Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for C++ expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/DeclSpec.h"
     16 #include "clang/Sema/Initialization.h"
     17 #include "clang/Sema/Lookup.h"
     18 #include "clang/Sema/ParsedTemplate.h"
     19 #include "clang/Sema/ScopeInfo.h"
     20 #include "clang/Sema/Scope.h"
     21 #include "clang/Sema/TemplateDeduction.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/CXXInheritance.h"
     24 #include "clang/AST/DeclObjC.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/TypeLoc.h"
     28 #include "clang/Basic/PartialDiagnostic.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/Lex/Preprocessor.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 using namespace clang;
     34 using namespace sema;
     35 
     36 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
     37                                    IdentifierInfo &II,
     38                                    SourceLocation NameLoc,
     39                                    Scope *S, CXXScopeSpec &SS,
     40                                    ParsedType ObjectTypePtr,
     41                                    bool EnteringContext) {
     42   // Determine where to perform name lookup.
     43 
     44   // FIXME: This area of the standard is very messy, and the current
     45   // wording is rather unclear about which scopes we search for the
     46   // destructor name; see core issues 399 and 555. Issue 399 in
     47   // particular shows where the current description of destructor name
     48   // lookup is completely out of line with existing practice, e.g.,
     49   // this appears to be ill-formed:
     50   //
     51   //   namespace N {
     52   //     template <typename T> struct S {
     53   //       ~S();
     54   //     };
     55   //   }
     56   //
     57   //   void f(N::S<int>* s) {
     58   //     s->N::S<int>::~S();
     59   //   }
     60   //
     61   // See also PR6358 and PR6359.
     62   // For this reason, we're currently only doing the C++03 version of this
     63   // code; the C++0x version has to wait until we get a proper spec.
     64   QualType SearchType;
     65   DeclContext *LookupCtx = 0;
     66   bool isDependent = false;
     67   bool LookInScope = false;
     68 
     69   // If we have an object type, it's because we are in a
     70   // pseudo-destructor-expression or a member access expression, and
     71   // we know what type we're looking for.
     72   if (ObjectTypePtr)
     73     SearchType = GetTypeFromParser(ObjectTypePtr);
     74 
     75   if (SS.isSet()) {
     76     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
     77 
     78     bool AlreadySearched = false;
     79     bool LookAtPrefix = true;
     80     // C++ [basic.lookup.qual]p6:
     81     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
     82     //   the type-names are looked up as types in the scope designated by the
     83     //   nested-name-specifier. In a qualified-id of the form:
     84     //
     85     //     ::[opt] nested-name-specifier  ~ class-name
     86     //
     87     //   where the nested-name-specifier designates a namespace scope, and in
     88     //   a qualified-id of the form:
     89     //
     90     //     ::opt nested-name-specifier class-name ::  ~ class-name
     91     //
     92     //   the class-names are looked up as types in the scope designated by
     93     //   the nested-name-specifier.
     94     //
     95     // Here, we check the first case (completely) and determine whether the
     96     // code below is permitted to look at the prefix of the
     97     // nested-name-specifier.
     98     DeclContext *DC = computeDeclContext(SS, EnteringContext);
     99     if (DC && DC->isFileContext()) {
    100       AlreadySearched = true;
    101       LookupCtx = DC;
    102       isDependent = false;
    103     } else if (DC && isa<CXXRecordDecl>(DC))
    104       LookAtPrefix = false;
    105 
    106     // The second case from the C++03 rules quoted further above.
    107     NestedNameSpecifier *Prefix = 0;
    108     if (AlreadySearched) {
    109       // Nothing left to do.
    110     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
    111       CXXScopeSpec PrefixSS;
    112       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
    113       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
    114       isDependent = isDependentScopeSpecifier(PrefixSS);
    115     } else if (ObjectTypePtr) {
    116       LookupCtx = computeDeclContext(SearchType);
    117       isDependent = SearchType->isDependentType();
    118     } else {
    119       LookupCtx = computeDeclContext(SS, EnteringContext);
    120       isDependent = LookupCtx && LookupCtx->isDependentContext();
    121     }
    122 
    123     LookInScope = false;
    124   } else if (ObjectTypePtr) {
    125     // C++ [basic.lookup.classref]p3:
    126     //   If the unqualified-id is ~type-name, the type-name is looked up
    127     //   in the context of the entire postfix-expression. If the type T
    128     //   of the object expression is of a class type C, the type-name is
    129     //   also looked up in the scope of class C. At least one of the
    130     //   lookups shall find a name that refers to (possibly
    131     //   cv-qualified) T.
    132     LookupCtx = computeDeclContext(SearchType);
    133     isDependent = SearchType->isDependentType();
    134     assert((isDependent || !SearchType->isIncompleteType()) &&
    135            "Caller should have completed object type");
    136 
    137     LookInScope = true;
    138   } else {
    139     // Perform lookup into the current scope (only).
    140     LookInScope = true;
    141   }
    142 
    143   TypeDecl *NonMatchingTypeDecl = 0;
    144   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
    145   for (unsigned Step = 0; Step != 2; ++Step) {
    146     // Look for the name first in the computed lookup context (if we
    147     // have one) and, if that fails to find a match, in the scope (if
    148     // we're allowed to look there).
    149     Found.clear();
    150     if (Step == 0 && LookupCtx)
    151       LookupQualifiedName(Found, LookupCtx);
    152     else if (Step == 1 && LookInScope && S)
    153       LookupName(Found, S);
    154     else
    155       continue;
    156 
    157     // FIXME: Should we be suppressing ambiguities here?
    158     if (Found.isAmbiguous())
    159       return ParsedType();
    160 
    161     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
    162       QualType T = Context.getTypeDeclType(Type);
    163 
    164       if (SearchType.isNull() || SearchType->isDependentType() ||
    165           Context.hasSameUnqualifiedType(T, SearchType)) {
    166         // We found our type!
    167 
    168         return ParsedType::make(T);
    169       }
    170 
    171       if (!SearchType.isNull())
    172         NonMatchingTypeDecl = Type;
    173     }
    174 
    175     // If the name that we found is a class template name, and it is
    176     // the same name as the template name in the last part of the
    177     // nested-name-specifier (if present) or the object type, then
    178     // this is the destructor for that class.
    179     // FIXME: This is a workaround until we get real drafting for core
    180     // issue 399, for which there isn't even an obvious direction.
    181     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
    182       QualType MemberOfType;
    183       if (SS.isSet()) {
    184         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
    185           // Figure out the type of the context, if it has one.
    186           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
    187             MemberOfType = Context.getTypeDeclType(Record);
    188         }
    189       }
    190       if (MemberOfType.isNull())
    191         MemberOfType = SearchType;
    192 
    193       if (MemberOfType.isNull())
    194         continue;
    195 
    196       // We're referring into a class template specialization. If the
    197       // class template we found is the same as the template being
    198       // specialized, we found what we are looking for.
    199       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
    200         if (ClassTemplateSpecializationDecl *Spec
    201               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
    202           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
    203                 Template->getCanonicalDecl())
    204             return ParsedType::make(MemberOfType);
    205         }
    206 
    207         continue;
    208       }
    209 
    210       // We're referring to an unresolved class template
    211       // specialization. Determine whether we class template we found
    212       // is the same as the template being specialized or, if we don't
    213       // know which template is being specialized, that it at least
    214       // has the same name.
    215       if (const TemplateSpecializationType *SpecType
    216             = MemberOfType->getAs<TemplateSpecializationType>()) {
    217         TemplateName SpecName = SpecType->getTemplateName();
    218 
    219         // The class template we found is the same template being
    220         // specialized.
    221         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
    222           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
    223             return ParsedType::make(MemberOfType);
    224 
    225           continue;
    226         }
    227 
    228         // The class template we found has the same name as the
    229         // (dependent) template name being specialized.
    230         if (DependentTemplateName *DepTemplate
    231                                     = SpecName.getAsDependentTemplateName()) {
    232           if (DepTemplate->isIdentifier() &&
    233               DepTemplate->getIdentifier() == Template->getIdentifier())
    234             return ParsedType::make(MemberOfType);
    235 
    236           continue;
    237         }
    238       }
    239     }
    240   }
    241 
    242   if (isDependent) {
    243     // We didn't find our type, but that's okay: it's dependent
    244     // anyway.
    245 
    246     // FIXME: What if we have no nested-name-specifier?
    247     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
    248                                    SS.getWithLocInContext(Context),
    249                                    II, NameLoc);
    250     return ParsedType::make(T);
    251   }
    252 
    253   if (NonMatchingTypeDecl) {
    254     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
    255     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
    256       << T << SearchType;
    257     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
    258       << T;
    259   } else if (ObjectTypePtr)
    260     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
    261       << &II;
    262   else
    263     Diag(NameLoc, diag::err_destructor_class_name);
    264 
    265   return ParsedType();
    266 }
    267 
    268 /// \brief Build a C++ typeid expression with a type operand.
    269 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    270                                 SourceLocation TypeidLoc,
    271                                 TypeSourceInfo *Operand,
    272                                 SourceLocation RParenLoc) {
    273   // C++ [expr.typeid]p4:
    274   //   The top-level cv-qualifiers of the lvalue expression or the type-id
    275   //   that is the operand of typeid are always ignored.
