1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #if defined(V8_TARGET_ARCH_ARM) 31 32 #include "bootstrapper.h" 33 #include "code-stubs.h" 34 #include "regexp-macro-assembler.h" 35 36 namespace v8 { 37 namespace internal { 38 39 40 #define __ ACCESS_MASM(masm) 41 42 static void EmitIdenticalObjectComparison(MacroAssembler* masm, 43 Label* slow, 44 Condition cond, 45 bool never_nan_nan); 46 static void EmitSmiNonsmiComparison(MacroAssembler* masm, 47 Register lhs, 48 Register rhs, 49 Label* lhs_not_nan, 50 Label* slow, 51 bool strict); 52 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond); 53 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, 54 Register lhs, 55 Register rhs); 56 57 58 void ToNumberStub::Generate(MacroAssembler* masm) { 59 // The ToNumber stub takes one argument in eax. 60 Label check_heap_number, call_builtin; 61 __ tst(r0, Operand(kSmiTagMask)); 62 __ b(ne, &check_heap_number); 63 __ Ret(); 64 65 __ bind(&check_heap_number); 66 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 67 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 68 __ cmp(r1, ip); 69 __ b(ne, &call_builtin); 70 __ Ret(); 71 72 __ bind(&call_builtin); 73 __ push(r0); 74 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_JS); 75 } 76 77 78 void FastNewClosureStub::Generate(MacroAssembler* masm) { 79 // Create a new closure from the given function info in new 80 // space. Set the context to the current context in cp. 81 Label gc; 82 83 // Pop the function info from the stack. 84 __ pop(r3); 85 86 // Attempt to allocate new JSFunction in new space. 87 __ AllocateInNewSpace(JSFunction::kSize, 88 r0, 89 r1, 90 r2, 91 &gc, 92 TAG_OBJECT); 93 94 int map_index = strict_mode_ == kStrictMode 95 ? Context::STRICT_MODE_FUNCTION_MAP_INDEX 96 : Context::FUNCTION_MAP_INDEX; 97 98 // Compute the function map in the current global context and set that 99 // as the map of the allocated object. 100 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); 101 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); 102 __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index))); 103 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 104 105 // Initialize the rest of the function. We don't have to update the 106 // write barrier because the allocated object is in new space. 107 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); 108 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); 109 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); 110 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 111 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset)); 112 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset)); 113 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); 114 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset)); 115 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); 116 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset)); 117 118 119 // Initialize the code pointer in the function to be the one 120 // found in the shared function info object. 121 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset)); 122 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); 123 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); 124 125 // Return result. The argument function info has been popped already. 126 __ Ret(); 127 128 // Create a new closure through the slower runtime call. 129 __ bind(&gc); 130 __ LoadRoot(r4, Heap::kFalseValueRootIndex); 131 __ Push(cp, r3, r4); 132 __ TailCallRuntime(Runtime::kNewClosure, 3, 1); 133 } 134 135 136 void FastNewContextStub::Generate(MacroAssembler* masm) { 137 // Try to allocate the context in new space. 138 Label gc; 139 int length = slots_ + Context::MIN_CONTEXT_SLOTS; 140 141 // Attempt to allocate the context in new space. 142 __ AllocateInNewSpace(FixedArray::SizeFor(length), 143 r0, 144 r1, 145 r2, 146 &gc, 147 TAG_OBJECT); 148 149 // Load the function from the stack. 150 __ ldr(r3, MemOperand(sp, 0)); 151 152 // Setup the object header. 153 __ LoadRoot(r2, Heap::kContextMapRootIndex); 154 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 155 __ mov(r2, Operand(Smi::FromInt(length))); 156 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset)); 157 158 // Setup the fixed slots. 159 __ mov(r1, Operand(Smi::FromInt(0))); 160 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX))); 161 __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX))); 162 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX))); 163 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX))); 164 165 // Copy the global object from the surrounding context. 166 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); 167 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX))); 168 169 // Initialize the rest of the slots to undefined. 170 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); 171 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { 172 __ str(r1, MemOperand(r0, Context::SlotOffset(i))); 173 } 174 175 // Remove the on-stack argument and return. 176 __ mov(cp, r0); 177 __ pop(); 178 __ Ret(); 179 180 // Need to collect. Call into runtime system. 181 __ bind(&gc); 182 __ TailCallRuntime(Runtime::kNewContext, 1, 1); 183 } 184 185 186 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { 187 // Stack layout on entry: 188 // 189 // [sp]: constant elements. 190 // [sp + kPointerSize]: literal index. 191 // [sp + (2 * kPointerSize)]: literals array. 192 193 // All sizes here are multiples of kPointerSize. 194 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; 195 int size = JSArray::kSize + elements_size; 196 197 // Load boilerplate object into r3 and check if we need to create a 198 // boilerplate. 199 Label slow_case; 200 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); 201 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); 202 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 203 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); 204 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 205 __ cmp(r3, ip); 206 __ b(eq, &slow_case); 207 208 if (FLAG_debug_code) { 209 const char* message; 210 Heap::RootListIndex expected_map_index; 211 if (mode_ == CLONE_ELEMENTS) { 212 message = "Expected (writable) fixed array"; 213 expected_map_index = Heap::kFixedArrayMapRootIndex; 214 } else { 215 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); 216 message = "Expected copy-on-write fixed array"; 217 expected_map_index = Heap::kFixedCOWArrayMapRootIndex; 218 } 219 __ push(r3); 220 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); 221 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset)); 222 __ LoadRoot(ip, expected_map_index); 223 __ cmp(r3, ip); 224 __ Assert(eq, message); 225 __ pop(r3); 226 } 227 228 // Allocate both the JS array and the elements array in one big 229 // allocation. This avoids multiple limit checks. 230 __ AllocateInNewSpace(size, 231 r0, 232 r1, 233 r2, 234 &slow_case, 235 TAG_OBJECT); 236 237 // Copy the JS array part. 238 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { 239 if ((i != JSArray::kElementsOffset) || (length_ == 0)) { 240 __ ldr(r1, FieldMemOperand(r3, i)); 241 __ str(r1, FieldMemOperand(r0, i)); 242 } 243 } 244 245 if (length_ > 0) { 246 // Get hold of the elements array of the boilerplate and setup the 247 // elements pointer in the resulting object. 248 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); 249 __ add(r2, r0, Operand(JSArray::kSize)); 250 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset)); 251 252 // Copy the elements array. 253 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize); 254 } 255 256 // Return and remove the on-stack parameters. 257 __ add(sp, sp, Operand(3 * kPointerSize)); 258 __ Ret(); 259 260 __ bind(&slow_case); 261 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); 262 } 263 264 265 // Takes a Smi and converts to an IEEE 64 bit floating point value in two 266 // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and 267 // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a 268 // scratch register. Destroys the source register. No GC occurs during this 269 // stub so you don't have to set up the frame. 270 class ConvertToDoubleStub : public CodeStub { 271 public: 272 ConvertToDoubleStub(Register result_reg_1, 273 Register result_reg_2, 274 Register source_reg, 275 Register scratch_reg) 276 : result1_(result_reg_1), 277 result2_(result_reg_2), 278 source_(source_reg), 279 zeros_(scratch_reg) { } 280 281 private: 282 Register result1_; 283 Register result2_; 284 Register source_; 285 Register zeros_; 286 287 // Minor key encoding in 16 bits. 288 class ModeBits: public BitField<OverwriteMode, 0, 2> {}; 289 class OpBits: public BitField<Token::Value, 2, 14> {}; 290 291 Major MajorKey() { return ConvertToDouble; } 292 int MinorKey() { 293 // Encode the parameters in a unique 16 bit value. 294 return result1_.code() + 295 (result2_.code() << 4) + 296 (source_.code() << 8) + 297 (zeros_.code() << 12); 298 } 299 300 void Generate(MacroAssembler* masm); 301 302 const char* GetName() { return "ConvertToDoubleStub"; } 303 304 #ifdef DEBUG 305 void Print() { PrintF("ConvertToDoubleStub\n"); } 306 #endif 307 }; 308 309 310 void ConvertToDoubleStub::Generate(MacroAssembler* masm) { 311 Register exponent = result1_; 312 Register mantissa = result2_; 313 314 Label not_special; 315 // Convert from Smi to integer. 316 __ mov(source_, Operand(source_, ASR, kSmiTagSize)); 317 // Move sign bit from source to destination. This works because the sign bit 318 // in the exponent word of the double has the same position and polarity as 319 // the 2's complement sign bit in a Smi. 320 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); 321 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); 322 // Subtract from 0 if source was negative. 323 __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne); 324 325 // We have -1, 0 or 1, which we treat specially. Register source_ contains 326 // absolute value: it is either equal to 1 (special case of -1 and 1), 327 // greater than 1 (not a special case) or less than 1 (special case of 0). 328 __ cmp(source_, Operand(1)); 329 __ b(gt, ¬_special); 330 331 // For 1 or -1 we need to or in the 0 exponent (biased to 1023). 332 static const uint32_t exponent_word_for_1 = 333 HeapNumber::kExponentBias << HeapNumber::kExponentShift; 334 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq); 335 // 1, 0 and -1 all have 0 for the second word. 336 __ mov(mantissa, Operand(0, RelocInfo::NONE)); 337 __ Ret(); 338 339 __ bind(¬_special); 340 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5. 341 // Gets the wrong answer for 0, but we already checked for that case above. 342 __ CountLeadingZeros(zeros_, source_, mantissa); 343 // Compute exponent and or it into the exponent register. 344 // We use mantissa as a scratch register here. Use a fudge factor to 345 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts 346 // that fit in the ARM's constant field. 347 int fudge = 0x400; 348 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge)); 349 __ add(mantissa, mantissa, Operand(fudge)); 350 __ orr(exponent, 351 exponent, 352 Operand(mantissa, LSL, HeapNumber::kExponentShift)); 353 // Shift up the source chopping the top bit off. 354 __ add(zeros_, zeros_, Operand(1)); 355 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. 356 __ mov(source_, Operand(source_, LSL, zeros_)); 357 // Compute lower part of fraction (last 12 bits). 358 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); 359 // And the top (top 20 bits). 360 __ orr(exponent, 361 exponent, 362 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); 363 __ Ret(); 364 } 365 366 367 class FloatingPointHelper : public AllStatic { 368 public: 369 370 enum Destination { 371 kVFPRegisters, 372 kCoreRegisters 373 }; 374 375 376 // Loads smis from r0 and r1 (right and left in binary operations) into 377 // floating point registers. Depending on the destination the values ends up 378 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is 379 // floating point registers VFP3 must be supported. If core registers are 380 // requested when VFP3 is supported d6 and d7 will be scratched. 381 static void LoadSmis(MacroAssembler* masm, 382 Destination destination, 383 Register scratch1, 384 Register scratch2); 385 386 // Loads objects from r0 and r1 (right and left in binary operations) into 387 // floating point registers. Depending on the destination the values ends up 388 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is 389 // floating point registers VFP3 must be supported. If core registers are 390 // requested when VFP3 is supported d6 and d7 will still be scratched. If 391 // either r0 or r1 is not a number (not smi and not heap number object) the 392 // not_number label is jumped to with r0 and r1 intact. 393 static void LoadOperands(MacroAssembler* masm, 394 FloatingPointHelper::Destination destination, 395 Register heap_number_map, 396 Register scratch1, 397 Register scratch2, 398 Label* not_number); 399 400 // Convert the smi or heap number in object to an int32 using the rules 401 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated 402 // and brought into the range -2^31 .. +2^31 - 1. 403 static void ConvertNumberToInt32(MacroAssembler* masm, 404 Register object, 405 Register dst, 406 Register heap_number_map, 407 Register scratch1, 408 Register scratch2, 409 Register scratch3, 410 DwVfpRegister double_scratch, 411 Label* not_int32); 412 413 // Load the number from object into double_dst in the double format. 414 // Control will jump to not_int32 if the value cannot be exactly represented 415 // by a 32-bit integer. 416 // Floating point value in the 32-bit integer range that are not exact integer 417 // won't be loaded. 418 static void LoadNumberAsInt32Double(MacroAssembler* masm, 419 Register object, 420 Destination destination, 421 DwVfpRegister double_dst, 422 Register dst1, 423 Register dst2, 424 Register heap_number_map, 425 Register scratch1, 426 Register scratch2, 427 SwVfpRegister single_scratch, 428 Label* not_int32); 429 430 // Loads the number from object into dst as a 32-bit integer. 431 // Control will jump to not_int32 if the object cannot be exactly represented 432 // by a 32-bit integer. 433 // Floating point value in the 32-bit integer range that are not exact integer 434 // won't be converted. 435 // scratch3 is not used when VFP3 is supported. 436 static void LoadNumberAsInt32(MacroAssembler* masm, 437 Register object, 438 Register dst, 439 Register heap_number_map, 440 Register scratch1, 441 Register scratch2, 442 Register scratch3, 443 DwVfpRegister double_scratch, 444 Label* not_int32); 445 446 // Generate non VFP3 code to check if a double can be exactly represented by a 447 // 32-bit integer. This does not check for 0 or -0, which need 448 // to be checked for separately. 449 // Control jumps to not_int32 if the value is not a 32-bit integer, and falls 450 // through otherwise. 451 // src1 and src2 will be cloberred. 452 // 453 // Expected input: 454 // - src1: higher (exponent) part of the double value. 455 // - src2: lower (mantissa) part of the double value. 456 // Output status: 457 // - dst: 32 higher bits of the mantissa. (mantissa[51:20]) 458 // - src2: contains 1. 459 // - other registers are clobbered. 460 static void DoubleIs32BitInteger(MacroAssembler* masm, 461 Register src1, 462 Register src2, 463 Register dst, 464 Register scratch, 465 Label* not_int32); 466 467 // Generates code to call a C function to do a double operation using core 468 // registers. (Used when VFP3 is not supported.) 469 // This code never falls through, but returns with a heap number containing 470 // the result in r0. 471 // Register heapnumber_result must be a heap number in which the 472 // result of the operation will be stored. 473 // Requires the following layout on entry: 474 // r0: Left value (least significant part of mantissa). 475 // r1: Left value (sign, exponent, top of mantissa). 476 // r2: Right value (least significant part of mantissa). 477 // r3: Right value (sign, exponent, top of mantissa). 478 static void CallCCodeForDoubleOperation(MacroAssembler* masm, 479 Token::Value op, 480 Register heap_number_result, 481 Register scratch); 482 483 private: 484 static void LoadNumber(MacroAssembler* masm, 485 FloatingPointHelper::Destination destination, 486 Register object, 487 DwVfpRegister dst, 488 Register dst1, 489 Register dst2, 490 Register heap_number_map, 491 Register scratch1, 492 Register scratch2, 493 Label* not_number); 494 }; 495 496 497 void FloatingPointHelper::LoadSmis(MacroAssembler* masm, 498 FloatingPointHelper::Destination destination, 499 Register scratch1, 500 Register scratch2) { 501 if (CpuFeatures::IsSupported(VFP3)) { 502 CpuFeatures::Scope scope(VFP3); 503 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize)); 504 __ vmov(d7.high(), scratch1); 505 __ vcvt_f64_s32(d7, d7.high()); 506 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize)); 507 __ vmov(d6.high(), scratch1); 508 __ vcvt_f64_s32(d6, d6.high()); 509 if (destination == kCoreRegisters) { 510 __ vmov(r2, r3, d7); 511 __ vmov(r0, r1, d6); 512 } 513 } else { 514 ASSERT(destination == kCoreRegisters); 515 // Write Smi from r0 to r3 and r2 in double format. 516 __ mov(scratch1, Operand(r0)); 517 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2); 518 __ push(lr); 519 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); 520 // Write Smi from r1 to r1 and r0 in double format. 521 __ mov(scratch1, Operand(r1)); 522 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2); 523 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); 524 __ pop(lr); 525 } 526 } 527 528 529 void FloatingPointHelper::LoadOperands( 530 MacroAssembler* masm, 531 FloatingPointHelper::Destination destination, 532 Register heap_number_map, 533 Register scratch1, 534 Register scratch2, 535 Label* slow) { 536 537 // Load right operand (r0) to d6 or r2/r3. 538 LoadNumber(masm, destination, 539 r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow); 540 541 // Load left operand (r1) to d7 or r0/r1. 542 LoadNumber(masm, destination, 543 r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow); 544 } 545 546 547 void FloatingPointHelper::LoadNumber(MacroAssembler* masm, 548 Destination destination, 549 Register object, 550 DwVfpRegister dst, 551 Register dst1, 552 Register dst2, 553 Register heap_number_map, 554 Register scratch1, 555 Register scratch2, 556 Label* not_number) { 557 if (FLAG_debug_code) { 558 __ AbortIfNotRootValue(heap_number_map, 559 Heap::kHeapNumberMapRootIndex, 560 "HeapNumberMap register clobbered."); 561 } 562 563 Label is_smi, done; 564 565 __ JumpIfSmi(object, &is_smi); 566 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); 567 568 // Handle loading a double from a heap number. 569 if (CpuFeatures::IsSupported(VFP3) && 570 destination == kVFPRegisters) { 571 CpuFeatures::Scope scope(VFP3); 572 // Load the double from tagged HeapNumber to double register. 573 __ sub(scratch1, object, Operand(kHeapObjectTag)); 574 __ vldr(dst, scratch1, HeapNumber::kValueOffset); 575 } else { 576 ASSERT(destination == kCoreRegisters); 577 // Load the double from heap number to dst1 and dst2 in double format. 578 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); 579 } 580 __ jmp(&done); 581 582 // Handle loading a double from a smi. 583 __ bind(&is_smi); 584 if (CpuFeatures::IsSupported(VFP3)) { 585 CpuFeatures::Scope scope(VFP3); 586 // Convert smi to double using VFP instructions. 587 __ SmiUntag(scratch1, object); 588 __ vmov(dst.high(), scratch1); 589 __ vcvt_f64_s32(dst, dst.high()); 590 if (destination == kCoreRegisters) { 591 // Load the converted smi to dst1 and dst2 in double format. 592 __ vmov(dst1, dst2, dst); 593 } 594 } else { 595 ASSERT(destination == kCoreRegisters); 596 // Write smi to dst1 and dst2 double format. 597 __ mov(scratch1, Operand(object)); 598 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2); 599 __ push(lr); 600 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); 601 __ pop(lr); 602 } 603 604 __ bind(&done); 605 } 606 607 608 void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm, 609 Register object, 610 Register dst, 611 Register heap_number_map, 612 Register scratch1, 613 Register scratch2, 614 Register scratch3, 615 DwVfpRegister double_scratch, 616 Label* not_number) { 617 if (FLAG_debug_code) { 618 __ AbortIfNotRootValue(heap_number_map, 619 Heap::kHeapNumberMapRootIndex, 620 "HeapNumberMap register clobbered."); 621 } 622 Label is_smi; 623 Label done; 624 Label not_in_int32_range; 625 626 __ JumpIfSmi(object, &is_smi); 627 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset)); 628 __ cmp(scratch1, heap_number_map); 629 __ b(ne, not_number); 630 __ ConvertToInt32(object, 631 dst, 632 scratch1, 633 scratch2, 634 double_scratch, 635 ¬_in_int32_range); 636 __ jmp(&done); 637 638 __ bind(¬_in_int32_range); 639 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); 640 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); 641 642 __ EmitOutOfInt32RangeTruncate(dst, 643 scratch1, 644 scratch2, 645 scratch3); 646 __ jmp(&done); 647 648 __ bind(&is_smi); 649 __ SmiUntag(dst, object); 650 __ bind(&done); 651 } 652 653 654 void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm, 655 Register object, 656 Destination destination, 657 DwVfpRegister double_dst, 658 Register dst1, 659 Register dst2, 660 Register heap_number_map, 661 Register scratch1, 662 Register scratch2, 663 SwVfpRegister single_scratch, 664 Label* not_int32) { 665 ASSERT(!scratch1.is(object) && !scratch2.is(object)); 666 ASSERT(!scratch1.is(scratch2)); 667 ASSERT(!heap_number_map.is(object) && 668 !heap_number_map.is(scratch1) && 669 !heap_number_map.is(scratch2)); 670 671 Label done, obj_is_not_smi; 672 673 __ JumpIfNotSmi(object, &obj_is_not_smi); 674 __ SmiUntag(scratch1, object); 675 if (CpuFeatures::IsSupported(VFP3)) { 676 CpuFeatures::Scope scope(VFP3); 677 __ vmov(single_scratch, scratch1); 678 __ vcvt_f64_s32(double_dst, single_scratch); 679 if (destination == kCoreRegisters) { 680 __ vmov(dst1, dst2, double_dst); 681 } 682 } else { 683 Label fewer_than_20_useful_bits; 684 // Expected output: 685 // | dst2 | dst1 | 686 // | s | exp | mantissa | 687 688 // Check for zero. 689 __ cmp(scratch1, Operand(0)); 690 __ mov(dst2, scratch1); 691 __ mov(dst1, scratch1); 692 __ b(eq, &done); 693 694 // Preload the sign of the value. 695 __ and_(dst2, scratch1, Operand(HeapNumber::kSignMask), SetCC); 696 // Get the absolute value of the object (as an unsigned integer). 697 __ rsb(scratch1, scratch1, Operand(0), SetCC, mi); 698 699 // Get mantisssa[51:20]. 700 701 // Get the position of the first set bit. 702 __ CountLeadingZeros(dst1, scratch1, scratch2); 703 __ rsb(dst1, dst1, Operand(31)); 704 705 // Set the exponent. 706 __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias)); 707 __ Bfi(dst2, scratch2, scratch2, 708 HeapNumber::kExponentShift, HeapNumber::kExponentBits); 709 710 // Clear the first non null bit. 711 __ mov(scratch2, Operand(1)); 712 __ bic(scratch1, scratch1, Operand(scratch2, LSL, dst1)); 713 714 __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); 715 // Get the number of bits to set in the lower part of the mantissa. 716 __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); 717 __ b(mi, &fewer_than_20_useful_bits); 718 // Set the higher 20 bits of the mantissa. 719 __ orr(dst2, dst2, Operand(scratch1, LSR, scratch2)); 720 __ rsb(scratch2, scratch2, Operand(32)); 721 __ mov(dst1, Operand(scratch1, LSL, scratch2)); 722 __ b(&done); 723 724 __ bind(&fewer_than_20_useful_bits); 725 __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); 726 __ mov(scratch2, Operand(scratch1, LSL, scratch2)); 727 __ orr(dst2, dst2, scratch2); 728 // Set dst1 to 0. 729 __ mov(dst1, Operand(0)); 730 } 731 732 __ b(&done); 733 734 __ bind(&obj_is_not_smi); 735 if (FLAG_debug_code) { 736 __ AbortIfNotRootValue(heap_number_map, 737 Heap::kHeapNumberMapRootIndex, 738 "HeapNumberMap register clobbered."); 739 } 740 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); 741 742 // Load the number. 743 if (CpuFeatures::IsSupported(VFP3)) { 744 CpuFeatures::Scope scope(VFP3); 745 // Load the double value. 746 __ sub(scratch1, object, Operand(kHeapObjectTag)); 747 __ vldr(double_dst, scratch1, HeapNumber::kValueOffset); 748 749 __ EmitVFPTruncate(kRoundToZero, 750 single_scratch, 751 double_dst, 752 scratch1, 753 scratch2, 754 kCheckForInexactConversion); 755 756 // Jump to not_int32 if the operation did not succeed. 757 __ b(ne, not_int32); 758 759 if (destination == kCoreRegisters) { 760 __ vmov(dst1, dst2, double_dst); 761 } 762 763 } else { 764 ASSERT(!scratch1.is(object) && !scratch2.is(object)); 765 // Load the double value in the destination registers.. 766 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); 767 768 // Check for 0 and -0. 769 __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask)); 770 __ orr(scratch1, scratch1, Operand(dst2)); 771 __ cmp(scratch1, Operand(0)); 772 __ b(eq, &done); 773 774 // Check that the value can be exactly represented by a 32-bit integer. 775 // Jump to not_int32 if that's not the case. 776 DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32); 777 778 // dst1 and dst2 were trashed. Reload the double value. 779 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); 780 } 781 782 __ bind(&done); 783 } 784 785 786 void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, 787 Register object, 788 Register dst, 789 Register heap_number_map, 790 Register scratch1, 791 Register scratch2, 792 Register scratch3, 793 DwVfpRegister double_scratch, 794 Label* not_int32) { 795 ASSERT(!dst.is(object)); 796 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object)); 797 ASSERT(!scratch1.is(scratch2) && 798 !scratch1.is(scratch3) && 799 !scratch2.is(scratch3)); 800 801 Label done; 802 803 // Untag the object into the destination register. 