1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2010 the V8 project authors. All rights reserved. 34 35 36 #include "v8.h" 37 #include "mips/assembler-mips-inl.h" 38 #include "serialize.h" 39 40 41 namespace v8 { 42 namespace internal { 43 44 45 46 const Register no_reg = { -1 }; 47 48 const Register zero_reg = { 0 }; 49 const Register at = { 1 }; 50 const Register v0 = { 2 }; 51 const Register v1 = { 3 }; 52 const Register a0 = { 4 }; 53 const Register a1 = { 5 }; 54 const Register a2 = { 6 }; 55 const Register a3 = { 7 }; 56 const Register t0 = { 8 }; 57 const Register t1 = { 9 }; 58 const Register t2 = { 10 }; 59 const Register t3 = { 11 }; 60 const Register t4 = { 12 }; 61 const Register t5 = { 13 }; 62 const Register t6 = { 14 }; 63 const Register t7 = { 15 }; 64 const Register s0 = { 16 }; 65 const Register s1 = { 17 }; 66 const Register s2 = { 18 }; 67 const Register s3 = { 19 }; 68 const Register s4 = { 20 }; 69 const Register s5 = { 21 }; 70 const Register s6 = { 22 }; 71 const Register s7 = { 23 }; 72 const Register t8 = { 24 }; 73 const Register t9 = { 25 }; 74 const Register k0 = { 26 }; 75 const Register k1 = { 27 }; 76 const Register gp = { 28 }; 77 const Register sp = { 29 }; 78 const Register s8_fp = { 30 }; 79 const Register ra = { 31 }; 80 81 82 const FPURegister no_creg = { -1 }; 83 84 const FPURegister f0 = { 0 }; 85 const FPURegister f1 = { 1 }; 86 const FPURegister f2 = { 2 }; 87 const FPURegister f3 = { 3 }; 88 const FPURegister f4 = { 4 }; 89 const FPURegister f5 = { 5 }; 90 const FPURegister f6 = { 6 }; 91 const FPURegister f7 = { 7 }; 92 const FPURegister f8 = { 8 }; 93 const FPURegister f9 = { 9 }; 94 const FPURegister f10 = { 10 }; 95 const FPURegister f11 = { 11 }; 96 const FPURegister f12 = { 12 }; 97 const FPURegister f13 = { 13 }; 98 const FPURegister f14 = { 14 }; 99 const FPURegister f15 = { 15 }; 100 const FPURegister f16 = { 16 }; 101 const FPURegister f17 = { 17 }; 102 const FPURegister f18 = { 18 }; 103 const FPURegister f19 = { 19 }; 104 const FPURegister f20 = { 20 }; 105 const FPURegister f21 = { 21 }; 106 const FPURegister f22 = { 22 }; 107 const FPURegister f23 = { 23 }; 108 const FPURegister f24 = { 24 }; 109 const FPURegister f25 = { 25 }; 110 const FPURegister f26 = { 26 }; 111 const FPURegister f27 = { 27 }; 112 const FPURegister f28 = { 28 }; 113 const FPURegister f29 = { 29 }; 114 const FPURegister f30 = { 30 }; 115 const FPURegister f31 = { 31 }; 116 117 int ToNumber(Register reg) { 118 ASSERT(reg.is_valid()); 119 const int kNumbers[] = { 120 0, // zero_reg 121 1, // at 122 2, // v0 123 3, // v1 124 4, // a0 125 5, // a1 126 6, // a2 127 7, // a3 128 8, // t0 129 9, // t1 130 10, // t2 131 11, // t3 132 12, // t4 133 13, // t5 134 14, // t6 135 15, // t7 136 16, // s0 137 17, // s1 138 18, // s2 139 19, // s3 140 20, // s4 141 21, // s5 142 22, // s6 143 23, // s7 144 24, // t8 145 25, // t9 146 26, // k0 147 27, // k1 148 28, // gp 149 29, // sp 150 30, // s8_fp 151 31, // ra 152 }; 153 return kNumbers[reg.code()]; 154 } 155 156 Register ToRegister(int num) { 157 ASSERT(num >= 0 && num < kNumRegisters); 158 const Register kRegisters[] = { 159 zero_reg, 160 at, 161 v0, v1, 162 a0, a1, a2, a3, 163 t0, t1, t2, t3, t4, t5, t6, t7, 164 s0, s1, s2, s3, s4, s5, s6, s7, 165 t8, t9, 166 k0, k1, 167 gp, 168 sp, 169 s8_fp, 170 ra 171 }; 172 return kRegisters[num]; 173 } 174 175 176 // ----------------------------------------------------------------------------- 177 // Implementation of RelocInfo. 178 179 const int RelocInfo::kApplyMask = 0; 180 181 // Patch the code at the current address with the supplied instructions. 182 void RelocInfo::PatchCode(byte* instructions, int instruction_count) { 183 Instr* pc = reinterpret_cast<Instr*>(pc_); 184 Instr* instr = reinterpret_cast<Instr*>(instructions); 185 for (int i = 0; i < instruction_count; i++) { 186 *(pc + i) = *(instr + i); 187 } 188 189 // Indicate that code has changed. 190 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); 191 } 192 193 194 // Patch the code at the current PC with a call to the target address. 