    276   //   If the type of the type-id is a class type or a reference to a class
    277   //   type, the class shall be completely-defined.
    278   Qualifiers Quals;
    279   QualType T
    280     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
    281                                       Quals);
    282   if (T->getAs<RecordType>() &&
    283       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    284     return ExprError();
    285 
    286   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    287                                            Operand,
    288                                            SourceRange(TypeidLoc, RParenLoc)));
    289 }
    290 
    291 /// \brief Build a C++ typeid expression with an expression operand.
    292 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    293                                 SourceLocation TypeidLoc,
    294                                 Expr *E,
    295                                 SourceLocation RParenLoc) {
    296   bool isUnevaluatedOperand = true;
    297   if (E && !E->isTypeDependent()) {
    298     QualType T = E->getType();
    299     if (const RecordType *RecordT = T->getAs<RecordType>()) {
    300       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
    301       // C++ [expr.typeid]p3:
    302       //   [...] If the type of the expression is a class type, the class
    303       //   shall be completely-defined.
    304       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    305         return ExprError();
    306 
    307       // C++ [expr.typeid]p3:
    308       //   When typeid is applied to an expression other than an glvalue of a
    309       //   polymorphic class type [...] [the] expression is an unevaluated
    310       //   operand. [...]
    311       if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
    312         isUnevaluatedOperand = false;
    313 
    314         // We require a vtable to query the type at run time.
    315         MarkVTableUsed(TypeidLoc, RecordD);
    316       }
    317     }
    318 
    319     // C++ [expr.typeid]p4:
    320     //   [...] If the type of the type-id is a reference to a possibly
    321     //   cv-qualified type, the result of the typeid expression refers to a
    322     //   std::type_info object representing the cv-unqualified referenced
    323     //   type.
    324     Qualifiers Quals;
    325     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
    326     if (!Context.hasSameType(T, UnqualT)) {
    327       T = UnqualT;
    328       E = ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)).take();
    329     }
    330   }
    331 
    332   // If this is an unevaluated operand, clear out the set of
    333   // declaration references we have been computing and eliminate any
    334   // temporaries introduced in its computation.
    335   if (isUnevaluatedOperand)
    336     ExprEvalContexts.back().Context = Unevaluated;
    337 
    338   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    339                                            E,
    340                                            SourceRange(TypeidLoc, RParenLoc)));
    341 }
    342 
    343 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
    344 ExprResult
    345 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
    346                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    347   // Find the std::type_info type.
    348   if (!getStdNamespace())
    349     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    350 
    351   if (!CXXTypeInfoDecl) {
    352     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
    353     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
    354     LookupQualifiedName(R, getStdNamespace());
    355     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    356     if (!CXXTypeInfoDecl)
    357       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    358   }
    359 
    360   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
    361 
    362   if (isType) {
    363     // The operand is a type; handle it as such.
    364     TypeSourceInfo *TInfo = 0;
    365     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    366                                    &TInfo);
    367     if (T.isNull())
    368       return ExprError();
    369 
    370     if (!TInfo)
    371       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    372 
    373     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
    374   }
    375 
    376   // The operand is an expression.
    377   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    378 }
    379 
    380 /// Retrieve the UuidAttr associated with QT.
    381 static UuidAttr *GetUuidAttrOfType(QualType QT) {
    382   // Optionally remove one level of pointer, reference or array indirection.
    383   const Type *Ty = QT.getTypePtr();;
    384   if (QT->isPointerType() || QT->isReferenceType())
    385     Ty = QT->getPointeeType().getTypePtr();
    386   else if (QT->isArrayType())
    387     Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
    388 
    389   // Loop all record redeclaration looking for an uuid attribute.
    390   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    391   for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
    392        E = RD->redecls_end(); I != E; ++I) {
    393     if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
    394       return Uuid;
    395   }
    396 
    397   return 0;
    398 }
    399 
    400 /// \brief Build a Microsoft __uuidof expression with a type operand.
    401 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    402                                 SourceLocation TypeidLoc,
    403                                 TypeSourceInfo *Operand,
    404                                 SourceLocation RParenLoc) {
    405   if (!Operand->getType()->isDependentType()) {
    406     if (!GetUuidAttrOfType(Operand->getType()))
    407       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    408   }
    409 
    410   // FIXME: add __uuidof semantic analysis for type operand.
    411   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    412                                            Operand,
    413                                            SourceRange(TypeidLoc, RParenLoc)));
    414 }
    415 
    416 /// \brief Build a Microsoft __uuidof expression with an expression operand.
    417 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    418                                 SourceLocation TypeidLoc,
    419                                 Expr *E,
    420                                 SourceLocation RParenLoc) {
    421   if (!E->getType()->isDependentType()) {
    422     if (!GetUuidAttrOfType(E->getType()) &&
    423         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
    424       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    425   }
    426   // FIXME: add __uuidof semantic analysis for type operand.
    427   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    428                                            E,
    429                                            SourceRange(TypeidLoc, RParenLoc)));
    430 }
    431 
    432 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
    433 ExprResult
    434 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
    435                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    436   // If MSVCGuidDecl has not been cached, do the lookup.
    437   if (!MSVCGuidDecl) {
    438     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
    439     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
    440     LookupQualifiedName(R, Context.getTranslationUnitDecl());
    441     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
    442     if (!MSVCGuidDecl)
    443       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
    444   }
    445 
    446   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
    447 
    448   if (isType) {
    449     // The operand is a type; handle it as such.
    450     TypeSourceInfo *TInfo = 0;
    451     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    452                                    &TInfo);
    453     if (T.isNull())
    454       return ExprError();
    455 
    456     if (!TInfo)
    457       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    458 
    459     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
    460   }
    461 
    462   // The operand is an expression.
    463   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    464 }
    465 
    466 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
    467 ExprResult
    468 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
    469   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
    470          "Unknown C++ Boolean value!");
    471   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
    472                                                 Context.BoolTy, OpLoc));
    473 }
    474 
    475 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
    476 ExprResult
    477 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
    478   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
    479 }
    480 
    481 /// ActOnCXXThrow - Parse throw expressions.
    482 ExprResult
    483 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
    484   bool IsThrownVarInScope = false;
    485   if (Ex) {
    486     // C++0x [class.copymove]p31:
    487     //   When certain criteria are met, an implementation is allowed to omit the
    488     //   copy/move construction of a class object [...]
    489     //
    490     //     - in a throw-expression, when the operand is the name of a
    491     //       non-volatile automatic object (other than a function or catch-
    492     //       clause parameter) whose scope does not extend beyond the end of the
    493     //       innermost enclosing try-block (if there is one), the copy/move
    494     //       operation from the operand to the exception object (15.1) can be
    495     //       omitted by constructing the automatic object directly into the
    496     //       exception object
    497     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
    498       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
    499         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
    500           for( ; S; S = S->getParent()) {
    501             if (S->isDeclScope(Var)) {
    502               IsThrownVarInScope = true;
    503               break;
    504             }
    505 
    506             if (S->getFlags() &
    507                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
    508                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
    509                  Scope::TryScope))
    510               break;
    511           }
    512         }
    513       }
    514   }
    515 
    516   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
    517 }
    518 
    519 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
    520                                bool IsThrownVarInScope) {
    521   // Don't report an error if 'throw' is used in system headers.
    522   if (!getLangOptions().CXXExceptions &&
    523       !getSourceManager().isInSystemHeader(OpLoc))
    524     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
    525 
    526   if (Ex && !Ex->isTypeDependent()) {
    527     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
    528     if (ExRes.isInvalid())
    529       return ExprError();
    530     Ex = ExRes.take();
    531   }
    532 
    533   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
    534                                           IsThrownVarInScope));
    535 }
    536 
    537 /// CheckCXXThrowOperand - Validate the operand of a throw.
    538 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
    539                                       bool IsThrownVarInScope) {
    540   // C++ [except.throw]p3:
    541   //   A throw-expression initializes a temporary object, called the exception
    542   //   object, the type of which is determined by removing any top-level
    543   //   cv-qualifiers from the static type of the operand of throw and adjusting
    544   //   the type from "array of T" or "function returning T" to "pointer to T"
    545   //   or "pointer to function returning T", [...]
    546   if (E->getType().hasQualifiers())
    547     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
    548                       CastCategory(E)).take();
    549 
    550   ExprResult Res = DefaultFunctionArrayConversion(E);
    551   if (Res.isInvalid())
    552     return ExprError();
    553   E = Res.take();
    554 
    555   //   If the type of the exception would be an incomplete type or a pointer
    556   //   to an incomplete type other than (cv) void the program is ill-formed.
