IF(delta < 0,
   2407             "%s(%d): detected illegal retrograde motion by the server: mServer advanced by %d",
   2408             __func__, mPortId, delta);
   2409     mServer = newServer;
   2410     if (delta > 0) { // avoid retrograde
   2411         mPosition += delta;
   2412     }
   2413     return mPosition;
   2414 }
   2415 
   2416 bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed)
   2417 {
   2418     updateLatency_l();
   2419     // applicable for mixing tracks only (not offloaded or direct)
   2420     if (mStaticProxy != 0) {
   2421         return true; // static tracks do not have issues with buffer sizing.
   2422     }
   2423     const size_t minFrameCount =
   2424             AudioSystem::calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate,
   2425                                             sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
   2426     const bool allowed = mFrameCount >= minFrameCount;
   2427     ALOGD_IF(!allowed,
   2428             "%s(%d): denied "
   2429             "mAfLatency:%u  mAfFrameCount:%zu  mAfSampleRate:%u  sampleRate:%u  speed:%f "
   2430             "mFrameCount:%zu < minFrameCount:%zu",
   2431             __func__, mPortId,
   2432             mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed,
   2433             mFrameCount, minFrameCount);
   2434     return allowed;
   2435 }
   2436 
   2437 status_t AudioTrack::setParameters(const String8& keyValuePairs)
   2438 {
   2439     AutoMutex lock(mLock);
   2440     return mAudioTrack->setParameters(keyValuePairs);
   2441 }
   2442 
   2443 status_t AudioTrack::selectPresentation(int presentationId, int programId)
   2444 {
   2445     AutoMutex lock(mLock);
   2446     AudioParameter param = AudioParameter();
   2447     param.addInt(String8(AudioParameter::keyPresentationId), presentationId);
   2448     param.addInt(String8(AudioParameter::keyProgramId), programId);
   2449     ALOGV("%s(%d): PresentationId/ProgramId[%s]",
   2450             __func__, mPortId, param.toString().string());
   2451 
   2452     return mAudioTrack->setParameters(param.toString());
   2453 }
   2454 
   2455 VolumeShaper::Status AudioTrack::applyVolumeShaper(
   2456         const sp<VolumeShaper::Configuration>& configuration,
   2457         const sp<VolumeShaper::Operation>& operation)
   2458 {
   2459     AutoMutex lock(mLock);
   2460     mVolumeHandler->setIdIfNecessary(configuration);
   2461     VolumeShaper::Status status = mAudioTrack->applyVolumeShaper(configuration, operation);
   2462 
   2463     if (status == DEAD_OBJECT) {
   2464         if (restoreTrack_l("applyVolumeShaper") == OK) {
   2465             status = mAudioTrack->applyVolumeShaper(configuration, operation);
   2466         }
   2467     }
   2468     if (status >= 0) {
   2469         // save VolumeShaper for restore
   2470         mVolumeHandler->applyVolumeShaper(configuration, operation);
   2471         if (mState == STATE_ACTIVE || mState == STATE_STOPPING) {
   2472             mVolumeHandler->setStarted();
   2473         }
   2474     } else {
   2475         // warn only if not an expected restore failure.
   2476         ALOGW_IF(!((isOffloadedOrDirect_l() || mDoNotReconnect) && status == DEAD_OBJECT),
   2477                 "%s(%d): applyVolumeShaper failed: %d", __func__, mPortId, status);
   2478     }
   2479     return status;
   2480 }
   2481 
   2482 sp<VolumeShaper::State> AudioTrack::getVolumeShaperState(int id)
   2483 {
   2484     AutoMutex lock(mLock);
   2485     sp<VolumeShaper::State> state = mAudioTrack->getVolumeShaperState(id);
   2486     if (state.get() == nullptr && (mCblk->mFlags & CBLK_INVALID) != 0) {
   2487         if (restoreTrack_l("getVolumeShaperState") == OK) {
   2488             state = mAudioTrack->getVolumeShaperState(id);
   2489         }
   2490     }
   2491     return state;
   2492 }
   2493 
   2494 status_t AudioTrack::getTimestamp(ExtendedTimestamp *timestamp)
   2495 {
   2496     if (timestamp == nullptr) {
   2497         return BAD_VALUE;
   2498     }
   2499     AutoMutex lock(mLock);
   2500     return getTimestamp_l(timestamp);
   2501 }
   2502 
   2503 status_t AudioTrack::getTimestamp_l(ExtendedTimestamp *timestamp)
   2504 {
   2505     if (mCblk->mFlags & CBLK_INVALID) {
   2506         const status_t status = restoreTrack_l("getTimestampExtended");
   2507         if (status != OK) {
   2508             // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
   2509             // recommending that the track be recreated.
