Home | History | Annotate | Download | only in CodeGen
      1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/TargetInstrInfo.h"
     15 #include "llvm/CodeGen/MachineFrameInfo.h"
     16 #include "llvm/CodeGen/MachineInstrBuilder.h"
     17 #include "llvm/CodeGen/MachineMemOperand.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/CodeGen/PseudoSourceValue.h"
     20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
     21 #include "llvm/CodeGen/StackMaps.h"
     22 #include "llvm/CodeGen/TargetFrameLowering.h"
     23 #include "llvm/CodeGen/TargetLowering.h"
     24 #include "llvm/CodeGen/TargetRegisterInfo.h"
     25 #include "llvm/CodeGen/TargetSchedule.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/MC/MCAsmInfo.h"
     28 #include "llvm/MC/MCInstrItineraries.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include <cctype>
     34 
     35 using namespace llvm;
     36 
     37 static cl::opt<bool> DisableHazardRecognizer(
     38   "disable-sched-hazard", cl::Hidden, cl::init(false),
     39   cl::desc("Disable hazard detection during preRA scheduling"));
     40 
     41 TargetInstrInfo::~TargetInstrInfo() {
     42 }
     43 
     44 const TargetRegisterClass*
     45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
     46                              const TargetRegisterInfo *TRI,
     47                              const MachineFunction &MF) const {
     48   if (OpNum >= MCID.getNumOperands())
     49     return nullptr;
     50 
     51   short RegClass = MCID.OpInfo[OpNum].RegClass;
     52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
     53     return TRI->getPointerRegClass(MF, RegClass);
     54 
     55   // Instructions like INSERT_SUBREG do not have fixed register classes.
     56   if (RegClass < 0)
     57     return nullptr;
     58 
     59   // Otherwise just look it up normally.
     60   return TRI->getRegClass(RegClass);
     61 }
     62 
     63 /// insertNoop - Insert a noop into the instruction stream at the specified
     64 /// point.
     65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
     66                                  MachineBasicBlock::iterator MI) const {
     67   llvm_unreachable("Target didn't implement insertNoop!");
     68 }
     69 
     70 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
     71   return strncmp(Str, MAI.getCommentString().data(),
     72                  MAI.getCommentString().size()) == 0;
     73 }
     74 
     75 /// Measure the specified inline asm to determine an approximation of its
     76 /// length.
     77 /// Comments (which run till the next SeparatorString or newline) do not
     78 /// count as an instruction.
     79 /// Any other non-whitespace text is considered an instruction, with
     80 /// multiple instructions separated by SeparatorString or newlines.
     81 /// Variable-length instructions are not handled here; this function
     82 /// may be overloaded in the target code to do that.
     83 /// We implement a special case of the .space directive which takes only a
     84 /// single integer argument in base 10 that is the size in bytes. This is a
     85 /// restricted form of the GAS directive in that we only interpret
     86 /// simple--i.e. not a logical or arithmetic expression--size values without
     87 /// the optional fill value. This is primarily used for creating arbitrary
     88 /// sized inline asm blocks for testing purposes.
     89 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
     90                                              const MCAsmInfo &MAI) const {
     91   // Count the number of instructions in the asm.
     92   bool AtInsnStart = true;
     93   unsigned Length = 0;
     94   for (; *Str; ++Str) {
     95     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
     96                                 strlen(MAI.getSeparatorString())) == 0) {
     97       AtInsnStart = true;
     98     } else if (isAsmComment(Str, MAI)) {
     99       // Stop counting as an instruction after a comment until the next
    100       // separator.
    101       AtInsnStart = false;
    102     }
    103 
    104     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
    105       unsigned AddLength = MAI.getMaxInstLength();
    106       if (strncmp(Str, ".space", 6) == 0) {
    107         char *EStr;
    108         int SpaceSize;
    109         SpaceSize = strtol(Str + 6, &EStr, 10);
    110         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
    111         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
    112           ++EStr;
    113         if (*EStr == '\0' || *EStr == '\n' ||
    114             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
    115           AddLength = SpaceSize;
    116       }
    117       Length += AddLength;
    118       AtInsnStart = false;
    119     }
    120   }
    121 
    122   return Length;
    123 }
    124 
    125 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
    126 /// after it, replacing it with an unconditional branch to NewDest.
    127 void
    128 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    129                                          MachineBasicBlock *NewDest) const {
    130   MachineBasicBlock *MBB = Tail->getParent();
    131 
    132   // Remove all the old successors of MBB from the CFG.
    133   while (!MBB->succ_empty())
    134     MBB->removeSuccessor(MBB->succ_begin());
    135 
    136   // Save off the debug loc before erasing the instruction.
    137   DebugLoc DL = Tail->getDebugLoc();
    138 
    139   // Remove all the dead instructions from the end of MBB.
    140   MBB->erase(Tail, MBB->end());
    141 
    142   // If MBB isn't immediately before MBB, insert a branch to it.
    143   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
    144     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
    145   MBB->addSuccessor(NewDest);
    146 }
    147 
    148 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
    149                                                       bool NewMI, unsigned Idx1,
    150                                                       unsigned Idx2) const {
    151   const MCInstrDesc &MCID = MI.getDesc();
    152   bool HasDef = MCID.getNumDefs();
    153   if (HasDef && !MI.getOperand(0).isReg())
    154     // No idea how to commute this instruction. Target should implement its own.