804 __ SmiUntag(dst, object); 805 // Just return if the object is a smi. 806 __ JumpIfSmi(object, &done); 807 808 if (FLAG_debug_code) { 809 __ AbortIfNotRootValue(heap_number_map, 810 Heap::kHeapNumberMapRootIndex, 811 "HeapNumberMap register clobbered."); 812 } 813 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); 814 815 // Object is a heap number. 816 // Convert the floating point value to a 32-bit integer. 817 if (CpuFeatures::IsSupported(VFP3)) { 818 CpuFeatures::Scope scope(VFP3); 819 SwVfpRegister single_scratch = double_scratch.low(); 820 // Load the double value. 821 __ sub(scratch1, object, Operand(kHeapObjectTag)); 822 __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset); 823 824 __ EmitVFPTruncate(kRoundToZero, 825 single_scratch, 826 double_scratch, 827 scratch1, 828 scratch2, 829 kCheckForInexactConversion); 830 831 // Jump to not_int32 if the operation did not succeed. 832 __ b(ne, not_int32); 833 // Get the result in the destination register. 834 __ vmov(dst, single_scratch); 835 836 } else { 837 // Load the double value in the destination registers. 838 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); 839 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); 840 841 // Check for 0 and -0. 842 __ bic(dst, scratch1, Operand(HeapNumber::kSignMask)); 843 __ orr(dst, scratch2, Operand(dst)); 844 __ cmp(dst, Operand(0)); 845 __ b(eq, &done); 846 847 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32); 848 849 // Registers state after DoubleIs32BitInteger. 850 // dst: mantissa[51:20]. 851 // scratch2: 1 852 853 // Shift back the higher bits of the mantissa. 854 __ mov(dst, Operand(dst, LSR, scratch3)); 855 // Set the implicit first bit. 856 __ rsb(scratch3, scratch3, Operand(32)); 857 __ orr(dst, dst, Operand(scratch2, LSL, scratch3)); 858 // Set the sign. 859 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); 860 __ tst(scratch1, Operand(HeapNumber::kSignMask)); 861 __ rsb(dst, dst, Operand(0), LeaveCC, mi); 862 } 863 864 __ bind(&done); 865 } 866 867 868 void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm, 869 Register src1, 870 Register src2, 871 Register dst, 872 Register scratch, 873 Label* not_int32) { 874 // Get exponent alone in scratch. 875 __ Ubfx(scratch, 876 src1, 877 HeapNumber::kExponentShift, 878 HeapNumber::kExponentBits); 879 880 // Substract the bias from the exponent. 881 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC); 882 883 // src1: higher (exponent) part of the double value. 884 // src2: lower (mantissa) part of the double value. 885 // scratch: unbiased exponent. 886 887 // Fast cases. Check for obvious non 32-bit integer values. 888 // Negative exponent cannot yield 32-bit integers. 889 __ b(mi, not_int32); 890 // Exponent greater than 31 cannot yield 32-bit integers. 891 // Also, a positive value with an exponent equal to 31 is outside of the 892 // signed 32-bit integer range. 893 // Another way to put it is that if (exponent - signbit) > 30 then the 894 // number cannot be represented as an int32. 895 Register tmp = dst; 896 __ sub(tmp, scratch, Operand(src1, LSR, 31)); 897 __ cmp(tmp, Operand(30)); 898 __ b(gt, not_int32); 899 // - Bits [21:0] in the mantissa are not null. 900 __ tst(src2, Operand(0x3fffff)); 901 __ b(ne, not_int32); 902 903 // Otherwise the exponent needs to be big enough to shift left all the 904 // non zero bits left. So we need the (30 - exponent) last bits of the 905 // 31 higher bits of the mantissa to be null. 906 // Because bits [21:0] are null, we can check instead that the 907 // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null. 908 909 // Get the 32 higher bits of the mantissa in dst. 910 __ Ubfx(dst, 911 src2, 912 HeapNumber::kMantissaBitsInTopWord, 913 32 - HeapNumber::kMantissaBitsInTopWord); 914 __ orr(dst, 915 dst, 916 Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord)); 917 918 // Create the mask and test the lower bits (of the higher bits). 919 __ rsb(scratch, scratch, Operand(32)); 920 __ mov(src2, Operand(1)); 921 __ mov(src1, Operand(src2, LSL, scratch)); 922 __ sub(src1, src1, Operand(1)); 923 __ tst(dst, src1); 924 __ b(ne, not_int32); 925 } 926 927 928 void FloatingPointHelper::CallCCodeForDoubleOperation( 929 MacroAssembler* masm, 930 Token::Value op, 931 Register heap_number_result, 932 Register scratch) { 933 // Using core registers: 934 // r0: Left value (least significant part of mantissa). 935 // r1: Left value (sign, exponent, top of mantissa). 936 // r2: Right value (least significant part of mantissa). 937 // r3: Right value (sign, exponent, top of mantissa). 938 939 // Assert that heap_number_result is callee-saved. 940 // We currently always use r5 to pass it. 941 ASSERT(heap_number_result.is(r5)); 942 943 // Push the current return address before the C call. Return will be 944 // through pop(pc) below. 945 __ push(lr); 946 __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments. 947 // Call C routine that may not cause GC or other trouble. 948 __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()), 949 4); 950 // Store answer in the overwritable heap number. Double returned in 951 // registers r0 and r1. 952 __ Strd(r0, r1, FieldMemOperand(heap_number_result, 953 HeapNumber::kValueOffset)); 954 // Place heap_number_result in r0 and return to the pushed return address. 955 __ mov(r0, Operand(heap_number_result)); 956 __ pop(pc); 957 } 958 959 960 // See comment for class. 961 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { 962 Label max_negative_int; 963 // the_int_ has the answer which is a signed int32 but not a Smi. 964 // We test for the special value that has a different exponent. This test 965 // has the neat side effect of setting the flags according to the sign. 966 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); 967 __ cmp(the_int_, Operand(0x80000000u)); 968 __ b(eq, &max_negative_int); 969 // Set up the correct exponent in scratch_. All non-Smi int32s have the same. 970 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). 971 uint32_t non_smi_exponent = 972 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; 973 __ mov(scratch_, Operand(non_smi_exponent)); 974 // Set the sign bit in scratch_ if the value was negative. 975 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); 976 // Subtract from 0 if the value was negative. 977 __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs); 978 // We should be masking the implict first digit of the mantissa away here, 979 // but it just ends up combining harmlessly with the last digit of the 980 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get 981 // the most significant 1 to hit the last bit of the 12 bit sign and exponent. 982 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); 983 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; 984 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); 985 __ str(scratch_, FieldMemOperand(the_heap_number_, 986 HeapNumber::kExponentOffset)); 987 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); 988 __ str(scratch_, FieldMemOperand(the_heap_number_, 989 HeapNumber::kMantissaOffset)); 990 __ Ret(); 991 992 __ bind(&max_negative_int); 993 // The max negative int32 is stored as a positive number in the mantissa of 994 // a double because it uses a sign bit instead of using two's complement. 995 // The actual mantissa bits stored are all 0 because the implicit most 996 // significant 1 bit is not stored. 997 non_smi_exponent += 1 << HeapNumber::kExponentShift; 998 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); 999 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); 1000 __ mov(ip, Operand(0, RelocInfo::NONE)); 1001 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); 1002 __ Ret(); 1003 } 1004 1005 1006 // Handle the case where the lhs and rhs are the same object. 1007 // Equality is almost reflexive (everything but NaN), so this is a test 1008 // for "identity and not NaN". 1009 static void EmitIdenticalObjectComparison(MacroAssembler* masm, 1010 Label* slow, 1011 Condition cond, 1012 bool never_nan_nan) { 1013 Label not_identical; 1014 Label heap_number, return_equal; 1015 __ cmp(r0, r1); 1016 __ b(ne, ¬_identical); 1017 1018 // The two objects are identical. If we know that one of them isn't NaN then 1019 // we now know they test equal. 1020 if (cond != eq || !never_nan_nan) { 1021 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(), 1022 // so we do the second best thing - test it ourselves. 1023 // They are both equal and they are not both Smis so both of them are not 1024 // Smis. If it's not a heap number, then return equal. 1025 if (cond == lt || cond == gt) { 1026 __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE); 1027 __ b(ge, slow); 1028 } else { 1029 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); 1030 __ b(eq, &heap_number); 1031 // Comparing JS objects with <=, >= is complicated. 1032 if (cond != eq) { 1033 __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); 1034 __ b(ge, slow); 1035 // Normally here we fall through to return_equal, but undefined is 1036 // special: (undefined == undefined) == true, but 1037 // (undefined <= undefined) == false! See ECMAScript 11.8.5. 1038 if (cond == le || cond == ge) { 1039 __ cmp(r4, Operand(ODDBALL_TYPE)); 1040 __ b(ne, &return_equal); 1041 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 1042 __ cmp(r0, r2); 1043 __ b(ne, &return_equal); 1044 if (cond == le) { 1045 // undefined <= undefined should fail. 1046 __ mov(r0, Operand(GREATER)); 1047 } else { 1048 // undefined >= undefined should fail. 1049 __ mov(r0, Operand(LESS)); 1050 } 1051 __ Ret(); 1052 } 1053 } 1054 } 1055 } 1056 1057 __ bind(&return_equal); 1058 if (cond == lt) { 1059 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. 1060 } else if (cond == gt) { 1061 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. 1062 } else { 1063 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. 1064 } 1065 __ Ret(); 1066 1067 if (cond != eq || !never_nan_nan) { 1068 // For less and greater we don't have to check for NaN since the result of 1069 // x < x is false regardless. For the others here is some code to check 1070 // for NaN. 1071 if (cond != lt && cond != gt) { 1072 __ bind(&heap_number); 1073 // It is a heap number, so return non-equal if it's NaN and equal if it's 1074 // not NaN. 1075 1076 // The representation of NaN values has all exponent bits (52..62) set, 1077 // and not all mantissa bits (0..51) clear. 1078 // Read top bits of double representation (second word of value). 1079 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 1080 // Test that exponent bits are all set. 1081 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); 1082 // NaNs have all-one exponents so they sign extend to -1. 1083 __ cmp(r3, Operand(-1)); 1084 __ b(ne, &return_equal); 1085 1086 // Shift out flag and all exponent bits, retaining only mantissa. 1087 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); 1088 // Or with all low-bits of mantissa. 1089 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); 1090 __ orr(r0, r3, Operand(r2), SetCC); 1091 // For equal we already have the right value in r0: Return zero (equal) 1092 // if all bits in mantissa are zero (it's an Infinity) and non-zero if 1093 // not (it's a NaN). For <= and >= we need to load r0 with the failing 1094 // value if it's a NaN. 1095 if (cond != eq) { 1096 // All-zero means Infinity means equal. 1097 __ Ret(eq); 1098 if (cond == le) { 1099 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. 1100 } else { 1101 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. 1102 } 1103 } 1104 __ Ret(); 1105 } 1106 // No fall through here. 1107 } 1108 1109 __ bind(¬_identical); 1110 } 1111 1112 1113 // See comment at call site. 1114 static void EmitSmiNonsmiComparison(MacroAssembler* masm, 1115 Register lhs, 1116 Register rhs, 1117 Label* lhs_not_nan, 1118 Label* slow, 1119 bool strict) { 1120 ASSERT((lhs.is(r0) && rhs.is(r1)) || 1121 (lhs.is(r1) && rhs.is(r0))); 1122 1123 Label rhs_is_smi; 1124 __ tst(rhs, Operand(kSmiTagMask)); 1125 __ b(eq, &rhs_is_smi); 1126 1127 // Lhs is a Smi. Check whether the rhs is a heap number. 1128 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); 1129 if (strict) { 1130 // If rhs is not a number and lhs is a Smi then strict equality cannot 1131 // succeed. Return non-equal 1132 // If rhs is r0 then there is already a non zero value in it. 1133 if (!rhs.is(r0)) { 1134 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); 1135 } 1136 __ Ret(ne); 1137 } else { 1138 // Smi compared non-strictly with a non-Smi non-heap-number. Call 1139 // the runtime. 1140 __ b(ne, slow); 1141 } 1142 1143 // Lhs is a smi, rhs is a number. 1144 if (CpuFeatures::IsSupported(VFP3)) { 1145 // Convert lhs to a double in d7. 1146 CpuFeatures::Scope scope(VFP3); 1147 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15); 1148 // Load the double from rhs, tagged HeapNumber r0, to d6. 1149 __ sub(r7, rhs, Operand(kHeapObjectTag)); 1150 __ vldr(d6, r7, HeapNumber::kValueOffset); 1151 } else { 1152 __ push(lr); 1153 // Convert lhs to a double in r2, r3. 1154 __ mov(r7, Operand(lhs)); 1155 ConvertToDoubleStub stub1(r3, r2, r7, r6); 1156 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); 1157 // Load rhs to a double in r0, r1. 1158 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); 1159 __ pop(lr); 1160 } 1161 1162 // We now have both loaded as doubles but we can skip the lhs nan check 1163 // since it's a smi. 1164 __ jmp(lhs_not_nan); 1165 1166 __ bind(&rhs_is_smi); 1167 // Rhs is a smi. Check whether the non-smi lhs is a heap number. 1168 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); 1169 if (strict) { 1170 // If lhs is not a number and rhs is a smi then strict equality cannot 1171 // succeed. Return non-equal. 1172 // If lhs is r0 then there is already a non zero value in it. 1173 if (!lhs.is(r0)) { 1174 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); 1175 } 1176 __ Ret(ne); 1177 } else { 1178 // Smi compared non-strictly with a non-smi non-heap-number. Call 1179 // the runtime. 1180 __ b(ne, slow); 1181 } 1182 1183 // Rhs is a smi, lhs is a heap number. 1184 if (CpuFeatures::IsSupported(VFP3)) { 1185 CpuFeatures::Scope scope(VFP3); 1186 // Load the double from lhs, tagged HeapNumber r1, to d7. 1187 __ sub(r7, lhs, Operand(kHeapObjectTag)); 1188 __ vldr(d7, r7, HeapNumber::kValueOffset); 1189 // Convert rhs to a double in d6 . 1190 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13); 1191 } else { 1192 __ push(lr); 1193 // Load lhs to a double in r2, r3. 1194 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); 1195 // Convert rhs to a double in r0, r1. 1196 __ mov(r7, Operand(rhs)); 1197 ConvertToDoubleStub stub2(r1, r0, r7, r6); 1198 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); 1199 __ pop(lr); 1200 } 1201 // Fall through to both_loaded_as_doubles. 1202 } 1203 1204 1205 void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) { 1206 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); 1207 Register rhs_exponent = exp_first ? r0 : r1; 1208 Register lhs_exponent = exp_first ? r2 : r3; 1209 Register rhs_mantissa = exp_first ? r1 : r0; 1210 Register lhs_mantissa = exp_first ? r3 : r2; 1211 Label one_is_nan, neither_is_nan; 1212 1213 __ Sbfx(r4, 1214 lhs_exponent, 1215 HeapNumber::kExponentShift, 1216 HeapNumber::kExponentBits); 1217 // NaNs have all-one exponents so they sign extend to -1. 1218 __ cmp(r4, Operand(-1)); 1219 __ b(ne, lhs_not_nan); 1220 __ mov(r4, 1221 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), 1222 SetCC); 1223 __ b(ne, &one_is_nan); 1224 __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE)); 1225 __ b(ne, &one_is_nan); 1226 1227 __ bind(lhs_not_nan); 1228 __ Sbfx(r4, 1229 rhs_exponent, 1230 HeapNumber::kExponentShift, 1231 HeapNumber::kExponentBits); 1232 // NaNs have all-one exponents so they sign extend to -1. 1233 __ cmp(r4, Operand(-1)); 1234 __ b(ne, &neither_is_nan); 1235 __ mov(r4, 1236 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), 1237 SetCC); 1238 __ b(ne, &one_is_nan); 1239 __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE)); 1240 __ b(eq, &neither_is_nan); 1241 1242 __ bind(&one_is_nan); 1243 // NaN comparisons always fail. 1244 // Load whatever we need in r0 to make the comparison fail. 1245 if (cond == lt || cond == le) { 1246 __ mov(r0, Operand(GREATER)); 1247 } else { 1248 __ mov(r0, Operand(LESS)); 1249 } 1250 __ Ret(); 1251 1252 __ bind(&neither_is_nan); 1253 } 1254 1255 1256 // See comment at call site. 1257 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, 1258 Condition cond) { 1259 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); 1260 Register rhs_exponent = exp_first ? r0 : r1; 1261 Register lhs_exponent = exp_first ? r2 : r3; 1262 Register rhs_mantissa = exp_first ? r1 : r0; 1263 Register lhs_mantissa = exp_first ? r3 : r2; 1264 1265 // r0, r1, r2, r3 have the two doubles. Neither is a NaN. 1266 if (cond == eq) { 1267 // Doubles are not equal unless they have the same bit pattern. 1268 // Exception: 0 and -0. 1269 __ cmp(rhs_mantissa, Operand(lhs_mantissa)); 1270 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); 1271 // Return non-zero if the numbers are unequal. 1272 __ Ret(ne); 1273 1274 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); 1275 // If exponents are equal then return 0. 1276 __ Ret(eq); 1277 1278 // Exponents are unequal. The only way we can return that the numbers 1279 // are equal is if one is -0 and the other is 0. We already dealt 1280 // with the case where both are -0 or both are 0. 1281 // We start by seeing if the mantissas (that are equal) or the bottom 1282 // 31 bits of the rhs exponent are non-zero. If so we return not 1283 // equal. 1284 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); 1285 __ mov(r0, Operand(r4), LeaveCC, ne); 1286 __ Ret(ne); 1287 // Now they are equal if and only if the lhs exponent is zero in its 1288 // low 31 bits. 1289 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); 1290 __ Ret(); 1291 } else { 1292 // Call a native function to do a comparison between two non-NaNs. 1293 // Call C routine that may not cause GC or other trouble. 1294 __ push(lr); 1295 __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments. 1296 __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4); 1297 __ pop(pc); // Return. 1298 } 1299 } 1300 1301 1302 // See comment at call site. 1303 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, 1304 Register lhs, 1305 Register rhs) { 1306 ASSERT((lhs.is(r0) && rhs.is(r1)) || 1307 (lhs.is(r1) && rhs.is(r0))); 1308 1309 // If either operand is a JSObject or an oddball value, then they are 1310 // not equal since their pointers are different. 1311 // There is no test for undetectability in strict equality. 1312 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); 1313 Label first_non_object; 1314 // Get the type of the first operand into r2 and compare it with 1315 // FIRST_JS_OBJECT_TYPE. 1316 __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE); 1317 __ b(lt, &first_non_object); 1318 1319 // Return non-zero (r0 is not zero) 1320 Label return_not_equal; 1321 __ bind(&return_not_equal); 1322 __ Ret(); 1323 1324 __ bind(&first_non_object); 1325 // Check for oddballs: true, false, null, undefined. 1326 __ cmp(r2, Operand(ODDBALL_TYPE)); 1327 __ b(eq, &return_not_equal); 1328 1329 __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE); 1330 __ b(ge, &return_not_equal); 1331 1332 // Check for oddballs: true, false, null, undefined. 1333 __ cmp(r3, Operand(ODDBALL_TYPE)); 1334 __ b(eq, &return_not_equal); 1335 1336 // Now that we have the types we might as well check for symbol-symbol. 1337 // Ensure that no non-strings have the symbol bit set. 1338 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); 1339 STATIC_ASSERT(kSymbolTag != 0); 1340 __ and_(r2, r2, Operand(r3)); 1341 __ tst(r2, Operand(kIsSymbolMask)); 1342 __ b(ne, &return_not_equal); 1343 } 1344 1345 1346 // See comment at call site. 1347 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, 1348 Register lhs, 1349 Register rhs, 1350 Label* both_loaded_as_doubles, 1351 Label* not_heap_numbers, 1352 Label* slow) { 1353 ASSERT((lhs.is(r0) && rhs.is(r1)) || 1354 (lhs.is(r1) && rhs.is(r0))); 1355 1356 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); 1357 __ b(ne, not_heap_numbers); 1358 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); 1359 __ cmp(r2, r3); 1360 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. 1361 1362 // Both are heap numbers. Load them up then jump to the code we have 1363 // for that. 1364 if (CpuFeatures::IsSupported(VFP3)) { 1365 CpuFeatures::Scope scope(VFP3); 1366 __ sub(r7, rhs, Operand(kHeapObjectTag)); 1367 __ vldr(d6, r7, HeapNumber::kValueOffset); 1368 __ sub(r7, lhs, Operand(kHeapObjectTag)); 1369 __ vldr(d7, r7, HeapNumber::kValueOffset); 1370 } else { 1371 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); 1372 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); 1373 } 1374 __ jmp(both_loaded_as_doubles); 1375 } 1376 1377 1378 // Fast negative check for symbol-to-symbol equality. 1379 static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, 1380 Register lhs, 1381 Register rhs, 1382 Label* possible_strings, 1383 Label* not_both_strings) { 1384 ASSERT((lhs.is(r0) && rhs.is(r1)) || 1385 (lhs.is(r1) && rhs.is(r0))); 1386 1387 // r2 is object type of rhs. 1388 // Ensure that no non-strings have the symbol bit set. 1389 Label object_test; 1390 STATIC_ASSERT(kSymbolTag != 0); 1391 __ tst(r2, Operand(kIsNotStringMask)); 1392 __ b(ne, &object_test); 1393 __ tst(r2, Operand(kIsSymbolMask)); 1394 __ b(eq, possible_strings); 1395 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); 1396 __ b(ge, not_both_strings); 1397 __ tst(r3, Operand(kIsSymbolMask)); 1398 __ b(eq, possible_strings); 1399 1400 // Both are symbols. We already checked they weren't the same pointer 1401 // so they are not equal. 1402 __ mov(r0, Operand(NOT_EQUAL)); 1403 __ Ret(); 1404 1405 __ bind(&object_test); 1406 __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE)); 1407 __ b(lt, not_both_strings); 1408 __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE); 1409 __ b(lt, not_both_strings); 1410 // If both objects are undetectable, they are equal. Otherwise, they 1411 // are not equal, since they are different objects and an object is not 1412 // equal to undefined. 1413 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); 1414 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); 1415 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); 1416 __ and_(r0, r2, Operand(r3)); 1417 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); 1418 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); 1419 __ Ret(); 1420 } 1421 1422 1423 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, 1424 Register object, 1425 Register result, 1426 Register scratch1, 1427 Register scratch2, 1428 Register scratch3, 1429 bool object_is_smi, 1430 Label* not_found) { 1431 // Use of registers. Register result is used as a temporary. 1432 Register number_string_cache = result; 1433 Register mask = scratch3; 1434 1435 // Load the number string cache. 1436 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); 1437 1438 // Make the hash mask from the length of the number string cache. It 1439 // contains two elements (number and string) for each cache entry. 1440 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); 1441 // Divide length by two (length is a smi). 1442 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1)); 1443 __ sub(mask, mask, Operand(1)); // Make mask. 1444 1445 // Calculate the entry in the number string cache. The hash value in the 1446 // number string cache for smis is just the smi value, and the hash for 1447 // doubles is the xor of the upper and lower words. See 1448 // Heap::GetNumberStringCache. 1449 Isolate* isolate = masm->isolate(); 1450 Label is_smi; 1451 Label load_result_from_cache; 1452 if (!object_is_smi) { 1453 __ JumpIfSmi(object, &is_smi); 1454 if (CpuFeatures::IsSupported(VFP3)) { 1455 CpuFeatures::Scope scope(VFP3); 1456 __ CheckMap(object, 1457 scratch1, 1458 Heap::kHeapNumberMapRootIndex, 1459 not_found, 1460 true); 1461 1462 STATIC_ASSERT(8 == kDoubleSize); 1463 __ add(scratch1, 1464 object, 1465 Operand(HeapNumber::kValueOffset - kHeapObjectTag)); 1466 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit()); 1467 __ eor(scratch1, scratch1, Operand(scratch2)); 1468 __ and_(scratch1, scratch1, Operand(mask)); 1469 1470 // Calculate address of entry in string cache: each entry consists 1471 // of two pointer sized fields. 1472 __ add(scratch1, 1473 number_string_cache, 1474 Operand(scratch1, LSL, kPointerSizeLog2 + 1)); 1475 1476 Register probe = mask; 1477 __ ldr(probe, 1478 FieldMemOperand(scratch1, FixedArray::kHeaderSize)); 1479 __ JumpIfSmi(probe, not_found); 1480 __ sub(scratch2, object, Operand(kHeapObjectTag)); 1481 __ vldr(d0, scratch2, HeapNumber::kValueOffset); 1482 __ sub(probe, probe, Operand(kHeapObjectTag)); 1483 __ vldr(d1, probe, HeapNumber::kValueOffset); 1484 __ VFPCompareAndSetFlags(d0, d1); 1485 __ b(ne, not_found); // The cache did not contain this value. 1486 __ b(&load_result_from_cache); 1487 } else { 1488 __ b(not_found); 1489 } 1490 } 1491 1492 __ bind(&is_smi); 1493 Register scratch = scratch1; 1494 __ and_(scratch, mask, Operand(object, ASR, 1)); 1495 // Calculate address of entry in string cache: each entry consists 1496 // of two pointer sized fields. 1497 __ add(scratch, 1498 number_string_cache, 1499 Operand(scratch, LSL, kPointerSizeLog2 + 1)); 1500 1501 // Check if the entry is the smi we are looking for. 1502 Register probe = mask; 1503 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); 1504 __ cmp(object, probe); 1505 __ b(ne, not_found); 1506 1507 // Get the result from the cache. 