    557   QualType Ty = E->getType();
    558   bool isPointer = false;
    559   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    560     Ty = Ptr->getPointeeType();
    561     isPointer = true;
    562   }
    563   if (!isPointer || !Ty->isVoidType()) {
    564     if (RequireCompleteType(ThrowLoc, Ty,
    565                             PDiag(isPointer ? diag::err_throw_incomplete_ptr
    566                                             : diag::err_throw_incomplete)
    567                               << E->getSourceRange()))
    568       return ExprError();
    569 
    570     if (RequireNonAbstractType(ThrowLoc, E->getType(),
    571                                PDiag(diag::err_throw_abstract_type)
    572                                  << E->getSourceRange()))
    573       return ExprError();
    574   }
    575 
    576   // Initialize the exception result.  This implicitly weeds out
    577   // abstract types or types with inaccessible copy constructors.
    578 
    579   // C++0x [class.copymove]p31:
    580   //   When certain criteria are met, an implementation is allowed to omit the
    581   //   copy/move construction of a class object [...]
    582   //
    583   //     - in a throw-expression, when the operand is the name of a
    584   //       non-volatile automatic object (other than a function or catch-clause
    585   //       parameter) whose scope does not extend beyond the end of the
    586   //       innermost enclosing try-block (if there is one), the copy/move
    587   //       operation from the operand to the exception object (15.1) can be
    588   //       omitted by constructing the automatic object directly into the
    589   //       exception object
    590   const VarDecl *NRVOVariable = 0;
    591   if (IsThrownVarInScope)
    592     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
    593 
    594   InitializedEntity Entity =
    595       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
    596                                              /*NRVO=*/NRVOVariable != 0);
    597   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
    598                                         QualType(), E,
    599                                         IsThrownVarInScope);
    600   if (Res.isInvalid())
    601     return ExprError();
    602   E = Res.take();
    603 
    604   // If the exception has class type, we need additional handling.
    605   const RecordType *RecordTy = Ty->getAs<RecordType>();
    606   if (!RecordTy)
    607     return Owned(E);
    608   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
    609 
    610   // If we are throwing a polymorphic class type or pointer thereof,
    611   // exception handling will make use of the vtable.
    612   MarkVTableUsed(ThrowLoc, RD);
    613 
    614   // If a pointer is thrown, the referenced object will not be destroyed.
    615   if (isPointer)
    616     return Owned(E);
    617 
    618   // If the class has a non-trivial destructor, we must be able to call it.
    619   if (RD->hasTrivialDestructor())
    620     return Owned(E);
    621 
    622   CXXDestructorDecl *Destructor
    623     = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
    624   if (!Destructor)
    625     return Owned(E);
    626 
    627   MarkDeclarationReferenced(E->getExprLoc(), Destructor);
    628   CheckDestructorAccess(E->getExprLoc(), Destructor,
    629                         PDiag(diag::err_access_dtor_exception) << Ty);
    630   return Owned(E);
    631 }
    632 
    633 QualType Sema::getAndCaptureCurrentThisType() {
    634   // Ignore block scopes: we can capture through them.
    635   // Ignore nested enum scopes: we'll diagnose non-constant expressions
    636   // where they're invalid, and other uses are legitimate.
    637   // Don't ignore nested class scopes: you can't use 'this' in a local class.
    638   DeclContext *DC = CurContext;
    639   unsigned NumBlocks = 0;
    640   while (true) {
    641     if (isa<BlockDecl>(DC)) {
    642       DC = cast<BlockDecl>(DC)->getDeclContext();
    643       ++NumBlocks;
    644     } else if (isa<EnumDecl>(DC))
    645       DC = cast<EnumDecl>(DC)->getDeclContext();
    646     else break;
    647   }
    648 
    649   QualType ThisTy;
    650   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
    651     if (method && method->isInstance())
    652       ThisTy = method->getThisType(Context);
    653   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
    654     // C++0x [expr.prim]p4:
    655     //   Otherwise, if a member-declarator declares a non-static data member
    656     // of a class X, the expression this is a prvalue of type "pointer to X"
    657     // within the optional brace-or-equal-initializer.
    658     Scope *S = getScopeForContext(DC);
    659     if (!S || S->getFlags() & Scope::ThisScope)
    660       ThisTy = Context.getPointerType(Context.getRecordType(RD));
    661   }
    662 
    663   // Mark that we're closing on 'this' in all the block scopes we ignored.
    664   if (!ThisTy.isNull())
    665     for (unsigned idx = FunctionScopes.size() - 1;
    666          NumBlocks; --idx, --NumBlocks)
    667       cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
    668 
    669   return ThisTy;
    670 }
    671 
    672 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
    673   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
    674   /// is a non-lvalue expression whose value is the address of the object for
    675   /// which the function is called.
    676 
    677   QualType ThisTy = getAndCaptureCurrentThisType();
    678   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
    679 
    680   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
    681 }
    682 
    683 ExprResult
    684 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
    685                                 SourceLocation LParenLoc,
    686                                 MultiExprArg exprs,
    687                                 SourceLocation RParenLoc) {
    688   if (!TypeRep)
    689     return ExprError();
    690 
    691   TypeSourceInfo *TInfo;
    692   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
    693   if (!TInfo)
    694     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
    695 
    696   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
    697 }
    698 
    699 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
    700 /// Can be interpreted either as function-style casting ("int(x)")
    701 /// or class type construction ("ClassType(x,y,z)")
    702 /// or creation of a value-initialized type ("int()").
    703 ExprResult
    704 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
    705                                 SourceLocation LParenLoc,
    706                                 MultiExprArg exprs,
    707                                 SourceLocation RParenLoc) {
    708   QualType Ty = TInfo->getType();
    709   unsigned NumExprs = exprs.size();
    710   Expr **Exprs = (Expr**)exprs.get();
    711   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
    712   SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
    713 
    714   if (Ty->isDependentType() ||
    715       CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
    716     exprs.release();
    717 
    718     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
    719                                                     LParenLoc,
    720                                                     Exprs, NumExprs,
    721                                                     RParenLoc));
    722   }
    723 
    724   if (Ty->isArrayType())
    725     return ExprError(Diag(TyBeginLoc,
    726                           diag::err_value_init_for_array_type) << FullRange);
    727   if (!Ty->isVoidType() &&
    728       RequireCompleteType(TyBeginLoc, Ty,
    729                           PDiag(diag::err_invalid_incomplete_type_use)
    730                             << FullRange))
    731     return ExprError();
    732 
    733   if (RequireNonAbstractType(TyBeginLoc, Ty,
    734                              diag::err_allocation_of_abstract_type))
    735     return ExprError();
    736 
    737 
    738   // C++ [expr.type.conv]p1:
    739   // If the expression list is a single expression, the type conversion
    740   // expression is equivalent (in definedness, and if defined in meaning) to the
    741   // corresponding cast expression.
    742   //
    743   if (NumExprs == 1) {
    744     CastKind Kind = CK_Invalid;
    745     ExprValueKind VK = VK_RValue;
    746     CXXCastPath BasePath;
    747     ExprResult CastExpr =
    748       CheckCastTypes(TInfo->getTypeLoc().getBeginLoc(),
    749                      TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
    750                      Kind, VK, BasePath,
    751                      /*FunctionalStyle=*/true);
    752     if (CastExpr.isInvalid())
    753       return ExprError();
    754     Exprs[0] = CastExpr.take();
    755 
    756     exprs.release();
    757 
    758     return Owned(CXXFunctionalCastExpr::Create(Context,
    759                                                Ty.getNonLValueExprType(Context),
    760                                                VK, TInfo, TyBeginLoc, Kind,
    761                                                Exprs[0], &BasePath,
    762                                                RParenLoc));
    763   }
    764 
    765   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
    766   InitializationKind Kind
    767     = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
    768                                                   LParenLoc, RParenLoc)
    769                : InitializationKind::CreateValue(TyBeginLoc,
    770                                                  LParenLoc, RParenLoc);
    771   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
    772   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
    773 
    774   // FIXME: Improve AST representation?
    775   return move(Result);
    776 }
    777 
    778 /// doesUsualArrayDeleteWantSize - Answers whether the usual
    779 /// operator delete[] for the given type has a size_t parameter.
    780 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
    781                                          QualType allocType) {
    782   const RecordType *record =
    783     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
    784   if (!record) return false;
    785 
    786   // Try to find an operator delete[] in class scope.
    787 
    788   DeclarationName deleteName =
    789     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
    790   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
    791   S.LookupQualifiedName(ops, record->getDecl());
    792 
    793   // We're just doing this for information.
    794   ops.suppressDiagnostics();
    795 
    796   // Very likely: there's no operator delete[].
    797   if (ops.empty()) return false;
    798 
    799   // If it's ambiguous, it should be illegal to call operator delete[]
    800   // on this thing, so it doesn't matter if we allocate extra space or not.
    801   if (ops.isAmbiguous()) return false;
    802 
    803   LookupResult::Filter filter = ops.makeFilter();
    804   while (filter.hasNext()) {
    805     NamedDecl *del = filter.next()->getUnderlyingDecl();
    806 
    807     // C++0x [basic.stc.dynamic.deallocation]p2:
    808     //   A template instance is never a usual deallocation function,
    809     //   regardless of its signature.