    155     return nullptr;
    156 
    157   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
    158   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
    159   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
    160          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
    161          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
    162   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
    163          "This only knows how to commute register operands so far");
    164 
    165   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
    166   unsigned Reg1 = MI.getOperand(Idx1).getReg();
    167   unsigned Reg2 = MI.getOperand(Idx2).getReg();
    168   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
    169   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
    170   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
    171   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
    172   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
    173   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
    174   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
    175   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
    176   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
    177   // Avoid calling isRenamable for virtual registers since we assert that
    178   // renamable property is only queried/set for physical registers.
    179   bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1)
    180                              ? MI.getOperand(Idx1).isRenamable()
    181                              : false;
    182   bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2)
    183                              ? MI.getOperand(Idx2).isRenamable()
    184                              : false;
    185   // If destination is tied to either of the commuted source register, then
    186   // it must be updated.
    187   if (HasDef && Reg0 == Reg1 &&
    188       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
    189     Reg2IsKill = false;
    190     Reg0 = Reg2;
    191     SubReg0 = SubReg2;
    192   } else if (HasDef && Reg0 == Reg2 &&
    193              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
    194     Reg1IsKill = false;
    195     Reg0 = Reg1;
    196     SubReg0 = SubReg1;
    197   }
    198 
    199   MachineInstr *CommutedMI = nullptr;
    200   if (NewMI) {
    201     // Create a new instruction.
    202     MachineFunction &MF = *MI.getMF();
    203     CommutedMI = MF.CloneMachineInstr(&MI);
    204   } else {
    205     CommutedMI = &MI;
    206   }
    207 
    208   if (HasDef) {
    209     CommutedMI->getOperand(0).setReg(Reg0);
    210     CommutedMI->getOperand(0).setSubReg(SubReg0);
    211   }
    212   CommutedMI->getOperand(Idx2).setReg(Reg1);
    213   CommutedMI->getOperand(Idx1).setReg(Reg2);
    214   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
    215   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
    216   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
    217   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
    218   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
    219   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
    220   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
    221   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
    222   // Avoid calling setIsRenamable for virtual registers since we assert that
    223   // renamable property is only queried/set for physical registers.
    224   if (TargetRegisterInfo::isPhysicalRegister(Reg1))
    225     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
    226   if (TargetRegisterInfo::isPhysicalRegister(Reg2))
    227     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
    228   return CommutedMI;
    229 }
    230 
    231 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
    232                                                   unsigned OpIdx1,
    233                                                   unsigned OpIdx2) const {
    234   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
    235   // any commutable operand, which is done in findCommutedOpIndices() method
    236   // called below.
    237   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
    238       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
    239     assert(MI.isCommutable() &&
    240            "Precondition violation: MI must be commutable.");
    241     return nullptr;
    242   }
    243   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
    244 }
    245 
    246 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
    247                                            unsigned &ResultIdx2,
    248                                            unsigned CommutableOpIdx1,
    249                                            unsigned CommutableOpIdx2) {
    250   if (ResultIdx1 == CommuteAnyOperandIndex &&
    251       ResultIdx2 == CommuteAnyOperandIndex) {
    252     ResultIdx1 = CommutableOpIdx1;
    253     ResultIdx2 = CommutableOpIdx2;
    254   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
    255     if (ResultIdx2 == CommutableOpIdx1)
    256       ResultIdx1 = CommutableOpIdx2;
    257     else if (ResultIdx2 == CommutableOpIdx2)
    258       ResultIdx1 = CommutableOpIdx1;
    259     else
    260       return false;
    261   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
    262     if (ResultIdx1 == CommutableOpIdx1)
    263       ResultIdx2 = CommutableOpIdx2;
    264     else if (ResultIdx1 == CommutableOpIdx2)
    265       ResultIdx2 = CommutableOpIdx1;
    266     else
    267       return false;
    268   } else
    269     // Check that the result operand indices match the given commutable
    270     // operand indices.
    271     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
    272            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
    273 
    274   return true;
    275 }
    276 
    277 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
    278                                             unsigned &SrcOpIdx1,
    279                                             unsigned &SrcOpIdx2) const {
    280   assert(!MI.isBundle() &&
    281          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
    282 
    283   const MCInstrDesc &MCID = MI.getDesc();
    284   if (!MCID.isCommutable())
    285     return false;
    286 
    287   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
    288   // is not true, then the target must implement this.
    289   unsigned CommutableOpIdx1 = MCID.getNumDefs();
    290   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
    291   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
    292                             CommutableOpIdx1, CommutableOpIdx2))
    293     return false;
    294 
    295   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
    296     // No idea.
    297     return false;
    298   return true;
    299 }
    300 
    301 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
    302   if (!MI.isTerminator()) return false;
    303 
    304   // Conditional branch is a special case.