   2510             return DEAD_OBJECT;
   2511         }
   2512     }
   2513     // check for offloaded/direct here in case restoring somehow changed those flags.
   2514     if (isOffloadedOrDirect_l()) {
   2515         return INVALID_OPERATION; // not supported
   2516     }
   2517     status_t status = mProxy->getTimestamp(timestamp);
   2518     LOG_ALWAYS_FATAL_IF(status != OK, "%s(%d): status %d not allowed from proxy getTimestamp",
   2519             __func__, mPortId, status);
   2520     bool found = false;
   2521     timestamp->mPosition[ExtendedTimestamp::LOCATION_CLIENT] = mFramesWritten;
   2522     timestamp->mTimeNs[ExtendedTimestamp::LOCATION_CLIENT] = 0;
   2523     // server side frame offset in case AudioTrack has been restored.
   2524     for (int i = ExtendedTimestamp::LOCATION_SERVER;
   2525             i < ExtendedTimestamp::LOCATION_MAX; ++i) {
   2526         if (timestamp->mTimeNs[i] >= 0) {
   2527             // apply server offset (frames flushed is ignored
   2528             // so we don't report the jump when the flush occurs).
   2529             timestamp->mPosition[i] += mFramesWrittenServerOffset;
   2530             found = true;
   2531         }
   2532     }
   2533     return found ? OK : WOULD_BLOCK;
   2534 }
   2535 
   2536 status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp)
   2537 {
   2538     AutoMutex lock(mLock);
   2539     return getTimestamp_l(timestamp);
   2540 }
   2541 
   2542 status_t AudioTrack::getTimestamp_l(AudioTimestamp& timestamp)
   2543 {
   2544     bool previousTimestampValid = mPreviousTimestampValid;
   2545     // Set false here to cover all the error return cases.
   2546     mPreviousTimestampValid = false;
   2547 
   2548     switch (mState) {
   2549     case STATE_ACTIVE:
   2550     case STATE_PAUSED:
   2551         break; // handle below
   2552     case STATE_FLUSHED:
   2553     case STATE_STOPPED:
   2554         return WOULD_BLOCK;
   2555     case STATE_STOPPING:
   2556     case STATE_PAUSED_STOPPING:
   2557         if (!isOffloaded_l()) {
   2558             return INVALID_OPERATION;
   2559         }
   2560         break; // offloaded tracks handled below
   2561     default:
   2562         LOG_ALWAYS_FATAL("%s(%d): Invalid mState in getTimestamp(): %d",
   2563                __func__, mPortId, mState);
   2564         break;
   2565     }
   2566 
   2567     if (mCblk->mFlags & CBLK_INVALID) {
   2568         const status_t status = restoreTrack_l("getTimestamp");
   2569         if (status != OK) {
   2570             // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
   2571             // recommending that the track be recreated.
   2572             return DEAD_OBJECT;
   2573         }
   2574     }
   2575 
   2576     // The presented frame count must always lag behind the consumed frame count.
   2577     // To avoid a race, read the presented frames first.  This ensures that presented <= consumed.
   2578 
   2579     status_t status;
   2580     if (isOffloadedOrDirect_l()) {
   2581         // use Binder to get timestamp
   2582         status = mAudioTrack->getTimestamp(timestamp);
   2583     } else {
   2584         // read timestamp from shared memory
   2585         ExtendedTimestamp ets;
   2586         status = mProxy->getTimestamp(&ets);
   2587         if (status == OK) {
   2588             ExtendedTimestamp::Location location;
   2589             status = ets.getBestTimestamp(&timestamp, &location);
   2590 
   2591             if (status == OK) {
   2592                 updateLatency_l();
   2593                 // It is possible that the best location has moved from the kernel to the server.
   2594                 // In this case we adjust the position from the previous computed latency.
   2595                 if (location == ExtendedTimestamp::LOCATION_SERVER) {
   2596                     ALOGW_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_KERNEL,
   2597                             "%s(%d): location moved from kernel to server",
   2598                             __func__, mPortId);
   2599                     // check that the last kernel OK time info exists and the positions
   2600                     // are valid (if they predate the current track, the positions may
   2601                     // be zero or negative).
   2602                     const int64_t frames =
   2603                             (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
   2604                             ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0 ||
   2605                             ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] <= 0 ||
   2606                             ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] <= 0)
   2607                             ?