1508 __ bind(&load_result_from_cache); 1509 __ ldr(result, 1510 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); 1511 __ IncrementCounter(isolate->counters()->number_to_string_native(), 1512 1, 1513 scratch1, 1514 scratch2); 1515 } 1516 1517 1518 void NumberToStringStub::Generate(MacroAssembler* masm) { 1519 Label runtime; 1520 1521 __ ldr(r1, MemOperand(sp, 0)); 1522 1523 // Generate code to lookup number in the number string cache. 1524 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime); 1525 __ add(sp, sp, Operand(1 * kPointerSize)); 1526 __ Ret(); 1527 1528 __ bind(&runtime); 1529 // Handle number to string in the runtime system if not found in the cache. 1530 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); 1531 } 1532 1533 1534 // On entry lhs_ and rhs_ are the values to be compared. 1535 // On exit r0 is 0, positive or negative to indicate the result of 1536 // the comparison. 1537 void CompareStub::Generate(MacroAssembler* masm) { 1538 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || 1539 (lhs_.is(r1) && rhs_.is(r0))); 1540 1541 Label slow; // Call builtin. 1542 Label not_smis, both_loaded_as_doubles, lhs_not_nan; 1543 1544 if (include_smi_compare_) { 1545 Label not_two_smis, smi_done; 1546 __ orr(r2, r1, r0); 1547 __ tst(r2, Operand(kSmiTagMask)); 1548 __ b(ne, ¬_two_smis); 1549 __ mov(r1, Operand(r1, ASR, 1)); 1550 __ sub(r0, r1, Operand(r0, ASR, 1)); 1551 __ Ret(); 1552 __ bind(¬_two_smis); 1553 } else if (FLAG_debug_code) { 1554 __ orr(r2, r1, r0); 1555 __ tst(r2, Operand(kSmiTagMask)); 1556 __ Assert(ne, "CompareStub: unexpected smi operands."); 1557 } 1558 1559 // NOTICE! This code is only reached after a smi-fast-case check, so 1560 // it is certain that at least one operand isn't a smi. 1561 1562 // Handle the case where the objects are identical. Either returns the answer 1563 // or goes to slow. Only falls through if the objects were not identical. 1564 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); 1565 1566 // If either is a Smi (we know that not both are), then they can only 1567 // be strictly equal if the other is a HeapNumber. 1568 STATIC_ASSERT(kSmiTag == 0); 1569 ASSERT_EQ(0, Smi::FromInt(0)); 1570 __ and_(r2, lhs_, Operand(rhs_)); 1571 __ tst(r2, Operand(kSmiTagMask)); 1572 __ b(ne, ¬_smis); 1573 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: 1574 // 1) Return the answer. 1575 // 2) Go to slow. 1576 // 3) Fall through to both_loaded_as_doubles. 1577 // 4) Jump to lhs_not_nan. 1578 // In cases 3 and 4 we have found out we were dealing with a number-number 1579 // comparison. If VFP3 is supported the double values of the numbers have 1580 // been loaded into d7 and d6. Otherwise, the double values have been loaded 1581 // into r0, r1, r2, and r3. 1582 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_); 1583 1584 __ bind(&both_loaded_as_doubles); 1585 // The arguments have been converted to doubles and stored in d6 and d7, if 1586 // VFP3 is supported, or in r0, r1, r2, and r3. 1587 Isolate* isolate = masm->isolate(); 1588 if (CpuFeatures::IsSupported(VFP3)) { 1589 __ bind(&lhs_not_nan); 1590 CpuFeatures::Scope scope(VFP3); 1591 Label no_nan; 1592 // ARMv7 VFP3 instructions to implement double precision comparison. 1593 __ VFPCompareAndSetFlags(d7, d6); 1594 Label nan; 1595 __ b(vs, &nan); 1596 __ mov(r0, Operand(EQUAL), LeaveCC, eq); 1597 __ mov(r0, Operand(LESS), LeaveCC, lt); 1598 __ mov(r0, Operand(GREATER), LeaveCC, gt); 1599 __ Ret(); 1600 1601 __ bind(&nan); 1602 // If one of the sides was a NaN then the v flag is set. Load r0 with 1603 // whatever it takes to make the comparison fail, since comparisons with NaN 1604 // always fail. 1605 if (cc_ == lt || cc_ == le) { 1606 __ mov(r0, Operand(GREATER)); 1607 } else { 1608 __ mov(r0, Operand(LESS)); 1609 } 1610 __ Ret(); 1611 } else { 1612 // Checks for NaN in the doubles we have loaded. Can return the answer or 1613 // fall through if neither is a NaN. Also binds lhs_not_nan. 1614 EmitNanCheck(masm, &lhs_not_nan, cc_); 1615 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the 1616 // answer. Never falls through. 1617 EmitTwoNonNanDoubleComparison(masm, cc_); 1618 } 1619 1620 __ bind(¬_smis); 1621 // At this point we know we are dealing with two different objects, 1622 // and neither of them is a Smi. The objects are in rhs_ and lhs_. 1623 if (strict_) { 1624 // This returns non-equal for some object types, or falls through if it 1625 // was not lucky. 1626 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); 1627 } 1628 1629 Label check_for_symbols; 1630 Label flat_string_check; 1631 // Check for heap-number-heap-number comparison. Can jump to slow case, 1632 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles 1633 // that case. If the inputs are not doubles then jumps to check_for_symbols. 1634 // In this case r2 will contain the type of rhs_. Never falls through. 1635 EmitCheckForTwoHeapNumbers(masm, 1636 lhs_, 1637 rhs_, 1638 &both_loaded_as_doubles, 1639 &check_for_symbols, 1640 &flat_string_check); 1641 1642 __ bind(&check_for_symbols); 1643 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of 1644 // symbols. 1645 if (cc_ == eq && !strict_) { 1646 // Returns an answer for two symbols or two detectable objects. 1647 // Otherwise jumps to string case or not both strings case. 1648 // Assumes that r2 is the type of rhs_ on entry. 1649 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); 1650 } 1651 1652 // Check for both being sequential ASCII strings, and inline if that is the 1653 // case. 1654 __ bind(&flat_string_check); 1655 1656 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow); 1657 1658 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3); 1659 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, 1660 lhs_, 1661 rhs_, 1662 r2, 1663 r3, 1664 r4, 1665 r5); 1666 // Never falls through to here. 1667 1668 __ bind(&slow); 1669 1670 __ Push(lhs_, rhs_); 1671 // Figure out which native to call and setup the arguments. 1672 Builtins::JavaScript native; 1673 if (cc_ == eq) { 1674 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; 1675 } else { 1676 native = Builtins::COMPARE; 1677 int ncr; // NaN compare result 1678 if (cc_ == lt || cc_ == le) { 1679 ncr = GREATER; 1680 } else { 1681 ASSERT(cc_ == gt || cc_ == ge); // remaining cases 1682 ncr = LESS; 1683 } 1684 __ mov(r0, Operand(Smi::FromInt(ncr))); 1685 __ push(r0); 1686 } 1687 1688 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) 1689 // tagged as a small integer. 1690 __ InvokeBuiltin(native, JUMP_JS); 1691 } 1692 1693 1694 // This stub does not handle the inlined cases (Smis, Booleans, undefined). 1695 // The stub returns zero for false, and a non-zero value for true. 1696 void ToBooleanStub::Generate(MacroAssembler* masm) { 1697 // This stub uses VFP3 instructions. 1698 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1699 1700 Label false_result; 1701 Label not_heap_number; 1702 Register scratch = r9.is(tos_) ? r7 : r9; 1703 1704 __ LoadRoot(ip, Heap::kNullValueRootIndex); 1705 __ cmp(tos_, ip); 1706 __ b(eq, &false_result); 1707 1708 // HeapNumber => false iff +0, -0, or NaN. 1709 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); 1710 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 1711 __ cmp(scratch, ip); 1712 __ b(¬_heap_number, ne); 1713 1714 __ sub(ip, tos_, Operand(kHeapObjectTag)); 1715 __ vldr(d1, ip, HeapNumber::kValueOffset); 1716 __ VFPCompareAndSetFlags(d1, 0.0); 1717 // "tos_" is a register, and contains a non zero value by default. 1718 // Hence we only need to overwrite "tos_" with zero to return false for 1719 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. 1720 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO 1721 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN 1722 __ Ret(); 1723 1724 __ bind(¬_heap_number); 1725 1726 // Check if the value is 'null'. 1727 // 'null' => false. 1728 __ LoadRoot(ip, Heap::kNullValueRootIndex); 1729 __ cmp(tos_, ip); 1730 __ b(&false_result, eq); 1731 1732 // It can be an undetectable object. 1733 // Undetectable => false. 1734 __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset)); 1735 __ ldrb(scratch, FieldMemOperand(ip, Map::kBitFieldOffset)); 1736 __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); 1737 __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); 1738 __ b(&false_result, eq); 1739 1740 // JavaScript object => true. 1741 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); 1742 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 1743 __ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE)); 1744 // "tos_" is a register and contains a non-zero value. 1745 // Hence we implicitly return true if the greater than 1746 // condition is satisfied. 1747 __ Ret(gt); 1748 1749 // Check for string 1750 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); 1751 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 1752 __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); 1753 // "tos_" is a register and contains a non-zero value. 1754 // Hence we implicitly return true if the greater than 1755 // condition is satisfied. 1756 __ Ret(gt); 1757 1758 // String value => false iff empty, i.e., length is zero 1759 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset)); 1760 // If length is zero, "tos_" contains zero ==> false. 1761 // If length is not zero, "tos_" contains a non-zero value ==> true. 1762 __ Ret(); 1763 1764 // Return 0 in "tos_" for false . 1765 __ bind(&false_result); 1766 __ mov(tos_, Operand(0, RelocInfo::NONE)); 1767 __ Ret(); 1768 } 1769 1770 1771 Handle<Code> GetTypeRecordingBinaryOpStub(int key, 1772 TRBinaryOpIC::TypeInfo type_info, 1773 TRBinaryOpIC::TypeInfo result_type_info) { 1774 TypeRecordingBinaryOpStub stub(key, type_info, result_type_info); 1775 return stub.GetCode(); 1776 } 1777 1778 1779 void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { 1780 Label get_result; 1781 1782 __ Push(r1, r0); 1783 1784 __ mov(r2, Operand(Smi::FromInt(MinorKey()))); 1785 __ mov(r1, Operand(Smi::FromInt(op_))); 1786 __ mov(r0, Operand(Smi::FromInt(operands_type_))); 1787 __ Push(r2, r1, r0); 1788 1789 __ TailCallExternalReference( 1790 ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch), 1791 masm->isolate()), 1792 5, 1793 1); 1794 } 1795 1796 1797 void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs( 1798 MacroAssembler* masm) { 1799 UNIMPLEMENTED(); 1800 } 1801 1802 1803 void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { 1804 switch (operands_type_) { 1805 case TRBinaryOpIC::UNINITIALIZED: 1806 GenerateTypeTransition(masm); 1807 break; 1808 case TRBinaryOpIC::SMI: 1809 GenerateSmiStub(masm); 1810 break; 1811 case TRBinaryOpIC::INT32: 1812 GenerateInt32Stub(masm); 1813 break; 1814 case TRBinaryOpIC::HEAP_NUMBER: 1815 GenerateHeapNumberStub(masm); 1816 break; 1817 case TRBinaryOpIC::ODDBALL: 1818 GenerateOddballStub(masm); 1819 break; 1820 case TRBinaryOpIC::STRING: 1821 GenerateStringStub(masm); 1822 break; 1823 case TRBinaryOpIC::GENERIC: 1824 GenerateGeneric(masm); 1825 break; 1826 default: 1827 UNREACHABLE(); 1828 } 1829 } 1830 1831 1832 const char* TypeRecordingBinaryOpStub::GetName() { 1833 if (name_ != NULL) return name_; 1834 const int kMaxNameLength = 100; 1835 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( 1836 kMaxNameLength); 1837 if (name_ == NULL) return "OOM"; 1838 const char* op_name = Token::Name(op_); 1839 const char* overwrite_name; 1840 switch (mode_) { 1841 case NO_OVERWRITE: overwrite_name = "Alloc"; break; 1842 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; 1843 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; 1844 default: overwrite_name = "UnknownOverwrite"; break; 1845 } 1846 1847 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), 1848 "TypeRecordingBinaryOpStub_%s_%s_%s", 1849 op_name, 1850 overwrite_name, 1851 TRBinaryOpIC::GetName(operands_type_)); 1852 return name_; 1853 } 1854 1855 1856 void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation( 1857 MacroAssembler* masm) { 1858 Register left = r1; 1859 Register right = r0; 1860 Register scratch1 = r7; 1861 Register scratch2 = r9; 1862 1863 ASSERT(right.is(r0)); 1864 STATIC_ASSERT(kSmiTag == 0); 1865 1866 Label not_smi_result; 1867 switch (op_) { 1868 case Token::ADD: 1869 __ add(right, left, Operand(right), SetCC); // Add optimistically. 1870 __ Ret(vc); 1871 __ sub(right, right, Operand(left)); // Revert optimistic add. 1872 break; 1873 case Token::SUB: 1874 __ sub(right, left, Operand(right), SetCC); // Subtract optimistically. 1875 __ Ret(vc); 1876 __ sub(right, left, Operand(right)); // Revert optimistic subtract. 1877 break; 1878 case Token::MUL: 1879 // Remove tag from one of the operands. This way the multiplication result 1880 // will be a smi if it fits the smi range. 1881 __ SmiUntag(ip, right); 1882 // Do multiplication 1883 // scratch1 = lower 32 bits of ip * left. 1884 // scratch2 = higher 32 bits of ip * left. 1885 __ smull(scratch1, scratch2, left, ip); 1886 // Check for overflowing the smi range - no overflow if higher 33 bits of 1887 // the result are identical. 1888 __ mov(ip, Operand(scratch1, ASR, 31)); 1889 __ cmp(ip, Operand(scratch2)); 1890 __ b(ne, ¬_smi_result); 1891 // Go slow on zero result to handle -0. 1892 __ tst(scratch1, Operand(scratch1)); 1893 __ mov(right, Operand(scratch1), LeaveCC, ne); 1894 __ Ret(ne); 1895 // We need -0 if we were multiplying a negative number with 0 to get 0. 1896 // We know one of them was zero. 1897 __ add(scratch2, right, Operand(left), SetCC); 1898 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl); 1899 __ Ret(pl); // Return smi 0 if the non-zero one was positive. 1900 // We fall through here if we multiplied a negative number with 0, because 1901 // that would mean we should produce -0. 1902 break; 1903 case Token::DIV: 1904 // Check for power of two on the right hand side. 1905 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, ¬_smi_result); 1906 // Check for positive and no remainder (scratch1 contains right - 1). 1907 __ orr(scratch2, scratch1, Operand(0x80000000u)); 1908 __ tst(left, scratch2); 1909 __ b(ne, ¬_smi_result); 1910 1911 // Perform division by shifting. 1912 __ CountLeadingZeros(scratch1, scratch1, scratch2); 1913 __ rsb(scratch1, scratch1, Operand(31)); 1914 __ mov(right, Operand(left, LSR, scratch1)); 1915 __ Ret(); 1916 break; 1917 case Token::MOD: 1918 // Check for two positive smis. 1919 __ orr(scratch1, left, Operand(right)); 1920 __ tst(scratch1, Operand(0x80000000u | kSmiTagMask)); 1921 __ b(ne, ¬_smi_result); 1922 1923 // Check for power of two on the right hand side. 1924 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, ¬_smi_result); 1925 1926 // Perform modulus by masking. 1927 __ and_(right, left, Operand(scratch1)); 1928 __ Ret(); 1929 break; 1930 case Token::BIT_OR: 1931 __ orr(right, left, Operand(right)); 1932 __ Ret(); 1933 break; 1934 case Token::BIT_AND: 1935 __ and_(right, left, Operand(right)); 1936 __ Ret(); 1937 break; 1938 case Token::BIT_XOR: 1939 __ eor(right, left, Operand(right)); 1940 __ Ret(); 1941 break; 1942 case Token::SAR: 1943 // Remove tags from right operand. 1944 __ GetLeastBitsFromSmi(scratch1, right, 5); 1945 __ mov(right, Operand(left, ASR, scratch1)); 1946 // Smi tag result. 1947 __ bic(right, right, Operand(kSmiTagMask)); 1948 __ Ret(); 1949 break; 1950 case Token::SHR: 1951 // Remove tags from operands. We can't do this on a 31 bit number 1952 // because then the 0s get shifted into bit 30 instead of bit 31. 1953 __ SmiUntag(scratch1, left); 1954 __ GetLeastBitsFromSmi(scratch2, right, 5); 1955 __ mov(scratch1, Operand(scratch1, LSR, scratch2)); 1956 // Unsigned shift is not allowed to produce a negative number, so 1957 // check the sign bit and the sign bit after Smi tagging. 1958 __ tst(scratch1, Operand(0xc0000000)); 1959 __ b(ne, ¬_smi_result); 1960 // Smi tag result. 1961 __ SmiTag(right, scratch1); 1962 __ Ret(); 1963 break; 1964 case Token::SHL: 1965 // Remove tags from operands. 1966 __ SmiUntag(scratch1, left); 1967 __ GetLeastBitsFromSmi(scratch2, right, 5); 1968 __ mov(scratch1, Operand(scratch1, LSL, scratch2)); 1969 // Check that the signed result fits in a Smi. 1970 __ add(scratch2, scratch1, Operand(0x40000000), SetCC); 1971 __ b(mi, ¬_smi_result); 1972 __ SmiTag(right, scratch1); 1973 __ Ret(); 1974 break; 1975 default: 1976 UNREACHABLE(); 1977 } 1978 __ bind(¬_smi_result); 1979 } 1980 1981 1982 void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm, 1983 bool smi_operands, 1984 Label* not_numbers, 1985 Label* gc_required) { 1986 Register left = r1; 1987 Register right = r0; 1988 Register scratch1 = r7; 1989 Register scratch2 = r9; 1990 Register scratch3 = r4; 1991 1992 ASSERT(smi_operands || (not_numbers != NULL)); 1993 if (smi_operands && FLAG_debug_code) { 1994 __ AbortIfNotSmi(left); 1995 __ AbortIfNotSmi(right); 1996 } 1997 1998 Register heap_number_map = r6; 1999 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2000 2001 switch (op_) { 2002 case Token::ADD: 2003 case Token::SUB: 2004 case Token::MUL: 2005 case Token::DIV: 2006 case Token::MOD: { 2007 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3 2008 // depending on whether VFP3 is available or not. 2009 FloatingPointHelper::Destination destination = 2010 CpuFeatures::IsSupported(VFP3) && 2011 op_ != Token::MOD ? 2012 FloatingPointHelper::kVFPRegisters : 2013 FloatingPointHelper::kCoreRegisters; 2014 2015 // Allocate new heap number for result. 2016 Register result = r5; 2017 GenerateHeapResultAllocation( 2018 masm, result, heap_number_map, scratch1, scratch2, gc_required); 2019 2020 // Load the operands. 2021 if (smi_operands) { 2022 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); 2023 } else { 2024 FloatingPointHelper::LoadOperands(masm, 2025 destination, 2026 heap_number_map, 2027 scratch1, 2028 scratch2, 2029 not_numbers); 2030 } 2031 2032 // Calculate the result. 2033 if (destination == FloatingPointHelper::kVFPRegisters) { 2034 // Using VFP registers: 2035 // d6: Left value 2036 // d7: Right value 2037 CpuFeatures::Scope scope(VFP3); 2038 switch (op_) { 2039 case Token::ADD: 2040 __ vadd(d5, d6, d7); 2041 break; 2042 case Token::SUB: 2043 __ vsub(d5, d6, d7); 2044 break; 2045 case Token::MUL: 2046 __ vmul(d5, d6, d7); 2047 break; 2048 case Token::DIV: 2049 __ vdiv(d5, d6, d7); 2050 break; 2051 default: 2052 UNREACHABLE(); 2053 } 2054 2055 __ sub(r0, result, Operand(kHeapObjectTag)); 2056 __ vstr(d5, r0, HeapNumber::kValueOffset); 2057 __ add(r0, r0, Operand(kHeapObjectTag)); 2058 __ Ret(); 2059 } else { 2060 // Call the C function to handle the double operation. 2061 FloatingPointHelper::CallCCodeForDoubleOperation(masm, 2062 op_, 2063 result, 2064 scratch1); 2065 if (FLAG_debug_code) { 2066 __ stop("Unreachable code."); 2067 } 2068 } 2069 break; 2070 } 2071 case Token::BIT_OR: 2072 case Token::BIT_XOR: 2073 case Token::BIT_AND: 2074 case Token::SAR: 2075 case Token::SHR: 2076 case Token::SHL: { 2077 if (smi_operands) { 2078 __ SmiUntag(r3, left); 2079 __ SmiUntag(r2, right); 2080 } else { 2081 // Convert operands to 32-bit integers. Right in r2 and left in r3. 2082 FloatingPointHelper::ConvertNumberToInt32(masm, 2083 left, 2084 r3, 2085 heap_number_map, 2086 scratch1, 2087 scratch2, 2088 scratch3, 2089 d0, 2090 not_numbers); 2091 FloatingPointHelper::ConvertNumberToInt32(masm, 2092 right, 2093 r2, 2094 heap_number_map, 2095 scratch1, 2096 scratch2, 2097 scratch3, 2098 d0, 2099 not_numbers); 2100 } 2101 2102 Label result_not_a_smi; 2103 switch (op_) { 2104 case Token::BIT_OR: 2105 __ orr(r2, r3, Operand(r2)); 2106 break; 2107 case Token::BIT_XOR: 2108 __ eor(r2, r3, Operand(r2)); 2109 break; 2110 case Token::BIT_AND: 2111 __ and_(r2, r3, Operand(r2)); 2112 break; 2113 case Token::SAR: 2114 // Use only the 5 least significant bits of the shift count. 2115 __ GetLeastBitsFromInt32(r2, r2, 5); 2116 __ mov(r2, Operand(r3, ASR, r2)); 2117 break; 2118 case Token::SHR: 2119 // Use only the 5 least significant bits of the shift count. 2120 __ GetLeastBitsFromInt32(r2, r2, 5); 2121 __ mov(r2, Operand(r3, LSR, r2), SetCC); 2122 // SHR is special because it is required to produce a positive answer. 2123 // The code below for writing into heap numbers isn't capable of 2124 // writing the register as an unsigned int so we go to slow case if we 2125 // hit this case. 2126 if (CpuFeatures::IsSupported(VFP3)) { 2127 __ b(mi, &result_not_a_smi); 2128 } else { 2129 __ b(mi, not_numbers); 2130 } 2131 break; 2132 case Token::SHL: 2133 // Use only the 5 least significant bits of the shift count. 2134 __ GetLeastBitsFromInt32(r2, r2, 5); 2135 __ mov(r2, Operand(r3, LSL, r2)); 2136 break; 2137 default: 2138 UNREACHABLE(); 2139 } 2140 2141 // Check that the *signed* result fits in a smi. 2142 __ add(r3, r2, Operand(0x40000000), SetCC); 2143 __ b(mi, &result_not_a_smi); 2144 __ SmiTag(r0, r2); 2145 __ Ret(); 2146 2147 // Allocate new heap number for result. 2148 __ bind(&result_not_a_smi); 2149 Register result = r5; 2150 if (smi_operands) { 2151 __ AllocateHeapNumber( 2152 result, scratch1, scratch2, heap_number_map, gc_required); 2153 } else { 2154 GenerateHeapResultAllocation( 2155 masm, result, heap_number_map, scratch1, scratch2, gc_required); 2156 } 2157 2158 // r2: Answer as signed int32. 2159 // r5: Heap number to write answer into. 2160 2161 // Nothing can go wrong now, so move the heap number to r0, which is the 2162 // result. 2163 __ mov(r0, Operand(r5)); 2164 2165 if (CpuFeatures::IsSupported(VFP3)) { 2166 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As 2167 // mentioned above SHR needs to always produce a positive result. 2168 CpuFeatures::Scope scope(VFP3); 2169 __ vmov(s0, r2); 2170 if (op_ == Token::SHR) { 2171 __ vcvt_f64_u32(d0, s0); 2172 } else { 2173 __ vcvt_f64_s32(d0, s0); 2174 } 2175 __ sub(r3, r0, Operand(kHeapObjectTag)); 2176 __ vstr(d0, r3, HeapNumber::kValueOffset); 2177 __ Ret(); 2178 } else { 2179 // Tail call that writes the int32 in r2 to the heap number in r0, using 2180 // r3 as scratch. r0 is preserved and returned. 2181 WriteInt32ToHeapNumberStub stub(r2, r0, r3); 2182 __ TailCallStub(&stub); 2183 } 2184 break; 2185 } 2186 default: 2187 UNREACHABLE(); 2188 } 2189 } 2190 2191 2192 // Generate the smi code. If the operation on smis are successful this return is 2193 // generated. If the result is not a smi and heap number allocation is not 2194 // requested the code falls through. If number allocation is requested but a 2195 // heap number cannot be allocated the code jumps to the lable gc_required. 2196 void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, 2197 Label* use_runtime, 2198 Label* gc_required, 2199 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { 2200 Label not_smis; 2201 2202 Register left = r1; 2203 Register right = r0; 2204 Register scratch1 = r7; 2205 Register scratch2 = r9; 2206 2207 // Perform combined smi check on both operands. 2208 __ orr(scratch1, left, Operand(right)); 2209 STATIC_ASSERT(kSmiTag == 0); 2210 __ tst(scratch1, Operand(kSmiTagMask)); 2211 __ b(ne, ¬_smis); 2212 2213 // If the smi-smi operation results in a smi return is generated. 2214 GenerateSmiSmiOperation(masm); 2215 2216 // If heap number results are possible generate the result in an allocated 2217 // heap number. 2218 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) { 2219 GenerateFPOperation(masm, true, use_runtime, gc_required); 2220 } 2221 __ bind(¬_smis); 2222 } 2223 2224 2225 void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { 2226 Label not_smis, call_runtime; 2227 2228 if (result_type_ == TRBinaryOpIC::UNINITIALIZED || 2229 result_type_ == TRBinaryOpIC::SMI) { 2230 // Only allow smi results. 2231 GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS); 2232 } else { 2233 // Allow heap number result and don't make a transition if a heap number 2234 // cannot be allocated. 2235 GenerateSmiCode(masm, 2236 &call_runtime, 2237 &call_runtime, 2238 ALLOW_HEAPNUMBER_RESULTS); 2239 } 2240 2241 // Code falls through if the result is not returned as either a smi or heap 2242 // number. 2243 GenerateTypeTransition(masm); 2244 2245 __ bind(&call_runtime); 2246 GenerateCallRuntime(masm); 2247 } 2248 2249 2250 void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { 2251 ASSERT(operands_type_ == TRBinaryOpIC::STRING); 2252 ASSERT(op_ == Token::ADD); 2253 // Try to add arguments as strings, otherwise, transition to the generic 2254 // TRBinaryOpIC type. 2255 GenerateAddStrings(masm); 2256 GenerateTypeTransition(masm); 2257 } 2258 2259 2260 void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { 2261 ASSERT(operands_type_ == TRBinaryOpIC::INT32); 2262 2263 Register left = r1; 2264 Register right = r0; 2265 Register scratch1 = r7; 2266 Register scratch2 = r9; 2267 DwVfpRegister double_scratch = d0; 2268 SwVfpRegister single_scratch = s3; 2269 2270 Register heap_number_result = no_reg; 2271 Register heap_number_map = r6; 2272 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2273 2274 Label call_runtime; 2275 // Labels for type transition, used for wrong input or output types. 2276 // Both label are currently actually bound to the same position. We use two 2277 // different label to differentiate the cause leading to type transition. 2278 Label transition; 2279 2280 // Smi-smi fast case. 2281 Label skip; 2282 __ orr(scratch1, left, right); 2283 __ JumpIfNotSmi(scratch1, &skip); 2284 GenerateSmiSmiOperation(masm); 2285 // Fall through if the result is not a smi. 2286 __ bind(&skip); 2287 2288 switch (op_) { 2289 case Token::ADD: 2290 case Token::SUB: 2291 case Token::MUL: 2292 case Token::DIV: 2293 case Token::MOD: { 2294 // Load both operands and check that they are 32-bit integer. 2295 // Jump to type transition if they are not. The registers r0 and r1 (right 2296 // and left) are preserved for the runtime call. 2297 FloatingPointHelper::Destination destination = 2298 CpuFeatures::IsSupported(VFP3) && 2299 op_ != Token::MOD ? 