    305   if (MI.isBranch() && !MI.isBarrier())
    306     return true;
    307   if (!MI.isPredicable())
    308     return true;
    309   return !isPredicated(MI);
    310 }
    311 
    312 bool TargetInstrInfo::PredicateInstruction(
    313     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
    314   bool MadeChange = false;
    315 
    316   assert(!MI.isBundle() &&
    317          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
    318 
    319   const MCInstrDesc &MCID = MI.getDesc();
    320   if (!MI.isPredicable())
    321     return false;
    322 
    323   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
    324     if (MCID.OpInfo[i].isPredicate()) {
    325       MachineOperand &MO = MI.getOperand(i);
    326       if (MO.isReg()) {
    327         MO.setReg(Pred[j].getReg());
    328         MadeChange = true;
    329       } else if (MO.isImm()) {
    330         MO.setImm(Pred[j].getImm());
    331         MadeChange = true;
    332       } else if (MO.isMBB()) {
    333         MO.setMBB(Pred[j].getMBB());
    334         MadeChange = true;
    335       }
    336       ++j;
    337     }
    338   }
    339   return MadeChange;
    340 }
    341 
    342 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
    343                                            const MachineMemOperand *&MMO,
    344                                            int &FrameIndex) const {
    345   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
    346                                   oe = MI.memoperands_end();
    347        o != oe; ++o) {
    348     if ((*o)->isLoad()) {
    349       if (const FixedStackPseudoSourceValue *Value =
    350           dyn_cast_or_null<FixedStackPseudoSourceValue>(
    351               (*o)->getPseudoValue())) {
    352         FrameIndex = Value->getFrameIndex();
    353         MMO = *o;
    354         return true;
    355       }
    356     }
    357   }
    358   return false;
    359 }
    360 
    361 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
    362                                           const MachineMemOperand *&MMO,
    363                                           int &FrameIndex) const {
    364   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
    365                                   oe = MI.memoperands_end();
    366        o != oe; ++o) {
    367     if ((*o)->isStore()) {
    368       if (const FixedStackPseudoSourceValue *Value =
    369           dyn_cast_or_null<FixedStackPseudoSourceValue>(
    370               (*o)->getPseudoValue())) {
    371         FrameIndex = Value->getFrameIndex();
    372         MMO = *o;
    373         return true;
    374       }
    375     }
    376   }
    377   return false;
    378 }
    379 
    380 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
    381                                         unsigned SubIdx, unsigned &Size,
    382                                         unsigned &Offset,
    383                                         const MachineFunction &MF) const {
    384   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    385   if (!SubIdx) {
    386     Size = TRI->getSpillSize(*RC);
    387     Offset = 0;
    388     return true;
    389   }
    390   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
    391   // Convert bit size to byte size to be consistent with
    392   // MCRegisterClass::getSize().
    393   if (BitSize % 8)
    394     return false;
    395 
    396   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
    397   if (BitOffset < 0 || BitOffset % 8)
    398     return false;
    399 
    400   Size = BitSize /= 8;
    401   Offset = (unsigned)BitOffset / 8;
    402 
    403   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
    404 
    405   if (!MF.getDataLayout().isLittleEndian()) {
    406     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
    407   }
    408   return true;
    409 }
    410 
    411 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
    412                                     MachineBasicBlock::iterator I,
    413                                     unsigned DestReg, unsigned SubIdx,
    414                                     const MachineInstr &Orig,
    415                                     const TargetRegisterInfo &TRI) const {
    416   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
    417   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
    418   MBB.insert(I, MI);
    419 }
    420 
    421 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
    422                                        const MachineInstr &MI1,
    423                                        const MachineRegisterInfo *MRI) const {
    424   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
    425 }
    426 
    427 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
    428     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
    429   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
    430   MachineFunction &MF = *MBB.getParent();
    431   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
    432 }
    433 
    434 // If the COPY instruction in MI can be folded to a stack operation, return
    435 // the register class to use.
    436 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
    437                                               unsigned FoldIdx) {
    438   assert(MI.isCopy() && "MI must be a COPY instruction");
    439   if (MI.getNumOperands() != 2)
    440     return nullptr;
    441   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
    442 
    443   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
    444   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
    445 
    446   if (FoldOp.getSubReg() || LiveOp.getSubReg())
    447     return nullptr;
    448 
    449   unsigned FoldReg = FoldOp.getReg();
    450   unsigned LiveReg = LiveOp.getReg();
    451 
    452   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
    453          "Cannot fold physregs");
    454 
    455   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
    456   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
    457 
    458   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
    459     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
    460 
    461   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
    462     return RC;
    463 
    464   // FIXME: Allow folding when register classes are memory compatible.
    465   return nullptr;
    466 }
    467 
    468 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
    469   llvm_unreachable("Not implemented");
    470 }
    471 
    472 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
    473                                     ArrayRef<unsigned> Ops, int FrameIndex,
    474                                     const TargetInstrInfo &TII) {
    475   unsigned StartIdx = 0;
    476   switch (MI.getOpcode()) {
    477   case TargetOpcode::STACKMAP: {
    478     // StackMapLiveValues are foldable
    479     StartIdx = StackMapOpers(&MI).getVarIdx();
    480     break;
    481   }
    482   case TargetOpcode::PATCHPOINT: {
    483     // For PatchPoint, the call args are not foldable (even if reported in the
    484     // stackmap e.g. via anyregcc).
    485     StartIdx = PatchPointOpers(&MI).getVarIdx();
    486     break;
    487   }
    488   case TargetOpcode::STATEPOINT: {
    489     // For statepoints, fold deopt and gc arguments, but not call arguments.