   2608                             int64_t((double)mAfLatency * mSampleRate * mPlaybackRate.mSpeed
   2609                                     / 1000)
   2610                             :
   2611                             (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
   2612                             - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]);
   2613                     ALOGV("%s(%d): frame adjustment:%lld  timestamp:%s",
   2614                             __func__, mPortId, (long long)frames, ets.toString().c_str());
   2615                     if (frames >= ets.mPosition[location]) {
   2616                         timestamp.mPosition = 0;
   2617                     } else {
   2618                         timestamp.mPosition = (uint32_t)(ets.mPosition[location] - frames);
   2619                     }
   2620                 } else if (location == ExtendedTimestamp::LOCATION_KERNEL) {
   2621                     ALOGV_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_SERVER,
   2622                             "%s(%d): location moved from server to kernel",
   2623                             __func__, mPortId);
   2624 
   2625                     if (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER] ==
   2626                             ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL]) {
   2627                         // In Q, we don't return errors as an invalid time
   2628                         // but instead we leave the last kernel good timestamp alone.
   2629                         //
   2630                         // If server is identical to kernel, the device data pipeline is idle.
   2631                         // A better start time is now.  The retrograde check ensures
   2632                         // timestamp monotonicity.
   2633                         const int64_t nowNs = systemTime();
   2634                         if (!mTimestampStallReported) {
   2635                             ALOGD("%s(%d): device stall time corrected using current time %lld",
   2636                                     __func__, mPortId, (long long)nowNs);
   2637                             mTimestampStallReported = true;
   2638                         }
   2639                         timestamp.mTime = convertNsToTimespec(nowNs);
   2640                     }  else {
   2641                         mTimestampStallReported = false;
   2642                     }
   2643                 }
   2644 
   2645                 // We update the timestamp time even when paused.
   2646                 if (mState == STATE_PAUSED /* not needed: STATE_PAUSED_STOPPING */) {
   2647                     const int64_t now = systemTime();
   2648                     const int64_t at = audio_utils_ns_from_timespec(&timestamp.mTime);
   2649                     const int64_t lag =
   2650                             (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
   2651                                 ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0)
   2652                             ? int64_t(mAfLatency * 1000000LL)
   2653                             : (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
   2654                              - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK])
   2655                              * NANOS_PER_SECOND / mSampleRate;
   2656                     const int64_t limit = now - lag; // no earlier than this limit
   2657                     if (at < limit) {
   2658                         ALOGV("timestamp pause lag:%lld adjusting from %lld to %lld",
   2659                                 (long long)lag, (long long)at, (long long)limit);
   2660                         timestamp.mTime = convertNsToTimespec(limit);
   2661                     }
   2662                 }
   2663                 mPreviousLocation = location;
   2664             } else {
   2665                 // right after AudioTrack is started, one may not find a timestamp
   2666                 ALOGV("%s(%d): getBestTimestamp did not find timestamp", __func__, mPortId);
   2667             }
   2668         }
   2669         if (status == INVALID_OPERATION) {
   2670             // INVALID_OPERATION occurs when no timestamp has been issued by the server;
   2671             // other failures are signaled by a negative time.
   2672             // If we come out of FLUSHED or STOPPED where the position is known
   2673             // to be zero we convert this to WOULD_BLOCK (with the implicit meaning of
   2674             // "zero" for NuPlayer).  We don't convert for track restoration as position
   2675             // does not reset.
   2676             ALOGV("%s(%d): timestamp server offset:%lld restore frames:%lld",
   2677                     __func__, mPortId,
   2678                     (long long)mFramesWrittenServerOffset, (long long)mFramesWrittenAtRestore);
   2679             if (mFramesWrittenServerOffset != mFramesWrittenAtRestore) {
   2680                 status = WOULD_BLOCK;
   2681             }
   2682         }
   2683     }
   2684     if (status != NO_ERROR) {
   2685         ALOGV_IF(status != WOULD_BLOCK, "%s(%d): getTimestamp error:%#x", __func__, mPortId, status);
   2686         return status;
   2687     }
   2688     if (isOffloadedOrDirect_l()) {
   2689         if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) {
   2690             // use cached paused position in case another offloaded track is running.
   2691             timestamp.mPosition = mPausedPosition;
   2692             clock_gettime(CLOCK_MONOTONIC, &timestamp.mTime);
   2693             // TODO: adjust for delay
   2694             return NO_ERROR;
   2695         }
   2696 
   2697         // Check whether a pending flush or stop has completed, as those commands may
   2698         // be asynchronous or return near finish or exhibit glitchy behavior.
   2699         //
   2700         // Originally this showed up as the first timestamp being a continuation of
   2701         // the previous song under gapless playback.
   2702         // However, we sometimes see zero timestamps, then a glitch of
   2703         // the previous song's position, and then correct timestamps afterwards.
   2704         if (mStartFromZeroUs != 0 && mSampleRate != 0) {
   2705             static const int kTimeJitterUs = 100000; // 100 ms
   2706             static const int k1SecUs = 1000000;
   2707 
   2708             const int64_t timeNow = getNowUs();
   2709 
   2710             if (timeNow < mStartFromZeroUs + k1SecUs) { // within first second of starting
   2711                 const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime);
   2712                 if (timestampTimeUs < mStartFromZeroUs) {
   2713                     return WOULD_BLOCK;  // stale timestamp time, occurs before start.