195 // Additional guard instructions can be added if required. 196 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { 197 // Patch the code at the current address with a call to the target. 198 UNIMPLEMENTED_MIPS(); 199 } 200 201 202 // ----------------------------------------------------------------------------- 203 // Implementation of Operand and MemOperand. 204 // See assembler-mips-inl.h for inlined constructors. 205 206 Operand::Operand(Handle<Object> handle) { 207 rm_ = no_reg; 208 // Verify all Objects referred by code are NOT in new space. 209 Object* obj = *handle; 210 ASSERT(!Heap::InNewSpace(obj)); 211 if (obj->IsHeapObject()) { 212 imm32_ = reinterpret_cast<intptr_t>(handle.location()); 213 rmode_ = RelocInfo::EMBEDDED_OBJECT; 214 } else { 215 // No relocation needed. 216 imm32_ = reinterpret_cast<intptr_t>(obj); 217 rmode_ = RelocInfo::NONE; 218 } 219 } 220 221 MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) { 222 offset_ = offset; 223 } 224 225 226 // ----------------------------------------------------------------------------- 227 // Implementation of Assembler. 228 229 static const int kMinimalBufferSize = 4*KB; 230 static byte* spare_buffer_ = NULL; 231 232 Assembler::Assembler(void* buffer, int buffer_size) { 233 if (buffer == NULL) { 234 // Do our own buffer management. 235 if (buffer_size <= kMinimalBufferSize) { 236 buffer_size = kMinimalBufferSize; 237 238 if (spare_buffer_ != NULL) { 239 buffer = spare_buffer_; 240 spare_buffer_ = NULL; 241 } 242 } 243 if (buffer == NULL) { 244 buffer_ = NewArray<byte>(buffer_size); 245 } else { 246 buffer_ = static_cast<byte*>(buffer); 247 } 248 buffer_size_ = buffer_size; 249 own_buffer_ = true; 250 251 } else { 252 // Use externally provided buffer instead. 253 ASSERT(buffer_size > 0); 254 buffer_ = static_cast<byte*>(buffer); 255 buffer_size_ = buffer_size; 256 own_buffer_ = false; 257 } 258 259 // Setup buffer pointers. 260 ASSERT(buffer_ != NULL); 261 pc_ = buffer_; 262 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); 263 current_statement_position_ = RelocInfo::kNoPosition; 264 current_position_ = RelocInfo::kNoPosition; 265 written_statement_position_ = current_statement_position_; 266 written_position_ = current_position_; 267 } 268 269 270 Assembler::~Assembler() { 271 if (own_buffer_) { 272 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { 273 spare_buffer_ = buffer_; 274 } else { 275 DeleteArray(buffer_); 276 } 277 } 278 } 279 280 281 void Assembler::GetCode(CodeDesc* desc) { 282 ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap 283 // Setup code descriptor. 284 desc->buffer = buffer_; 285 desc->buffer_size = buffer_size_; 286 desc->instr_size = pc_offset(); 287 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); 288 } 289 290 291 // Labels refer to positions in the (to be) generated code. 292 // There are bound, linked, and unused labels. 293 // 294 // Bound labels refer to known positions in the already 295 // generated code. pos() is the position the label refers to. 296 // 297 // Linked labels refer to unknown positions in the code 298 // to be generated; pos() is the position of the last 299 // instruction using the label. 300 301 302 // The link chain is terminated by a negative code position (must be aligned). 303 const int kEndOfChain = -4; 304 305 bool Assembler::is_branch(Instr instr) { 306 uint32_t opcode = ((instr & kOpcodeMask)); 307 uint32_t rt_field = ((instr & kRtFieldMask)); 308 uint32_t rs_field = ((instr & kRsFieldMask)); 309 // Checks if the instruction is a branch. 310 return opcode == BEQ || 311 opcode == BNE || 312 opcode == BLEZ || 313 opcode == BGTZ || 314 opcode == BEQL || 315 opcode == BNEL || 316 opcode == BLEZL || 317 opcode == BGTZL|| 318 (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || 319 rt_field == BLTZAL || rt_field == BGEZAL)) || 320 (opcode == COP1 && rs_field == BC1); // Coprocessor branch. 321 } 322 323 324 int Assembler::target_at(int32_t pos) { 325 Instr instr = instr_at(pos); 326 if ((instr & ~kImm16Mask) == 0) { 327 // Emitted label constant, not part of a branch. 