    490     StartIdx = StatepointOpers(&MI).getVarIdx();
    491     break;
    492   }
    493   default:
    494     llvm_unreachable("unexpected stackmap opcode");
    495   }
    496 
    497   // Return false if any operands requested for folding are not foldable (not
    498   // part of the stackmap's live values).
    499   for (unsigned Op : Ops) {
    500     if (Op < StartIdx)
    501       return nullptr;
    502   }
    503 
    504   MachineInstr *NewMI =
    505       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
    506   MachineInstrBuilder MIB(MF, NewMI);
    507 
    508   // No need to fold return, the meta data, and function arguments
    509   for (unsigned i = 0; i < StartIdx; ++i)
    510     MIB.add(MI.getOperand(i));
    511 
    512   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
    513     MachineOperand &MO = MI.getOperand(i);
    514     if (is_contained(Ops, i)) {
    515       unsigned SpillSize;
    516       unsigned SpillOffset;
    517       // Compute the spill slot size and offset.
    518       const TargetRegisterClass *RC =
    519         MF.getRegInfo().getRegClass(MO.getReg());
    520       bool Valid =
    521           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
    522       if (!Valid)
    523         report_fatal_error("cannot spill patchpoint subregister operand");
    524       MIB.addImm(StackMaps::IndirectMemRefOp);
    525       MIB.addImm(SpillSize);
    526       MIB.addFrameIndex(FrameIndex);
    527       MIB.addImm(SpillOffset);
    528     }
    529     else
    530       MIB.add(MO);
    531   }
    532   return NewMI;
    533 }
    534 
    535 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
    536                                                  ArrayRef<unsigned> Ops, int FI,
    537                                                  LiveIntervals *LIS) const {
    538   auto Flags = MachineMemOperand::MONone;
    539   for (unsigned OpIdx : Ops)
    540     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
    541                                           : MachineMemOperand::MOLoad;
    542 
    543   MachineBasicBlock *MBB = MI.getParent();
    544   assert(MBB && "foldMemoryOperand needs an inserted instruction");
    545   MachineFunction &MF = *MBB->getParent();
    546 
    547   // If we're not folding a load into a subreg, the size of the load is the
    548   // size of the spill slot. But if we are, we need to figure out what the
    549   // actual load size is.
    550   int64_t MemSize = 0;
    551   const MachineFrameInfo &MFI = MF.getFrameInfo();
    552   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    553 
    554   if (Flags & MachineMemOperand::MOStore) {
    555     MemSize = MFI.getObjectSize(FI);
    556   } else {
    557     for (unsigned OpIdx : Ops) {
    558       int64_t OpSize = MFI.getObjectSize(FI);
    559 
    560       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
    561         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
    562         if (SubRegSize > 0 && !(SubRegSize % 8))
    563           OpSize = SubRegSize / 8;
    564       }
    565 
    566       MemSize = std::max(MemSize, OpSize);
    567     }
    568   }
    569 
    570   assert(MemSize && "Did not expect a zero-sized stack slot");
    571 
    572   MachineInstr *NewMI = nullptr;
    573 
    574   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
    575       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
    576       MI.getOpcode() == TargetOpcode::STATEPOINT) {
    577     // Fold stackmap/patchpoint.
    578     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
    579     if (NewMI)
    580       MBB->insert(MI, NewMI);
    581   } else {
    582     // Ask the target to do the actual folding.
    583     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
    584   }
    585 
    586   if (NewMI) {
    587     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
    588     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
    589     assert((!(Flags & MachineMemOperand::MOStore) ||
    590             NewMI->mayStore()) &&
    591            "Folded a def to a non-store!");
    592     assert((!(Flags & MachineMemOperand::MOLoad) ||
    593             NewMI->mayLoad()) &&
    594            "Folded a use to a non-load!");
    595     assert(MFI.getObjectOffset(FI) != -1);
    596     MachineMemOperand *MMO = MF.getMachineMemOperand(
    597         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
    598         MFI.getObjectAlignment(FI));
    599     NewMI->addMemOperand(MF, MMO);
    600 
    601     return NewMI;
    602   }
    603 
    604   // Straight COPY may fold as load/store.
    605   if (!MI.isCopy() || Ops.size() != 1)
    606     return nullptr;
    607 
    608   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
    609   if (!RC)
    610     return nullptr;
    611 
    612   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
    613   MachineBasicBlock::iterator Pos = MI;
    614 
    615   if (Flags == MachineMemOperand::MOStore)
    616     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
    617   else
    618     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
    619   return &*--Pos;
    620 }
    621 
    622 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
    623                                                  ArrayRef<unsigned> Ops,
    624                                                  MachineInstr &LoadMI,
    625                                                  LiveIntervals *LIS) const {
    626   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
    627 #ifndef NDEBUG
    628   for (unsigned OpIdx : Ops)
    629     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
    630 #endif
    631 
    632   MachineBasicBlock &MBB = *MI.getParent();
    633   MachineFunction &MF = *MBB.getParent();
    634 
    635   // Ask the target to do the actual folding.
    636   MachineInstr *NewMI = nullptr;
    637   int FrameIndex = 0;
    638 
    639   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
    640        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
    641        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
    642       isLoadFromStackSlot(LoadMI, FrameIndex)) {
    643     // Fold stackmap/patchpoint.