   2714                 }
   2715                 const int64_t deltaTimeUs = timestampTimeUs - mStartFromZeroUs;
   2716                 const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000
   2717                         / ((double)mSampleRate * mPlaybackRate.mSpeed);
   2718 
   2719                 if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) {
   2720                     // Verify that the counter can't count faster than the sample rate
   2721                     // since the start time.  If greater, then that means we may have failed
   2722                     // to completely flush or stop the previous playing track.
   2723                     ALOGW_IF(!mTimestampStartupGlitchReported,
   2724                             "%s(%d): startup glitch detected"
   2725                             " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)",
   2726                             __func__, mPortId,
   2727                             (long long)deltaTimeUs, (long long)deltaPositionByUs,
   2728                             timestamp.mPosition);
   2729                     mTimestampStartupGlitchReported = true;
   2730                     if (previousTimestampValid
   2731                             && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) {
   2732                         timestamp = mPreviousTimestamp;
   2733                         mPreviousTimestampValid = true;
   2734                         return NO_ERROR;
   2735                     }
   2736                     return WOULD_BLOCK;
   2737                 }
   2738                 if (deltaPositionByUs != 0) {
   2739                     mStartFromZeroUs = 0; // don't check again, we got valid nonzero position.
   2740                 }
   2741             } else {
   2742                 mStartFromZeroUs = 0; // don't check again, start time expired.
   2743             }
   2744             mTimestampStartupGlitchReported = false;
   2745         }
   2746     } else {
   2747         // Update the mapping between local consumed (mPosition) and server consumed (mServer)
   2748         (void) updateAndGetPosition_l();
   2749         // Server consumed (mServer) and presented both use the same server time base,
   2750         // and server consumed is always >= presented.
   2751         // The delta between these represents the number of frames in the buffer pipeline.
   2752         // If this delta between these is greater than the client position, it means that
   2753         // actually presented is still stuck at the starting line (figuratively speaking),
   2754         // waiting for the first frame to go by.  So we can't report a valid timestamp yet.
   2755         // Note: We explicitly use non-Modulo comparison here - potential wrap issue when
   2756         // mPosition exceeds 32 bits.
   2757         // TODO Remove when timestamp is updated to contain pipeline status info.
   2758         const int32_t pipelineDepthInFrames = (mServer - timestamp.mPosition).signedValue();
   2759         if (pipelineDepthInFrames > 0 /* should be true, but we check anyways */
   2760                 && (uint32_t)pipelineDepthInFrames > mPosition.value()) {
   2761             return INVALID_OPERATION;
   2762         }
   2763         // Convert timestamp position from server time base to client time base.
   2764         // TODO The following code should work OK now because timestamp.mPosition is 32-bit.
   2765         // But if we change it to 64-bit then this could fail.
   2766         // Use Modulo computation here.
   2767         timestamp.mPosition = (mPosition - mServer + timestamp.mPosition).value();
   2768         // Immediately after a call to getPosition_l(), mPosition and
   2769         // mServer both represent the same frame position.  mPosition is
   2770         // in client's point of view, and mServer is in server's point of
   2771         // view.  So the difference between them is the "fudge factor"
   2772         // between client and server views due to stop() and/or new
   2773         // IAudioTrack.  And timestamp.mPosition is initially in server's
   2774         // point of view, so we need to apply the same fudge factor to it.
   2775     }
   2776 
   2777     // Prevent retrograde motion in timestamp.
   2778     // This is sometimes caused by erratic reports of the available space in the ALSA drivers.
   2779     if (status == NO_ERROR) {
   2780         // Fix stale time when checking timestamp right after start().
   2781         // The position is at the last reported location but the time can be stale
   2782         // due to pause or standby or cold start latency.
   2783         //
   2784         // We keep advancing the time (but not the position) to ensure that the
   2785         // stale value does not confuse the application.
   2786         //
   2787         // For offload compatibility, use a default lag value here.
   2788         // Any time discrepancy between this update and the pause timestamp is handled
   2789         // by the retrograde check afterwards.
   2790         int64_t currentTimeNanos = audio_utils_ns_from_timespec(&timestamp.mTime);
   2791         const int64_t lagNs = int64_t(mAfLatency * 1000000LL);
   2792         const int64_t limitNs = mStartNs - lagNs;
   2793         if (currentTimeNanos < limitNs) {
   2794             if (!mTimestampStaleTimeReported) {
   2795                 ALOGD("%s(%d): stale timestamp time corrected, "
   2796                         "currentTimeNanos: %lld < limitNs: %lld < mStartNs: %lld",
   2797                         __func__, mPortId,
   2798                         (long long)currentTimeNanos, (long long)limitNs, (long long)mStartNs);
   2799                 mTimestampStaleTimeReported = true;
   2800             }
   2801             timestamp.mTime = convertNsToTimespec(limitNs);
   2802             currentTimeNanos = limitNs;
   2803         } else {
   2804             mTimestampStaleTimeReported = false;
   2805         }
   2806 
   2807         // previousTimestampValid is set to false when starting after a stop or flush.