328 return instr - (Code::kHeaderSize - kHeapObjectTag); 329 } 330 // Check we have a branch instruction. 331 ASSERT(is_branch(instr)); 332 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming 333 // the compiler uses arithmectic shifts for signed integers. 334 int32_t imm18 = ((instr & 335 static_cast<int32_t>(kImm16Mask)) << 16) >> 14; 336 337 return pos + kBranchPCOffset + imm18; 338 } 339 340 341 void Assembler::target_at_put(int32_t pos, int32_t target_pos) { 342 Instr instr = instr_at(pos); 343 if ((instr & ~kImm16Mask) == 0) { 344 ASSERT(target_pos == kEndOfChain || target_pos >= 0); 345 // Emitted label constant, not part of a branch. 346 // Make label relative to Code* of generated Code object. 347 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); 348 return; 349 } 350 351 ASSERT(is_branch(instr)); 352 int32_t imm18 = target_pos - (pos + kBranchPCOffset); 353 ASSERT((imm18 & 3) == 0); 354 355 instr &= ~kImm16Mask; 356 int32_t imm16 = imm18 >> 2; 357 ASSERT(is_int16(imm16)); 358 359 instr_at_put(pos, instr | (imm16 & kImm16Mask)); 360 } 361 362 363 void Assembler::print(Label* L) { 364 if (L->is_unused()) { 365 PrintF("unused label\n"); 366 } else if (L->is_bound()) { 367 PrintF("bound label to %d\n", L->pos()); 368 } else if (L->is_linked()) { 369 Label l = *L; 370 PrintF("unbound label"); 371 while (l.is_linked()) { 372 PrintF("@ %d ", l.pos()); 373 Instr instr = instr_at(l.pos()); 374 if ((instr & ~kImm16Mask) == 0) { 375 PrintF("value\n"); 376 } else { 377 PrintF("%d\n", instr); 378 } 379 next(&l); 380 } 381 } else { 382 PrintF("label in inconsistent state (pos = %d)\n", L->pos_); 383 } 384 } 385 386 387 void Assembler::bind_to(Label* L, int pos) { 388 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position 389 while (L->is_linked()) { 390 int32_t fixup_pos = L->pos(); 391 next(L); // call next before overwriting link with target at fixup_pos 392 target_at_put(fixup_pos, pos); 393 } 394 L->bind_to(pos); 395 396 // Keep track of the last bound label so we don't eliminate any instructions 397 // before a bound label. 398 if (pos > last_bound_pos_) 399 last_bound_pos_ = pos; 400 } 401 402 403 void Assembler::link_to(Label* L, Label* appendix) { 404 if (appendix->is_linked()) { 405 if (L->is_linked()) { 406 // Append appendix to L's list. 407 int fixup_pos; 408 int link = L->pos(); 409 do { 410 fixup_pos = link; 411 link = target_at(fixup_pos); 412 } while (link > 0); 413 ASSERT(link == kEndOfChain); 414 target_at_put(fixup_pos, appendix->pos()); 415 } else { 416 // L is empty, simply use appendix 417 *L = *appendix; 418 } 419 } 420 appendix->Unuse(); // appendix should not be used anymore 421 } 422 423 424 void Assembler::bind(Label* L) { 425 ASSERT(!L->is_bound()); // label can only be bound once 426 bind_to(L, pc_offset()); 427 } 428 429 430 void Assembler::next(Label* L) { 431 ASSERT(L->is_linked()); 432 int link = target_at(L->pos()); 433 if (link > 0) { 434 L->link_to(link); 435 } else { 436 ASSERT(link == kEndOfChain); 437 L->Unuse(); 438 } 439 } 440 441 442 // We have to use a temporary register for things that can be relocated even 443 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction 444 // space. There is no guarantee that the relocated location can be similarly 445 // encoded. 446 bool Assembler::MustUseAt(RelocInfo::Mode rmode) { 447 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { 448 return Serializer::enabled(); 449 } else if (rmode == RelocInfo::NONE) { 450 return false; 451 } 452 return true; 453 } 454 455 456 void Assembler::GenInstrRegister(Opcode opcode, 457 Register rs, 458 Register rt, 459 Register rd, 460 uint16_t sa, 461 SecondaryField func) { 462 ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); 463 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) 464 | (rd.code() << kRdShift) | (sa << kSaShift) | func; 465 emit(instr); 466 } 467 468 469 void Assembler::GenInstrRegister(Opcode opcode, 470 SecondaryField fmt, 471 FPURegister ft, 472 FPURegister fs, 