    644     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
    645     if (NewMI)
    646       NewMI = &*MBB.insert(MI, NewMI);
    647   } else {
    648     // Ask the target to do the actual folding.
    649     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
    650   }
    651 
    652   if (!NewMI)
    653     return nullptr;
    654 
    655   // Copy the memoperands from the load to the folded instruction.
    656   if (MI.memoperands_empty()) {
    657     NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end());
    658   } else {
    659     // Handle the rare case of folding multiple loads.
    660     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
    661     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
    662                                     E = LoadMI.memoperands_end();
    663          I != E; ++I) {
    664       NewMI->addMemOperand(MF, *I);
    665     }
    666   }
    667   return NewMI;
    668 }
    669 
    670 bool TargetInstrInfo::hasReassociableOperands(
    671     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
    672   const MachineOperand &Op1 = Inst.getOperand(1);
    673   const MachineOperand &Op2 = Inst.getOperand(2);
    674   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
    675 
    676   // We need virtual register definitions for the operands that we will
    677   // reassociate.
    678   MachineInstr *MI1 = nullptr;
    679   MachineInstr *MI2 = nullptr;
    680   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
    681     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
    682   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
    683     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
    684 
    685   // And they need to be in the trace (otherwise, they won't have a depth).
    686   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
    687 }
    688 
    689 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
    690                                              bool &Commuted) const {
    691   const MachineBasicBlock *MBB = Inst.getParent();
    692   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
    693   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
    694   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
    695   unsigned AssocOpcode = Inst.getOpcode();
    696 
    697   // If only one operand has the same opcode and it's the second source operand,
    698   // the operands must be commuted.
    699   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
    700   if (Commuted)
    701     std::swap(MI1, MI2);
    702 
    703   // 1. The previous instruction must be the same type as Inst.
    704   // 2. The previous instruction must have virtual register definitions for its
    705   //    operands in the same basic block as Inst.
    706   // 3. The previous instruction's result must only be used by Inst.
    707   return MI1->getOpcode() == AssocOpcode &&
    708          hasReassociableOperands(*MI1, MBB) &&
    709          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
    710 }
    711 
    712 // 1. The operation must be associative and commutative.
    713 // 2. The instruction must have virtual register definitions for its
    714 //    operands in the same basic block.
    715 // 3. The instruction must have a reassociable sibling.
    716 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
    717                                                bool &Commuted) const {
    718   return isAssociativeAndCommutative(Inst) &&
    719          hasReassociableOperands(Inst, Inst.getParent()) &&
    720          hasReassociableSibling(Inst, Commuted);
    721 }
    722 
    723 // The concept of the reassociation pass is that these operations can benefit
    724 // from this kind of transformation:
    725 //
    726 // A = ? op ?
    727 // B = A op X (Prev)
    728 // C = B op Y (Root)
    729 // -->
    730 // A = ? op ?
    731 // B = X op Y
    732 // C = A op B
    733 //
    734 // breaking the dependency between A and B, allowing them to be executed in
    735 // parallel (or back-to-back in a pipeline) instead of depending on each other.
    736 
    737 // FIXME: This has the potential to be expensive (compile time) while not
    738 // improving the code at all. Some ways to limit the overhead:
    739 // 1. Track successful transforms; bail out if hit rate gets too low.
    740 // 2. Only enable at -O3 or some other non-default optimization level.
    741 // 3. Pre-screen pattern candidates here: if an operand of the previous
    742 //    instruction is known to not increase the critical path, then don't match
    743 //    that pattern.
    744 bool TargetInstrInfo::getMachineCombinerPatterns(
    745     MachineInstr &Root,
    746     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
    747   bool Commute;
    748   if (isReassociationCandidate(Root, Commute)) {
    749     // We found a sequence of instructions that may be suitable for a
    750     // reassociation of operands to increase ILP. Specify each commutation
    751     // possibility for the Prev instruction in the sequence and let the
    752     // machine combiner decide if changing the operands is worthwhile.
    753     if (Commute) {
    754       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
    755       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
    756     } else {
    757       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
    758       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
    759     }
    760     return true;
    761   }
    762 
    763   return false;
    764 }
    765 
    766 /// Return true when a code sequence can improve loop throughput.
    767 bool
    768 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
    769   return false;
    770 }
    771 
    772 /// Attempt the reassociation transformation to reduce critical path length.
    773 /// See the above comments before getMachineCombinerPatterns().
    774 void TargetInstrInfo::reassociateOps(
    775     MachineInstr &Root, MachineInstr &Prev,
    776     MachineCombinerPattern Pattern,
    777     SmallVectorImpl<MachineInstr *> &InsInstrs,
    778     SmallVectorImpl<MachineInstr *> &DelInstrs,
    779     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
    780   MachineFunction *MF = Root.getMF();
    781   MachineRegisterInfo &MRI = MF->getRegInfo();
    782   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    783   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    784   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
    785 
    786   // This array encodes the operand index for each parameter because the
    787   // operands may be commuted. Each row corresponds to a pattern value,
    788   // and each column specifies the index of A, B, X, Y.