   2808         if (previousTimestampValid) {
   2809             const int64_t previousTimeNanos =
   2810                     audio_utils_ns_from_timespec(&mPreviousTimestamp.mTime);
   2811 
   2812             // retrograde check
   2813             if (currentTimeNanos < previousTimeNanos) {
   2814                 if (!mTimestampRetrogradeTimeReported) {
   2815                     ALOGW("%s(%d): retrograde timestamp time corrected, %lld < %lld",
   2816                             __func__, mPortId,
   2817                             (long long)currentTimeNanos, (long long)previousTimeNanos);
   2818                     mTimestampRetrogradeTimeReported = true;
   2819                 }
   2820                 timestamp.mTime = mPreviousTimestamp.mTime;
   2821             } else {
   2822                 mTimestampRetrogradeTimeReported = false;
   2823             }
   2824 
   2825             // Looking at signed delta will work even when the timestamps
   2826             // are wrapping around.
   2827             int32_t deltaPosition = (Modulo<uint32_t>(timestamp.mPosition)
   2828                     - mPreviousTimestamp.mPosition).signedValue();
   2829             if (deltaPosition < 0) {
   2830                 // Only report once per position instead of spamming the log.
   2831                 if (!mTimestampRetrogradePositionReported) {
   2832                     ALOGW("%s(%d): retrograde timestamp position corrected, %d = %u - %u",
   2833                             __func__, mPortId,
   2834                             deltaPosition,
   2835                             timestamp.mPosition,
   2836                             mPreviousTimestamp.mPosition);
   2837                     mTimestampRetrogradePositionReported = true;
   2838                 }
   2839             } else {
   2840                 mTimestampRetrogradePositionReported = false;
   2841             }
   2842             if (deltaPosition < 0) {
   2843                 timestamp.mPosition = mPreviousTimestamp.mPosition;
   2844                 deltaPosition = 0;
   2845             }
   2846 #if 0
   2847             // Uncomment this to verify audio timestamp rate.
   2848             const int64_t deltaTime =
   2849                     audio_utils_ns_from_timespec(&timestamp.mTime) - previousTimeNanos;
   2850             if (deltaTime != 0) {
   2851                 const int64_t computedSampleRate =
   2852                         deltaPosition * (long long)NANOS_PER_SECOND / deltaTime;
   2853                 ALOGD("%s(%d): computedSampleRate:%u  sampleRate:%u",
   2854                         __func__, mPortId,
   2855                         (unsigned)computedSampleRate, mSampleRate);
   2856             }
   2857 #endif
   2858         }
   2859         mPreviousTimestamp = timestamp;
   2860         mPreviousTimestampValid = true;
   2861     }
   2862 
   2863     return status;
   2864 }
   2865 
   2866 String8 AudioTrack::getParameters(const String8& keys)
   2867 {
   2868     audio_io_handle_t output = getOutput();
   2869     if (output != AUDIO_IO_HANDLE_NONE) {
   2870         return AudioSystem::getParameters(output, keys);
   2871     } else {
   2872         return String8::empty();
   2873     }
   2874 }
   2875 
   2876 bool AudioTrack::isOffloaded() const
   2877 {
   2878     AutoMutex lock(mLock);
   2879     return isOffloaded_l();
   2880 }
   2881 
   2882 bool AudioTrack::isDirect() const
   2883 {
   2884     AutoMutex lock(mLock);
   2885     return isDirect_l();
   2886 }
   2887 
   2888 bool AudioTrack::isOffloadedOrDirect() const
   2889 {
   2890     AutoMutex lock(mLock);
   2891     return isOffloadedOrDirect_l();
   2892 }
   2893 
   2894 
   2895 status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const
   2896 {
   2897     String8 result;
   2898 
   2899     result.append(" AudioTrack::dump\n");
   2900     result.appendFormat("  id(%d) status(%d), state(%d), session Id(%d), flags(%#x)\n",
   2901                         mPortId, mStatus, mState, mSessionId, mFlags);
   2902     result.appendFormat("  stream type(%d), left - right volume(%f, %f)\n",
   2903                         (mStreamType == AUDIO_STREAM_DEFAULT) ?