473 FPURegister fd, 474 SecondaryField func) { 475 ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); 476 Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift) 477 | (fd.code() << 6) | func; 478 emit(instr); 479 } 480 481 482 void Assembler::GenInstrRegister(Opcode opcode, 483 SecondaryField fmt, 484 Register rt, 485 FPURegister fs, 486 FPURegister fd, 487 SecondaryField func) { 488 ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); 489 Instr instr = opcode | fmt | (rt.code() << kRtShift) 490 | (fs.code() << kFsShift) | (fd.code() << 6) | func; 491 emit(instr); 492 } 493 494 495 // Instructions with immediate value. 496 // Registers are in the order of the instruction encoding, from left to right. 497 void Assembler::GenInstrImmediate(Opcode opcode, 498 Register rs, 499 Register rt, 500 int32_t j) { 501 ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); 502 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) 503 | (j & kImm16Mask); 504 emit(instr); 505 } 506 507 508 void Assembler::GenInstrImmediate(Opcode opcode, 509 Register rs, 510 SecondaryField SF, 511 int32_t j) { 512 ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j))); 513 Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); 514 emit(instr); 515 } 516 517 518 void Assembler::GenInstrImmediate(Opcode opcode, 519 Register rs, 520 FPURegister ft, 521 int32_t j) { 522 ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); 523 Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) 524 | (j & kImm16Mask); 525 emit(instr); 526 } 527 528 529 // Registers are in the order of the instruction encoding, from left to right. 530 void Assembler::GenInstrJump(Opcode opcode, 531 uint32_t address) { 532 ASSERT(is_uint26(address)); 533 Instr instr = opcode | address; 534 emit(instr); 535 } 536 537 538 int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { 539 int32_t target_pos; 540 if (L->is_bound()) { 541 target_pos = L->pos(); 542 } else { 543 if (L->is_linked()) { 544 target_pos = L->pos(); // L's link 545 } else { 546 target_pos = kEndOfChain; 547 } 548 L->link_to(pc_offset()); 549 } 550 551 int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); 552 return offset; 553 } 554 555 556 void Assembler::label_at_put(Label* L, int at_offset) { 557 int target_pos; 558 if (L->is_bound()) { 559 target_pos = L->pos(); 560 } else { 561 if (L->is_linked()) { 562 target_pos = L->pos(); // L's link 563 } else { 564 target_pos = kEndOfChain; 565 } 566 L->link_to(at_offset); 567 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); 568 } 569 } 570 571 572 //------- Branch and jump instructions -------- 573 574 void Assembler::b(int16_t offset) { 575 beq(zero_reg, zero_reg, offset); 576 } 577 578 579 void Assembler::bal(int16_t offset) { 580 bgezal(zero_reg, offset); 581 } 582 583 584 void Assembler::beq(Register rs, Register rt, int16_t offset) { 585 GenInstrImmediate(BEQ, rs, rt, offset); 586 } 587 588 589 void Assembler::bgez(Register rs, int16_t offset) { 590 GenInstrImmediate(REGIMM, rs, BGEZ, offset); 591 } 592 593 594 void Assembler::bgezal(Register rs, int16_t offset) { 595 GenInstrImmediate(REGIMM, rs, BGEZAL, offset); 596 } 597 598 599 void Assembler::bgtz(Register rs, int16_t offset) { 600 GenInstrImmediate(BGTZ, rs, zero_reg, offset); 601 } 602 603 604 void Assembler::blez(Register rs, int16_t offset) { 605 GenInstrImmediate(BLEZ, rs, zero_reg, offset); 606 } 607 608 609 void Assembler::bltz(Register rs, int16_t offset) { 610 GenInstrImmediate(REGIMM, rs, BLTZ, offset); 611 } 612 613 614 void Assembler::bltzal(Register rs, int16_t offset) { 615 GenInstrImmediate(REGIMM, rs, BLTZAL, offset); 616 } 617 618 619 void Assembler::bne(Register rs, Register rt, int16_t offset) { 620 GenInstrImmediate(BNE, rs, rt, offset); 621 } 622 623 624 void Assembler::j(int32_t target) { 625 ASSERT(is_uint28(target) && ((target & 3) == 0)); 626 GenInstrJump(J, target >> 2); 627 } 628 629 630 void Assembler::jr(Register rs) { 631 GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); 632 } 633 634 635 void Assembler::jal(int32_t target) { 636 ASSERT(is_uint28(target) && ((target & 3) == 0)); 637 GenInstrJump(JAL, target >> 2); 638 } 639 640 641 void Assembler::jalr(Register rs, Register rd) { 642 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); 643 } 644 645 646 //-------Data-processing-instructions--------- 647 648 // Arithmetic. 