    810     if (isa<FunctionTemplateDecl>(del)) {
    811       filter.erase();
    812       continue;
    813     }
    814 
    815     // C++0x [basic.stc.dynamic.deallocation]p2:
    816     //   If class T does not declare [an operator delete[] with one
    817     //   parameter] but does declare a member deallocation function
    818     //   named operator delete[] with exactly two parameters, the
    819     //   second of which has type std::size_t, then this function
    820     //   is a usual deallocation function.
    821     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
    822       filter.erase();
    823       continue;
    824     }
    825   }
    826   filter.done();
    827 
    828   if (!ops.isSingleResult()) return false;
    829 
    830   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
    831   return (del->getNumParams() == 2);
    832 }
    833 
    834 /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
    835 /// @code new (memory) int[size][4] @endcode
    836 /// or
    837 /// @code ::new Foo(23, "hello") @endcode
    838 /// For the interpretation of this heap of arguments, consult the base version.
    839 ExprResult
    840 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
    841                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
    842                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
    843                   Declarator &D, SourceLocation ConstructorLParen,
    844                   MultiExprArg ConstructorArgs,
    845                   SourceLocation ConstructorRParen) {
    846   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
    847 
    848   Expr *ArraySize = 0;
    849   // If the specified type is an array, unwrap it and save the expression.
    850   if (D.getNumTypeObjects() > 0 &&
    851       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    852     DeclaratorChunk &Chunk = D.getTypeObject(0);
    853     if (TypeContainsAuto)
    854       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
    855         << D.getSourceRange());
    856     if (Chunk.Arr.hasStatic)
    857       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
    858         << D.getSourceRange());
    859     if (!Chunk.Arr.NumElts)
    860       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
    861         << D.getSourceRange());
    862 
    863     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
    864     D.DropFirstTypeObject();
    865   }
    866 
    867   // Every dimension shall be of constant size.
    868   if (ArraySize) {
    869     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
    870       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
    871         break;
    872 
    873       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
    874       if (Expr *NumElts = (Expr *)Array.NumElts) {
    875         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
    876             !NumElts->isIntegerConstantExpr(Context)) {
    877           Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
    878             << NumElts->getSourceRange();
    879           return ExprError();
    880         }
    881       }
    882     }
    883   }
    884 
    885   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
    886   QualType AllocType = TInfo->getType();
    887   if (D.isInvalidType())
    888     return ExprError();
    889 
    890   return BuildCXXNew(StartLoc, UseGlobal,
    891                      PlacementLParen,
    892                      move(PlacementArgs),
    893                      PlacementRParen,
    894                      TypeIdParens,
    895                      AllocType,
    896                      TInfo,
    897                      ArraySize,
    898                      ConstructorLParen,
    899                      move(ConstructorArgs),
    900                      ConstructorRParen,
    901                      TypeContainsAuto);
    902 }
    903 
    904 ExprResult
    905 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
    906                   SourceLocation PlacementLParen,
    907                   MultiExprArg PlacementArgs,
    908                   SourceLocation PlacementRParen,
    909                   SourceRange TypeIdParens,
    910                   QualType AllocType,
    911                   TypeSourceInfo *AllocTypeInfo,
    912                   Expr *ArraySize,
    913                   SourceLocation ConstructorLParen,
    914                   MultiExprArg ConstructorArgs,
    915                   SourceLocation ConstructorRParen,
    916                   bool TypeMayContainAuto) {
    917   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
    918 
    919   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
    920   if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
    921     if (ConstructorArgs.size() == 0)
    922       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
    923                        << AllocType << TypeRange);
    924     if (ConstructorArgs.size() != 1) {
    925       Expr *FirstBad = ConstructorArgs.get()[1];
    926       return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
    927                             diag::err_auto_new_ctor_multiple_expressions)
    928                        << AllocType << TypeRange);
    929     }
    930     TypeSourceInfo *DeducedType = 0;
    931     if (!DeduceAutoType(AllocTypeInfo, ConstructorArgs.get()[0], DeducedType))
    932       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
    933                        << AllocType
    934                        << ConstructorArgs.get()[0]->getType()
    935                        << TypeRange
    936                        << ConstructorArgs.get()[0]->getSourceRange());
    937     if (!DeducedType)
    938       return ExprError();
    939 
    940     AllocTypeInfo = DeducedType;
    941     AllocType = AllocTypeInfo->getType();
    942   }
    943 
    944   // Per C++0x [expr.new]p5, the type being constructed may be a
    945   // typedef of an array type.
    946   if (!ArraySize) {
    947     if (const ConstantArrayType *Array
    948                               = Context.getAsConstantArrayType(AllocType)) {
    949       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
    950                                          Context.getSizeType(),
    951                                          TypeRange.getEnd());
    952       AllocType = Array->getElementType();
    953     }
    954   }
    955 
    956   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
    957     return ExprError();
    958 
    959   // In ARC, infer 'retaining' for the allocated
    960   if (getLangOptions().ObjCAutoRefCount &&
    961       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
    962       AllocType->isObjCLifetimeType()) {
    963     AllocType = Context.getLifetimeQualifiedType(AllocType,
    964                                     AllocType->getObjCARCImplicitLifetime());
    965   }
    966 
    967   QualType ResultType = Context.getPointerType(AllocType);
    968 
    969   // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
    970   //   or enumeration type with a non-negative value."
    971   if (ArraySize && !ArraySize->isTypeDependent()) {
    972 
    973     QualType SizeType = ArraySize->getType();
    974 
    975     ExprResult ConvertedSize
    976       = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
    977                                        PDiag(diag::err_array_size_not_integral),
    978                                      PDiag(diag::err_array_size_incomplete_type)
    979                                        << ArraySize->getSourceRange(),
    980                                PDiag(diag::err_array_size_explicit_conversion),
    981                                        PDiag(diag::note_array_size_conversion),
    982                                PDiag(diag::err_array_size_ambiguous_conversion),
    983                                        PDiag(diag::note_array_size_conversion),
    984                           PDiag(getLangOptions().CPlusPlus0x? 0
    985                                             : diag::ext_array_size_conversion));
    986     if (ConvertedSize.isInvalid())
    987       return ExprError();
    988 
    989     ArraySize = ConvertedSize.take();
    990     SizeType = ArraySize->getType();
    991     if (!SizeType->isIntegralOrUnscopedEnumerationType())
    992       return ExprError();
    993 
    994     // Let's see if this is a constant < 0. If so, we reject it out of hand.
    995     // We don't care about special rules, so we tell the machinery it's not
    996     // evaluated - it gives us a result in more cases.
    997     if (!ArraySize->isValueDependent()) {
    998       llvm::APSInt Value;
    999       if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
   1000         if (Value < llvm::APSInt(
   1001                         llvm::APInt::getNullValue(Value.getBitWidth()),
   1002                                  Value.isUnsigned()))
   1003           return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
   1004                                 diag::err_typecheck_negative_array_size)
   1005             << ArraySize->getSourceRange());
   1006 
   1007         if (!AllocType->isDependentType()) {
   1008           unsigned ActiveSizeBits
   1009             = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
   1010           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   1011             Diag(ArraySize->getSourceRange().getBegin(),
   1012                  diag::err_array_too_large)
   1013               << Value.toString(10)
   1014               << ArraySize->getSourceRange();
   1015             return ExprError();
   1016           }
   1017         }
   1018       } else if (TypeIdParens.isValid()) {
   1019         // Can't have dynamic array size when the type-id is in parentheses.
   1020         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
   1021           << ArraySize->getSourceRange()
   1022           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
   1023           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
   1024 
   1025         TypeIdParens = SourceRange();
   1026       }
   1027     }
   1028 
   1029     // ARC: warn about ABI issues.
   1030     if (getLangOptions().ObjCAutoRefCount) {
   1031       QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1032       if (BaseAllocType.hasStrongOrWeakObjCLifetime())
   1033         Diag(StartLoc, diag::warn_err_new_delete_object_array)
   1034           << 0 << BaseAllocType;
   1035     }
   1036 
   1037     // Note that we do *not* convert the argument in any way.  It can
   1038     // be signed, larger than size_t, whatever.
   1039   }
   1040 
   1041   FunctionDecl *OperatorNew = 0;
   1042   FunctionDecl *OperatorDelete = 0;
   1043   Expr **PlaceArgs = (Expr**)PlacementArgs.get();
   1044   unsigned NumPlaceArgs = PlacementArgs.size();
   1045 
   1046   if (!AllocType->isDependentType() &&
   1047       !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
   1048       FindAllocationFunctions(StartLoc,
   1049                               SourceRange(PlacementLParen, PlacementRParen),
   1050                               UseGlobal, AllocType, ArraySize, PlaceArgs,
   1051                               NumPlaceArgs, OperatorNew, OperatorDelete))
   1052     return ExprError();
   1053 
   1054   // If this is an array allocation, compute whether the usual array
   1055   // deallocation function for the type has a size_t parameter.
   1056   bool UsualArrayDeleteWantsSize = false;
   1057   if (ArraySize && !AllocType->isDependentType())
   1058     UsualArrayDeleteWantsSize
   1059       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
   1060 
   1061   llvm::SmallVector<Expr *, 8> AllPlaceArgs;
   1062   if (OperatorNew) {
   1063     // Add default arguments, if any.