2300 FloatingPointHelper::kVFPRegisters : 2301 FloatingPointHelper::kCoreRegisters; 2302 2303 FloatingPointHelper::LoadNumberAsInt32Double(masm, 2304 right, 2305 destination, 2306 d7, 2307 r2, 2308 r3, 2309 heap_number_map, 2310 scratch1, 2311 scratch2, 2312 s0, 2313 &transition); 2314 FloatingPointHelper::LoadNumberAsInt32Double(masm, 2315 left, 2316 destination, 2317 d6, 2318 r4, 2319 r5, 2320 heap_number_map, 2321 scratch1, 2322 scratch2, 2323 s0, 2324 &transition); 2325 2326 if (destination == FloatingPointHelper::kVFPRegisters) { 2327 CpuFeatures::Scope scope(VFP3); 2328 Label return_heap_number; 2329 switch (op_) { 2330 case Token::ADD: 2331 __ vadd(d5, d6, d7); 2332 break; 2333 case Token::SUB: 2334 __ vsub(d5, d6, d7); 2335 break; 2336 case Token::MUL: 2337 __ vmul(d5, d6, d7); 2338 break; 2339 case Token::DIV: 2340 __ vdiv(d5, d6, d7); 2341 break; 2342 default: 2343 UNREACHABLE(); 2344 } 2345 2346 if (op_ != Token::DIV) { 2347 // These operations produce an integer result. 2348 // Try to return a smi if we can. 2349 // Otherwise return a heap number if allowed, or jump to type 2350 // transition. 2351 2352 __ EmitVFPTruncate(kRoundToZero, 2353 single_scratch, 2354 d5, 2355 scratch1, 2356 scratch2); 2357 2358 if (result_type_ <= TRBinaryOpIC::INT32) { 2359 // If the ne condition is set, result does 2360 // not fit in a 32-bit integer. 2361 __ b(ne, &transition); 2362 } 2363 2364 // Check if the result fits in a smi. 2365 __ vmov(scratch1, single_scratch); 2366 __ add(scratch2, scratch1, Operand(0x40000000), SetCC); 2367 // If not try to return a heap number. 2368 __ b(mi, &return_heap_number); 2369 // Check for minus zero. Return heap number for minus zero. 2370 Label not_zero; 2371 __ cmp(scratch1, Operand(0)); 2372 __ b(ne, ¬_zero); 2373 __ vmov(scratch2, d5.high()); 2374 __ tst(scratch2, Operand(HeapNumber::kSignMask)); 2375 __ b(ne, &return_heap_number); 2376 __ bind(¬_zero); 2377 2378 // Tag the result and return. 2379 __ SmiTag(r0, scratch1); 2380 __ Ret(); 2381 } else { 2382 // DIV just falls through to allocating a heap number. 2383 } 2384 2385 if (result_type_ >= (op_ == Token::DIV) ? TRBinaryOpIC::HEAP_NUMBER 2386 : TRBinaryOpIC::INT32) { 2387 __ bind(&return_heap_number); 2388 // We are using vfp registers so r5 is available. 2389 heap_number_result = r5; 2390 GenerateHeapResultAllocation(masm, 2391 heap_number_result, 2392 heap_number_map, 2393 scratch1, 2394 scratch2, 2395 &call_runtime); 2396 __ sub(r0, heap_number_result, Operand(kHeapObjectTag)); 2397 __ vstr(d5, r0, HeapNumber::kValueOffset); 2398 __ mov(r0, heap_number_result); 2399 __ Ret(); 2400 } 2401 2402 // A DIV operation expecting an integer result falls through 2403 // to type transition. 2404 2405 } else { 2406 // We preserved r0 and r1 to be able to call runtime. 2407 // Save the left value on the stack. 2408 __ Push(r5, r4); 2409 2410 Label pop_and_call_runtime; 2411 2412 // Allocate a heap number to store the result. 2413 heap_number_result = r5; 2414 GenerateHeapResultAllocation(masm, 2415 heap_number_result, 2416 heap_number_map, 2417 scratch1, 2418 scratch2, 2419 &pop_and_call_runtime); 2420 2421 // Load the left value from the value saved on the stack. 2422 __ Pop(r1, r0); 2423 2424 // Call the C function to handle the double operation. 2425 FloatingPointHelper::CallCCodeForDoubleOperation( 2426 masm, op_, heap_number_result, scratch1); 2427 if (FLAG_debug_code) { 2428 __ stop("Unreachable code."); 2429 } 2430 2431 __ bind(&pop_and_call_runtime); 2432 __ Drop(2); 2433 __ b(&call_runtime); 2434 } 2435 2436 break; 2437 } 2438 2439 case Token::BIT_OR: 2440 case Token::BIT_XOR: 2441 case Token::BIT_AND: 2442 case Token::SAR: 2443 case Token::SHR: 2444 case Token::SHL: { 2445 Label return_heap_number; 2446 Register scratch3 = r5; 2447 // Convert operands to 32-bit integers. Right in r2 and left in r3. The 2448 // registers r0 and r1 (right and left) are preserved for the runtime 2449 // call. 2450 FloatingPointHelper::LoadNumberAsInt32(masm, 2451 left, 2452 r3, 2453 heap_number_map, 2454 scratch1, 2455 scratch2, 2456 scratch3, 2457 d0, 2458 &transition); 2459 FloatingPointHelper::LoadNumberAsInt32(masm, 2460 right, 2461 r2, 2462 heap_number_map, 2463 scratch1, 2464 scratch2, 2465 scratch3, 2466 d0, 2467 &transition); 2468 2469 // The ECMA-262 standard specifies that, for shift operations, only the 2470 // 5 least significant bits of the shift value should be used. 2471 switch (op_) { 2472 case Token::BIT_OR: 2473 __ orr(r2, r3, Operand(r2)); 2474 break; 2475 case Token::BIT_XOR: 2476 __ eor(r2, r3, Operand(r2)); 2477 break; 2478 case Token::BIT_AND: 2479 __ and_(r2, r3, Operand(r2)); 2480 break; 2481 case Token::SAR: 2482 __ and_(r2, r2, Operand(0x1f)); 2483 __ mov(r2, Operand(r3, ASR, r2)); 2484 break; 2485 case Token::SHR: 2486 __ and_(r2, r2, Operand(0x1f)); 2487 __ mov(r2, Operand(r3, LSR, r2), SetCC); 2488 // SHR is special because it is required to produce a positive answer. 2489 // We only get a negative result if the shift value (r2) is 0. 2490 // This result cannot be respresented as a signed 32-bit integer, try 2491 // to return a heap number if we can. 2492 // The non vfp3 code does not support this special case, so jump to 2493 // runtime if we don't support it. 2494 if (CpuFeatures::IsSupported(VFP3)) { 2495 __ b(mi, 2496 (result_type_ <= TRBinaryOpIC::INT32) ? &transition 2497 : &return_heap_number); 2498 } else { 2499 __ b(mi, (result_type_ <= TRBinaryOpIC::INT32) ? &transition 2500 : &call_runtime); 2501 } 2502 break; 2503 case Token::SHL: 2504 __ and_(r2, r2, Operand(0x1f)); 2505 __ mov(r2, Operand(r3, LSL, r2)); 2506 break; 2507 default: 2508 UNREACHABLE(); 2509 } 2510 2511 // Check if the result fits in a smi. 2512 __ add(scratch1, r2, Operand(0x40000000), SetCC); 2513 // If not try to return a heap number. (We know the result is an int32.) 2514 __ b(mi, &return_heap_number); 2515 // Tag the result and return. 2516 __ SmiTag(r0, r2); 2517 __ Ret(); 2518 2519 __ bind(&return_heap_number); 2520 heap_number_result = r5; 2521 GenerateHeapResultAllocation(masm, 2522 heap_number_result, 2523 heap_number_map, 2524 scratch1, 2525 scratch2, 2526 &call_runtime); 2527 2528 if (CpuFeatures::IsSupported(VFP3)) { 2529 CpuFeatures::Scope scope(VFP3); 2530 if (op_ != Token::SHR) { 2531 // Convert the result to a floating point value. 2532 __ vmov(double_scratch.low(), r2); 2533 __ vcvt_f64_s32(double_scratch, double_scratch.low()); 2534 } else { 2535 // The result must be interpreted as an unsigned 32-bit integer. 2536 __ vmov(double_scratch.low(), r2); 2537 __ vcvt_f64_u32(double_scratch, double_scratch.low()); 2538 } 2539 2540 // Store the result. 2541 __ sub(r0, heap_number_result, Operand(kHeapObjectTag)); 2542 __ vstr(double_scratch, r0, HeapNumber::kValueOffset); 2543 __ mov(r0, heap_number_result); 2544 __ Ret(); 2545 } else { 2546 // Tail call that writes the int32 in r2 to the heap number in r0, using 2547 // r3 as scratch. r0 is preserved and returned. 2548 __ mov(r0, r5); 2549 WriteInt32ToHeapNumberStub stub(r2, r0, r3); 2550 __ TailCallStub(&stub); 2551 } 2552 2553 break; 2554 } 2555 2556 default: 2557 UNREACHABLE(); 2558 } 2559 2560 if (transition.is_linked()) { 2561 __ bind(&transition); 2562 GenerateTypeTransition(masm); 2563 } 2564 2565 __ bind(&call_runtime); 2566 GenerateCallRuntime(masm); 2567 } 2568 2569 2570 void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { 2571 Label call_runtime; 2572 2573 if (op_ == Token::ADD) { 2574 // Handle string addition here, because it is the only operation 2575 // that does not do a ToNumber conversion on the operands. 2576 GenerateAddStrings(masm); 2577 } 2578 2579 // Convert oddball arguments to numbers. 2580 Label check, done; 2581 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); 2582 __ b(ne, &check); 2583 if (Token::IsBitOp(op_)) { 2584 __ mov(r1, Operand(Smi::FromInt(0))); 2585 } else { 2586 __ LoadRoot(r1, Heap::kNanValueRootIndex); 2587 } 2588 __ jmp(&done); 2589 __ bind(&check); 2590 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); 2591 __ b(ne, &done); 2592 if (Token::IsBitOp(op_)) { 2593 __ mov(r0, Operand(Smi::FromInt(0))); 2594 } else { 2595 __ LoadRoot(r0, Heap::kNanValueRootIndex); 2596 } 2597 __ bind(&done); 2598 2599 GenerateHeapNumberStub(masm); 2600 } 2601 2602 2603 void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { 2604 Label call_runtime; 2605 GenerateFPOperation(masm, false, &call_runtime, &call_runtime); 2606 2607 __ bind(&call_runtime); 2608 GenerateCallRuntime(masm); 2609 } 2610 2611 2612 void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { 2613 Label call_runtime, call_string_add_or_runtime; 2614 2615 GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); 2616 2617 GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime); 2618 2619 __ bind(&call_string_add_or_runtime); 2620 if (op_ == Token::ADD) { 2621 GenerateAddStrings(masm); 2622 } 2623 2624 __ bind(&call_runtime); 2625 GenerateCallRuntime(masm); 2626 } 2627 2628 2629 void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { 2630 ASSERT(op_ == Token::ADD); 2631 Label left_not_string, call_runtime; 2632 2633 Register left = r1; 2634 Register right = r0; 2635 2636 // Check if left argument is a string. 2637 __ JumpIfSmi(left, &left_not_string); 2638 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE); 2639 __ b(ge, &left_not_string); 2640 2641 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); 2642 GenerateRegisterArgsPush(masm); 2643 __ TailCallStub(&string_add_left_stub); 2644 2645 // Left operand is not a string, test right. 2646 __ bind(&left_not_string); 2647 __ JumpIfSmi(right, &call_runtime); 2648 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE); 2649 __ b(ge, &call_runtime); 2650 2651 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); 2652 GenerateRegisterArgsPush(masm); 2653 __ TailCallStub(&string_add_right_stub); 2654 2655 // At least one argument is not a string. 2656 __ bind(&call_runtime); 2657 } 2658 2659 2660 void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { 2661 GenerateRegisterArgsPush(masm); 2662 switch (op_) { 2663 case Token::ADD: 2664 __ InvokeBuiltin(Builtins::ADD, JUMP_JS); 2665 break; 2666 case Token::SUB: 2667 __ InvokeBuiltin(Builtins::SUB, JUMP_JS); 2668 break; 2669 case Token::MUL: 2670 __ InvokeBuiltin(Builtins::MUL, JUMP_JS); 2671 break; 2672 case Token::DIV: 2673 __ InvokeBuiltin(Builtins::DIV, JUMP_JS); 2674 break; 2675 case Token::MOD: 2676 __ InvokeBuiltin(Builtins::MOD, JUMP_JS); 2677 break; 2678 case Token::BIT_OR: 2679 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS); 2680 break; 2681 case Token::BIT_AND: 2682 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS); 2683 break; 2684 case Token::BIT_XOR: 2685 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS); 2686 break; 2687 case Token::SAR: 2688 __ InvokeBuiltin(Builtins::SAR, JUMP_JS); 2689 break; 2690 case Token::SHR: 2691 __ InvokeBuiltin(Builtins::SHR, JUMP_JS); 2692 break; 2693 case Token::SHL: 2694 __ InvokeBuiltin(Builtins::SHL, JUMP_JS); 2695 break; 2696 default: 2697 UNREACHABLE(); 2698 } 2699 } 2700 2701 2702 void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( 2703 MacroAssembler* masm, 2704 Register result, 2705 Register heap_number_map, 2706 Register scratch1, 2707 Register scratch2, 2708 Label* gc_required) { 2709 2710 // Code below will scratch result if allocation fails. To keep both arguments 2711 // intact for the runtime call result cannot be one of these. 2712 ASSERT(!result.is(r0) && !result.is(r1)); 2713 2714 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) { 2715 Label skip_allocation, allocated; 2716 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0; 2717 // If the overwritable operand is already an object, we skip the 2718 // allocation of a heap number. 2719 __ JumpIfNotSmi(overwritable_operand, &skip_allocation); 2720 // Allocate a heap number for the result. 2721 __ AllocateHeapNumber( 2722 result, scratch1, scratch2, heap_number_map, gc_required); 2723 __ b(&allocated); 2724 __ bind(&skip_allocation); 2725 // Use object holding the overwritable operand for result. 2726 __ mov(result, Operand(overwritable_operand)); 2727 __ bind(&allocated); 2728 } else { 2729 ASSERT(mode_ == NO_OVERWRITE); 2730 __ AllocateHeapNumber( 2731 result, scratch1, scratch2, heap_number_map, gc_required); 2732 } 2733 } 2734 2735 2736 void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { 2737 __ Push(r1, r0); 2738 } 2739 2740 2741 void TranscendentalCacheStub::Generate(MacroAssembler* masm) { 2742 // Untagged case: double input in d2, double result goes 2743 // into d2. 2744 // Tagged case: tagged input on top of stack and in r0, 2745 // tagged result (heap number) goes into r0. 2746 2747 Label input_not_smi; 2748 Label loaded; 2749 Label calculate; 2750 Label invalid_cache; 2751 const Register scratch0 = r9; 2752 const Register scratch1 = r7; 2753 const Register cache_entry = r0; 2754 const bool tagged = (argument_type_ == TAGGED); 2755 2756 if (CpuFeatures::IsSupported(VFP3)) { 2757 CpuFeatures::Scope scope(VFP3); 2758 if (tagged) { 2759 // Argument is a number and is on stack and in r0. 2760 // Load argument and check if it is a smi. 2761 __ JumpIfNotSmi(r0, &input_not_smi); 2762 2763 // Input is a smi. Convert to double and load the low and high words 2764 // of the double into r2, r3. 2765 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2); 2766 __ b(&loaded); 2767 2768 __ bind(&input_not_smi); 2769 // Check if input is a HeapNumber. 2770 __ CheckMap(r0, 2771 r1, 2772 Heap::kHeapNumberMapRootIndex, 2773 &calculate, 2774 true); 2775 // Input is a HeapNumber. Load it to a double register and store the 2776 // low and high words into r2, r3. 2777 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset)); 2778 __ vmov(r2, r3, d0); 2779 } else { 2780 // Input is untagged double in d2. Output goes to d2. 2781 __ vmov(r2, r3, d2); 2782 } 2783 __ bind(&loaded); 2784 // r2 = low 32 bits of double value 2785 // r3 = high 32 bits of double value 2786 // Compute hash (the shifts are arithmetic): 2787 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); 2788 __ eor(r1, r2, Operand(r3)); 2789 __ eor(r1, r1, Operand(r1, ASR, 16)); 2790 __ eor(r1, r1, Operand(r1, ASR, 8)); 2791 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); 2792 __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1)); 2793 2794 // r2 = low 32 bits of double value. 2795 // r3 = high 32 bits of double value. 2796 // r1 = TranscendentalCache::hash(double value). 2797 Isolate* isolate = masm->isolate(); 2798 ExternalReference cache_array = 2799 ExternalReference::transcendental_cache_array_address(isolate); 2800 __ mov(cache_entry, Operand(cache_array)); 2801 // cache_entry points to cache array. 2802 int cache_array_index 2803 = type_ * sizeof(isolate->transcendental_cache()->caches_[0]); 2804 __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index)); 2805 // r0 points to the cache for the type type_. 2806 // If NULL, the cache hasn't been initialized yet, so go through runtime. 2807 __ cmp(cache_entry, Operand(0, RelocInfo::NONE)); 2808 __ b(eq, &invalid_cache); 2809 2810 #ifdef DEBUG 2811 // Check that the layout of cache elements match expectations. 2812 { TranscendentalCache::SubCache::Element test_elem[2]; 2813 char* elem_start = reinterpret_cast<char*>(&test_elem[0]); 2814 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); 2815 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); 2816 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); 2817 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); 2818 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. 2819 CHECK_EQ(0, elem_in0 - elem_start); 2820 CHECK_EQ(kIntSize, elem_in1 - elem_start); 2821 CHECK_EQ(2 * kIntSize, elem_out - elem_start); 2822 } 2823 #endif 2824 2825 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12]. 2826 __ add(r1, r1, Operand(r1, LSL, 1)); 2827 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2)); 2828 // Check if cache matches: Double value is stored in uint32_t[2] array. 2829 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit()); 2830 __ cmp(r2, r4); 2831 __ b(ne, &calculate); 2832 __ cmp(r3, r5); 2833 __ b(ne, &calculate); 2834 // Cache hit. Load result, cleanup and return. 2835 if (tagged) { 2836 // Pop input value from stack and load result into r0. 2837 __ pop(); 2838 __ mov(r0, Operand(r6)); 2839 } else { 2840 // Load result into d2. 2841 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset)); 2842 } 2843 __ Ret(); 2844 } // if (CpuFeatures::IsSupported(VFP3)) 2845 2846 __ bind(&calculate); 2847 if (tagged) { 2848 __ bind(&invalid_cache); 2849 ExternalReference runtime_function = 2850 ExternalReference(RuntimeFunction(), masm->isolate()); 2851 __ TailCallExternalReference(runtime_function, 1, 1); 2852 } else { 2853 if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE(); 2854 CpuFeatures::Scope scope(VFP3); 2855 2856 Label no_update; 2857 Label skip_cache; 2858 const Register heap_number_map = r5; 2859 2860 // Call C function to calculate the result and update the cache. 2861 // Register r0 holds precalculated cache entry address; preserve 2862 // it on the stack and pop it into register cache_entry after the 2863 // call. 2864 __ push(cache_entry); 2865 GenerateCallCFunction(masm, scratch0); 2866 __ GetCFunctionDoubleResult(d2); 2867 2868 // Try to update the cache. If we cannot allocate a 2869 // heap number, we return the result without updating. 2870 __ pop(cache_entry); 2871 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex); 2872 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update); 2873 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset)); 2874 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit()); 2875 __ Ret(); 2876 2877 __ bind(&invalid_cache); 2878 // The cache is invalid. Call runtime which will recreate the 2879 // cache. 2880 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex); 2881 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache); 2882 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset)); 2883 __ EnterInternalFrame(); 2884 __ push(r0); 2885 __ CallRuntime(RuntimeFunction(), 1); 2886 __ LeaveInternalFrame(); 2887 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset)); 2888 __ Ret(); 2889 2890 __ bind(&skip_cache); 2891 // Call C function to calculate the result and answer directly 2892 // without updating the cache. 2893 GenerateCallCFunction(masm, scratch0); 2894 __ GetCFunctionDoubleResult(d2); 2895 __ bind(&no_update); 2896 2897 // We return the value in d2 without adding it to the cache, but 2898 // we cause a scavenging GC so that future allocations will succeed. 2899 __ EnterInternalFrame(); 2900 2901 // Allocate an aligned object larger than a HeapNumber. 2902 ASSERT(4 * kPointerSize >= HeapNumber::kSize); 2903 __ mov(scratch0, Operand(4 * kPointerSize)); 2904 __ push(scratch0); 2905 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); 2906 __ LeaveInternalFrame(); 2907 __ Ret(); 2908 } 2909 } 2910 2911 2912 void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm, 2913 Register scratch) { 2914 Isolate* isolate = masm->isolate(); 2915 2916 __ push(lr); 2917 __ PrepareCallCFunction(2, scratch); 2918 __ vmov(r0, r1, d2); 2919 switch (type_) { 2920 case TranscendentalCache::SIN: 2921 __ CallCFunction(ExternalReference::math_sin_double_function(isolate), 2); 2922 break; 2923 case TranscendentalCache::COS: 2924 __ CallCFunction(ExternalReference::math_cos_double_function(isolate), 2); 2925 break; 2926 case TranscendentalCache::LOG: 2927 __ CallCFunction(ExternalReference::math_log_double_function(isolate), 2); 2928 break; 2929 default: 2930 UNIMPLEMENTED(); 2931 break; 2932 } 2933 __ pop(lr); 2934 } 2935 2936 2937 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { 2938 switch (type_) { 2939 // Add more cases when necessary. 2940 case TranscendentalCache::SIN: return Runtime::kMath_sin; 2941 case TranscendentalCache::COS: return Runtime::kMath_cos; 2942 case TranscendentalCache::LOG: return Runtime::kMath_log; 2943 default: 2944 UNIMPLEMENTED(); 2945 return Runtime::kAbort; 2946 } 2947 } 2948 2949 2950 void StackCheckStub::Generate(MacroAssembler* masm) { 2951 __ TailCallRuntime(Runtime::kStackGuard, 0, 1); 2952 } 2953 2954 2955 void GenericUnaryOpStub::Generate(MacroAssembler* masm) { 2956 Label slow, done; 2957 2958 Register heap_number_map = r6; 2959 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2960 2961 if (op_ == Token::SUB) { 2962 if (include_smi_code_) { 2963 // Check whether the value is a smi. 2964 Label try_float; 2965 __ tst(r0, Operand(kSmiTagMask)); 2966 __ b(ne, &try_float); 2967 2968 // Go slow case if the value of the expression is zero 2969 // to make sure that we switch between 0 and -0. 2970 if (negative_zero_ == kStrictNegativeZero) { 2971 // If we have to check for zero, then we can check for the max negative 2972 // smi while we are at it. 2973 __ bic(ip, r0, Operand(0x80000000), SetCC); 2974 __ b(eq, &slow); 2975 __ rsb(r0, r0, Operand(0, RelocInfo::NONE)); 2976 __ Ret(); 2977 } else { 2978 // The value of the expression is a smi and 0 is OK for -0. Try 2979 // optimistic subtraction '0 - value'. 2980 __ rsb(r0, r0, Operand(0, RelocInfo::NONE), SetCC); 2981 __ Ret(vc); 2982 // We don't have to reverse the optimistic neg since the only case 2983 // where we fall through is the minimum negative Smi, which is the case 2984 // where the neg leaves the register unchanged. 2985 __ jmp(&slow); // Go slow on max negative Smi. 2986 } 2987 __ bind(&try_float); 2988 } else if (FLAG_debug_code) { 2989 __ tst(r0, Operand(kSmiTagMask)); 2990 __ Assert(ne, "Unexpected smi operand."); 2991 } 2992 2993 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 2994 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2995 __ cmp(r1, heap_number_map); 2996 __ b(ne, &slow); 2997 // r0 is a heap number. Get a new heap number in r1. 2998 if (overwrite_ == UNARY_OVERWRITE) { 2999 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 3000 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. 3001 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 3002 } else { 3003 __ AllocateHeapNumber(r1, r2, r3, r6, &slow); 3004 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); 3005 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 3006 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset)); 3007 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. 3008 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset)); 3009 __ mov(r0, Operand(r1)); 3010 } 3011 } else if (op_ == Token::BIT_NOT) { 3012 if (include_smi_code_) { 3013 Label non_smi; 3014 __ JumpIfNotSmi(r0, &non_smi); 3015 __ mvn(r0, Operand(r0)); 3016 // Bit-clear inverted smi-tag. 3017 __ bic(r0, r0, Operand(kSmiTagMask)); 3018 __ Ret(); 3019 __ bind(&non_smi); 3020 } else if (FLAG_debug_code) { 3021 __ tst(r0, Operand(kSmiTagMask)); 3022 __ Assert(ne, "Unexpected smi operand."); 3023 } 3024 3025 // Check if the operand is a heap number. 3026 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 3027 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 3028 __ cmp(r1, heap_number_map); 3029 __ b(ne, &slow); 3030 3031 // Convert the heap number is r0 to an untagged integer in r1. 3032 __ ConvertToInt32(r0, r1, r2, r3, d0, &slow); 3033 3034 // Do the bitwise operation (move negated) and check if the result 3035 // fits in a smi. 3036 Label try_float; 3037 __ mvn(r1, Operand(r1)); 3038 __ add(r2, r1, Operand(0x40000000), SetCC); 3039 __ b(mi, &try_float); 3040 __ mov(r0, Operand(r1, LSL, kSmiTagSize)); 3041 __ b(&done); 3042 3043 __ bind(&try_float); 3044 if (!overwrite_ == UNARY_OVERWRITE) { 3045 // Allocate a fresh heap number, but don't overwrite r0 until 3046 // we're sure we can do it without going through the slow case 3047 // that needs the value in r0. 3048 __ AllocateHeapNumber(r2, r3, r4, r6, &slow); 3049 __ mov(r0, Operand(r2)); 3050 } 3051 3052 if (CpuFeatures::IsSupported(VFP3)) { 3053 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted. 3054 CpuFeatures::Scope scope(VFP3); 3055 __ vmov(s0, r1); 3056 __ vcvt_f64_s32(d0, s0); 3057 __ sub(r2, r0, Operand(kHeapObjectTag)); 3058 __ vstr(d0, r2, HeapNumber::kValueOffset); 3059 } else { 3060 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not 3061 // have to set up a frame. 3062 WriteInt32ToHeapNumberStub stub(r1, r0, r2); 3063 __ push(lr); 3064 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); 3065 __ pop(lr); 3066 } 3067 } else { 3068 UNIMPLEMENTED(); 3069 } 3070 3071 __ bind(&done); 3072 __ Ret(); 3073 3074 // Handle the slow case by jumping to the JavaScript builtin. 3075 __ bind(&slow); 3076 __ push(r0); 3077 switch (op_) { 3078 case Token::SUB: 3079 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS); 3080 break; 3081 case Token::BIT_NOT: 3082 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS); 3083 break; 3084 default: 3085 UNREACHABLE(); 3086 } 3087 } 3088 3089 3090 void MathPowStub::Generate(MacroAssembler* masm) { 3091 Label call_runtime; 3092 3093 if (CpuFeatures::IsSupported(VFP3)) { 3094 CpuFeatures::Scope scope(VFP3); 3095 3096 Label base_not_smi; 3097 Label exponent_not_smi; 3098 Label convert_exponent; 3099 3100 const Register base = r0; 3101 const Register exponent = r1; 3102 const Register heapnumbermap = r5; 3103 const Register heapnumber = r6; 3104 const DoubleRegister double_base = d0; 3105 const DoubleRegister double_exponent = d1; 3106 const DoubleRegister double_result = d2; 3107 const SwVfpRegister single_scratch = s0; 3108 const Register scratch = r9; 3109 const Register scratch2 = r7; 3110 3111 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); 3112 __ ldr(base, MemOperand(sp, 1 * kPointerSize)); 3113 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize)); 3114 3115 // Convert base to double value and store it in d0. 