   2904                             AudioSystem::attributesToStreamType(mAttributes) :
   2905                             mStreamType,
   2906                         mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]);
   2907     result.appendFormat("  format(%#x), channel mask(%#x), channel count(%u)\n",
   2908                   mFormat, mChannelMask, mChannelCount);
   2909     result.appendFormat("  sample rate(%u), original sample rate(%u), speed(%f)\n",
   2910                   mSampleRate, mOriginalSampleRate, mPlaybackRate.mSpeed);
   2911     result.appendFormat("  frame count(%zu), req. frame count(%zu)\n",
   2912                   mFrameCount, mReqFrameCount);
   2913     result.appendFormat("  notif. frame count(%u), req. notif. frame count(%u),"
   2914             " req. notif. per buff(%u)\n",
   2915              mNotificationFramesAct, mNotificationFramesReq, mNotificationsPerBufferReq);
   2916     result.appendFormat("  latency (%d), selected device Id(%d), routed device Id(%d)\n",
   2917                         mLatency, mSelectedDeviceId, mRoutedDeviceId);
   2918     result.appendFormat("  output(%d) AF latency (%u) AF frame count(%zu) AF SampleRate(%u)\n",
   2919                         mOutput, mAfLatency, mAfFrameCount, mAfSampleRate);
   2920     ::write(fd, result.string(), result.size());
   2921     return NO_ERROR;
   2922 }
   2923 
   2924 uint32_t AudioTrack::getUnderrunCount() const
   2925 {
   2926     AutoMutex lock(mLock);
   2927     return getUnderrunCount_l();
   2928 }
   2929 
   2930 uint32_t AudioTrack::getUnderrunCount_l() const
   2931 {
   2932     return mProxy->getUnderrunCount() + mUnderrunCountOffset;
   2933 }
   2934 
   2935 uint32_t AudioTrack::getUnderrunFrames() const
   2936 {
   2937     AutoMutex lock(mLock);
   2938     return mProxy->getUnderrunFrames();
   2939 }
   2940 
   2941 status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback)
   2942 {
   2943 
   2944     if (callback == 0) {
   2945         ALOGW("%s(%d): adding NULL callback!", __func__, mPortId);
   2946         return BAD_VALUE;
   2947     }
   2948     AutoMutex lock(mLock);
   2949     if (mDeviceCallback.unsafe_get() == callback.get()) {
   2950         ALOGW("%s(%d): adding same callback!", __func__, mPortId);
   2951         return INVALID_OPERATION;
   2952     }
   2953     status_t status = NO_ERROR;
   2954     if (mOutput != AUDIO_IO_HANDLE_NONE) {
   2955         if (mDeviceCallback != 0) {
   2956             ALOGW("%s(%d): callback already present!", __func__, mPortId);
   2957             AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
   2958         }
   2959         status = AudioSystem::addAudioDeviceCallback(this, mOutput, mPortId);
   2960     }
   2961     mDeviceCallback = callback;
   2962     return status;
   2963 }
   2964 
   2965 status_t AudioTrack::removeAudioDeviceCallback(
   2966         const sp<AudioSystem::AudioDeviceCallback>& callback)
   2967 {
   2968     if (callback == 0) {
   2969         ALOGW("%s(%d): removing NULL callback!", __func__, mPortId);
   2970         return BAD_VALUE;
   2971     }
   2972     AutoMutex lock(mLock);
   2973     if (mDeviceCallback.unsafe_get() != callback.get()) {
   2974         ALOGW("%s removing different callback!", __FUNCTION__);
   2975         return INVALID_OPERATION;
   2976     }
   2977     mDeviceCallback.clear();
   2978     if (mOutput != AUDIO_IO_HANDLE_NONE) {
   2979         AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
   2980     }
   2981     return NO_ERROR;
   2982 }
   2983 
   2984 
   2985 void AudioTrack::onAudioDeviceUpdate(audio_io_handle_t audioIo,
   2986                                  audio_port_handle_t deviceId)
   2987 {
   2988     sp<AudioSystem::AudioDeviceCallback> callback;
   2989     {
   2990         AutoMutex lock(mLock);
   2991         if (audioIo != mOutput) {
   2992             return;
   2993         }
   2994         callback = mDeviceCallback.promote();
   2995         // only update device if the track is active as route changes due to other use cases are
   2996         // irrelevant for this client
   2997         if (mState == STATE_ACTIVE) {
   2998             mRoutedDeviceId = deviceId;
   2999         }
   3000     }
   3001 
   3002     if (callback.get() != nullptr) {
   3003         callback->onAudioDeviceUpdate(mOutput, mRoutedDeviceId);
   3004     }
   3005 }
   3006 
   3007 status_t AudioTrack::pendingDuration(int32_t *msec, ExtendedTimestamp::Location location)
   3008 {
   3009     if (msec == nullptr ||
   3010             (location != ExtendedTimestamp::LOCATION_SERVER
   3011                     && location != ExtendedTimestamp::LOCATION_KERNEL)) {
   3012         return BAD_VALUE;
   3013     }
   3014     AutoMutex lock(mLock);
   3015     // inclusive of offloaded and direct tracks.