    789   unsigned OpIdx[4][4] = {
    790     { 1, 1, 2, 2 },
    791     { 1, 2, 2, 1 },
    792     { 2, 1, 1, 2 },
    793     { 2, 2, 1, 1 }
    794   };
    795 
    796   int Row;
    797   switch (Pattern) {
    798   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
    799   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
    800   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
    801   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
    802   default: llvm_unreachable("unexpected MachineCombinerPattern");
    803   }
    804 
    805   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
    806   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
    807   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
    808   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
    809   MachineOperand &OpC = Root.getOperand(0);
    810 
    811   unsigned RegA = OpA.getReg();
    812   unsigned RegB = OpB.getReg();
    813   unsigned RegX = OpX.getReg();
    814   unsigned RegY = OpY.getReg();
    815   unsigned RegC = OpC.getReg();
    816 
    817   if (TargetRegisterInfo::isVirtualRegister(RegA))
    818     MRI.constrainRegClass(RegA, RC);
    819   if (TargetRegisterInfo::isVirtualRegister(RegB))
    820     MRI.constrainRegClass(RegB, RC);
    821   if (TargetRegisterInfo::isVirtualRegister(RegX))
    822     MRI.constrainRegClass(RegX, RC);
    823   if (TargetRegisterInfo::isVirtualRegister(RegY))
    824     MRI.constrainRegClass(RegY, RC);
    825   if (TargetRegisterInfo::isVirtualRegister(RegC))
    826     MRI.constrainRegClass(RegC, RC);
    827 
    828   // Create a new virtual register for the result of (X op Y) instead of
    829   // recycling RegB because the MachineCombiner's computation of the critical
    830   // path requires a new register definition rather than an existing one.
    831   unsigned NewVR = MRI.createVirtualRegister(RC);
    832   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
    833 
    834   unsigned Opcode = Root.getOpcode();
    835   bool KillA = OpA.isKill();
    836   bool KillX = OpX.isKill();
    837   bool KillY = OpY.isKill();
    838 
    839   // Create new instructions for insertion.
    840   MachineInstrBuilder MIB1 =
    841       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
    842           .addReg(RegX, getKillRegState(KillX))
    843           .addReg(RegY, getKillRegState(KillY));
    844   MachineInstrBuilder MIB2 =
    845       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
    846           .addReg(RegA, getKillRegState(KillA))
    847           .addReg(NewVR, getKillRegState(true));
    848 
    849   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
    850 
    851   // Record new instructions for insertion and old instructions for deletion.
    852   InsInstrs.push_back(MIB1);
    853   InsInstrs.push_back(MIB2);
    854   DelInstrs.push_back(&Prev);
    855   DelInstrs.push_back(&Root);
    856 }
    857 
    858 void TargetInstrInfo::genAlternativeCodeSequence(
    859     MachineInstr &Root, MachineCombinerPattern Pattern,
    860     SmallVectorImpl<MachineInstr *> &InsInstrs,
    861     SmallVectorImpl<MachineInstr *> &DelInstrs,
    862     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
    863   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
    864 
    865   // Select the previous instruction in the sequence based on the input pattern.
    866   MachineInstr *Prev = nullptr;
    867   switch (Pattern) {
    868   case MachineCombinerPattern::REASSOC_AX_BY:
    869   case MachineCombinerPattern::REASSOC_XA_BY:
    870     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
    871     break;
    872   case MachineCombinerPattern::REASSOC_AX_YB:
    873   case MachineCombinerPattern::REASSOC_XA_YB:
    874     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
    875     break;
    876   default:
    877     break;
    878   }
    879 
    880   assert(Prev && "Unknown pattern for machine combiner");
    881 
    882   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
    883 }
    884 
    885 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
    886     const MachineInstr &MI, AliasAnalysis *AA) const {
    887   const MachineFunction &MF = *MI.getMF();
    888   const MachineRegisterInfo &MRI = MF.getRegInfo();
    889 
    890   // Remat clients assume operand 0 is the defined register.
    891   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
    892     return false;
    893   unsigned DefReg = MI.getOperand(0).getReg();
    894 
    895   // A sub-register definition can only be rematerialized if the instruction
    896   // doesn't read the other parts of the register.  Otherwise it is really a
    897   // read-modify-write operation on the full virtual register which cannot be
    898   // moved safely.
    899   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
    900       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
    901     return false;
    902 
    903   // A load from a fixed stack slot can be rematerialized. This may be
    904   // redundant with subsequent checks, but it's target-independent,
    905   // simple, and a common case.
    906   int FrameIdx = 0;
    907   if (isLoadFromStackSlot(MI, FrameIdx) &&
    908       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
    909     return true;
    910 
    911   // Avoid instructions obviously unsafe for remat.
    912   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
    913     return false;
    914 
    915   // Don't remat inline asm. We have no idea how expensive it is
    916   // even if it's side effect free.
    917   if (MI.isInlineAsm())
    918     return false;
    919 
    920   // Avoid instructions which load from potentially varying memory.
    921   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
    922     return false;
    923 
    924   // If any of the registers accessed are non-constant, conservatively assume
    925   // the instruction is not rematerializable.
    926   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    927     const MachineOperand &MO = MI.getOperand(i);
    928     if (!MO.isReg()) continue;
    929     unsigned Reg = MO.getReg();
    930     if (Reg == 0)
    931       continue;
    932 
    933     // Check for a well-behaved physical register.
    934     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    935       if (MO.isUse()) {
    936         // If the physreg has no defs anywhere, it's just an ambient register
    937         // and we can freely move its uses. Alternatively, if it's allocatable,
    938         // it could get allocated to something with a def during allocation.