3116 __ JumpIfNotSmi(base, &base_not_smi); 3117 // Base is a Smi. Untag and convert it. 3118 __ SmiUntag(base); 3119 __ vmov(single_scratch, base); 3120 __ vcvt_f64_s32(double_base, single_scratch); 3121 __ b(&convert_exponent); 3122 3123 __ bind(&base_not_smi); 3124 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset)); 3125 __ cmp(scratch, heapnumbermap); 3126 __ b(ne, &call_runtime); 3127 // Base is a heapnumber. Load it into double register. 3128 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); 3129 3130 __ bind(&convert_exponent); 3131 __ JumpIfNotSmi(exponent, &exponent_not_smi); 3132 __ SmiUntag(exponent); 3133 3134 // The base is in a double register and the exponent is 3135 // an untagged smi. Allocate a heap number and call a 3136 // C function for integer exponents. The register containing 3137 // the heap number is callee-saved. 3138 __ AllocateHeapNumber(heapnumber, 3139 scratch, 3140 scratch2, 3141 heapnumbermap, 3142 &call_runtime); 3143 __ push(lr); 3144 __ PrepareCallCFunction(3, scratch); 3145 __ mov(r2, exponent); 3146 __ vmov(r0, r1, double_base); 3147 __ CallCFunction( 3148 ExternalReference::power_double_int_function(masm->isolate()), 3); 3149 __ pop(lr); 3150 __ GetCFunctionDoubleResult(double_result); 3151 __ vstr(double_result, 3152 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); 3153 __ mov(r0, heapnumber); 3154 __ Ret(2 * kPointerSize); 3155 3156 __ bind(&exponent_not_smi); 3157 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); 3158 __ cmp(scratch, heapnumbermap); 3159 __ b(ne, &call_runtime); 3160 // Exponent is a heapnumber. Load it into double register. 3161 __ vldr(double_exponent, 3162 FieldMemOperand(exponent, HeapNumber::kValueOffset)); 3163 3164 // The base and the exponent are in double registers. 3165 // Allocate a heap number and call a C function for 3166 // double exponents. The register containing 3167 // the heap number is callee-saved. 3168 __ AllocateHeapNumber(heapnumber, 3169 scratch, 3170 scratch2, 3171 heapnumbermap, 3172 &call_runtime); 3173 __ push(lr); 3174 __ PrepareCallCFunction(4, scratch); 3175 __ vmov(r0, r1, double_base); 3176 __ vmov(r2, r3, double_exponent); 3177 __ CallCFunction( 3178 ExternalReference::power_double_double_function(masm->isolate()), 4); 3179 __ pop(lr); 3180 __ GetCFunctionDoubleResult(double_result); 3181 __ vstr(double_result, 3182 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); 3183 __ mov(r0, heapnumber); 3184 __ Ret(2 * kPointerSize); 3185 } 3186 3187 __ bind(&call_runtime); 3188 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); 3189 } 3190 3191 3192 bool CEntryStub::NeedsImmovableCode() { 3193 return true; 3194 } 3195 3196 3197 void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { 3198 __ Throw(r0); 3199 } 3200 3201 3202 void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, 3203 UncatchableExceptionType type) { 3204 __ ThrowUncatchable(type, r0); 3205 } 3206 3207 3208 void CEntryStub::GenerateCore(MacroAssembler* masm, 3209 Label* throw_normal_exception, 3210 Label* throw_termination_exception, 3211 Label* throw_out_of_memory_exception, 3212 bool do_gc, 3213 bool always_allocate) { 3214 // r0: result parameter for PerformGC, if any 3215 // r4: number of arguments including receiver (C callee-saved) 3216 // r5: pointer to builtin function (C callee-saved) 3217 // r6: pointer to the first argument (C callee-saved) 3218 Isolate* isolate = masm->isolate(); 3219 3220 if (do_gc) { 3221 // Passing r0. 3222 __ PrepareCallCFunction(1, r1); 3223 __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1); 3224 } 3225 3226 ExternalReference scope_depth = 3227 ExternalReference::heap_always_allocate_scope_depth(isolate); 3228 if (always_allocate) { 3229 __ mov(r0, Operand(scope_depth)); 3230 __ ldr(r1, MemOperand(r0)); 3231 __ add(r1, r1, Operand(1)); 3232 __ str(r1, MemOperand(r0)); 3233 } 3234 3235 // Call C built-in. 3236 // r0 = argc, r1 = argv 3237 __ mov(r0, Operand(r4)); 3238 __ mov(r1, Operand(r6)); 3239 3240 #if defined(V8_HOST_ARCH_ARM) 3241 int frame_alignment = MacroAssembler::ActivationFrameAlignment(); 3242 int frame_alignment_mask = frame_alignment - 1; 3243 if (FLAG_debug_code) { 3244 if (frame_alignment > kPointerSize) { 3245 Label alignment_as_expected; 3246 ASSERT(IsPowerOf2(frame_alignment)); 3247 __ tst(sp, Operand(frame_alignment_mask)); 3248 __ b(eq, &alignment_as_expected); 3249 // Don't use Check here, as it will call Runtime_Abort re-entering here. 3250 __ stop("Unexpected alignment"); 3251 __ bind(&alignment_as_expected); 3252 } 3253 } 3254 #endif 3255 3256 __ mov(r2, Operand(ExternalReference::isolate_address())); 3257 3258 3259 // TODO(1242173): To let the GC traverse the return address of the exit 3260 // frames, we need to know where the return address is. Right now, 3261 // we store it on the stack to be able to find it again, but we never 3262 // restore from it in case of changes, which makes it impossible to 3263 // support moving the C entry code stub. This should be fixed, but currently 3264 // this is OK because the CEntryStub gets generated so early in the V8 boot 3265 // sequence that it is not moving ever. 3266 3267 // Compute the return address in lr to return to after the jump below. Pc is 3268 // already at '+ 8' from the current instruction but return is after three 3269 // instructions so add another 4 to pc to get the return address. 3270 masm->add(lr, pc, Operand(4)); 3271 __ str(lr, MemOperand(sp, 0)); 3272 masm->Jump(r5); 3273 3274 if (always_allocate) { 3275 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 3276 // though (contain the result). 3277 __ mov(r2, Operand(scope_depth)); 3278 __ ldr(r3, MemOperand(r2)); 3279 __ sub(r3, r3, Operand(1)); 3280 __ str(r3, MemOperand(r2)); 3281 } 3282 3283 // check for failure result 3284 Label failure_returned; 3285 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); 3286 // Lower 2 bits of r2 are 0 iff r0 has failure tag. 3287 __ add(r2, r0, Operand(1)); 3288 __ tst(r2, Operand(kFailureTagMask)); 3289 __ b(eq, &failure_returned); 3290 3291 // Exit C frame and return. 3292 // r0:r1: result 3293 // sp: stack pointer 3294 // fp: frame pointer 3295 // Callee-saved register r4 still holds argc. 3296 __ LeaveExitFrame(save_doubles_, r4); 3297 __ mov(pc, lr); 3298 3299 // check if we should retry or throw exception 3300 Label retry; 3301 __ bind(&failure_returned); 3302 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); 3303 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); 3304 __ b(eq, &retry); 3305 3306 // Special handling of out of memory exceptions. 3307 Failure* out_of_memory = Failure::OutOfMemoryException(); 3308 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); 3309 __ b(eq, throw_out_of_memory_exception); 3310 3311 // Retrieve the pending exception and clear the variable. 3312 __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate))); 3313 __ ldr(r3, MemOperand(ip)); 3314 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, 3315 isolate))); 3316 __ ldr(r0, MemOperand(ip)); 3317 __ str(r3, MemOperand(ip)); 3318 3319 // Special handling of termination exceptions which are uncatchable 3320 // by javascript code. 3321 __ cmp(r0, Operand(isolate->factory()->termination_exception())); 3322 __ b(eq, throw_termination_exception); 3323 3324 // Handle normal exception. 3325 __ jmp(throw_normal_exception); 3326 3327 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying 3328 } 3329 3330 3331 void CEntryStub::Generate(MacroAssembler* masm) { 3332 // Called from JavaScript; parameters are on stack as if calling JS function 3333 // r0: number of arguments including receiver 3334 // r1: pointer to builtin function 3335 // fp: frame pointer (restored after C call) 3336 // sp: stack pointer (restored as callee's sp after C call) 3337 // cp: current context (C callee-saved) 3338 3339 // Result returned in r0 or r0+r1 by default. 3340 3341 // NOTE: Invocations of builtins may return failure objects 3342 // instead of a proper result. The builtin entry handles 3343 // this by performing a garbage collection and retrying the 3344 // builtin once. 3345 3346 // Compute the argv pointer in a callee-saved register. 3347 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2)); 3348 __ sub(r6, r6, Operand(kPointerSize)); 3349 3350 // Enter the exit frame that transitions from JavaScript to C++. 3351 __ EnterExitFrame(save_doubles_); 3352 3353 // Setup argc and the builtin function in callee-saved registers. 3354 __ mov(r4, Operand(r0)); 3355 __ mov(r5, Operand(r1)); 3356 3357 // r4: number of arguments (C callee-saved) 3358 // r5: pointer to builtin function (C callee-saved) 3359 // r6: pointer to first argument (C callee-saved) 3360 3361 Label throw_normal_exception; 3362 Label throw_termination_exception; 3363 Label throw_out_of_memory_exception; 3364 3365 // Call into the runtime system. 3366 GenerateCore(masm, 3367 &throw_normal_exception, 3368 &throw_termination_exception, 3369 &throw_out_of_memory_exception, 3370 false, 3371 false); 3372 3373 // Do space-specific GC and retry runtime call. 3374 GenerateCore(masm, 3375 &throw_normal_exception, 3376 &throw_termination_exception, 3377 &throw_out_of_memory_exception, 3378 true, 3379 false); 3380 3381 // Do full GC and retry runtime call one final time. 3382 Failure* failure = Failure::InternalError(); 3383 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure))); 3384 GenerateCore(masm, 3385 &throw_normal_exception, 3386 &throw_termination_exception, 3387 &throw_out_of_memory_exception, 3388 true, 3389 true); 3390 3391 __ bind(&throw_out_of_memory_exception); 3392 GenerateThrowUncatchable(masm, OUT_OF_MEMORY); 3393 3394 __ bind(&throw_termination_exception); 3395 GenerateThrowUncatchable(masm, TERMINATION); 3396 3397 __ bind(&throw_normal_exception); 3398 GenerateThrowTOS(masm); 3399 } 3400 3401 3402 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { 3403 // r0: code entry 3404 // r1: function 3405 // r2: receiver 3406 // r3: argc 3407 // [sp+0]: argv 3408 3409 Label invoke, exit; 3410 3411 // Called from C, so do not pop argc and args on exit (preserve sp) 3412 // No need to save register-passed args 3413 // Save callee-saved registers (incl. cp and fp), sp, and lr 3414 __ stm(db_w, sp, kCalleeSaved | lr.bit()); 3415 3416 if (CpuFeatures::IsSupported(VFP3)) { 3417 CpuFeatures::Scope scope(VFP3); 3418 // Save callee-saved vfp registers. 3419 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); 3420 } 3421 3422 // Get address of argv, see stm above. 3423 // r0: code entry 3424 // r1: function 3425 // r2: receiver 3426 // r3: argc 3427 3428 // Setup argv in r4. 3429 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; 3430 if (CpuFeatures::IsSupported(VFP3)) { 3431 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize; 3432 } 3433 __ ldr(r4, MemOperand(sp, offset_to_argv)); 3434 3435 // Push a frame with special values setup to mark it as an entry frame. 3436 // r0: code entry 3437 // r1: function 3438 // r2: receiver 3439 // r3: argc 3440 // r4: argv 3441 Isolate* isolate = masm->isolate(); 3442 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. 3443 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; 3444 __ mov(r7, Operand(Smi::FromInt(marker))); 3445 __ mov(r6, Operand(Smi::FromInt(marker))); 3446 __ mov(r5, 3447 Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate))); 3448 __ ldr(r5, MemOperand(r5)); 3449 __ Push(r8, r7, r6, r5); 3450 3451 // Setup frame pointer for the frame to be pushed. 3452 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); 3453 3454 #ifdef ENABLE_LOGGING_AND_PROFILING 3455 // If this is the outermost JS call, set js_entry_sp value. 3456 Label non_outermost_js; 3457 ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address, isolate); 3458 __ mov(r5, Operand(ExternalReference(js_entry_sp))); 3459 __ ldr(r6, MemOperand(r5)); 3460 __ cmp(r6, Operand(0)); 3461 __ b(ne, &non_outermost_js); 3462 __ str(fp, MemOperand(r5)); 3463 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); 3464 Label cont; 3465 __ b(&cont); 3466 __ bind(&non_outermost_js); 3467 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); 3468 __ bind(&cont); 3469 __ push(ip); 3470 #endif 3471 3472 // Call a faked try-block that does the invoke. 3473 __ bl(&invoke); 3474 3475 // Caught exception: Store result (exception) in the pending 3476 // exception field in the JSEnv and return a failure sentinel. 3477 // Coming in here the fp will be invalid because the PushTryHandler below 3478 // sets it to 0 to signal the existence of the JSEntry frame. 3479 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, 3480 isolate))); 3481 __ str(r0, MemOperand(ip)); 3482 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); 3483 __ b(&exit); 3484 3485 // Invoke: Link this frame into the handler chain. 3486 __ bind(&invoke); 3487 // Must preserve r0-r4, r5-r7 are available. 3488 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); 3489 // If an exception not caught by another handler occurs, this handler 3490 // returns control to the code after the bl(&invoke) above, which 3491 // restores all kCalleeSaved registers (including cp and fp) to their 3492 // saved values before returning a failure to C. 3493 3494 // Clear any pending exceptions. 3495 __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate))); 3496 __ ldr(r5, MemOperand(ip)); 3497 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, 3498 isolate))); 3499 __ str(r5, MemOperand(ip)); 3500 3501 // Invoke the function by calling through JS entry trampoline builtin. 3502 // Notice that we cannot store a reference to the trampoline code directly in 3503 // this stub, because runtime stubs are not traversed when doing GC. 3504 3505 // Expected registers by Builtins::JSEntryTrampoline 3506 // r0: code entry 3507 // r1: function 3508 // r2: receiver 3509 // r3: argc 3510 // r4: argv 3511 if (is_construct) { 3512 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, 3513 isolate); 3514 __ mov(ip, Operand(construct_entry)); 3515 } else { 3516 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate); 3517 __ mov(ip, Operand(entry)); 3518 } 3519 __ ldr(ip, MemOperand(ip)); // deref address 3520 3521 // Branch and link to JSEntryTrampoline. We don't use the double underscore 3522 // macro for the add instruction because we don't want the coverage tool 3523 // inserting instructions here after we read the pc. 3524 __ mov(lr, Operand(pc)); 3525 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); 3526 3527 // Unlink this frame from the handler chain. 3528 __ PopTryHandler(); 3529 3530 __ bind(&exit); // r0 holds result 3531 #ifdef ENABLE_LOGGING_AND_PROFILING 3532 // Check if the current stack frame is marked as the outermost JS frame. 3533 Label non_outermost_js_2; 3534 __ pop(r5); 3535 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); 3536 __ b(ne, &non_outermost_js_2); 3537 __ mov(r6, Operand(0)); 3538 __ mov(r5, Operand(ExternalReference(js_entry_sp))); 3539 __ str(r6, MemOperand(r5)); 3540 __ bind(&non_outermost_js_2); 3541 #endif 3542 3543 // Restore the top frame descriptors from the stack. 3544 __ pop(r3); 3545 __ mov(ip, 3546 Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate))); 3547 __ str(r3, MemOperand(ip)); 3548 3549 // Reset the stack to the callee saved registers. 3550 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); 3551 3552 // Restore callee-saved registers and return. 3553 #ifdef DEBUG 3554 if (FLAG_debug_code) { 3555 __ mov(lr, Operand(pc)); 3556 } 3557 #endif 3558 3559 if (CpuFeatures::IsSupported(VFP3)) { 3560 CpuFeatures::Scope scope(VFP3); 3561 // Restore callee-saved vfp registers. 3562 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); 3563 } 3564 3565 __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); 3566 } 3567 3568 3569 // Uses registers r0 to r4. 3570 // Expected input (depending on whether args are in registers or on the stack): 3571 // * object: r0 or at sp + 1 * kPointerSize. 3572 // * function: r1 or at sp. 3573 // 3574 // An inlined call site may have been generated before calling this stub. 3575 // In this case the offset to the inline site to patch is passed on the stack, 3576 // in the safepoint slot for register r4. 3577 // (See LCodeGen::DoInstanceOfKnownGlobal) 3578 void InstanceofStub::Generate(MacroAssembler* masm) { 3579 // Call site inlining and patching implies arguments in registers. 3580 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); 3581 // ReturnTrueFalse is only implemented for inlined call sites. 3582 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); 3583 3584 // Fixed register usage throughout the stub: 3585 const Register object = r0; // Object (lhs). 3586 Register map = r3; // Map of the object. 3587 const Register function = r1; // Function (rhs). 3588 const Register prototype = r4; // Prototype of the function. 3589 const Register inline_site = r9; 3590 const Register scratch = r2; 3591 3592 const int32_t kDeltaToLoadBoolResult = 3 * kPointerSize; 3593 3594 Label slow, loop, is_instance, is_not_instance, not_js_object; 3595 3596 if (!HasArgsInRegisters()) { 3597 __ ldr(object, MemOperand(sp, 1 * kPointerSize)); 3598 __ ldr(function, MemOperand(sp, 0)); 3599 } 3600 3601 // Check that the left hand is a JS object and load map. 3602 __ JumpIfSmi(object, ¬_js_object); 3603 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); 3604 3605 // If there is a call site cache don't look in the global cache, but do the 3606 // real lookup and update the call site cache. 3607 if (!HasCallSiteInlineCheck()) { 3608 Label miss; 3609 __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex); 3610 __ cmp(function, ip); 3611 __ b(ne, &miss); 3612 __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex); 3613 __ cmp(map, ip); 3614 __ b(ne, &miss); 3615 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 3616 __ Ret(HasArgsInRegisters() ? 0 : 2); 3617 3618 __ bind(&miss); 3619 } 3620 3621 // Get the prototype of the function. 3622 __ TryGetFunctionPrototype(function, prototype, scratch, &slow); 3623 3624 // Check that the function prototype is a JS object. 3625 __ JumpIfSmi(prototype, &slow); 3626 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); 3627 3628 // Update the global instanceof or call site inlined cache with the current 3629 // map and function. The cached answer will be set when it is known below. 3630 if (!HasCallSiteInlineCheck()) { 3631 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); 3632 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); 3633 } else { 3634 ASSERT(HasArgsInRegisters()); 3635 // Patch the (relocated) inlined map check. 3636 3637 // The offset was stored in r4 safepoint slot. 3638 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal) 3639 __ LoadFromSafepointRegisterSlot(scratch, r4); 3640 __ sub(inline_site, lr, scratch); 3641 // Get the map location in scratch and patch it. 3642 __ GetRelocatedValueLocation(inline_site, scratch); 3643 __ str(map, MemOperand(scratch)); 3644 } 3645 3646 // Register mapping: r3 is object map and r4 is function prototype. 3647 // Get prototype of object into r2. 3648 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); 3649 3650 // We don't need map any more. Use it as a scratch register. 3651 Register scratch2 = map; 3652 map = no_reg; 3653 3654 // Loop through the prototype chain looking for the function prototype. 3655 __ LoadRoot(scratch2, Heap::kNullValueRootIndex); 3656 __ bind(&loop); 3657 __ cmp(scratch, Operand(prototype)); 3658 __ b(eq, &is_instance); 3659 __ cmp(scratch, scratch2); 3660 __ b(eq, &is_not_instance); 3661 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); 3662 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); 3663 __ jmp(&loop); 3664 3665 __ bind(&is_instance); 3666 if (!HasCallSiteInlineCheck()) { 3667 __ mov(r0, Operand(Smi::FromInt(0))); 3668 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 3669 } else { 3670 // Patch the call site to return true. 3671 __ LoadRoot(r0, Heap::kTrueValueRootIndex); 3672 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); 3673 // Get the boolean result location in scratch and patch it. 3674 __ GetRelocatedValueLocation(inline_site, scratch); 3675 __ str(r0, MemOperand(scratch)); 3676 3677 if (!ReturnTrueFalseObject()) { 3678 __ mov(r0, Operand(Smi::FromInt(0))); 3679 } 3680 } 3681 __ Ret(HasArgsInRegisters() ? 0 : 2); 3682 3683 __ bind(&is_not_instance); 3684 if (!HasCallSiteInlineCheck()) { 3685 __ mov(r0, Operand(Smi::FromInt(1))); 3686 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 3687 } else { 3688 // Patch the call site to return false. 3689 __ LoadRoot(r0, Heap::kFalseValueRootIndex); 3690 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); 3691 // Get the boolean result location in scratch and patch it. 3692 __ GetRelocatedValueLocation(inline_site, scratch); 3693 __ str(r0, MemOperand(scratch)); 3694 3695 if (!ReturnTrueFalseObject()) { 3696 __ mov(r0, Operand(Smi::FromInt(1))); 3697 } 3698 } 3699 __ Ret(HasArgsInRegisters() ? 0 : 2); 3700 3701 Label object_not_null, object_not_null_or_smi; 3702 __ bind(¬_js_object); 3703 // Before null, smi and string value checks, check that the rhs is a function 3704 // as for a non-function rhs an exception needs to be thrown. 3705 __ JumpIfSmi(function, &slow); 3706 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE); 3707 __ b(ne, &slow); 3708 3709 // Null is not instance of anything. 3710 __ cmp(scratch, Operand(FACTORY->null_value())); 3711 __ b(ne, &object_not_null); 3712 __ mov(r0, Operand(Smi::FromInt(1))); 3713 __ Ret(HasArgsInRegisters() ? 0 : 2); 3714 3715 __ bind(&object_not_null); 3716 // Smi values are not instances of anything. 3717 __ JumpIfNotSmi(object, &object_not_null_or_smi); 3718 __ mov(r0, Operand(Smi::FromInt(1))); 3719 __ Ret(HasArgsInRegisters() ? 0 : 2); 3720 3721 __ bind(&object_not_null_or_smi); 3722 // String values are not instances of anything. 3723 __ IsObjectJSStringType(object, scratch, &slow); 3724 __ mov(r0, Operand(Smi::FromInt(1))); 3725 __ Ret(HasArgsInRegisters() ? 0 : 2); 3726 3727 // Slow-case. Tail call builtin. 3728 __ bind(&slow); 3729 if (!ReturnTrueFalseObject()) { 3730 if (HasArgsInRegisters()) { 3731 __ Push(r0, r1); 3732 } 3733 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS); 3734 } else { 3735 __ EnterInternalFrame(); 3736 __ Push(r0, r1); 3737 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_JS); 3738 __ LeaveInternalFrame(); 3739 __ cmp(r0, Operand(0)); 3740 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq); 3741 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne); 3742 __ Ret(HasArgsInRegisters() ? 0 : 2); 3743 } 3744 } 3745 3746 3747 Register InstanceofStub::left() { return r0; } 3748 3749 3750 Register InstanceofStub::right() { return r1; } 3751 3752 3753 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { 3754 // The displacement is the offset of the last parameter (if any) 3755 // relative to the frame pointer. 3756 static const int kDisplacement = 3757 StandardFrameConstants::kCallerSPOffset - kPointerSize; 3758 3759 // Check that the key is a smi. 3760 Label slow; 3761 __ JumpIfNotSmi(r1, &slow); 3762 3763 // Check if the calling frame is an arguments adaptor frame. 3764 Label adaptor; 3765 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3766 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); 3767 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3768 __ b(eq, &adaptor); 3769 3770 // Check index against formal parameters count limit passed in 3771 // through register r0. Use unsigned comparison to get negative 3772 // check for free. 3773 __ cmp(r1, r0); 3774 __ b(hs, &slow); 3775 3776 // Read the argument from the stack and return it. 3777 __ sub(r3, r0, r1); 3778 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); 3779 __ ldr(r0, MemOperand(r3, kDisplacement)); 3780 __ Jump(lr); 3781 3782 // Arguments adaptor case: Check index against actual arguments 3783 // limit found in the arguments adaptor frame. Use unsigned 3784 // comparison to get negative check for free. 3785 __ bind(&adaptor); 3786 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); 3787 __ cmp(r1, r0); 3788 __ b(cs, &slow); 3789 3790 // Read the argument from the adaptor frame and return it. 3791 __ sub(r3, r0, r1); 3792 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); 3793 __ ldr(r0, MemOperand(r3, kDisplacement)); 3794 __ Jump(lr); 3795 3796 // Slow-case: Handle non-smi or out-of-bounds access to arguments 3797 // by calling the runtime system. 3798 __ bind(&slow); 3799 __ push(r1); 3800 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); 3801 } 3802 3803 3804 void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { 3805 // sp[0] : number of parameters 3806 // sp[4] : receiver displacement 3807 // sp[8] : function 3808 3809 // Check if the calling frame is an arguments adaptor frame. 3810 Label adaptor_frame, try_allocate, runtime; 3811 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3812 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); 3813 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3814 __ b(eq, &adaptor_frame); 3815 3816 // Get the length from the frame. 3817 __ ldr(r1, MemOperand(sp, 0)); 3818 __ b(&try_allocate); 3819 3820 // Patch the arguments.length and the parameters pointer. 3821 __ bind(&adaptor_frame); 3822 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); 3823 __ str(r1, MemOperand(sp, 0)); 3824 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); 3825 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); 3826 __ str(r3, MemOperand(sp, 1 * kPointerSize)); 3827 3828 // Try the new space allocation. Start out with computing the size 3829 // of the arguments object and the elements array in words. 3830 Label add_arguments_object; 3831 __ bind(&try_allocate); 3832 __ cmp(r1, Operand(0, RelocInfo::NONE)); 3833 __ b(eq, &add_arguments_object); 3834 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); 3835 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); 3836 __ bind(&add_arguments_object); 3837 __ add(r1, r1, Operand(GetArgumentsObjectSize() / kPointerSize)); 3838 3839 // Do the allocation of both objects in one go. 3840 __ AllocateInNewSpace( 3841 r1, 3842 r0, 3843 r2, 3844 r3, 3845 &runtime, 3846 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); 3847 3848 // Get the arguments boilerplate from the current (global) context. 