   1064     const FunctionProtoType *Proto =
   1065       OperatorNew->getType()->getAs<FunctionProtoType>();
   1066     VariadicCallType CallType =
   1067       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
   1068 
   1069     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
   1070                                Proto, 1, PlaceArgs, NumPlaceArgs,
   1071                                AllPlaceArgs, CallType))
   1072       return ExprError();
   1073 
   1074     NumPlaceArgs = AllPlaceArgs.size();
   1075     if (NumPlaceArgs > 0)
   1076       PlaceArgs = &AllPlaceArgs[0];
   1077   }
   1078 
   1079   bool Init = ConstructorLParen.isValid();
   1080   // --- Choosing a constructor ---
   1081   CXXConstructorDecl *Constructor = 0;
   1082   Expr **ConsArgs = (Expr**)ConstructorArgs.get();
   1083   unsigned NumConsArgs = ConstructorArgs.size();
   1084   ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
   1085 
   1086   // Array 'new' can't have any initializers.
   1087   if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
   1088     SourceRange InitRange(ConsArgs[0]->getLocStart(),
   1089                           ConsArgs[NumConsArgs - 1]->getLocEnd());
   1090 
   1091     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
   1092     return ExprError();
   1093   }
   1094 
   1095   if (!AllocType->isDependentType() &&
   1096       !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
   1097     // C++0x [expr.new]p15:
   1098     //   A new-expression that creates an object of type T initializes that
   1099     //   object as follows:
   1100     InitializationKind Kind
   1101     //     - If the new-initializer is omitted, the object is default-
   1102     //       initialized (8.5); if no initialization is performed,
   1103     //       the object has indeterminate value
   1104       = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
   1105     //     - Otherwise, the new-initializer is interpreted according to the
   1106     //       initialization rules of 8.5 for direct-initialization.
   1107              : InitializationKind::CreateDirect(TypeRange.getBegin(),
   1108                                                 ConstructorLParen,
   1109                                                 ConstructorRParen);
   1110 
   1111     InitializedEntity Entity
   1112       = InitializedEntity::InitializeNew(StartLoc, AllocType);
   1113     InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
   1114     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
   1115                                                 move(ConstructorArgs));
   1116     if (FullInit.isInvalid())
   1117       return ExprError();
   1118 
   1119     // FullInit is our initializer; walk through it to determine if it's a
   1120     // constructor call, which CXXNewExpr handles directly.
   1121     if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
   1122       if (CXXBindTemporaryExpr *Binder
   1123             = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
   1124         FullInitExpr = Binder->getSubExpr();
   1125       if (CXXConstructExpr *Construct
   1126                     = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
   1127         Constructor = Construct->getConstructor();
   1128         for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
   1129                                          AEnd = Construct->arg_end();
   1130              A != AEnd; ++A)
   1131           ConvertedConstructorArgs.push_back(*A);
   1132       } else {
   1133         // Take the converted initializer.
   1134         ConvertedConstructorArgs.push_back(FullInit.release());
   1135       }
   1136     } else {
   1137       // No initialization required.
   1138     }
   1139 
   1140     // Take the converted arguments and use them for the new expression.
   1141     NumConsArgs = ConvertedConstructorArgs.size();
   1142     ConsArgs = (Expr **)ConvertedConstructorArgs.take();
   1143   }
   1144 
   1145   // Mark the new and delete operators as referenced.
   1146   if (OperatorNew)
   1147     MarkDeclarationReferenced(StartLoc, OperatorNew);
   1148   if (OperatorDelete)
   1149     MarkDeclarationReferenced(StartLoc, OperatorDelete);
   1150 
   1151   // C++0x [expr.new]p17:
   1152   //   If the new expression creates an array of objects of class type,
   1153   //   access and ambiguity control are done for the destructor.
   1154   if (ArraySize && Constructor) {
   1155     if (CXXDestructorDecl *dtor = LookupDestructor(Constructor->getParent())) {
   1156       MarkDeclarationReferenced(StartLoc, dtor);
   1157       CheckDestructorAccess(StartLoc, dtor,
   1158                             PDiag(diag::err_access_dtor)
   1159                               << Context.getBaseElementType(AllocType));
   1160     }
   1161   }
   1162 
   1163   PlacementArgs.release();
   1164   ConstructorArgs.release();
   1165 
   1166   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
   1167                                         PlaceArgs, NumPlaceArgs, TypeIdParens,
   1168                                         ArraySize, Constructor, Init,
   1169                                         ConsArgs, NumConsArgs, OperatorDelete,
   1170                                         UsualArrayDeleteWantsSize,
   1171                                         ResultType, AllocTypeInfo,
   1172                                         StartLoc,
   1173                                         Init ? ConstructorRParen :
   1174                                                TypeRange.getEnd(),
   1175                                         ConstructorLParen, ConstructorRParen));
   1176 }
   1177 
   1178 /// CheckAllocatedType - Checks that a type is suitable as the allocated type
   1179 /// in a new-expression.
   1180 /// dimension off and stores the size expression in ArraySize.
   1181 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
   1182                               SourceRange R) {
   1183   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
   1184   //   abstract class type or array thereof.
   1185   if (AllocType->isFunctionType())
   1186     return Diag(Loc, diag::err_bad_new_type)
   1187       << AllocType << 0 << R;
   1188   else if (AllocType->isReferenceType())
   1189     return Diag(Loc, diag::err_bad_new_type)
   1190       << AllocType << 1 << R;
   1191   else if (!AllocType->isDependentType() &&
   1192            RequireCompleteType(Loc, AllocType,
   1193                                PDiag(diag::err_new_incomplete_type)
   1194                                  << R))
   1195     return true;
   1196   else if (RequireNonAbstractType(Loc, AllocType,
   1197                                   diag::err_allocation_of_abstract_type))
   1198     return true;
   1199   else if (AllocType->isVariablyModifiedType())
   1200     return Diag(Loc, diag::err_variably_modified_new_type)
   1201              << AllocType;
   1202   else if (unsigned AddressSpace = AllocType.getAddressSpace())
   1203     return Diag(Loc, diag::err_address_space_qualified_new)
   1204       << AllocType.getUnqualifiedType() << AddressSpace;
   1205   else if (getLangOptions().ObjCAutoRefCount) {
   1206     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
   1207       QualType BaseAllocType = Context.getBaseElementType(AT);
   1208       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1209           BaseAllocType->isObjCLifetimeType())
   1210         return Diag(Loc, diag::err_arc_new_array_without_ownership)
   1211           << BaseAllocType;
   1212     }
   1213   }
   1214 
   1215   return false;
   1216 }
   1217 
   1218 /// \brief Determine whether the given function is a non-placement
   1219 /// deallocation function.
   1220 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
   1221   if (FD->isInvalidDecl())
   1222     return false;
   1223 
   1224   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
   1225     return Method->isUsualDeallocationFunction();
   1226 
   1227   return ((FD->getOverloadedOperator() == OO_Delete ||
   1228            FD->getOverloadedOperator() == OO_Array_Delete) &&
   1229           FD->getNumParams() == 1);
   1230 }
   1231 
   1232 /// FindAllocationFunctions - Finds the overloads of operator new and delete
   1233 /// that are appropriate for the allocation.
   1234 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
   1235                                    bool UseGlobal, QualType AllocType,
   1236                                    bool IsArray, Expr **PlaceArgs,
   1237                                    unsigned NumPlaceArgs,
   1238                                    FunctionDecl *&OperatorNew,
   1239                                    FunctionDecl *&OperatorDelete) {
   1240   // --- Choosing an allocation function ---
   1241   // C++ 5.3.4p8 - 14 & 18
   1242   // 1) If UseGlobal is true, only look in the global scope. Else, also look
   1243   //   in the scope of the allocated class.
   1244   // 2) If an array size is given, look for operator new[], else look for
   1245   //   operator new.
   1246   // 3) The first argument is always size_t. Append the arguments from the
   1247   //   placement form.
   1248 
   1249   llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
   1250   // We don't care about the actual value of this argument.
   1251   // FIXME: Should the Sema create the expression and embed it in the syntax
   1252   // tree? Or should the consumer just recalculate the value?
   1253   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
   1254                       Context.Target.getPointerWidth(0)),
   1255                       Context.getSizeType(),
   1256                       SourceLocation());
   1257   AllocArgs[0] = &Size;
   1258   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
   1259 
   1260   // C++ [expr.new]p8:
   1261   //   If the allocated type is a non-array type, the allocation
   1262   //   function's name is operator new and the deallocation function's
   1263   //   name is operator delete. If the allocated type is an array
   1264   //   type, the allocation function's name is operator new[] and the
   1265   //   deallocation function's name is operator delete[].
   1266   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
   1267                                         IsArray ? OO_Array_New : OO_New);
   1268   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   1269                                         IsArray ? OO_Array_Delete : OO_Delete);
   1270 
   1271   QualType AllocElemType = Context.getBaseElementType(AllocType);
   1272 
   1273   if (AllocElemType->isRecordType() && !UseGlobal) {
   1274     CXXRecordDecl *Record
   1275       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1276     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
   1277                           AllocArgs.size(), Record, /*AllowMissing=*/true,
   1278                           OperatorNew))
   1279       return true;
   1280   }
   1281   if (!OperatorNew) {
   1282     // Didn't find a member overload. Look for a global one.