    939         if (!MRI.isConstantPhysReg(Reg))
    940           return false;
    941       } else {
    942         // A physreg def. We can't remat it.
    943         return false;
    944       }
    945       continue;
    946     }
    947 
    948     // Only allow one virtual-register def.  There may be multiple defs of the
    949     // same virtual register, though.
    950     if (MO.isDef() && Reg != DefReg)
    951       return false;
    952 
    953     // Don't allow any virtual-register uses. Rematting an instruction with
    954     // virtual register uses would length the live ranges of the uses, which
    955     // is not necessarily a good idea, certainly not "trivial".
    956     if (MO.isUse())
    957       return false;
    958   }
    959 
    960   // Everything checked out.
    961   return true;
    962 }
    963 
    964 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
    965   const MachineFunction *MF = MI.getMF();
    966   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
    967   bool StackGrowsDown =
    968     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
    969 
    970   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
    971   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
    972 
    973   if (!isFrameInstr(MI))
    974     return 0;
    975 
    976   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
    977 
    978   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
    979       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
    980     SPAdj = -SPAdj;
    981 
    982   return SPAdj;
    983 }
    984 
    985 /// isSchedulingBoundary - Test if the given instruction should be
    986 /// considered a scheduling boundary. This primarily includes labels
    987 /// and terminators.
    988 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
    989                                            const MachineBasicBlock *MBB,
    990                                            const MachineFunction &MF) const {
    991   // Terminators and labels can't be scheduled around.
    992   if (MI.isTerminator() || MI.isPosition())
    993     return true;
    994 
    995   // Don't attempt to schedule around any instruction that defines
    996   // a stack-oriented pointer, as it's unlikely to be profitable. This
    997   // saves compile time, because it doesn't require every single
    998   // stack slot reference to depend on the instruction that does the
    999   // modification.
   1000   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
   1001   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
   1002   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
   1003 }
   1004 
   1005 // Provide a global flag for disabling the PreRA hazard recognizer that targets
   1006 // may choose to honor.
   1007 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
   1008   return !DisableHazardRecognizer;
   1009 }
   1010 
   1011 // Default implementation of CreateTargetRAHazardRecognizer.
   1012 ScheduleHazardRecognizer *TargetInstrInfo::
   1013 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
   1014                              const ScheduleDAG *DAG) const {
   1015   // Dummy hazard recognizer allows all instructions to issue.
   1016   return new ScheduleHazardRecognizer();
   1017 }
   1018 
   1019 // Default implementation of CreateTargetMIHazardRecognizer.
   1020 ScheduleHazardRecognizer *TargetInstrInfo::
   1021 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
   1022                                const ScheduleDAG *DAG) const {
   1023   return (ScheduleHazardRecognizer *)
   1024     new ScoreboardHazardRecognizer(II, DAG, "misched");
   1025 }
   1026 
   1027 // Default implementation of CreateTargetPostRAHazardRecognizer.
   1028 ScheduleHazardRecognizer *TargetInstrInfo::
   1029 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
   1030                                    const ScheduleDAG *DAG) const {
   1031   return (ScheduleHazardRecognizer *)
   1032     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
   1033 }
   1034 
   1035 //===----------------------------------------------------------------------===//
   1036 //  SelectionDAG latency interface.
   1037 //===----------------------------------------------------------------------===//
   1038 
   1039 int
   1040 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   1041                                    SDNode *DefNode, unsigned DefIdx,
   1042                                    SDNode *UseNode, unsigned UseIdx) const {
   1043   if (!ItinData || ItinData->isEmpty())
   1044     return -1;
   1045 
   1046   if (!DefNode->isMachineOpcode())
   1047     return -1;
   1048 
   1049   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
   1050   if (!UseNode->isMachineOpcode())
   1051     return ItinData->getOperandCycle(DefClass, DefIdx);
   1052   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
   1053   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
   1054 }
   1055 
   1056 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   1057                                      SDNode *N) const {
   1058   if (!ItinData || ItinData->isEmpty())
   1059     return 1;
   1060 
   1061   if (!N->isMachineOpcode())
   1062     return 1;
   1063 
   1064   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
   1065 }
   1066 
   1067 //===----------------------------------------------------------------------===//
   1068 //  MachineInstr latency interface.
   1069 //===----------------------------------------------------------------------===//
   1070 
   1071 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
   1072                                          const MachineInstr &MI) const {
   1073   if (!ItinData || ItinData->isEmpty())
   1074     return 1;
   1075 
   1076   unsigned Class = MI.getDesc().getSchedClass();
   1077   int UOps = ItinData->Itineraries[Class].NumMicroOps;
   1078   if (UOps >= 0)
   1079     return UOps;
   1080 
   1081   // The # of u-ops is dynamically determined. The specific target should
   1082   // override this function to return the right number.
   1083   return 1;
   1084 }
   1085 
   1086 /// Return the default expected latency for a def based on it's opcode.