3849 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); 3850 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset)); 3851 __ ldr(r4, MemOperand(r4, 3852 Context::SlotOffset(GetArgumentsBoilerplateIndex()))); 3853 3854 // Copy the JS object part. 3855 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize); 3856 3857 if (type_ == NEW_NON_STRICT) { 3858 // Setup the callee in-object property. 3859 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); 3860 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); 3861 const int kCalleeOffset = JSObject::kHeaderSize + 3862 Heap::kArgumentsCalleeIndex * kPointerSize; 3863 __ str(r3, FieldMemOperand(r0, kCalleeOffset)); 3864 } 3865 3866 // Get the length (smi tagged) and set that as an in-object property too. 3867 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); 3868 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); 3869 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + 3870 Heap::kArgumentsLengthIndex * kPointerSize)); 3871 3872 // If there are no actual arguments, we're done. 3873 Label done; 3874 __ cmp(r1, Operand(0, RelocInfo::NONE)); 3875 __ b(eq, &done); 3876 3877 // Get the parameters pointer from the stack. 3878 __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); 3879 3880 // Setup the elements pointer in the allocated arguments object and 3881 // initialize the header in the elements fixed array. 3882 __ add(r4, r0, Operand(GetArgumentsObjectSize())); 3883 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); 3884 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); 3885 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); 3886 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); 3887 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop. 3888 3889 // Copy the fixed array slots. 3890 Label loop; 3891 // Setup r4 to point to the first array slot. 3892 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 3893 __ bind(&loop); 3894 // Pre-decrement r2 with kPointerSize on each iteration. 3895 // Pre-decrement in order to skip receiver. 3896 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); 3897 // Post-increment r4 with kPointerSize on each iteration. 3898 __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); 3899 __ sub(r1, r1, Operand(1)); 3900 __ cmp(r1, Operand(0, RelocInfo::NONE)); 3901 __ b(ne, &loop); 3902 3903 // Return and remove the on-stack parameters. 3904 __ bind(&done); 3905 __ add(sp, sp, Operand(3 * kPointerSize)); 3906 __ Ret(); 3907 3908 // Do the runtime call to allocate the arguments object. 3909 __ bind(&runtime); 3910 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); 3911 } 3912 3913 3914 void RegExpExecStub::Generate(MacroAssembler* masm) { 3915 // Just jump directly to runtime if native RegExp is not selected at compile 3916 // time or if regexp entry in generated code is turned off runtime switch or 3917 // at compilation. 3918 #ifdef V8_INTERPRETED_REGEXP 3919 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 3920 #else // V8_INTERPRETED_REGEXP 3921 if (!FLAG_regexp_entry_native) { 3922 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 3923 return; 3924 } 3925 3926 // Stack frame on entry. 3927 // sp[0]: last_match_info (expected JSArray) 3928 // sp[4]: previous index 3929 // sp[8]: subject string 3930 // sp[12]: JSRegExp object 3931 3932 static const int kLastMatchInfoOffset = 0 * kPointerSize; 3933 static const int kPreviousIndexOffset = 1 * kPointerSize; 3934 static const int kSubjectOffset = 2 * kPointerSize; 3935 static const int kJSRegExpOffset = 3 * kPointerSize; 3936 3937 Label runtime, invoke_regexp; 3938 3939 // Allocation of registers for this function. These are in callee save 3940 // registers and will be preserved by the call to the native RegExp code, as 3941 // this code is called using the normal C calling convention. When calling 3942 // directly from generated code the native RegExp code will not do a GC and 3943 // therefore the content of these registers are safe to use after the call. 3944 Register subject = r4; 3945 Register regexp_data = r5; 3946 Register last_match_info_elements = r6; 3947 3948 // Ensure that a RegExp stack is allocated. 3949 Isolate* isolate = masm->isolate(); 3950 ExternalReference address_of_regexp_stack_memory_address = 3951 ExternalReference::address_of_regexp_stack_memory_address(isolate); 3952 ExternalReference address_of_regexp_stack_memory_size = 3953 ExternalReference::address_of_regexp_stack_memory_size(isolate); 3954 __ mov(r0, Operand(address_of_regexp_stack_memory_size)); 3955 __ ldr(r0, MemOperand(r0, 0)); 3956 __ tst(r0, Operand(r0)); 3957 __ b(eq, &runtime); 3958 3959 // Check that the first argument is a JSRegExp object. 3960 __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); 3961 STATIC_ASSERT(kSmiTag == 0); 3962 __ tst(r0, Operand(kSmiTagMask)); 3963 __ b(eq, &runtime); 3964 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); 3965 __ b(ne, &runtime); 3966 3967 // Check that the RegExp has been compiled (data contains a fixed array). 3968 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); 3969 if (FLAG_debug_code) { 3970 __ tst(regexp_data, Operand(kSmiTagMask)); 3971 __ Check(ne, "Unexpected type for RegExp data, FixedArray expected"); 3972 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); 3973 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected"); 3974 } 3975 3976 // regexp_data: RegExp data (FixedArray) 3977 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. 3978 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); 3979 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); 3980 __ b(ne, &runtime); 3981 3982 // regexp_data: RegExp data (FixedArray) 3983 // Check that the number of captures fit in the static offsets vector buffer. 3984 __ ldr(r2, 3985 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); 3986 // Calculate number of capture registers (number_of_captures + 1) * 2. This 3987 // uses the asumption that smis are 2 * their untagged value. 3988 STATIC_ASSERT(kSmiTag == 0); 3989 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); 3990 __ add(r2, r2, Operand(2)); // r2 was a smi. 3991 // Check that the static offsets vector buffer is large enough. 3992 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); 3993 __ b(hi, &runtime); 3994 3995 // r2: Number of capture registers 3996 // regexp_data: RegExp data (FixedArray) 3997 // Check that the second argument is a string. 3998 __ ldr(subject, MemOperand(sp, kSubjectOffset)); 3999 __ tst(subject, Operand(kSmiTagMask)); 4000 __ b(eq, &runtime); 4001 Condition is_string = masm->IsObjectStringType(subject, r0); 4002 __ b(NegateCondition(is_string), &runtime); 4003 // Get the length of the string to r3. 4004 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset)); 4005 4006 // r2: Number of capture registers 4007 // r3: Length of subject string as a smi 4008 // subject: Subject string 4009 // regexp_data: RegExp data (FixedArray) 4010 // Check that the third argument is a positive smi less than the subject 4011 // string length. A negative value will be greater (unsigned comparison). 4012 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset)); 4013 __ tst(r0, Operand(kSmiTagMask)); 4014 __ b(ne, &runtime); 4015 __ cmp(r3, Operand(r0)); 4016 __ b(ls, &runtime); 4017 4018 // r2: Number of capture registers 4019 // subject: Subject string 4020 // regexp_data: RegExp data (FixedArray) 4021 // Check that the fourth object is a JSArray object. 4022 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); 4023 __ tst(r0, Operand(kSmiTagMask)); 4024 __ b(eq, &runtime); 4025 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); 4026 __ b(ne, &runtime); 4027 // Check that the JSArray is in fast case. 4028 __ ldr(last_match_info_elements, 4029 FieldMemOperand(r0, JSArray::kElementsOffset)); 4030 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); 4031 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); 4032 __ cmp(r0, ip); 4033 __ b(ne, &runtime); 4034 // Check that the last match info has space for the capture registers and the 4035 // additional information. 4036 __ ldr(r0, 4037 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); 4038 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead)); 4039 __ cmp(r2, Operand(r0, ASR, kSmiTagSize)); 4040 __ b(gt, &runtime); 4041 4042 // subject: Subject string 4043 // regexp_data: RegExp data (FixedArray) 4044 // Check the representation and encoding of the subject string. 4045 Label seq_string; 4046 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); 4047 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); 4048 // First check for flat string. 4049 __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask)); 4050 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); 4051 __ b(eq, &seq_string); 4052 4053 // subject: Subject string 4054 // regexp_data: RegExp data (FixedArray) 4055 // Check for flat cons string. 4056 // A flat cons string is a cons string where the second part is the empty 4057 // string. In that case the subject string is just the first part of the cons 4058 // string. Also in this case the first part of the cons string is known to be 4059 // a sequential string or an external string. 4060 STATIC_ASSERT(kExternalStringTag !=0); 4061 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); 4062 __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag)); 4063 __ b(ne, &runtime); 4064 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); 4065 __ LoadRoot(r1, Heap::kEmptyStringRootIndex); 4066 __ cmp(r0, r1); 4067 __ b(ne, &runtime); 4068 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); 4069 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); 4070 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); 4071 // Is first part a flat string? 4072 STATIC_ASSERT(kSeqStringTag == 0); 4073 __ tst(r0, Operand(kStringRepresentationMask)); 4074 __ b(ne, &runtime); 4075 4076 __ bind(&seq_string); 4077 // subject: Subject string 4078 // regexp_data: RegExp data (FixedArray) 4079 // r0: Instance type of subject string 4080 STATIC_ASSERT(4 == kAsciiStringTag); 4081 STATIC_ASSERT(kTwoByteStringTag == 0); 4082 // Find the code object based on the assumptions above. 4083 __ and_(r0, r0, Operand(kStringEncodingMask)); 4084 __ mov(r3, Operand(r0, ASR, 2), SetCC); 4085 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); 4086 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); 4087 4088 // Check that the irregexp code has been generated for the actual string 4089 // encoding. If it has, the field contains a code object otherwise it contains 4090 // the hole. 4091 __ CompareObjectType(r7, r0, r0, CODE_TYPE); 4092 __ b(ne, &runtime); 4093 4094 // r3: encoding of subject string (1 if ASCII, 0 if two_byte); 4095 // r7: code 4096 // subject: Subject string 4097 // regexp_data: RegExp data (FixedArray) 4098 // Load used arguments before starting to push arguments for call to native 4099 // RegExp code to avoid handling changing stack height. 4100 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); 4101 __ mov(r1, Operand(r1, ASR, kSmiTagSize)); 4102 4103 // r1: previous index 4104 // r3: encoding of subject string (1 if ASCII, 0 if two_byte); 4105 // r7: code 4106 // subject: Subject string 4107 // regexp_data: RegExp data (FixedArray) 4108 // All checks done. Now push arguments for native regexp code. 4109 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2); 4110 4111 // Isolates: note we add an additional parameter here (isolate pointer). 4112 static const int kRegExpExecuteArguments = 8; 4113 static const int kParameterRegisters = 4; 4114 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); 4115 4116 // Stack pointer now points to cell where return address is to be written. 4117 // Arguments are before that on the stack or in registers. 4118 4119 // Argument 8 (sp[16]): Pass current isolate address. 4120 __ mov(r0, Operand(ExternalReference::isolate_address())); 4121 __ str(r0, MemOperand(sp, 4 * kPointerSize)); 4122 4123 // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript. 4124 __ mov(r0, Operand(1)); 4125 __ str(r0, MemOperand(sp, 3 * kPointerSize)); 4126 4127 // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area. 4128 __ mov(r0, Operand(address_of_regexp_stack_memory_address)); 4129 __ ldr(r0, MemOperand(r0, 0)); 4130 __ mov(r2, Operand(address_of_regexp_stack_memory_size)); 4131 __ ldr(r2, MemOperand(r2, 0)); 4132 __ add(r0, r0, Operand(r2)); 4133 __ str(r0, MemOperand(sp, 2 * kPointerSize)); 4134 4135 // Argument 5 (sp[4]): static offsets vector buffer. 4136 __ mov(r0, 4137 Operand(ExternalReference::address_of_static_offsets_vector(isolate))); 4138 __ str(r0, MemOperand(sp, 1 * kPointerSize)); 4139 4140 // For arguments 4 and 3 get string length, calculate start of string data and 4141 // calculate the shift of the index (0 for ASCII and 1 for two byte). 4142 __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset)); 4143 __ mov(r0, Operand(r0, ASR, kSmiTagSize)); 4144 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); 4145 __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 4146 __ eor(r3, r3, Operand(1)); 4147 // Argument 4 (r3): End of string data 4148 // Argument 3 (r2): Start of string data 4149 __ add(r2, r9, Operand(r1, LSL, r3)); 4150 __ add(r3, r9, Operand(r0, LSL, r3)); 4151 4152 // Argument 2 (r1): Previous index. 4153 // Already there 4154 4155 // Argument 1 (r0): Subject string. 4156 __ mov(r0, subject); 4157 4158 // Locate the code entry and call it. 4159 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); 4160 DirectCEntryStub stub; 4161 stub.GenerateCall(masm, r7); 4162 4163 __ LeaveExitFrame(false, no_reg); 4164 4165 // r0: result 4166 // subject: subject string (callee saved) 4167 // regexp_data: RegExp data (callee saved) 4168 // last_match_info_elements: Last match info elements (callee saved) 4169 4170 // Check the result. 4171 Label success; 4172 4173 __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS)); 4174 __ b(eq, &success); 4175 Label failure; 4176 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); 4177 __ b(eq, &failure); 4178 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); 4179 // If not exception it can only be retry. Handle that in the runtime system. 4180 __ b(ne, &runtime); 4181 // Result must now be exception. If there is no pending exception already a 4182 // stack overflow (on the backtrack stack) was detected in RegExp code but 4183 // haven't created the exception yet. Handle that in the runtime system. 4184 // TODO(592): Rerunning the RegExp to get the stack overflow exception. 4185 __ mov(r1, Operand(ExternalReference::the_hole_value_location(isolate))); 4186 __ ldr(r1, MemOperand(r1, 0)); 4187 __ mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address, 4188 isolate))); 4189 __ ldr(r0, MemOperand(r2, 0)); 4190 __ cmp(r0, r1); 4191 __ b(eq, &runtime); 4192 4193 __ str(r1, MemOperand(r2, 0)); // Clear pending exception. 4194 4195 // Check if the exception is a termination. If so, throw as uncatchable. 4196 __ LoadRoot(ip, Heap::kTerminationExceptionRootIndex); 4197 __ cmp(r0, ip); 4198 Label termination_exception; 4199 __ b(eq, &termination_exception); 4200 4201 __ Throw(r0); // Expects thrown value in r0. 4202 4203 __ bind(&termination_exception); 4204 __ ThrowUncatchable(TERMINATION, r0); // Expects thrown value in r0. 4205 4206 __ bind(&failure); 4207 // For failure and exception return null. 4208 __ mov(r0, Operand(FACTORY->null_value())); 4209 __ add(sp, sp, Operand(4 * kPointerSize)); 4210 __ Ret(); 4211 4212 // Process the result from the native regexp code. 4213 __ bind(&success); 4214 __ ldr(r1, 4215 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); 4216 // Calculate number of capture registers (number_of_captures + 1) * 2. 4217 STATIC_ASSERT(kSmiTag == 0); 4218 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); 4219 __ add(r1, r1, Operand(2)); // r1 was a smi. 4220 4221 // r1: number of capture registers 4222 // r4: subject string 4223 // Store the capture count. 4224 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi. 4225 __ str(r2, FieldMemOperand(last_match_info_elements, 4226 RegExpImpl::kLastCaptureCountOffset)); 4227 // Store last subject and last input. 4228 __ mov(r3, last_match_info_elements); // Moved up to reduce latency. 4229 __ str(subject, 4230 FieldMemOperand(last_match_info_elements, 4231 RegExpImpl::kLastSubjectOffset)); 4232 __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7); 4233 __ str(subject, 4234 FieldMemOperand(last_match_info_elements, 4235 RegExpImpl::kLastInputOffset)); 4236 __ mov(r3, last_match_info_elements); 4237 __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7); 4238 4239 // Get the static offsets vector filled by the native regexp code. 4240 ExternalReference address_of_static_offsets_vector = 4241 ExternalReference::address_of_static_offsets_vector(isolate); 4242 __ mov(r2, Operand(address_of_static_offsets_vector)); 4243 4244 // r1: number of capture registers 4245 // r2: offsets vector 4246 Label next_capture, done; 4247 // Capture register counter starts from number of capture registers and 4248 // counts down until wraping after zero. 4249 __ add(r0, 4250 last_match_info_elements, 4251 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); 4252 __ bind(&next_capture); 4253 __ sub(r1, r1, Operand(1), SetCC); 4254 __ b(mi, &done); 4255 // Read the value from the static offsets vector buffer. 4256 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); 4257 // Store the smi value in the last match info. 4258 __ mov(r3, Operand(r3, LSL, kSmiTagSize)); 4259 __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); 4260 __ jmp(&next_capture); 4261 __ bind(&done); 4262 4263 // Return last match info. 4264 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); 4265 __ add(sp, sp, Operand(4 * kPointerSize)); 4266 __ Ret(); 4267 4268 // Do the runtime call to execute the regexp. 4269 __ bind(&runtime); 4270 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); 4271 #endif // V8_INTERPRETED_REGEXP 4272 } 4273 4274 4275 void RegExpConstructResultStub::Generate(MacroAssembler* masm) { 4276 const int kMaxInlineLength = 100; 4277 Label slowcase; 4278 Label done; 4279 __ ldr(r1, MemOperand(sp, kPointerSize * 2)); 4280 STATIC_ASSERT(kSmiTag == 0); 4281 STATIC_ASSERT(kSmiTagSize == 1); 4282 __ tst(r1, Operand(kSmiTagMask)); 4283 __ b(ne, &slowcase); 4284 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength))); 4285 __ b(hi, &slowcase); 4286 // Smi-tagging is equivalent to multiplying by 2. 4287 // Allocate RegExpResult followed by FixedArray with size in ebx. 4288 // JSArray: [Map][empty properties][Elements][Length-smi][index][input] 4289 // Elements: [Map][Length][..elements..] 4290 // Size of JSArray with two in-object properties and the header of a 4291 // FixedArray. 4292 int objects_size = 4293 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize; 4294 __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize)); 4295 __ add(r2, r5, Operand(objects_size)); 4296 __ AllocateInNewSpace( 4297 r2, // In: Size, in words. 4298 r0, // Out: Start of allocation (tagged). 4299 r3, // Scratch register. 4300 r4, // Scratch register. 4301 &slowcase, 4302 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); 4303 // r0: Start of allocated area, object-tagged. 4304 // r1: Number of elements in array, as smi. 4305 // r5: Number of elements, untagged. 4306 4307 // Set JSArray map to global.regexp_result_map(). 4308 // Set empty properties FixedArray. 4309 // Set elements to point to FixedArray allocated right after the JSArray. 4310 // Interleave operations for better latency. 4311 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX)); 4312 __ add(r3, r0, Operand(JSRegExpResult::kSize)); 4313 __ mov(r4, Operand(FACTORY->empty_fixed_array())); 4314 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); 4315 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); 4316 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX)); 4317 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 4318 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 4319 4320 // Set input, index and length fields from arguments. 4321 __ ldr(r1, MemOperand(sp, kPointerSize * 0)); 4322 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset)); 4323 __ ldr(r1, MemOperand(sp, kPointerSize * 1)); 4324 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kIndexOffset)); 4325 __ ldr(r1, MemOperand(sp, kPointerSize * 2)); 4326 __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset)); 4327 4328 // Fill out the elements FixedArray. 4329 // r0: JSArray, tagged. 4330 // r3: FixedArray, tagged. 4331 // r5: Number of elements in array, untagged. 4332 4333 // Set map. 4334 __ mov(r2, Operand(FACTORY->fixed_array_map())); 4335 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); 4336 // Set FixedArray length. 4337 __ mov(r6, Operand(r5, LSL, kSmiTagSize)); 4338 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset)); 4339 // Fill contents of fixed-array with the-hole. 4340 __ mov(r2, Operand(FACTORY->the_hole_value())); 4341 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 4342 // Fill fixed array elements with hole. 4343 // r0: JSArray, tagged. 4344 // r2: the hole. 4345 // r3: Start of elements in FixedArray. 4346 // r5: Number of elements to fill. 4347 Label loop; 4348 __ tst(r5, Operand(r5)); 4349 __ bind(&loop); 4350 __ b(le, &done); // Jump if r1 is negative or zero. 4351 __ sub(r5, r5, Operand(1), SetCC); 4352 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2)); 4353 __ jmp(&loop); 4354 4355 __ bind(&done); 4356 __ add(sp, sp, Operand(3 * kPointerSize)); 4357 __ Ret(); 4358 4359 __ bind(&slowcase); 4360 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); 4361 } 4362 4363 4364 void CallFunctionStub::Generate(MacroAssembler* masm) { 4365 Label slow; 4366 4367 // If the receiver might be a value (string, number or boolean) check for this 4368 // and box it if it is. 4369 if (ReceiverMightBeValue()) { 4370 // Get the receiver from the stack. 4371 // function, receiver [, arguments] 4372 Label receiver_is_value, receiver_is_js_object; 4373 __ ldr(r1, MemOperand(sp, argc_ * kPointerSize)); 4374 4375 // Check if receiver is a smi (which is a number value). 4376 __ JumpIfSmi(r1, &receiver_is_value); 4377 4378 // Check if the receiver is a valid JS object. 4379 __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE); 4380 __ b(ge, &receiver_is_js_object); 4381 4382 // Call the runtime to box the value. 4383 __ bind(&receiver_is_value); 4384 __ EnterInternalFrame(); 4385 __ push(r1); 4386 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); 4387 __ LeaveInternalFrame(); 4388 __ str(r0, MemOperand(sp, argc_ * kPointerSize)); 4389 4390 __ bind(&receiver_is_js_object); 4391 } 4392 4393 // Get the function to call from the stack. 4394 // function, receiver [, arguments] 4395 __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize)); 4396 4397 // Check that the function is really a JavaScript function. 4398 // r1: pushed function (to be verified) 4399 __ JumpIfSmi(r1, &slow); 4400 // Get the map of the function object. 4401 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); 4402 __ b(ne, &slow); 4403 4404 // Fast-case: Invoke the function now. 4405 // r1: pushed function 4406 ParameterCount actual(argc_); 4407 __ InvokeFunction(r1, actual, JUMP_FUNCTION); 4408 4409 // Slow-case: Non-function called. 4410 __ bind(&slow); 4411 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead 4412 // of the original receiver from the call site). 4413 __ str(r1, MemOperand(sp, argc_ * kPointerSize)); 4414 __ mov(r0, Operand(argc_)); // Setup the number of arguments. 4415 __ mov(r2, Operand(0, RelocInfo::NONE)); 4416 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); 4417 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), 4418 RelocInfo::CODE_TARGET); 4419 } 4420 4421 4422 // Unfortunately you have to run without snapshots to see most of these 4423 // names in the profile since most compare stubs end up in the snapshot. 4424 const char* CompareStub::GetName() { 4425 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || 4426 (lhs_.is(r1) && rhs_.is(r0))); 4427 4428 if (name_ != NULL) return name_; 4429 const int kMaxNameLength = 100; 4430 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( 4431 kMaxNameLength); 4432 if (name_ == NULL) return "OOM"; 4433 4434 const char* cc_name; 4435 switch (cc_) { 4436 case lt: cc_name = "LT"; break; 4437 case gt: cc_name = "GT"; break; 4438 case le: cc_name = "LE"; break; 4439 case ge: cc_name = "GE"; break; 4440 case eq: cc_name = "EQ"; break; 4441 case ne: cc_name = "NE"; break; 4442 default: cc_name = "UnknownCondition"; break; 4443 } 4444 4445 const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1"; 4446 const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1"; 4447 4448 const char* strict_name = ""; 4449 if (strict_ && (cc_ == eq || cc_ == ne)) { 4450 strict_name = "_STRICT"; 4451 } 4452 4453 const char* never_nan_nan_name = ""; 4454 if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) { 4455 never_nan_nan_name = "_NO_NAN"; 4456 } 4457 4458 const char* include_number_compare_name = ""; 4459 if (!include_number_compare_) { 4460 include_number_compare_name = "_NO_NUMBER"; 4461 } 4462 4463 const char* include_smi_compare_name = ""; 4464 if (!include_smi_compare_) { 4465 include_smi_compare_name = "_NO_SMI"; 4466 } 4467 4468 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), 4469 "CompareStub_%s%s%s%s%s%s", 4470 cc_name, 4471 lhs_name, 4472 rhs_name, 4473 strict_name, 4474 never_nan_nan_name, 4475 include_number_compare_name, 4476 include_smi_compare_name); 4477 return name_; 4478 } 4479 4480 4481 int CompareStub::MinorKey() { 4482 // Encode the three parameters in a unique 16 bit value. To avoid duplicate 4483 // stubs the never NaN NaN condition is only taken into account if the 4484 // condition is equals. 