   1283     DeclareGlobalNewDelete();
   1284     DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1285     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
   1286                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
   1287                           OperatorNew))
   1288       return true;
   1289   }
   1290 
   1291   // We don't need an operator delete if we're running under
   1292   // -fno-exceptions.
   1293   if (!getLangOptions().Exceptions) {
   1294     OperatorDelete = 0;
   1295     return false;
   1296   }
   1297 
   1298   // FindAllocationOverload can change the passed in arguments, so we need to
   1299   // copy them back.
   1300   if (NumPlaceArgs > 0)
   1301     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
   1302 
   1303   // C++ [expr.new]p19:
   1304   //
   1305   //   If the new-expression begins with a unary :: operator, the
   1306   //   deallocation function's name is looked up in the global
   1307   //   scope. Otherwise, if the allocated type is a class type T or an
   1308   //   array thereof, the deallocation function's name is looked up in
   1309   //   the scope of T. If this lookup fails to find the name, or if
   1310   //   the allocated type is not a class type or array thereof, the
   1311   //   deallocation function's name is looked up in the global scope.
   1312   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
   1313   if (AllocElemType->isRecordType() && !UseGlobal) {
   1314     CXXRecordDecl *RD
   1315       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1316     LookupQualifiedName(FoundDelete, RD);
   1317   }
   1318   if (FoundDelete.isAmbiguous())
   1319     return true; // FIXME: clean up expressions?
   1320 
   1321   if (FoundDelete.empty()) {
   1322     DeclareGlobalNewDelete();
   1323     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   1324   }
   1325 
   1326   FoundDelete.suppressDiagnostics();
   1327 
   1328   llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
   1329 
   1330   // Whether we're looking for a placement operator delete is dictated
   1331   // by whether we selected a placement operator new, not by whether
   1332   // we had explicit placement arguments.  This matters for things like
   1333   //   struct A { void *operator new(size_t, int = 0); ... };
   1334   //   A *a = new A()
   1335   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
   1336 
   1337   if (isPlacementNew) {
   1338     // C++ [expr.new]p20:
   1339     //   A declaration of a placement deallocation function matches the
   1340     //   declaration of a placement allocation function if it has the
   1341     //   same number of parameters and, after parameter transformations
   1342     //   (8.3.5), all parameter types except the first are
   1343     //   identical. [...]
   1344     //
   1345     // To perform this comparison, we compute the function type that
   1346     // the deallocation function should have, and use that type both
   1347     // for template argument deduction and for comparison purposes.
   1348     //
   1349     // FIXME: this comparison should ignore CC and the like.
   1350     QualType ExpectedFunctionType;
   1351     {
   1352       const FunctionProtoType *Proto
   1353         = OperatorNew->getType()->getAs<FunctionProtoType>();
   1354 
   1355       llvm::SmallVector<QualType, 4> ArgTypes;
   1356       ArgTypes.push_back(Context.VoidPtrTy);
   1357       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
   1358         ArgTypes.push_back(Proto->getArgType(I));
   1359 
   1360       FunctionProtoType::ExtProtoInfo EPI;
   1361       EPI.Variadic = Proto->isVariadic();
   1362 
   1363       ExpectedFunctionType
   1364         = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
   1365                                   ArgTypes.size(), EPI);
   1366     }
   1367 
   1368     for (LookupResult::iterator D = FoundDelete.begin(),
   1369                              DEnd = FoundDelete.end();
   1370          D != DEnd; ++D) {
   1371       FunctionDecl *Fn = 0;
   1372       if (FunctionTemplateDecl *FnTmpl
   1373             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
   1374         // Perform template argument deduction to try to match the
   1375         // expected function type.
   1376         TemplateDeductionInfo Info(Context, StartLoc);
   1377         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
   1378           continue;
   1379       } else
   1380         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
   1381 
   1382       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
   1383         Matches.push_back(std::make_pair(D.getPair(), Fn));
   1384     }
   1385   } else {
   1386     // C++ [expr.new]p20:
   1387     //   [...] Any non-placement deallocation function matches a
   1388     //   non-placement allocation function. [...]
   1389     for (LookupResult::iterator D = FoundDelete.begin(),
   1390                              DEnd = FoundDelete.end();
   1391          D != DEnd; ++D) {
   1392       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
   1393         if (isNonPlacementDeallocationFunction(Fn))
   1394           Matches.push_back(std::make_pair(D.getPair(), Fn));
   1395     }
   1396   }
   1397 
   1398   // C++ [expr.new]p20:
   1399   //   [...] If the lookup finds a single matching deallocation
   1400   //   function, that function will be called; otherwise, no
   1401   //   deallocation function will be called.
   1402   if (Matches.size() == 1) {
   1403     OperatorDelete = Matches[0].second;
   1404 
   1405     // C++0x [expr.new]p20:
   1406     //   If the lookup finds the two-parameter form of a usual
   1407     //   deallocation function (3.7.4.2) and that function, considered
   1408     //   as a placement deallocation function, would have been
   1409     //   selected as a match for the allocation function, the program
   1410     //   is ill-formed.
   1411     if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
   1412         isNonPlacementDeallocationFunction(OperatorDelete)) {
   1413       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
   1414         << SourceRange(PlaceArgs[0]->getLocStart(),
   1415                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
   1416       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
   1417         << DeleteName;
   1418     } else {
   1419       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
   1420                             Matches[0].first);
   1421     }
   1422   }
   1423 
   1424   return false;
   1425 }
   1426 
   1427 /// FindAllocationOverload - Find an fitting overload for the allocation
   1428 /// function in the specified scope.
   1429 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
   1430                                   DeclarationName Name, Expr** Args,
   1431                                   unsigned NumArgs, DeclContext *Ctx,
   1432                                   bool AllowMissing, FunctionDecl *&Operator,
   1433                                   bool Diagnose) {
   1434   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
   1435   LookupQualifiedName(R, Ctx);
   1436   if (R.empty()) {
   1437     if (AllowMissing || !Diagnose)
   1438       return false;
   1439     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1440       << Name << Range;
   1441   }
   1442 
   1443   if (R.isAmbiguous())
   1444     return true;
   1445 
   1446   R.suppressDiagnostics();
   1447 
   1448   OverloadCandidateSet Candidates(StartLoc);
   1449   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
   1450        Alloc != AllocEnd; ++Alloc) {
   1451     // Even member operator new/delete are implicitly treated as
   1452     // static, so don't use AddMemberCandidate.
   1453     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
   1454 
   1455     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
   1456       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
   1457                                    /*ExplicitTemplateArgs=*/0, Args, NumArgs,
   1458                                    Candidates,
   1459                                    /*SuppressUserConversions=*/false);
   1460       continue;
   1461     }
   1462 
   1463     FunctionDecl *Fn = cast<FunctionDecl>(D);
   1464     AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
   1465                          /*SuppressUserConversions=*/false);
   1466   }
   1467 
   1468   // Do the resolution.
   1469   OverloadCandidateSet::iterator Best;
   1470   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
   1471   case OR_Success: {
   1472     // Got one!
   1473     FunctionDecl *FnDecl = Best->Function;
   1474     MarkDeclarationReferenced(StartLoc, FnDecl);
   1475     // The first argument is size_t, and the first parameter must be size_t,
   1476     // too. This is checked on declaration and can be assumed. (It can't be
   1477     // asserted on, though, since invalid decls are left in there.)
   1478     // Watch out for variadic allocator function.
   1479     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
   1480     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
   1481       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
   1482                                                        FnDecl->getParamDecl(i));
   1483 
   1484       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
   1485         return true;
   1486 
   1487       ExprResult Result
   1488         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
   1489       if (Result.isInvalid())
   1490         return true;
   1491 
   1492       Args[i] = Result.takeAs<Expr>();
   1493     }
   1494     Operator = FnDecl;
   1495     CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl,
   1496                           Diagnose);
   1497     return false;
   1498   }
   1499 
   1500   case OR_No_Viable_Function:
   1501     if (Diagnose) {
   1502       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1503         << Name << Range;
   1504       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
   1505     }
   1506     return true;
   1507 
   1508   case OR_Ambiguous:
   1509     if (Diagnose) {
   1510       Diag(StartLoc, diag::err_ovl_ambiguous_call)
   1511         << Name << Range;
   1512       Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
   1513     }
   1514     return true;
   1515 
   1516   case OR_Deleted: {
   1517     if (Diagnose) {
   1518       Diag(StartLoc, diag::err_ovl_deleted_call)
   1519         << Best->Function->isDeleted()
   1520         << Name
   1521         << getDeletedOrUnavailableSuffix(Best->Function)
   1522         << Range;
   1523       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
   1524     }
   1525     return true;
   1526   }
   1527   }
   1528   assert(false && "Unreachable, bad result from BestViableFunction");
   1529   return true;
   1530 }
   1531 
   1532 
   1533 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
   1534 /// delete. These are:
   1535 /// @code
   1536 ///   // C++03:
   1537 ///   void* operator new(std::size_t) throw(std::bad_alloc);
   1538 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
   1539 ///   void operator delete(void *) throw();
   1540 ///   void operator delete[](void *) throw();
   1541 ///   // C++0x:
   1542 ///   void* operator new(std::size_t);
   1543 ///   void* operator new[](std::size_t);
   1544 ///   void operator delete(void *);
   1545 ///   void operator delete[](void *);
   1546 /// @endcode
   1547 /// C++0x operator delete is implicitly noexcept.