   3016     //
   3017     // It is possible, but not enabled, to allow duration computation for non-pcm
   3018     // audio_has_proportional_frames() formats because currently they have
   3019     // the drain rate equivalent to the pcm sample rate * framesize.
   3020     if (!isPurePcmData_l()) {
   3021         return INVALID_OPERATION;
   3022     }
   3023     ExtendedTimestamp ets;
   3024     if (getTimestamp_l(&ets) == OK
   3025             && ets.mTimeNs[location] > 0) {
   3026         int64_t diff = ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT]
   3027                 - ets.mPosition[location];
   3028         if (diff < 0) {
   3029             *msec = 0;
   3030         } else {
   3031             // ms is the playback time by frames
   3032             int64_t ms = (int64_t)((double)diff * 1000 /
   3033                     ((double)mSampleRate * mPlaybackRate.mSpeed));
   3034             // clockdiff is the timestamp age (negative)
   3035             int64_t clockdiff = (mState != STATE_ACTIVE) ? 0 :
   3036                     ets.mTimeNs[location]
   3037                     + ets.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_MONOTONIC]
   3038                     - systemTime(SYSTEM_TIME_MONOTONIC);
   3039 
   3040             //ALOGV("ms: %lld  clockdiff: %lld", (long long)ms, (long long)clockdiff);
   3041             static const int NANOS_PER_MILLIS = 1000000;
   3042             *msec = (int32_t)(ms + clockdiff / NANOS_PER_MILLIS);
   3043         }
   3044         return NO_ERROR;
   3045     }
   3046     if (location != ExtendedTimestamp::LOCATION_SERVER) {
   3047         return INVALID_OPERATION; // LOCATION_KERNEL is not available
   3048     }
   3049     // use server position directly (offloaded and direct arrive here)
   3050     updateAndGetPosition_l();
   3051     int32_t diff = (Modulo<uint32_t>(mFramesWritten) - mPosition).signedValue();
   3052     *msec = (diff <= 0) ? 0
   3053             : (int32_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed));
   3054     return NO_ERROR;
   3055 }
   3056 
   3057 bool AudioTrack::hasStarted()
   3058 {
   3059     AutoMutex lock(mLock);
   3060     switch (mState) {
   3061     case STATE_STOPPED:
   3062         if (isOffloadedOrDirect_l()) {
   3063             // check if we have started in the past to return true.
   3064             return mStartFromZeroUs > 0;
   3065         }
   3066         // A normal audio track may still be draining, so
   3067         // check if stream has ended.  This covers fasttrack position
   3068         // instability and start/stop without any data written.
   3069         if (mProxy->getStreamEndDone()) {
   3070             return true;
   3071         }
   3072         FALLTHROUGH_INTENDED;
   3073     case STATE_ACTIVE:
   3074     case STATE_STOPPING:
   3075         break;
   3076     case STATE_PAUSED:
   3077     case STATE_PAUSED_STOPPING:
   3078     case STATE_FLUSHED:
   3079         return false;  // we're not active
   3080     default:
   3081         LOG_ALWAYS_FATAL("%s(%d): Invalid mState in hasStarted(): %d", __func__, mPortId, mState);
   3082         break;
   3083     }
   3084 
   3085     // wait indicates whether we need to wait for a timestamp.
   3086     // This is conservatively figured - if we encounter an unexpected error
   3087     // then we will not wait.
   3088     bool wait = false;
   3089     if (isOffloadedOrDirect_l()) {
   3090         AudioTimestamp ts;
   3091         status_t status = getTimestamp_l(ts);
   3092         if (status == WOULD_BLOCK) {
   3093             wait = true;
   3094         } else if (status == OK) {
   3095             wait = (ts.mPosition == 0 || ts.mPosition == mStartTs.mPosition);
   3096         }
   3097         ALOGV("%s(%d): hasStarted wait:%d  ts:%u  start position:%lld",
   3098                 __func__, mPortId,
   3099                 (int)wait,
   3100                 ts.mPosition,
   3101                 (long long)mStartTs.mPosition);
   3102     } else {
   3103         int location = ExtendedTimestamp::LOCATION_SERVER; // for ALOG
   3104         ExtendedTimestamp ets;
   3105         status_t status = getTimestamp_l(&ets);
   3106         if (status == WOULD_BLOCK) {  // no SERVER or KERNEL frame info in ets
   3107             wait = true;
   3108         } else if (status == OK) {
   3109             for (location = ExtendedTimestamp::LOCATION_KERNEL;
   3110                     location >= ExtendedTimestamp::LOCATION_SERVER; --location) {
   3111                 if (ets.mTimeNs[location] < 0 || mStartEts.mTimeNs[location] < 0) {
   3112                     continue;
   3113                 }
   3114                 wait = ets.mPosition[location] == 0
   3115                         || ets.mPosition[location] == mStartEts.mPosition[location];
   3116                 break;
   3117             }
   3118         }
   3119         ALOGV("%s(%d): hasStarted wait:%d  ets:%lld  start position:%lld",
   3120                 __func__, mPortId,
   3121                 (int)wait,
   3122                 (long long)ets.mPosition[location],
   3123                 (long long)mStartEts.mPosition[location]);
   3124     }
   3125     return !wait;
   3126 }
   3127 
   3128 // =========================================================================
   3129 
   3130 void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused)
   3131 {
   3132     sp<AudioTrack> audioTrack = mAudioTrack.promote();
   3133     if (audioTrack != 0) {
   3134         AutoMutex lock(audioTrack->mLock);
   3135         audioTrack->mProxy->binderDied();
   3136     }
   3137 }
   3138 
   3139 // =========================================================================
   3140 
   3141 AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver)
   3142     : Thread(true /* bCanCallJava */)  // binder recursion on restoreTrack_l() may call Java.