4485 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12)); 4486 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || 4487 (lhs_.is(r1) && rhs_.is(r0))); 4488 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28) 4489 | RegisterField::encode(lhs_.is(r0)) 4490 | StrictField::encode(strict_) 4491 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) 4492 | IncludeNumberCompareField::encode(include_number_compare_) 4493 | IncludeSmiCompareField::encode(include_smi_compare_); 4494 } 4495 4496 4497 // StringCharCodeAtGenerator 4498 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { 4499 Label flat_string; 4500 Label ascii_string; 4501 Label got_char_code; 4502 4503 // If the receiver is a smi trigger the non-string case. 4504 __ JumpIfSmi(object_, receiver_not_string_); 4505 4506 // Fetch the instance type of the receiver into result register. 4507 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); 4508 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); 4509 // If the receiver is not a string trigger the non-string case. 4510 __ tst(result_, Operand(kIsNotStringMask)); 4511 __ b(ne, receiver_not_string_); 4512 4513 // If the index is non-smi trigger the non-smi case. 4514 __ JumpIfNotSmi(index_, &index_not_smi_); 4515 4516 // Put smi-tagged index into scratch register. 4517 __ mov(scratch_, index_); 4518 __ bind(&got_smi_index_); 4519 4520 // Check for index out of range. 4521 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); 4522 __ cmp(ip, Operand(scratch_)); 4523 __ b(ls, index_out_of_range_); 4524 4525 // We need special handling for non-flat strings. 4526 STATIC_ASSERT(kSeqStringTag == 0); 4527 __ tst(result_, Operand(kStringRepresentationMask)); 4528 __ b(eq, &flat_string); 4529 4530 // Handle non-flat strings. 4531 __ tst(result_, Operand(kIsConsStringMask)); 4532 __ b(eq, &call_runtime_); 4533 4534 // ConsString. 4535 // Check whether the right hand side is the empty string (i.e. if 4536 // this is really a flat string in a cons string). If that is not 4537 // the case we would rather go to the runtime system now to flatten 4538 // the string. 4539 __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset)); 4540 __ LoadRoot(ip, Heap::kEmptyStringRootIndex); 4541 __ cmp(result_, Operand(ip)); 4542 __ b(ne, &call_runtime_); 4543 // Get the first of the two strings and load its instance type. 4544 __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset)); 4545 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); 4546 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); 4547 // If the first cons component is also non-flat, then go to runtime. 4548 STATIC_ASSERT(kSeqStringTag == 0); 4549 __ tst(result_, Operand(kStringRepresentationMask)); 4550 __ b(ne, &call_runtime_); 4551 4552 // Check for 1-byte or 2-byte string. 4553 __ bind(&flat_string); 4554 STATIC_ASSERT(kAsciiStringTag != 0); 4555 __ tst(result_, Operand(kStringEncodingMask)); 4556 __ b(ne, &ascii_string); 4557 4558 // 2-byte string. 4559 // Load the 2-byte character code into the result register. We can 4560 // add without shifting since the smi tag size is the log2 of the 4561 // number of bytes in a two-byte character. 4562 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); 4563 __ add(scratch_, object_, Operand(scratch_)); 4564 __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); 4565 __ jmp(&got_char_code); 4566 4567 // ASCII string. 4568 // Load the byte into the result register. 4569 __ bind(&ascii_string); 4570 __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize)); 4571 __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize)); 4572 4573 __ bind(&got_char_code); 4574 __ mov(result_, Operand(result_, LSL, kSmiTagSize)); 4575 __ bind(&exit_); 4576 } 4577 4578 4579 void StringCharCodeAtGenerator::GenerateSlow( 4580 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 4581 __ Abort("Unexpected fallthrough to CharCodeAt slow case"); 4582 4583 // Index is not a smi. 4584 __ bind(&index_not_smi_); 4585 // If index is a heap number, try converting it to an integer. 4586 __ CheckMap(index_, 4587 scratch_, 4588 Heap::kHeapNumberMapRootIndex, 4589 index_not_number_, 4590 true); 4591 call_helper.BeforeCall(masm); 4592 __ Push(object_, index_); 4593 __ push(index_); // Consumed by runtime conversion function. 4594 if (index_flags_ == STRING_INDEX_IS_NUMBER) { 4595 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); 4596 } else { 4597 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); 4598 // NumberToSmi discards numbers that are not exact integers. 4599 __ CallRuntime(Runtime::kNumberToSmi, 1); 4600 } 4601 // Save the conversion result before the pop instructions below 4602 // have a chance to overwrite it. 4603 __ Move(scratch_, r0); 4604 __ pop(index_); 4605 __ pop(object_); 4606 // Reload the instance type. 4607 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); 4608 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); 4609 call_helper.AfterCall(masm); 4610 // If index is still not a smi, it must be out of range. 4611 __ JumpIfNotSmi(scratch_, index_out_of_range_); 4612 // Otherwise, return to the fast path. 4613 __ jmp(&got_smi_index_); 4614 4615 // Call runtime. We get here when the receiver is a string and the 4616 // index is a number, but the code of getting the actual character 4617 // is too complex (e.g., when the string needs to be flattened). 4618 __ bind(&call_runtime_); 4619 call_helper.BeforeCall(masm); 4620 __ Push(object_, index_); 4621 __ CallRuntime(Runtime::kStringCharCodeAt, 2); 4622 __ Move(result_, r0); 4623 call_helper.AfterCall(masm); 4624 __ jmp(&exit_); 4625 4626 __ Abort("Unexpected fallthrough from CharCodeAt slow case"); 4627 } 4628 4629 4630 // ------------------------------------------------------------------------- 4631 // StringCharFromCodeGenerator 4632 4633 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { 4634 // Fast case of Heap::LookupSingleCharacterStringFromCode. 4635 STATIC_ASSERT(kSmiTag == 0); 4636 STATIC_ASSERT(kSmiShiftSize == 0); 4637 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); 4638 __ tst(code_, 4639 Operand(kSmiTagMask | 4640 ((~String::kMaxAsciiCharCode) << kSmiTagSize))); 4641 __ b(ne, &slow_case_); 4642 4643 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); 4644 // At this point code register contains smi tagged ASCII char code. 4645 STATIC_ASSERT(kSmiTag == 0); 4646 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize)); 4647 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); 4648 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 4649 __ cmp(result_, Operand(ip)); 4650 __ b(eq, &slow_case_); 4651 __ bind(&exit_); 4652 } 4653 4654 4655 void StringCharFromCodeGenerator::GenerateSlow( 4656 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 4657 __ Abort("Unexpected fallthrough to CharFromCode slow case"); 4658 4659 __ bind(&slow_case_); 4660 call_helper.BeforeCall(masm); 4661 __ push(code_); 4662 __ CallRuntime(Runtime::kCharFromCode, 1); 4663 __ Move(result_, r0); 4664 call_helper.AfterCall(masm); 4665 __ jmp(&exit_); 4666 4667 __ Abort("Unexpected fallthrough from CharFromCode slow case"); 4668 } 4669 4670 4671 // ------------------------------------------------------------------------- 4672 // StringCharAtGenerator 4673 4674 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { 4675 char_code_at_generator_.GenerateFast(masm); 4676 char_from_code_generator_.GenerateFast(masm); 4677 } 4678 4679 4680 void StringCharAtGenerator::GenerateSlow( 4681 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { 4682 char_code_at_generator_.GenerateSlow(masm, call_helper); 4683 char_from_code_generator_.GenerateSlow(masm, call_helper); 4684 } 4685 4686 4687 class StringHelper : public AllStatic { 4688 public: 4689 // Generate code for copying characters using a simple loop. This should only 4690 // be used in places where the number of characters is small and the 4691 // additional setup and checking in GenerateCopyCharactersLong adds too much 4692 // overhead. Copying of overlapping regions is not supported. 4693 // Dest register ends at the position after the last character written. 4694 static void GenerateCopyCharacters(MacroAssembler* masm, 4695 Register dest, 4696 Register src, 4697 Register count, 4698 Register scratch, 4699 bool ascii); 4700 4701 // Generate code for copying a large number of characters. This function 4702 // is allowed to spend extra time setting up conditions to make copying 4703 // faster. Copying of overlapping regions is not supported. 4704 // Dest register ends at the position after the last character written. 4705 static void GenerateCopyCharactersLong(MacroAssembler* masm, 4706 Register dest, 4707 Register src, 4708 Register count, 4709 Register scratch1, 4710 Register scratch2, 4711 Register scratch3, 4712 Register scratch4, 4713 Register scratch5, 4714 int flags); 4715 4716 4717 // Probe the symbol table for a two character string. If the string is 4718 // not found by probing a jump to the label not_found is performed. This jump 4719 // does not guarantee that the string is not in the symbol table. If the 4720 // string is found the code falls through with the string in register r0. 4721 // Contents of both c1 and c2 registers are modified. At the exit c1 is 4722 // guaranteed to contain halfword with low and high bytes equal to 4723 // initial contents of c1 and c2 respectively. 4724 static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, 4725 Register c1, 4726 Register c2, 4727 Register scratch1, 4728 Register scratch2, 4729 Register scratch3, 4730 Register scratch4, 4731 Register scratch5, 4732 Label* not_found); 4733 4734 // Generate string hash. 4735 static void GenerateHashInit(MacroAssembler* masm, 4736 Register hash, 4737 Register character); 4738 4739 static void GenerateHashAddCharacter(MacroAssembler* masm, 4740 Register hash, 4741 Register character); 4742 4743 static void GenerateHashGetHash(MacroAssembler* masm, 4744 Register hash); 4745 4746 private: 4747 DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); 4748 }; 4749 4750 4751 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, 4752 Register dest, 4753 Register src, 4754 Register count, 4755 Register scratch, 4756 bool ascii) { 4757 Label loop; 4758 Label done; 4759 // This loop just copies one character at a time, as it is only used for very 4760 // short strings. 4761 if (!ascii) { 4762 __ add(count, count, Operand(count), SetCC); 4763 } else { 4764 __ cmp(count, Operand(0, RelocInfo::NONE)); 4765 } 4766 __ b(eq, &done); 4767 4768 __ bind(&loop); 4769 __ ldrb(scratch, MemOperand(src, 1, PostIndex)); 4770 // Perform sub between load and dependent store to get the load time to 4771 // complete. 4772 __ sub(count, count, Operand(1), SetCC); 4773 __ strb(scratch, MemOperand(dest, 1, PostIndex)); 4774 // last iteration. 4775 __ b(gt, &loop); 4776 4777 __ bind(&done); 4778 } 4779 4780 4781 enum CopyCharactersFlags { 4782 COPY_ASCII = 1, 4783 DEST_ALWAYS_ALIGNED = 2 4784 }; 4785 4786 4787 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, 4788 Register dest, 4789 Register src, 4790 Register count, 4791 Register scratch1, 4792 Register scratch2, 4793 Register scratch3, 4794 Register scratch4, 4795 Register scratch5, 4796 int flags) { 4797 bool ascii = (flags & COPY_ASCII) != 0; 4798 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; 4799 4800 if (dest_always_aligned && FLAG_debug_code) { 4801 // Check that destination is actually word aligned if the flag says 4802 // that it is. 4803 __ tst(dest, Operand(kPointerAlignmentMask)); 4804 __ Check(eq, "Destination of copy not aligned."); 4805 } 4806 4807 const int kReadAlignment = 4; 4808 const int kReadAlignmentMask = kReadAlignment - 1; 4809 // Ensure that reading an entire aligned word containing the last character 4810 // of a string will not read outside the allocated area (because we pad up 4811 // to kObjectAlignment). 4812 STATIC_ASSERT(kObjectAlignment >= kReadAlignment); 4813 // Assumes word reads and writes are little endian. 4814 // Nothing to do for zero characters. 4815 Label done; 4816 if (!ascii) { 4817 __ add(count, count, Operand(count), SetCC); 4818 } else { 4819 __ cmp(count, Operand(0, RelocInfo::NONE)); 4820 } 4821 __ b(eq, &done); 4822 4823 // Assume that you cannot read (or write) unaligned. 4824 Label byte_loop; 4825 // Must copy at least eight bytes, otherwise just do it one byte at a time. 4826 __ cmp(count, Operand(8)); 4827 __ add(count, dest, Operand(count)); 4828 Register limit = count; // Read until src equals this. 4829 __ b(lt, &byte_loop); 4830 4831 if (!dest_always_aligned) { 4832 // Align dest by byte copying. Copies between zero and three bytes. 4833 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC); 4834 Label dest_aligned; 4835 __ b(eq, &dest_aligned); 4836 __ cmp(scratch4, Operand(2)); 4837 __ ldrb(scratch1, MemOperand(src, 1, PostIndex)); 4838 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le); 4839 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt); 4840 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); 4841 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le); 4842 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt); 4843 __ bind(&dest_aligned); 4844 } 4845 4846 Label simple_loop; 4847 4848 __ sub(scratch4, dest, Operand(src)); 4849 __ and_(scratch4, scratch4, Operand(0x03), SetCC); 4850 __ b(eq, &simple_loop); 4851 // Shift register is number of bits in a source word that 4852 // must be combined with bits in the next source word in order 4853 // to create a destination word. 4854 4855 // Complex loop for src/dst that are not aligned the same way. 4856 { 4857 Label loop; 4858 __ mov(scratch4, Operand(scratch4, LSL, 3)); 4859 Register left_shift = scratch4; 4860 __ and_(src, src, Operand(~3)); // Round down to load previous word. 4861 __ ldr(scratch1, MemOperand(src, 4, PostIndex)); 4862 // Store the "shift" most significant bits of scratch in the least 4863 // signficant bits (i.e., shift down by (32-shift)). 4864 __ rsb(scratch2, left_shift, Operand(32)); 4865 Register right_shift = scratch2; 4866 __ mov(scratch1, Operand(scratch1, LSR, right_shift)); 4867 4868 __ bind(&loop); 4869 __ ldr(scratch3, MemOperand(src, 4, PostIndex)); 4870 __ sub(scratch5, limit, Operand(dest)); 4871 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); 4872 __ str(scratch1, MemOperand(dest, 4, PostIndex)); 4873 __ mov(scratch1, Operand(scratch3, LSR, right_shift)); 4874 // Loop if four or more bytes left to copy. 4875 // Compare to eight, because we did the subtract before increasing dst. 4876 __ sub(scratch5, scratch5, Operand(8), SetCC); 4877 __ b(ge, &loop); 4878 } 4879 // There is now between zero and three bytes left to copy (negative that 4880 // number is in scratch5), and between one and three bytes already read into 4881 // scratch1 (eight times that number in scratch4). We may have read past 4882 // the end of the string, but because objects are aligned, we have not read 4883 // past the end of the object. 4884 // Find the minimum of remaining characters to move and preloaded characters 4885 // and write those as bytes. 4886 __ add(scratch5, scratch5, Operand(4), SetCC); 4887 __ b(eq, &done); 4888 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne); 4889 // Move minimum of bytes read and bytes left to copy to scratch4. 4890 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); 4891 // Between one and three (value in scratch5) characters already read into 4892 // scratch ready to write. 4893 __ cmp(scratch5, Operand(2)); 4894 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); 4895 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); 4896 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); 4897 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt); 4898 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt); 4899 // Copy any remaining bytes. 4900 __ b(&byte_loop); 4901 4902 // Simple loop. 4903 // Copy words from src to dst, until less than four bytes left. 4904 // Both src and dest are word aligned. 4905 __ bind(&simple_loop); 4906 { 4907 Label loop; 4908 __ bind(&loop); 4909 __ ldr(scratch1, MemOperand(src, 4, PostIndex)); 4910 __ sub(scratch3, limit, Operand(dest)); 4911 __ str(scratch1, MemOperand(dest, 4, PostIndex)); 4912 // Compare to 8, not 4, because we do the substraction before increasing 4913 // dest. 4914 __ cmp(scratch3, Operand(8)); 4915 __ b(ge, &loop); 4916 } 4917 4918 // Copy bytes from src to dst until dst hits limit. 4919 __ bind(&byte_loop); 4920 __ cmp(dest, Operand(limit)); 4921 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt); 4922 __ b(ge, &done); 4923 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); 4924 __ b(&byte_loop); 4925 4926 __ bind(&done); 4927 } 4928 4929 4930 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, 4931 Register c1, 4932 Register c2, 4933 Register scratch1, 4934 Register scratch2, 4935 Register scratch3, 4936 Register scratch4, 4937 Register scratch5, 4938 Label* not_found) { 4939 // Register scratch3 is the general scratch register in this function. 4940 Register scratch = scratch3; 4941 4942 // Make sure that both characters are not digits as such strings has a 4943 // different hash algorithm. Don't try to look for these in the symbol table. 4944 Label not_array_index; 4945 __ sub(scratch, c1, Operand(static_cast<int>('0'))); 4946 __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); 4947 __ b(hi, ¬_array_index); 4948 __ sub(scratch, c2, Operand(static_cast<int>('0'))); 4949 __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); 4950 4951 // If check failed combine both characters into single halfword. 4952 // This is required by the contract of the method: code at the 4953 // not_found branch expects this combination in c1 register 4954 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls); 4955 __ b(ls, not_found); 4956 4957 __ bind(¬_array_index); 4958 // Calculate the two character string hash. 4959 Register hash = scratch1; 4960 StringHelper::GenerateHashInit(masm, hash, c1); 4961 StringHelper::GenerateHashAddCharacter(masm, hash, c2); 4962 StringHelper::GenerateHashGetHash(masm, hash); 4963 4964 // Collect the two characters in a register. 4965 Register chars = c1; 4966 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte)); 4967 4968 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. 4969 // hash: hash of two character string. 4970 4971 // Load symbol table 4972 // Load address of first element of the symbol table. 4973 Register symbol_table = c2; 4974 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); 4975 4976 Register undefined = scratch4; 4977 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); 4978 4979 // Calculate capacity mask from the symbol table capacity. 4980 Register mask = scratch2; 4981 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); 4982 __ mov(mask, Operand(mask, ASR, 1)); 4983 __ sub(mask, mask, Operand(1)); 4984 4985 // Calculate untagged address of the first element of the symbol table. 4986 Register first_symbol_table_element = symbol_table; 4987 __ add(first_symbol_table_element, symbol_table, 4988 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); 4989 4990 // Registers 4991 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. 4992 // hash: hash of two character string 4993 // mask: capacity mask 4994 // first_symbol_table_element: address of the first element of 4995 // the symbol table 4996 // undefined: the undefined object 4997 // scratch: - 4998 4999 // Perform a number of probes in the symbol table. 5000 static const int kProbes = 4; 5001 Label found_in_symbol_table; 5002 Label next_probe[kProbes]; 5003 for (int i = 0; i < kProbes; i++) { 5004 Register candidate = scratch5; // Scratch register contains candidate. 5005 5006 // Calculate entry in symbol table. 5007 if (i > 0) { 5008 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); 5009 } else { 5010 __ mov(candidate, hash); 5011 } 5012 5013 __ and_(candidate, candidate, Operand(mask)); 5014 5015 // Load the entry from the symble table. 5016 STATIC_ASSERT(SymbolTable::kEntrySize == 1); 5017 __ ldr(candidate, 5018 MemOperand(first_symbol_table_element, 5019 candidate, 5020 LSL, 5021 kPointerSizeLog2)); 5022 5023 // If entry is undefined no string with this hash can be found. 5024 Label is_string; 5025 __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE); 5026 __ b(ne, &is_string); 5027 5028 __ cmp(undefined, candidate); 5029 __ b(eq, not_found); 5030 // Must be null (deleted entry). 5031 if (FLAG_debug_code) { 5032 __ LoadRoot(ip, Heap::kNullValueRootIndex); 5033 __ cmp(ip, candidate); 5034 __ Assert(eq, "oddball in symbol table is not undefined or null"); 5035 } 5036 __ jmp(&next_probe[i]); 5037 5038 __ bind(&is_string); 5039 5040 // Check that the candidate is a non-external ASCII string. The instance 5041 // type is still in the scratch register from the CompareObjectType 5042 // operation. 5043 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]); 5044 5045 // If length is not 2 the string is not a candidate. 5046 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset)); 5047 __ cmp(scratch, Operand(Smi::FromInt(2))); 5048 __ b(ne, &next_probe[i]); 5049 5050 // Check if the two characters match. 5051 // Assumes that word load is little endian. 5052 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); 5053 __ cmp(chars, scratch); 5054 __ b(eq, &found_in_symbol_table); 5055 __ bind(&next_probe[i]); 5056 } 5057 5058 // No matching 2 character string found by probing. 5059 __ jmp(not_found); 5060 5061 // Scratch register contains result when we fall through to here. 5062 Register result = scratch; 5063 __ bind(&found_in_symbol_table); 5064 __ Move(r0, result); 5065 } 5066 5067 5068 void StringHelper::GenerateHashInit(MacroAssembler* masm, 5069 Register hash, 5070 Register character) { 5071 // hash = character + (character << 10); 5072 __ add(hash, character, Operand(character, LSL, 10)); 5073 // hash ^= hash >> 6; 5074 __ eor(hash, hash, Operand(hash, ASR, 6)); 5075 } 5076 5077 5078 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, 5079 Register hash, 5080 Register character) { 5081 // hash += character; 5082 __ add(hash, hash, Operand(character)); 5083 // hash += hash << 10; 5084 __ add(hash, hash, Operand(hash, LSL, 10)); 5085 // hash ^= hash >> 6; 5086 __ eor(hash, hash, Operand(hash, ASR, 6)); 5087 } 5088 5089 5090 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, 5091 Register hash) { 5092 // hash += hash << 3; 5093 __ add(hash, hash, Operand(hash, LSL, 3)); 5094 // hash ^= hash >> 11; 5095 __ eor(hash, hash, Operand(hash, ASR, 11)); 5096 // hash += hash << 15; 5097 __ add(hash, hash, Operand(hash, LSL, 15), SetCC); 5098 5099 // if (hash == 0) hash = 27; 5100 __ mov(hash, Operand(27), LeaveCC, ne); 5101 } 5102 5103 5104 void SubStringStub::Generate(MacroAssembler* masm) { 5105 Label runtime; 5106 5107 // Stack frame on entry. 5108 // lr: return address 5109 // sp[0]: to 5110 // sp[4]: from 5111 // sp[8]: string 5112 5113 // This stub is called from the native-call %_SubString(...), so 5114 // nothing can be assumed about the arguments. It is tested that: 5115 // "string" is a sequential string, 5116 // both "from" and "to" are smis, and 5117 // 0 <= from <= to <= string.length. 5118 // If any of these assumptions fail, we call the runtime system. 5119 5120 static const int kToOffset = 0 * kPointerSize; 5121 static const int kFromOffset = 1 * kPointerSize; 5122 static const int kStringOffset = 2 * kPointerSize; 5123 5124 // Check bounds and smi-ness. 5125 Register to = r6; 5126 Register from = r7; 5127 __ Ldrd(to, from, MemOperand(sp, kToOffset)); 5128 STATIC_ASSERT(kFromOffset == kToOffset + 4); 5129 STATIC_ASSERT(kSmiTag == 0); 5130 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); 5131 // I.e., arithmetic shift right by one un-smi-tags. 5132 __ mov(r2, Operand(to, ASR, 1), SetCC); 5133 __ mov(r3, Operand(from, ASR, 1), SetCC, cc); 5134 // If either to or from had the smi tag bit set, then carry is set now. 5135 __ b(cs, &runtime); // Either "from" or "to" is not a smi. 5136 __ b(mi, &runtime); // From is negative. 5137 5138 // Both to and from are smis. 5139 5140 __ sub(r2, r2, Operand(r3), SetCC); 5141 __ b(mi, &runtime); // Fail if from > to. 5142 // Special handling of sub-strings of length 1 and 2. One character strings 5143 // are handled in the runtime system (looked up in the single character 5144 // cache). Two character strings are looked for in the symbol cache. 5145 __ cmp(r2, Operand(2)); 5146 __ b(lt, &runtime); 5147 5148 // r2: length 5149 // r3: from index (untaged smi) 5150 // r6 (a.k.a. to): to (smi) 5151 // r7 (a.k.a. from): from offset (smi) 5152 5153 // Make sure first argument is a sequential (or flat) string. 5154 __ ldr(r5, MemOperand(sp, kStringOffset)); 5155 STATIC_ASSERT(kSmiTag == 0); 5156 __ tst(r5, Operand(kSmiTagMask)); 5157 __ b(eq, &runtime); 5158 Condition is_string = masm->IsObjectStringType(r5, r1); 5159 __ b(NegateCondition(is_string), &runtime); 5160 5161 // r1: instance type 5162 // r2: length 5163 // r3: from index (untagged smi) 5164 // r5: string 5165 // r6 (a.k.a. to): to (smi) 5166 // r7 (a.k.a. from): from offset (smi) 5167 Label seq_string; 5168 __ and_(r4, r1, Operand(kStringRepresentationMask)); 5169 STATIC_ASSERT(kSeqStringTag < kConsStringTag); 5170 STATIC_ASSERT(kConsStringTag < kExternalStringTag); 5171 __ cmp(r4, Operand(kConsStringTag)); 5172 __ b(gt, &runtime); // External strings go to runtime. 5173 __ b(lt, &seq_string); // Sequential strings are handled directly. 5174 5175 // Cons string. Try to recurse (once) on the first substring. 5176 // (This adds a little more generality than necessary to handle flattened 5177 // cons strings, but not much). 