   1548 /// Note that the placement and nothrow forms of new are *not* implicitly
   1549 /// declared. Their use requires including \<new\>.
   1550 void Sema::DeclareGlobalNewDelete() {
   1551   if (GlobalNewDeleteDeclared)
   1552     return;
   1553 
   1554   // C++ [basic.std.dynamic]p2:
   1555   //   [...] The following allocation and deallocation functions (18.4) are
   1556   //   implicitly declared in global scope in each translation unit of a
   1557   //   program
   1558   //
   1559   //     C++03:
   1560   //     void* operator new(std::size_t) throw(std::bad_alloc);
   1561   //     void* operator new[](std::size_t) throw(std::bad_alloc);
   1562   //     void  operator delete(void*) throw();
   1563   //     void  operator delete[](void*) throw();
   1564   //     C++0x:
   1565   //     void* operator new(std::size_t);
   1566   //     void* operator new[](std::size_t);
   1567   //     void  operator delete(void*);
   1568   //     void  operator delete[](void*);
   1569   //
   1570   //   These implicit declarations introduce only the function names operator
   1571   //   new, operator new[], operator delete, operator delete[].
   1572   //
   1573   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
   1574   // "std" or "bad_alloc" as necessary to form the exception specification.
   1575   // However, we do not make these implicit declarations visible to name
   1576   // lookup.
   1577   // Note that the C++0x versions of operator delete are deallocation functions,
   1578   // and thus are implicitly noexcept.
   1579   if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
   1580     // The "std::bad_alloc" class has not yet been declared, so build it
   1581     // implicitly.
   1582     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
   1583                                         getOrCreateStdNamespace(),
   1584                                         SourceLocation(), SourceLocation(),
   1585                                       &PP.getIdentifierTable().get("bad_alloc"),
   1586                                         0);
   1587     getStdBadAlloc()->setImplicit(true);
   1588   }
   1589 
   1590   GlobalNewDeleteDeclared = true;
   1591 
   1592   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
   1593   QualType SizeT = Context.getSizeType();
   1594   bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
   1595 
   1596   DeclareGlobalAllocationFunction(
   1597       Context.DeclarationNames.getCXXOperatorName(OO_New),
   1598       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1599   DeclareGlobalAllocationFunction(
   1600       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
   1601       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1602   DeclareGlobalAllocationFunction(
   1603       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   1604       Context.VoidTy, VoidPtr);
   1605   DeclareGlobalAllocationFunction(
   1606       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   1607       Context.VoidTy, VoidPtr);
   1608 }
   1609 
   1610 /// DeclareGlobalAllocationFunction - Declares a single implicit global
   1611 /// allocation function if it doesn't already exist.
   1612 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
   1613                                            QualType Return, QualType Argument,
   1614                                            bool AddMallocAttr) {
   1615   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
   1616 
   1617   // Check if this function is already declared.
   1618   {
   1619     DeclContext::lookup_iterator Alloc, AllocEnd;
   1620     for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
   1621          Alloc != AllocEnd; ++Alloc) {
   1622       // Only look at non-template functions, as it is the predefined,
   1623       // non-templated allocation function we are trying to declare here.
   1624       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
   1625         QualType InitialParamType =
   1626           Context.getCanonicalType(
   1627             Func->getParamDecl(0)->getType().getUnqualifiedType());
   1628         // FIXME: Do we need to check for default arguments here?
   1629         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
   1630           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
   1631             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1632           return;
   1633         }
   1634       }
   1635     }
   1636   }
   1637 
   1638   QualType BadAllocType;
   1639   bool HasBadAllocExceptionSpec
   1640     = (Name.getCXXOverloadedOperator() == OO_New ||
   1641        Name.getCXXOverloadedOperator() == OO_Array_New);
   1642   if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
   1643     assert(StdBadAlloc && "Must have std::bad_alloc declared");
   1644     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
   1645   }
   1646 
   1647   FunctionProtoType::ExtProtoInfo EPI;
   1648   if (HasBadAllocExceptionSpec) {
   1649     if (!getLangOptions().CPlusPlus0x) {
   1650       EPI.ExceptionSpecType = EST_Dynamic;
   1651       EPI.NumExceptions = 1;
   1652       EPI.Exceptions = &BadAllocType;
   1653     }
   1654   } else {
   1655     EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
   1656                                 EST_BasicNoexcept : EST_DynamicNone;
   1657   }
   1658 
   1659   QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
   1660   FunctionDecl *Alloc =
   1661     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
   1662                          SourceLocation(), Name,
   1663                          FnType, /*TInfo=*/0, SC_None,
   1664                          SC_None, false, true);
   1665   Alloc->setImplicit();
   1666 
   1667   if (AddMallocAttr)
   1668     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1669 
   1670   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
   1671                                            SourceLocation(), 0,
   1672                                            Argument, /*TInfo=*/0,
   1673                                            SC_None, SC_None, 0);
   1674   Alloc->setParams(&Param, 1);
   1675 
   1676   // FIXME: Also add this declaration to the IdentifierResolver, but
   1677   // make sure it is at the end of the chain to coincide with the
   1678   // global scope.
   1679   Context.getTranslationUnitDecl()->addDecl(Alloc);
   1680 }
   1681 
   1682 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
   1683                                     DeclarationName Name,
   1684                                     FunctionDecl* &Operator, bool Diagnose) {
   1685   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
   1686   // Try to find operator delete/operator delete[] in class scope.
   1687   LookupQualifiedName(Found, RD);
   1688 
   1689   if (Found.isAmbiguous())
   1690     return true;
   1691 
   1692   Found.suppressDiagnostics();
   1693 
   1694   llvm::SmallVector<DeclAccessPair,4> Matches;
   1695   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   1696        F != FEnd; ++F) {
   1697     NamedDecl *ND = (*F)->getUnderlyingDecl();
   1698 
   1699     // Ignore template operator delete members from the check for a usual
   1700     // deallocation function.
   1701     if (isa<FunctionTemplateDecl>(ND))
   1702       continue;
   1703 
   1704     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
   1705       Matches.push_back(F.getPair());
   1706   }
   1707 
   1708   // There's exactly one suitable operator;  pick it.
   1709   if (Matches.size() == 1) {
   1710     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
   1711 
   1712     if (Operator->isDeleted()) {
   1713       if (Diagnose) {
   1714         Diag(StartLoc, diag::err_deleted_function_use);
   1715         Diag(Operator->getLocation(), diag::note_unavailable_here) << true;
   1716       }
   1717       return true;
   1718     }
   1719 
   1720     CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
   1721                           Matches[0], Diagnose);
   1722     return false;
   1723 
   1724   // We found multiple suitable operators;  complain about the ambiguity.
   1725   } else if (!Matches.empty()) {
   1726     if (Diagnose) {
   1727       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
   1728         << Name << RD;
   1729 
   1730       for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
   1731              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
   1732         Diag((*F)->getUnderlyingDecl()->getLocation(),
   1733              diag::note_member_declared_here) << Name;
   1734     }
   1735     return true;
   1736   }
   1737 
   1738   // We did find operator delete/operator delete[] declarations, but
   1739   // none of them were suitable.
   1740   if (!Found.empty()) {
   1741     if (Diagnose) {
   1742       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
   1743         << Name << RD;
   1744 
   1745       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   1746            F != FEnd; ++F)
   1747         Diag((*F)->getUnderlyingDecl()->getLocation(),
   1748              diag::note_member_declared_here) << Name;
   1749     }
   1750     return true;
   1751   }
   1752 
   1753   // Look for a global declaration.
   1754   DeclareGlobalNewDelete();
   1755   DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1756 
   1757   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
   1758   Expr* DeallocArgs[1];
   1759   DeallocArgs[0] = &Null;
   1760   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
   1761                              DeallocArgs, 1, TUDecl, !Diagnose,
   1762                              Operator, Diagnose))
   1763     return true;
   1764 
   1765   assert(Operator && "Did not find a deallocation function!");
   1766   return false;
   1767 }
   1768 
   1769 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
   1770 /// @code ::delete ptr; @endcode
   1771 /// or
   1772 /// @code delete [] ptr; @endcode
   1773 ExprResult
   1774 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
   1775                      bool ArrayForm, Expr *ExE) {
   1776   // C++ [expr.delete]p1:
   1777   //   The operand shall have a pointer type, or a class type having a single
   1778   //   conversion function to a pointer type. The result has type void.
   1779   //
   1780   // DR599 amends "pointer type" to "pointer to object type" in both cases.