649 650 void Assembler::add(Register rd, Register rs, Register rt) { 651 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD); 652 } 653 654 655 void Assembler::addu(Register rd, Register rs, Register rt) { 656 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); 657 } 658 659 660 void Assembler::addi(Register rd, Register rs, int32_t j) { 661 GenInstrImmediate(ADDI, rs, rd, j); 662 } 663 664 665 void Assembler::addiu(Register rd, Register rs, int32_t j) { 666 GenInstrImmediate(ADDIU, rs, rd, j); 667 } 668 669 670 void Assembler::sub(Register rd, Register rs, Register rt) { 671 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB); 672 } 673 674 675 void Assembler::subu(Register rd, Register rs, Register rt) { 676 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); 677 } 678 679 680 void Assembler::mul(Register rd, Register rs, Register rt) { 681 GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); 682 } 683 684 685 void Assembler::mult(Register rs, Register rt) { 686 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); 687 } 688 689 690 void Assembler::multu(Register rs, Register rt) { 691 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); 692 } 693 694 695 void Assembler::div(Register rs, Register rt) { 696 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); 697 } 698 699 700 void Assembler::divu(Register rs, Register rt) { 701 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); 702 } 703 704 705 // Logical. 706 707 void Assembler::and_(Register rd, Register rs, Register rt) { 708 GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); 709 } 710 711 712 void Assembler::andi(Register rt, Register rs, int32_t j) { 713 GenInstrImmediate(ANDI, rs, rt, j); 714 } 715 716 717 void Assembler::or_(Register rd, Register rs, Register rt) { 718 GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); 719 } 720 721 722 void Assembler::ori(Register rt, Register rs, int32_t j) { 723 GenInstrImmediate(ORI, rs, rt, j); 724 } 725 726 727 void Assembler::xor_(Register rd, Register rs, Register rt) { 728 GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); 729 } 730 731 732 void Assembler::xori(Register rt, Register rs, int32_t j) { 733 GenInstrImmediate(XORI, rs, rt, j); 734 } 735 736 737 void Assembler::nor(Register rd, Register rs, Register rt) { 738 GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); 739 } 740 741 742 // Shifts. 743 void Assembler::sll(Register rd, Register rt, uint16_t sa) { 744 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); 745 } 746 747 748 void Assembler::sllv(Register rd, Register rt, Register rs) { 749 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); 750 } 751 752 753 void Assembler::srl(Register rd, Register rt, uint16_t sa) { 754 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL); 755 } 756 757 758 void Assembler::srlv(Register rd, Register rt, Register rs) { 759 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); 760 } 761 762 763 void Assembler::sra(Register rd, Register rt, uint16_t sa) { 764 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA); 765 } 766 767 768 void Assembler::srav(Register rd, Register rt, Register rs) { 769 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); 770 } 771 772 773 //------------Memory-instructions------------- 774 775 void Assembler::lb(Register rd, const MemOperand& rs) { 776 GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); 777 } 778 779 780 void Assembler::lbu(Register rd, const MemOperand& rs) { 781 GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); 782 } 783 784 785 void Assembler::lw(Register rd, const MemOperand& rs) { 786 GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); 787 } 788 789 790 void Assembler::sb(Register rd, const MemOperand& rs) { 791 GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); 792 } 793 794 795 void Assembler::sw(Register rd, const MemOperand& rs) { 796 GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); 797 } 798 799 800 void Assembler::lui(Register rd, int32_t j) { 801 GenInstrImmediate(LUI, zero_reg, rd, j); 802 } 803 804 805 //-------------Misc-instructions-------------- 806 807 // Break / Trap instructions. 