5178 __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset)); 5179 __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); 5180 __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5181 __ tst(r1, Operand(kStringRepresentationMask)); 5182 STATIC_ASSERT(kSeqStringTag == 0); 5183 __ b(ne, &runtime); // Cons and External strings go to runtime. 5184 5185 // Definitly a sequential string. 5186 __ bind(&seq_string); 5187 5188 // r1: instance type. 5189 // r2: length 5190 // r3: from index (untaged smi) 5191 // r5: string 5192 // r6 (a.k.a. to): to (smi) 5193 // r7 (a.k.a. from): from offset (smi) 5194 __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset)); 5195 __ cmp(r4, Operand(to)); 5196 __ b(lt, &runtime); // Fail if to > length. 5197 to = no_reg; 5198 5199 // r1: instance type. 5200 // r2: result string length. 5201 // r3: from index (untaged smi) 5202 // r5: string. 5203 // r7 (a.k.a. from): from offset (smi) 5204 // Check for flat ASCII string. 5205 Label non_ascii_flat; 5206 __ tst(r1, Operand(kStringEncodingMask)); 5207 STATIC_ASSERT(kTwoByteStringTag == 0); 5208 __ b(eq, &non_ascii_flat); 5209 5210 Label result_longer_than_two; 5211 __ cmp(r2, Operand(2)); 5212 __ b(gt, &result_longer_than_two); 5213 5214 // Sub string of length 2 requested. 5215 // Get the two characters forming the sub string. 5216 __ add(r5, r5, Operand(r3)); 5217 __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize)); 5218 __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1)); 5219 5220 // Try to lookup two character string in symbol table. 5221 Label make_two_character_string; 5222 StringHelper::GenerateTwoCharacterSymbolTableProbe( 5223 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string); 5224 Counters* counters = masm->isolate()->counters(); 5225 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 5226 __ add(sp, sp, Operand(3 * kPointerSize)); 5227 __ Ret(); 5228 5229 // r2: result string length. 5230 // r3: two characters combined into halfword in little endian byte order. 5231 __ bind(&make_two_character_string); 5232 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime); 5233 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); 5234 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 5235 __ add(sp, sp, Operand(3 * kPointerSize)); 5236 __ Ret(); 5237 5238 __ bind(&result_longer_than_two); 5239 5240 // Allocate the result. 5241 __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime); 5242 5243 // r0: result string. 5244 // r2: result string length. 5245 // r5: string. 5246 // r7 (a.k.a. from): from offset (smi) 5247 // Locate first character of result. 5248 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5249 // Locate 'from' character of string. 5250 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5251 __ add(r5, r5, Operand(from, ASR, 1)); 5252 5253 // r0: result string. 5254 // r1: first character of result string. 5255 // r2: result string length. 5256 // r5: first character of sub string to copy. 5257 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); 5258 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, 5259 COPY_ASCII | DEST_ALWAYS_ALIGNED); 5260 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 5261 __ add(sp, sp, Operand(3 * kPointerSize)); 5262 __ Ret(); 5263 5264 __ bind(&non_ascii_flat); 5265 // r2: result string length. 5266 // r5: string. 5267 // r7 (a.k.a. from): from offset (smi) 5268 // Check for flat two byte string. 5269 5270 // Allocate the result. 5271 __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime); 5272 5273 // r0: result string. 5274 // r2: result string length. 5275 // r5: string. 5276 // Locate first character of result. 5277 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5278 // Locate 'from' character of string. 5279 __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5280 // As "from" is a smi it is 2 times the value which matches the size of a two 5281 // byte character. 5282 __ add(r5, r5, Operand(from)); 5283 from = no_reg; 5284 5285 // r0: result string. 5286 // r1: first character of result. 5287 // r2: result length. 5288 // r5: first character of string to copy. 5289 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); 5290 StringHelper::GenerateCopyCharactersLong( 5291 masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED); 5292 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 5293 __ add(sp, sp, Operand(3 * kPointerSize)); 5294 __ Ret(); 5295 5296 // Just jump to runtime to create the sub string. 5297 __ bind(&runtime); 5298 __ TailCallRuntime(Runtime::kSubString, 3, 1); 5299 } 5300 5301 5302 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, 5303 Register left, 5304 Register right, 5305 Register scratch1, 5306 Register scratch2, 5307 Register scratch3, 5308 Register scratch4) { 5309 Label compare_lengths; 5310 // Find minimum length and length difference. 5311 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); 5312 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); 5313 __ sub(scratch3, scratch1, Operand(scratch2), SetCC); 5314 Register length_delta = scratch3; 5315 __ mov(scratch1, scratch2, LeaveCC, gt); 5316 Register min_length = scratch1; 5317 STATIC_ASSERT(kSmiTag == 0); 5318 __ tst(min_length, Operand(min_length)); 5319 __ b(eq, &compare_lengths); 5320 5321 // Untag smi. 5322 __ mov(min_length, Operand(min_length, ASR, kSmiTagSize)); 5323 5324 // Setup registers so that we only need to increment one register 5325 // in the loop. 5326 __ add(scratch2, min_length, 5327 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5328 __ add(left, left, Operand(scratch2)); 5329 __ add(right, right, Operand(scratch2)); 5330 // Registers left and right points to the min_length character of strings. 5331 __ rsb(min_length, min_length, Operand(-1)); 5332 Register index = min_length; 5333 // Index starts at -min_length. 5334 5335 { 5336 // Compare loop. 5337 Label loop; 5338 __ bind(&loop); 5339 // Compare characters. 5340 __ add(index, index, Operand(1), SetCC); 5341 __ ldrb(scratch2, MemOperand(left, index), ne); 5342 __ ldrb(scratch4, MemOperand(right, index), ne); 5343 // Skip to compare lengths with eq condition true. 5344 __ b(eq, &compare_lengths); 5345 __ cmp(scratch2, scratch4); 5346 __ b(eq, &loop); 5347 // Fallthrough with eq condition false. 5348 } 5349 // Compare lengths - strings up to min-length are equal. 5350 __ bind(&compare_lengths); 5351 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); 5352 // Use zero length_delta as result. 5353 __ mov(r0, Operand(length_delta), SetCC, eq); 5354 // Fall through to here if characters compare not-equal. 5355 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); 5356 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); 5357 __ Ret(); 5358 } 5359 5360 5361 void StringCompareStub::Generate(MacroAssembler* masm) { 5362 Label runtime; 5363 5364 Counters* counters = masm->isolate()->counters(); 5365 5366 // Stack frame on entry. 5367 // sp[0]: right string 5368 // sp[4]: left string 5369 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. 5370 5371 Label not_same; 5372 __ cmp(r0, r1); 5373 __ b(ne, ¬_same); 5374 STATIC_ASSERT(EQUAL == 0); 5375 STATIC_ASSERT(kSmiTag == 0); 5376 __ mov(r0, Operand(Smi::FromInt(EQUAL))); 5377 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2); 5378 __ add(sp, sp, Operand(2 * kPointerSize)); 5379 __ Ret(); 5380 5381 __ bind(¬_same); 5382 5383 // Check that both objects are sequential ASCII strings. 5384 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime); 5385 5386 // Compare flat ASCII strings natively. Remove arguments from stack first. 5387 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3); 5388 __ add(sp, sp, Operand(2 * kPointerSize)); 5389 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5); 5390 5391 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) 5392 // tagged as a small integer. 5393 __ bind(&runtime); 5394 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); 5395 } 5396 5397 5398 void StringAddStub::Generate(MacroAssembler* masm) { 5399 Label string_add_runtime, call_builtin; 5400 Builtins::JavaScript builtin_id = Builtins::ADD; 5401 5402 Counters* counters = masm->isolate()->counters(); 5403 5404 // Stack on entry: 5405 // sp[0]: second argument (right). 5406 // sp[4]: first argument (left). 5407 5408 // Load the two arguments. 5409 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument. 5410 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument. 5411 5412 // Make sure that both arguments are strings if not known in advance. 5413 if (flags_ == NO_STRING_ADD_FLAGS) { 5414 __ JumpIfEitherSmi(r0, r1, &string_add_runtime); 5415 // Load instance types. 5416 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); 5417 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); 5418 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5419 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); 5420 STATIC_ASSERT(kStringTag == 0); 5421 // If either is not a string, go to runtime. 5422 __ tst(r4, Operand(kIsNotStringMask)); 5423 __ tst(r5, Operand(kIsNotStringMask), eq); 5424 __ b(ne, &string_add_runtime); 5425 } else { 5426 // Here at least one of the arguments is definitely a string. 5427 // We convert the one that is not known to be a string. 5428 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { 5429 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); 5430 GenerateConvertArgument( 5431 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin); 5432 builtin_id = Builtins::STRING_ADD_RIGHT; 5433 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { 5434 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); 5435 GenerateConvertArgument( 5436 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin); 5437 builtin_id = Builtins::STRING_ADD_LEFT; 5438 } 5439 } 5440 5441 // Both arguments are strings. 5442 // r0: first string 5443 // r1: second string 5444 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5445 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5446 { 5447 Label strings_not_empty; 5448 // Check if either of the strings are empty. In that case return the other. 5449 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); 5450 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); 5451 STATIC_ASSERT(kSmiTag == 0); 5452 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty. 5453 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. 5454 STATIC_ASSERT(kSmiTag == 0); 5455 // Else test if second string is empty. 5456 __ cmp(r3, Operand(Smi::FromInt(0)), ne); 5457 __ b(ne, &strings_not_empty); // If either string was empty, return r0. 5458 5459 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5460 __ add(sp, sp, Operand(2 * kPointerSize)); 5461 __ Ret(); 5462 5463 __ bind(&strings_not_empty); 5464 } 5465 5466 __ mov(r2, Operand(r2, ASR, kSmiTagSize)); 5467 __ mov(r3, Operand(r3, ASR, kSmiTagSize)); 5468 // Both strings are non-empty. 5469 // r0: first string 5470 // r1: second string 5471 // r2: length of first string 5472 // r3: length of second string 5473 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5474 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5475 // Look at the length of the result of adding the two strings. 5476 Label string_add_flat_result, longer_than_two; 5477 // Adding two lengths can't overflow. 5478 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); 5479 __ add(r6, r2, Operand(r3)); 5480 // Use the symbol table when adding two one character strings, as it 5481 // helps later optimizations to return a symbol here. 5482 __ cmp(r6, Operand(2)); 5483 __ b(ne, &longer_than_two); 5484 5485 // Check that both strings are non-external ASCII strings. 5486 if (flags_ != NO_STRING_ADD_FLAGS) { 5487 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); 5488 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); 5489 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5490 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); 5491 } 5492 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7, 5493 &string_add_runtime); 5494 5495 // Get the two characters forming the sub string. 5496 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); 5497 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize)); 5498 5499 // Try to lookup two character string in symbol table. If it is not found 5500 // just allocate a new one. 5501 Label make_two_character_string; 5502 StringHelper::GenerateTwoCharacterSymbolTableProbe( 5503 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string); 5504 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5505 __ add(sp, sp, Operand(2 * kPointerSize)); 5506 __ Ret(); 5507 5508 __ bind(&make_two_character_string); 5509 // Resulting string has length 2 and first chars of two strings 5510 // are combined into single halfword in r2 register. 5511 // So we can fill resulting string without two loops by a single 5512 // halfword store instruction (which assumes that processor is 5513 // in a little endian mode) 5514 __ mov(r6, Operand(2)); 5515 __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime); 5516 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); 5517 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5518 __ add(sp, sp, Operand(2 * kPointerSize)); 5519 __ Ret(); 5520 5521 __ bind(&longer_than_two); 5522 // Check if resulting string will be flat. 5523 __ cmp(r6, Operand(String::kMinNonFlatLength)); 5524 __ b(lt, &string_add_flat_result); 5525 // Handle exceptionally long strings in the runtime system. 5526 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); 5527 ASSERT(IsPowerOf2(String::kMaxLength + 1)); 5528 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. 5529 __ cmp(r6, Operand(String::kMaxLength + 1)); 5530 __ b(hs, &string_add_runtime); 5531 5532 // If result is not supposed to be flat, allocate a cons string object. 5533 // If both strings are ASCII the result is an ASCII cons string. 5534 if (flags_ != NO_STRING_ADD_FLAGS) { 5535 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); 5536 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); 5537 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5538 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); 5539 } 5540 Label non_ascii, allocated, ascii_data; 5541 STATIC_ASSERT(kTwoByteStringTag == 0); 5542 __ tst(r4, Operand(kStringEncodingMask)); 5543 __ tst(r5, Operand(kStringEncodingMask), ne); 5544 __ b(eq, &non_ascii); 5545 5546 // Allocate an ASCII cons string. 5547 __ bind(&ascii_data); 5548 __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime); 5549 __ bind(&allocated); 5550 // Fill the fields of the cons string. 5551 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); 5552 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); 5553 __ mov(r0, Operand(r7)); 5554 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5555 __ add(sp, sp, Operand(2 * kPointerSize)); 5556 __ Ret(); 5557 5558 __ bind(&non_ascii); 5559 // At least one of the strings is two-byte. Check whether it happens 5560 // to contain only ASCII characters. 5561 // r4: first instance type. 5562 // r5: second instance type. 5563 __ tst(r4, Operand(kAsciiDataHintMask)); 5564 __ tst(r5, Operand(kAsciiDataHintMask), ne); 5565 __ b(ne, &ascii_data); 5566 __ eor(r4, r4, Operand(r5)); 5567 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); 5568 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); 5569 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); 5570 __ b(eq, &ascii_data); 5571 5572 // Allocate a two byte cons string. 5573 __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime); 5574 __ jmp(&allocated); 5575 5576 // Handle creating a flat result. First check that both strings are 5577 // sequential and that they have the same encoding. 5578 // r0: first string 5579 // r1: second string 5580 // r2: length of first string 5581 // r3: length of second string 5582 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5583 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) 5584 // r6: sum of lengths. 5585 __ bind(&string_add_flat_result); 5586 if (flags_ != NO_STRING_ADD_FLAGS) { 5587 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); 5588 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); 5589 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); 5590 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); 5591 } 5592 // Check that both strings are sequential. 5593 STATIC_ASSERT(kSeqStringTag == 0); 5594 __ tst(r4, Operand(kStringRepresentationMask)); 5595 __ tst(r5, Operand(kStringRepresentationMask), eq); 5596 __ b(ne, &string_add_runtime); 5597 // Now check if both strings have the same encoding (ASCII/Two-byte). 5598 // r0: first string. 5599 // r1: second string. 5600 // r2: length of first string. 5601 // r3: length of second string. 5602 // r6: sum of lengths.. 5603 Label non_ascii_string_add_flat_result; 5604 ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. 5605 __ eor(r7, r4, Operand(r5)); 5606 __ tst(r7, Operand(kStringEncodingMask)); 5607 __ b(ne, &string_add_runtime); 5608 // And see if it's ASCII or two-byte. 5609 __ tst(r4, Operand(kStringEncodingMask)); 5610 __ b(eq, &non_ascii_string_add_flat_result); 5611 5612 // Both strings are sequential ASCII strings. We also know that they are 5613 // short (since the sum of the lengths is less than kMinNonFlatLength). 5614 // r6: length of resulting flat string 5615 __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime); 5616 // Locate first character of result. 5617 __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5618 // Locate first character of first argument. 5619 __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5620 // r0: first character of first string. 5621 // r1: second string. 5622 // r2: length of first string. 5623 // r3: length of second string. 5624 // r6: first character of result. 5625 // r7: result string. 5626 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true); 5627 5628 // Load second argument and locate first character. 5629 __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); 5630 // r1: first character of second string. 5631 // r3: length of second string. 5632 // r6: next character of result. 5633 // r7: result string. 5634 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true); 5635 __ mov(r0, Operand(r7)); 5636 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5637 __ add(sp, sp, Operand(2 * kPointerSize)); 5638 __ Ret(); 5639 5640 __ bind(&non_ascii_string_add_flat_result); 5641 // Both strings are sequential two byte strings. 5642 // r0: first string. 5643 // r1: second string. 5644 // r2: length of first string. 5645 // r3: length of second string. 5646 // r6: sum of length of strings. 5647 __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime); 5648 // r0: first string. 5649 // r1: second string. 5650 // r2: length of first string. 5651 // r3: length of second string. 5652 // r7: result string. 5653 5654 // Locate first character of result. 5655 __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5656 // Locate first character of first argument. 5657 __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5658 5659 // r0: first character of first string. 5660 // r1: second string. 5661 // r2: length of first string. 5662 // r3: length of second string. 5663 // r6: first character of result. 5664 // r7: result string. 5665 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false); 5666 5667 // Locate first character of second argument. 5668 __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 5669 5670 // r1: first character of second string. 5671 // r3: length of second string. 5672 // r6: next character of result (after copy of first string). 5673 // r7: result string. 5674 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false); 5675 5676 __ mov(r0, Operand(r7)); 5677 __ IncrementCounter(counters->string_add_native(), 1, r2, r3); 5678 __ add(sp, sp, Operand(2 * kPointerSize)); 5679 __ Ret(); 5680 5681 // Just jump to runtime to add the two strings. 5682 __ bind(&string_add_runtime); 5683 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); 5684 5685 if (call_builtin.is_linked()) { 5686 __ bind(&call_builtin); 5687 __ InvokeBuiltin(builtin_id, JUMP_JS); 5688 } 5689 } 5690 5691 5692 void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, 5693 int stack_offset, 5694 Register arg, 5695 Register scratch1, 5696 Register scratch2, 5697 Register scratch3, 5698 Register scratch4, 5699 Label* slow) { 5700 // First check if the argument is already a string. 5701 Label not_string, done; 5702 __ JumpIfSmi(arg, ¬_string); 5703 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE); 5704 __ b(lt, &done); 5705 5706 // Check the number to string cache. 5707 Label not_cached; 5708 __ bind(¬_string); 5709 // Puts the cached result into scratch1. 5710 NumberToStringStub::GenerateLookupNumberStringCache(masm, 5711 arg, 5712 scratch1, 5713 scratch2, 5714 scratch3, 5715 scratch4, 5716 false, 5717 ¬_cached); 5718 __ mov(arg, scratch1); 5719 __ str(arg, MemOperand(sp, stack_offset)); 5720 __ jmp(&done); 5721 5722 // Check if the argument is a safe string wrapper. 5723 __ bind(¬_cached); 5724 __ JumpIfSmi(arg, slow); 5725 __ CompareObjectType( 5726 arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1. 5727 __ b(ne, slow); 5728 __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset)); 5729 __ and_(scratch2, 5730 scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); 5731 __ cmp(scratch2, 5732 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); 5733 __ b(ne, slow); 5734 __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset)); 5735 __ str(arg, MemOperand(sp, stack_offset)); 5736 5737 __ bind(&done); 5738 } 5739 5740 5741 void ICCompareStub::GenerateSmis(MacroAssembler* masm) { 5742 ASSERT(state_ == CompareIC::SMIS); 5743 Label miss; 5744 __ orr(r2, r1, r0); 5745 __ tst(r2, Operand(kSmiTagMask)); 5746 __ b(ne, &miss); 5747 5748 if (GetCondition() == eq) { 5749 // For equality we do not care about the sign of the result. 5750 __ sub(r0, r0, r1, SetCC); 5751 } else { 5752 // Untag before subtracting to avoid handling overflow. 5753 __ SmiUntag(r1); 5754 __ sub(r0, r1, SmiUntagOperand(r0)); 5755 } 5756 __ Ret(); 5757 5758 __ bind(&miss); 5759 GenerateMiss(masm); 5760 } 5761 5762 5763 void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { 5764 ASSERT(state_ == CompareIC::HEAP_NUMBERS); 5765 5766 Label generic_stub; 5767 Label unordered; 5768 Label miss; 5769 __ and_(r2, r1, Operand(r0)); 5770 __ tst(r2, Operand(kSmiTagMask)); 5771 __ b(eq, &generic_stub); 5772 5773 __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE); 5774 __ b(ne, &miss); 5775 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); 5776 __ b(ne, &miss); 5777 5778 // Inlining the double comparison and falling back to the general compare 5779 // stub if NaN is involved or VFP3 is unsupported. 5780 if (CpuFeatures::IsSupported(VFP3)) { 5781 CpuFeatures::Scope scope(VFP3); 5782 5783 // Load left and right operand 5784 __ sub(r2, r1, Operand(kHeapObjectTag)); 5785 __ vldr(d0, r2, HeapNumber::kValueOffset); 5786 __ sub(r2, r0, Operand(kHeapObjectTag)); 5787 __ vldr(d1, r2, HeapNumber::kValueOffset); 5788 5789 // Compare operands 5790 __ VFPCompareAndSetFlags(d0, d1); 5791 5792 // Don't base result on status bits when a NaN is involved. 5793 __ b(vs, &unordered); 5794 5795 // Return a result of -1, 0, or 1, based on status bits. 5796 __ mov(r0, Operand(EQUAL), LeaveCC, eq); 5797 __ mov(r0, Operand(LESS), LeaveCC, lt); 5798 __ mov(r0, Operand(GREATER), LeaveCC, gt); 5799 __ Ret(); 5800 5801 __ bind(&unordered); 5802 } 5803 5804 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0); 5805 __ bind(&generic_stub); 5806 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); 5807 5808 __ bind(&miss); 5809 GenerateMiss(masm); 5810 } 5811 5812 5813 void ICCompareStub::GenerateObjects(MacroAssembler* masm) { 5814 ASSERT(state_ == CompareIC::OBJECTS); 5815 Label miss; 5816 __ and_(r2, r1, Operand(r0)); 5817 __ tst(r2, Operand(kSmiTagMask)); 5818 __ b(eq, &miss); 5819 5820 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE); 5821 __ b(ne, &miss); 5822 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE); 5823 __ b(ne, &miss); 5824 5825 ASSERT(GetCondition() == eq); 5826 __ sub(r0, r0, Operand(r1)); 5827 __ Ret(); 5828 5829 __ bind(&miss); 5830 GenerateMiss(masm); 5831 } 5832 5833 5834 void ICCompareStub::GenerateMiss(MacroAssembler* masm) { 5835 __ Push(r1, r0); 5836 __ push(lr); 5837 5838 // Call the runtime system in a fresh internal frame. 5839 ExternalReference miss = 5840 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); 5841 __ EnterInternalFrame(); 5842 __ Push(r1, r0); 5843 __ mov(ip, Operand(Smi::FromInt(op_))); 5844 __ push(ip); 5845 __ CallExternalReference(miss, 3); 5846 __ LeaveInternalFrame(); 5847 // Compute the entry point of the rewritten stub. 5848 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); 5849 // Restore registers. 5850 __ pop(lr); 5851 __ pop(r0); 5852 __ pop(r1); 5853 __ Jump(r2); 5854 } 5855 5856 5857 void DirectCEntryStub::Generate(MacroAssembler* masm) { 5858 __ ldr(pc, MemOperand(sp, 0)); 5859 } 5860 5861 5862 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, 5863 ExternalReference function) { 5864 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()), 5865 RelocInfo::CODE_TARGET)); 5866 __ mov(r2, Operand(function)); 5867 // Push return address (accessible to GC through exit frame pc). 5868 __ str(pc, MemOperand(sp, 0)); 5869 __ Jump(r2); // Call the api function. 5870 } 5871 5872 5873 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, 5874 Register target) { 5875 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()), 5876 RelocInfo::CODE_TARGET)); 5877 // Push return address (accessible to GC through exit frame pc). 5878 __ str(pc, MemOperand(sp, 0)); 5879 __ Jump(target); // Call the C++ function. 5880 } 5881 5882 5883 #undef __ 5884 5885 } } // namespace v8::internal 5886 5887 #endif // V8_TARGET_ARCH_ARM 5888