   1087 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
   1088                                             const MachineInstr &DefMI) const {
   1089   if (DefMI.isTransient())
   1090     return 0;
   1091   if (DefMI.mayLoad())
   1092     return SchedModel.LoadLatency;
   1093   if (isHighLatencyDef(DefMI.getOpcode()))
   1094     return SchedModel.HighLatency;
   1095   return 1;
   1096 }
   1097 
   1098 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
   1099   return 0;
   1100 }
   1101 
   1102 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   1103                                           const MachineInstr &MI,
   1104                                           unsigned *PredCost) const {
   1105   // Default to one cycle for no itinerary. However, an "empty" itinerary may
   1106   // still have a MinLatency property, which getStageLatency checks.
   1107   if (!ItinData)
   1108     return MI.mayLoad() ? 2 : 1;
   1109 
   1110   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
   1111 }
   1112 
   1113 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
   1114                                        const MachineInstr &DefMI,
   1115                                        unsigned DefIdx) const {
   1116   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
   1117   if (!ItinData || ItinData->isEmpty())
   1118     return false;
   1119 
   1120   unsigned DefClass = DefMI.getDesc().getSchedClass();
   1121   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   1122   return (DefCycle != -1 && DefCycle <= 1);
   1123 }
   1124 
   1125 /// Both DefMI and UseMI must be valid.  By default, call directly to the
   1126 /// itinerary. This may be overriden by the target.
   1127 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   1128                                        const MachineInstr &DefMI,
   1129                                        unsigned DefIdx,
   1130                                        const MachineInstr &UseMI,
   1131                                        unsigned UseIdx) const {
   1132   unsigned DefClass = DefMI.getDesc().getSchedClass();
   1133   unsigned UseClass = UseMI.getDesc().getSchedClass();
   1134   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
   1135 }
   1136 
   1137 /// If we can determine the operand latency from the def only, without itinerary
   1138 /// lookup, do so. Otherwise return -1.
   1139 int TargetInstrInfo::computeDefOperandLatency(
   1140     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
   1141 
   1142   // Let the target hook getInstrLatency handle missing itineraries.
   1143   if (!ItinData)
   1144     return getInstrLatency(ItinData, DefMI);
   1145 
   1146   if(ItinData->isEmpty())
   1147     return defaultDefLatency(ItinData->SchedModel, DefMI);
   1148 
   1149   // ...operand lookup required
   1150   return -1;
   1151 }
   1152 
   1153 bool TargetInstrInfo::getRegSequenceInputs(
   1154     const MachineInstr &MI, unsigned DefIdx,
   1155     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
   1156   assert((MI.isRegSequence() ||
   1157           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
   1158 
   1159   if (!MI.isRegSequence())
   1160     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
   1161 
   1162   // We are looking at:
   1163   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
   1164   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
   1165   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
   1166        OpIdx += 2) {
   1167     const MachineOperand &MOReg = MI.getOperand(OpIdx);
   1168     if (MOReg.isUndef())
   1169       continue;
   1170     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
   1171     assert(MOSubIdx.isImm() &&
   1172            "One of the subindex of the reg_sequence is not an immediate");
   1173     // Record Reg:SubReg, SubIdx.
   1174     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
   1175                                             (unsigned)MOSubIdx.getImm()));
   1176   }
   1177   return true;
   1178 }
   1179 
   1180 bool TargetInstrInfo::getExtractSubregInputs(
   1181     const MachineInstr &MI, unsigned DefIdx,
   1182     RegSubRegPairAndIdx &InputReg) const {
   1183   assert((MI.isExtractSubreg() ||
   1184       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
   1185 
   1186   if (!MI.isExtractSubreg())
   1187     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
   1188 
   1189   // We are looking at:
   1190   // Def = EXTRACT_SUBREG v0.sub1, sub0.
   1191   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
   1192   const MachineOperand &MOReg = MI.getOperand(1);
   1193   if (MOReg.isUndef())
   1194     return false;
   1195   const MachineOperand &MOSubIdx = MI.getOperand(2);
   1196   assert(MOSubIdx.isImm() &&
   1197          "The subindex of the extract_subreg is not an immediate");
   1198 
   1199   InputReg.Reg = MOReg.getReg();
   1200   InputReg.SubReg = MOReg.getSubReg();
   1201   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
   1202   return true;
   1203 }
   1204 
   1205 bool TargetInstrInfo::getInsertSubregInputs(
   1206     const MachineInstr &MI, unsigned DefIdx,
   1207     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
   1208   assert((MI.isInsertSubreg() ||
   1209       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
   1210 
   1211   if (!MI.isInsertSubreg())
   1212     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
   1213 
   1214   // We are looking at:
   1215   // Def = INSERT_SEQUENCE v0, v1, sub0.
   1216   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
   1217   const MachineOperand &MOBaseReg = MI.getOperand(1);
   1218   const MachineOperand &MOInsertedReg = MI.getOperand(2);
   1219   if (MOInsertedReg.isUndef())
   1220     return false;
   1221   const MachineOperand &MOSubIdx = MI.getOperand(3);
   1222   assert(MOSubIdx.isImm() &&
   1223          "One of the subindex of the reg_sequence is not an immediate");
   1224   BaseReg.Reg = MOBaseReg.getReg();
   1225   BaseReg.SubReg = MOBaseReg.getSubReg();
   1226 
   1227   InsertedReg.Reg = MOInsertedReg.getReg();
   1228   InsertedReg.SubReg = MOInsertedReg.getSubReg();
   1229   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
   1230   return true;
   1231 }
   1232