808 void Assembler::break_(uint32_t code) { 809 ASSERT((code & ~0xfffff) == 0); 810 Instr break_instr = SPECIAL | BREAK | (code << 6); 811 emit(break_instr); 812 } 813 814 815 void Assembler::tge(Register rs, Register rt, uint16_t code) { 816 ASSERT(is_uint10(code)); 817 Instr instr = SPECIAL | TGE | rs.code() << kRsShift 818 | rt.code() << kRtShift | code << 6; 819 emit(instr); 820 } 821 822 823 void Assembler::tgeu(Register rs, Register rt, uint16_t code) { 824 ASSERT(is_uint10(code)); 825 Instr instr = SPECIAL | TGEU | rs.code() << kRsShift 826 | rt.code() << kRtShift | code << 6; 827 emit(instr); 828 } 829 830 831 void Assembler::tlt(Register rs, Register rt, uint16_t code) { 832 ASSERT(is_uint10(code)); 833 Instr instr = 834 SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; 835 emit(instr); 836 } 837 838 839 void Assembler::tltu(Register rs, Register rt, uint16_t code) { 840 ASSERT(is_uint10(code)); 841 Instr instr = SPECIAL | TLTU | rs.code() << kRsShift 842 | rt.code() << kRtShift | code << 6; 843 emit(instr); 844 } 845 846 847 void Assembler::teq(Register rs, Register rt, uint16_t code) { 848 ASSERT(is_uint10(code)); 849 Instr instr = 850 SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; 851 emit(instr); 852 } 853 854 855 void Assembler::tne(Register rs, Register rt, uint16_t code) { 856 ASSERT(is_uint10(code)); 857 Instr instr = 858 SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; 859 emit(instr); 860 } 861 862 863 // Move from HI/LO register. 864 865 void Assembler::mfhi(Register rd) { 866 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); 867 } 868 869 870 void Assembler::mflo(Register rd) { 871 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); 872 } 873 874 875 // Set on less than instructions. 876 void Assembler::slt(Register rd, Register rs, Register rt) { 877 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); 878 } 879 880 881 void Assembler::sltu(Register rd, Register rs, Register rt) { 882 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); 883 } 884 885 886 void Assembler::slti(Register rt, Register rs, int32_t j) { 887 GenInstrImmediate(SLTI, rs, rt, j); 888 } 889 890 891 void Assembler::sltiu(Register rt, Register rs, int32_t j) { 892 GenInstrImmediate(SLTIU, rs, rt, j); 893 } 894 895 896 //--------Coprocessor-instructions---------------- 897 898 // Load, store, move. 899 void Assembler::lwc1(FPURegister fd, const MemOperand& src) { 900 GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); 901 } 902 903 904 void Assembler::ldc1(FPURegister fd, const MemOperand& src) { 905 GenInstrImmediate(LDC1, src.rm(), fd, src.offset_); 906 } 907 908 909 void Assembler::swc1(FPURegister fd, const MemOperand& src) { 910 GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); 911 } 912 913 914 void Assembler::sdc1(FPURegister fd, const MemOperand& src) { 915 GenInstrImmediate(SDC1, src.rm(), fd, src.offset_); 916 } 917 918 919 void Assembler::mtc1(FPURegister fs, Register rt) { 920 GenInstrRegister(COP1, MTC1, rt, fs, f0); 921 } 922 923 924 void Assembler::mthc1(FPURegister fs, Register rt) { 925 GenInstrRegister(COP1, MTHC1, rt, fs, f0); 926 } 927 928 929 void Assembler::mfc1(FPURegister fs, Register rt) { 930 GenInstrRegister(COP1, MFC1, rt, fs, f0); 931 } 932 933 934 void Assembler::mfhc1(FPURegister fs, Register rt) { 935 GenInstrRegister(COP1, MFHC1, rt, fs, f0); 936 } 937 938 939 // Conversions. 