   3143     , mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL),
   3144       mIgnoreNextPausedInt(false)
   3145 {
   3146 }
   3147 
   3148 AudioTrack::AudioTrackThread::~AudioTrackThread()
   3149 {
   3150 }
   3151 
   3152 bool AudioTrack::AudioTrackThread::threadLoop()
   3153 {
   3154     {
   3155         AutoMutex _l(mMyLock);
   3156         if (mPaused) {
   3157             // TODO check return value and handle or log
   3158             mMyCond.wait(mMyLock);
   3159             // caller will check for exitPending()
   3160             return true;
   3161         }
   3162         if (mIgnoreNextPausedInt) {
   3163             mIgnoreNextPausedInt = false;
   3164             mPausedInt = false;
   3165         }
   3166         if (mPausedInt) {
   3167             // TODO use futex instead of condition, for event flag "or"
   3168             if (mPausedNs > 0) {
   3169                 // TODO check return value and handle or log
   3170                 (void) mMyCond.waitRelative(mMyLock, mPausedNs);
   3171             } else {
   3172                 // TODO check return value and handle or log
   3173                 mMyCond.wait(mMyLock);
   3174             }
   3175             mPausedInt = false;
   3176             return true;
   3177         }
   3178     }
   3179     if (exitPending()) {
   3180         return false;
   3181     }
   3182     nsecs_t ns = mReceiver.processAudioBuffer();
   3183     switch (ns) {
   3184     case 0:
   3185         return true;
   3186     case NS_INACTIVE:
   3187         pauseInternal();
   3188         return true;
   3189     case NS_NEVER:
   3190         return false;
   3191     case NS_WHENEVER:
   3192         // Event driven: call wake() when callback notifications conditions change.
   3193         ns = INT64_MAX;
   3194         FALLTHROUGH_INTENDED;
   3195     default:
   3196         LOG_ALWAYS_FATAL_IF(ns < 0, "%s(%d): processAudioBuffer() returned %lld",
   3197                 __func__, mReceiver.mPortId, (long long)ns);
   3198         pauseInternal(ns);
   3199         return true;
   3200     }
   3201 }
   3202 
   3203 void AudioTrack::AudioTrackThread::requestExit()
   3204 {
   3205     // must be in this order to avoid a race condition
   3206     Thread::requestExit();
   3207     resume();
   3208 }
   3209 
   3210 void AudioTrack::AudioTrackThread::pause()
   3211 {
   3212     AutoMutex _l(mMyLock);
   3213     mPaused = true;
   3214 }
   3215 
   3216 void AudioTrack::AudioTrackThread::resume()
   3217 {
   3218     AutoMutex _l(mMyLock);
   3219     mIgnoreNextPausedInt = true;
   3220     if (mPaused || mPausedInt) {
   3221         mPaused = false;
   3222         mPausedInt = false;
   3223         mMyCond.signal();
   3224     }
   3225 }
   3226 
   3227 void AudioTrack::AudioTrackThread::wake()
   3228 {
   3229     AutoMutex _l(mMyLock);
   3230     if (!mPaused) {
   3231         // wake() might be called while servicing a callback - ignore the next
   3232         // pause time and call processAudioBuffer.
   3233         mIgnoreNextPausedInt = true;
   3234         if (mPausedInt && mPausedNs > 0) {
   3235             // audio track is active and internally paused with timeout.
   3236             mPausedInt = false;
   3237             mMyCond.signal();
   3238         }
   3239     }
   3240 }
   3241 
   3242 void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns)
   3243 {
   3244     AutoMutex _l(mMyLock);
   3245     mPausedInt = true;
   3246     mPausedNs = ns;
   3247 }
   3248 
   3249 } // namespace android
   3250