940 941 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { 942 GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); 943 } 944 945 946 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { 947 GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); 948 } 949 950 951 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { 952 GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); 953 } 954 955 956 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { 957 GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); 958 } 959 960 961 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { 962 GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); 963 } 964 965 966 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { 967 GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); 968 } 969 970 971 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { 972 GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); 973 } 974 975 976 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { 977 GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); 978 } 979 980 981 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { 982 GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); 983 } 984 985 986 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { 987 GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); 988 } 989 990 991 // Conditions. 992 void Assembler::c(FPUCondition cond, SecondaryField fmt, 993 FPURegister ft, FPURegister fs, uint16_t cc) { 994 ASSERT(is_uint3(cc)); 995 ASSERT((fmt & ~(31 << kRsShift)) == 0); 996 Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift 997 | cc << 8 | 3 << 4 | cond; 998 emit(instr); 999 } 1000 1001 1002 void Assembler::bc1f(int16_t offset, uint16_t cc) { 1003 ASSERT(is_uint3(cc)); 1004 Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); 1005 emit(instr); 1006 } 1007 1008 1009 void Assembler::bc1t(int16_t offset, uint16_t cc) { 1010 ASSERT(is_uint3(cc)); 1011 Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); 1012 emit(instr); 1013 } 1014 1015 1016 // Debugging. 1017 void Assembler::RecordJSReturn() { 1018 WriteRecordedPositions(); 1019 CheckBuffer(); 1020 RecordRelocInfo(RelocInfo::JS_RETURN); 1021 } 1022 1023 1024 void Assembler::RecordComment(const char* msg) { 1025 if (FLAG_debug_code) { 1026 CheckBuffer(); 1027 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); 1028 } 1029 } 1030 1031 1032 void Assembler::RecordPosition(int pos) { 1033 if (pos == RelocInfo::kNoPosition) return; 1034 ASSERT(pos >= 0); 1035 current_position_ = pos; 1036 } 1037 1038 1039 void Assembler::RecordStatementPosition(int pos) { 1040 if (pos == RelocInfo::kNoPosition) return; 1041 ASSERT(pos >= 0); 1042 current_statement_position_ = pos; 1043 } 1044 1045 1046 void Assembler::WriteRecordedPositions() { 1047 // Write the statement position if it is different from what was written last 1048 // time. 1049 if (current_statement_position_ != written_statement_position_) { 1050 CheckBuffer(); 1051 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); 1052 written_statement_position_ = current_statement_position_; 1053 } 1054 1055 // Write the position if it is different from what was written last time and 1056 // also different from the written statement position. 1057 if (current_position_ != written_position_ && 1058 current_position_ != written_statement_position_) { 1059 CheckBuffer(); 1060 RecordRelocInfo(RelocInfo::POSITION, current_position_); 1061 written_position_ = current_position_; 1062 } 1063 } 1064 1065 1066 void Assembler::GrowBuffer() { 1067 if (!own_buffer_) FATAL("external code buffer is too small"); 1068 1069 // Compute new buffer size. 1070 CodeDesc desc; // the new buffer 1071 if (buffer_size_ < 4*KB) { 1072 desc.buffer_size = 4*KB; 1073 } else if (buffer_size_ < 1*MB) { 1074 desc.buffer_size = 2*buffer_size_; 1075 } else { 1076 desc.buffer_size = buffer_size_ + 1*MB; 1077 } 1078 CHECK_GT(desc.buffer_size, 0); // no overflow 1079 1080 // Setup new buffer. 1081 desc.buffer = NewArray<byte>(desc.buffer_size); 1082 1083 desc.instr_size = pc_offset(); 1084 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); 1085 1086 // Copy the data. 1087 int pc_delta = desc.buffer - buffer_; 1088 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); 1089 memmove(desc.buffer, buffer_, desc.instr_size); 1090 memmove(reloc_info_writer.pos() + rc_delta, 1091 reloc_info_writer.pos(), desc.reloc_size); 1092 1093 // Switch buffers. 1094 DeleteArray(buffer_); 1095 buffer_ = desc.buffer; 1096 buffer_size_ = desc.buffer_size; 1097 pc_ += pc_delta; 1098 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, 1099 reloc_info_writer.last_pc() + pc_delta); 1100 1101 1102 // On ia32 and ARM pc relative addressing is used, and we thus need to apply a 1103 // shift by pc_delta. But on MIPS the target address it directly loaded, so 1104 // we do not need to relocate here. 1105 1106 ASSERT(!overflow()); 1107 } 1108 1109 1110 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { 1111 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants 1112 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { 1113 // Adjust code for new modes. 1114 ASSERT(RelocInfo::IsJSReturn(rmode) 1115 || RelocInfo::IsComment(rmode) 1116 || RelocInfo::IsPosition(rmode)); 1117 // These modes do not need an entry in the constant pool. 1118 } 1119 if (rinfo.rmode() != RelocInfo::NONE) { 1120 // Don't record external references unless the heap will be serialized. 1121 if (rmode == RelocInfo::EXTERNAL_REFERENCE && 1122 !Serializer::enabled() && 1123 !FLAG_debug_code) { 1124 return; 1125 } 1126 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here 1127 reloc_info_writer.Write(&rinfo); 1128 } 1129 } 1130 1131 1132 Address Assembler::target_address_at(Address pc) { 1133 Instr instr1 = instr_at(pc); 1134 Instr instr2 = instr_at(pc + kInstrSize); 1135 // Check we have 2 instructions generated by li. 1136 ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || 1137 ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI || 1138 (instr2 & kOpcodeMask) == ORI || 1139 (instr2 & kOpcodeMask) == LUI))); 1140 // Interpret these 2 instructions. 1141 if (instr1 == nopInstr) { 1142 if ((instr2 & kOpcodeMask) == ADDI) { 1143 return reinterpret_cast<Address>(((instr2 & kImm16Mask) << 16) >> 16); 1144 } else if ((instr2 & kOpcodeMask) == ORI) { 1145 return reinterpret_cast<Address>(instr2 & kImm16Mask); 1146 } else if ((instr2 & kOpcodeMask) == LUI) { 1147 return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16); 1148 } 1149 } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) { 1150 // 32 bits value. 1151 return reinterpret_cast<Address>( 1152 (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask)); 1153 } 1154 1155 // We should never get here. 1156 UNREACHABLE(); 1157 return (Address)0x0; 1158 } 1159 1160 1161 void Assembler::set_target_address_at(Address pc, Address target) { 1162 // On MIPS we need to patch the code to generate. 1163 1164 // First check we have a li. 1165 Instr instr2 = instr_at(pc + kInstrSize); 1166 #ifdef DEBUG 1167 Instr instr1 = instr_at(pc); 1168 1169 // Check we have indeed the result from a li with MustUseAt true. 1170 CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || 1171 ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU || 1172 (instr2 & kOpcodeMask)== ORI || 1173 (instr2 & kOpcodeMask)== LUI))); 1174 #endif 1175 1176 1177 uint32_t rt_code = (instr2 & kRtFieldMask); 1178 uint32_t* p = reinterpret_cast<uint32_t*>(pc); 1179 uint32_t itarget = reinterpret_cast<uint32_t>(target); 1180 1181 if (is_int16(itarget)) { 1182 // nop 1183 // addiu rt zero_reg j 1184 *p = nopInstr; 1185 *(p+1) = ADDIU | rt_code | (itarget & LOMask); 1186 } else if (!(itarget & HIMask)) { 1187 // nop 1188 // ori rt zero_reg j 1189 *p = nopInstr; 1190 *(p+1) = ORI | rt_code | (itarget & LOMask); 1191 } else if (!(itarget & LOMask)) { 1192 // nop 1193 // lui rt (HIMask & itarget)>>16 1194 *p = nopInstr; 1195 *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16); 1196 } else { 1197 // lui rt (HIMask & itarget)>>16 1198 // ori rt rt, (LOMask & itarget) 1199 *p = LUI | rt_code | ((itarget & HIMask)>>16); 1200 *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask); 1201 } 1202 1203 CPU::FlushICache(pc, 2 * sizeof(int32_t)); 1204 } 1205 1206 1207 } } // namespace v8::internal 1208 1209