   1781 
   1782   ExprResult Ex = Owned(ExE);
   1783   FunctionDecl *OperatorDelete = 0;
   1784   bool ArrayFormAsWritten = ArrayForm;
   1785   bool UsualArrayDeleteWantsSize = false;
   1786 
   1787   if (!Ex.get()->isTypeDependent()) {
   1788     QualType Type = Ex.get()->getType();
   1789 
   1790     if (const RecordType *Record = Type->getAs<RecordType>()) {
   1791       if (RequireCompleteType(StartLoc, Type,
   1792                               PDiag(diag::err_delete_incomplete_class_type)))
   1793         return ExprError();
   1794 
   1795       llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
   1796 
   1797       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   1798       const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
   1799       for (UnresolvedSetImpl::iterator I = Conversions->begin(),
   1800              E = Conversions->end(); I != E; ++I) {
   1801         NamedDecl *D = I.getDecl();
   1802         if (isa<UsingShadowDecl>(D))
   1803           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   1804 
   1805         // Skip over templated conversion functions; they aren't considered.
   1806         if (isa<FunctionTemplateDecl>(D))
   1807           continue;
   1808 
   1809         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   1810 
   1811         QualType ConvType = Conv->getConversionType().getNonReferenceType();
   1812         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   1813           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
   1814             ObjectPtrConversions.push_back(Conv);
   1815       }
   1816       if (ObjectPtrConversions.size() == 1) {
   1817         // We have a single conversion to a pointer-to-object type. Perform
   1818         // that conversion.
   1819         // TODO: don't redo the conversion calculation.
   1820         ExprResult Res =
   1821           PerformImplicitConversion(Ex.get(),
   1822                             ObjectPtrConversions.front()->getConversionType(),
   1823                                     AA_Converting);
   1824         if (Res.isUsable()) {
   1825           Ex = move(Res);
   1826           Type = Ex.get()->getType();
   1827         }
   1828       }
   1829       else if (ObjectPtrConversions.size() > 1) {
   1830         Diag(StartLoc, diag::err_ambiguous_delete_operand)
   1831               << Type << Ex.get()->getSourceRange();
   1832         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
   1833           NoteOverloadCandidate(ObjectPtrConversions[i]);
   1834         return ExprError();
   1835       }
   1836     }
   1837 
   1838     if (!Type->isPointerType())
   1839       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   1840         << Type << Ex.get()->getSourceRange());
   1841 
   1842     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
   1843     if (Pointee->isVoidType() && !isSFINAEContext()) {
   1844       // The C++ standard bans deleting a pointer to a non-object type, which
   1845       // effectively bans deletion of "void*". However, most compilers support
   1846       // this, so we treat it as a warning unless we're in a SFINAE context.
   1847       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
   1848         << Type << Ex.get()->getSourceRange();
   1849     } else if (Pointee->isFunctionType() || Pointee->isVoidType())
   1850       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   1851         << Type << Ex.get()->getSourceRange());
   1852     else if (!Pointee->isDependentType() &&
   1853              RequireCompleteType(StartLoc, Pointee,
   1854                                  PDiag(diag::warn_delete_incomplete)
   1855                                    << Ex.get()->getSourceRange()))
   1856       return ExprError();
   1857     else if (unsigned AddressSpace = Pointee.getAddressSpace())
   1858       return Diag(Ex.get()->getLocStart(),
   1859                   diag::err_address_space_qualified_delete)
   1860                << Pointee.getUnqualifiedType() << AddressSpace;
   1861     // C++ [expr.delete]p2:
   1862     //   [Note: a pointer to a const type can be the operand of a
   1863     //   delete-expression; it is not necessary to cast away the constness
   1864     //   (5.2.11) of the pointer expression before it is used as the operand
   1865     //   of the delete-expression. ]
   1866     if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
   1867       Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy, CK_NoOp,
   1868                                           Ex.take(), 0, VK_RValue));
   1869 
   1870     if (Pointee->isArrayType() && !ArrayForm) {
   1871       Diag(StartLoc, diag::warn_delete_array_type)
   1872           << Type << Ex.get()->getSourceRange()
   1873           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
   1874       ArrayForm = true;
   1875     }
   1876 
   1877     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   1878                                       ArrayForm ? OO_Array_Delete : OO_Delete);
   1879 
   1880     QualType PointeeElem = Context.getBaseElementType(Pointee);
   1881     if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
   1882       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1883 
   1884       if (!UseGlobal &&
   1885           FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
   1886         return ExprError();
   1887 
   1888       // If we're allocating an array of records, check whether the
   1889       // usual operator delete[] has a size_t parameter.
   1890       if (ArrayForm) {
   1891         // If the user specifically asked to use the global allocator,
   1892         // we'll need to do the lookup into the class.
   1893         if (UseGlobal)
   1894           UsualArrayDeleteWantsSize =
   1895             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
   1896 
   1897         // Otherwise, the usual operator delete[] should be the
   1898         // function we just found.
   1899         else if (isa<CXXMethodDecl>(OperatorDelete))
   1900           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
   1901       }
   1902 
   1903       if (!RD->hasTrivialDestructor())
   1904         if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
   1905           MarkDeclarationReferenced(StartLoc,
   1906                                     const_cast<CXXDestructorDecl*>(Dtor));
   1907           DiagnoseUseOfDecl(Dtor, StartLoc);
   1908         }
   1909 
   1910       // C++ [expr.delete]p3:
   1911       //   In the first alternative (delete object), if the static type of the
   1912       //   object to be deleted is different from its dynamic type, the static
   1913       //   type shall be a base class of the dynamic type of the object to be
   1914       //   deleted and the static type shall have a virtual destructor or the
   1915       //   behavior is undefined.
   1916       //
   1917       // Note: a final class cannot be derived from, no issue there
   1918       if (!ArrayForm && RD->isPolymorphic() && !RD->hasAttr<FinalAttr>()) {
   1919         CXXDestructorDecl *dtor = RD->getDestructor();
   1920         if (!dtor || !dtor->isVirtual())
   1921           Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
   1922       }
   1923 
   1924     } else if (getLangOptions().ObjCAutoRefCount &&
   1925                PointeeElem->isObjCLifetimeType() &&
   1926                (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
   1927                 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
   1928                ArrayForm) {
   1929       Diag(StartLoc, diag::warn_err_new_delete_object_array)
   1930         << 1 << PointeeElem;
   1931     }
   1932 
   1933     if (!OperatorDelete) {
   1934       // Look for a global declaration.
   1935       DeclareGlobalNewDelete();
   1936       DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1937       Expr *Arg = Ex.get();
   1938       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
   1939                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
   1940                                  OperatorDelete))
   1941         return ExprError();
   1942     }
   1943 
   1944     MarkDeclarationReferenced(StartLoc, OperatorDelete);
   1945 
   1946     // Check access and ambiguity of operator delete and destructor.
   1947     if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
   1948       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1949       if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
   1950           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
   1951                       PDiag(diag::err_access_dtor) << PointeeElem);
   1952       }
   1953     }
   1954 
   1955   }
   1956 
   1957   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
   1958                                            ArrayFormAsWritten,
   1959                                            UsualArrayDeleteWantsSize,
   1960                                            OperatorDelete, Ex.take(), StartLoc));
   1961 }
   1962 
   1963 /// \brief Check the use of the given variable as a C++ condition in an if,
   1964 /// while, do-while, or switch statement.
   1965 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
   1966                                         SourceLocation StmtLoc,
   1967                                         bool ConvertToBoolean) {
   1968   QualType T = ConditionVar->getType();
   1969 
   1970   // C++ [stmt.select]p2:
   1971   //   The declarator shall not specify a function or an array.
   1972   if (T->isFunctionType())
   1973     return ExprError(Diag(ConditionVar->getLocation(),
   1974                           diag::err_invalid_use_of_function_type)
   1975                        << ConditionVar->getSourceRange());
   1976   else if (T->isArrayType())
   1977     return ExprError(Diag(ConditionVar->getLocation(),
   1978                           diag::err_invalid_use_of_array_type)
   1979                      << ConditionVar->getSourceRange());
   1980 
   1981   ExprResult Condition =
   1982     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
   1983                                         ConditionVar,
   1984                                         ConditionVar->getLocation(),
   1985                             ConditionVar->getType().getNonReferenceType(),
   1986                               VK_LValue));
   1987   if (ConvertToBoolean) {
   1988     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
   1989     if (Condition.isInvalid())
   1990       return ExprError();
   1991   }
   1992 
   1993   return move(Condition);
   1994 }
   1995 
   1996 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
   1997 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
   1998   // C++ 6.4p4:
   1999   // The value of a condition that is an initialized declaration in a statement
   2000   // other than a switch statement is the value of the declared variable
   2001   // implicitly converted to type bool. If that conversion is ill-formed, the
   2002   // program is ill-formed.
   2003   // The value of a condition that is an expression is the value of the
   2004   // expression, implicitly converted to bool.
   2005   //
   2006   return PerformContextuallyConvertToBool(CondExpr);
   2007 }
   2008 
   2009 /// Helper function to determine whether this is the (deprecated) C++
   2010 /// conversion from a string literal to a pointer to non-const char or
   2011 /// non-const wchar_t (for narrow and wide string literals,
   2012 /// respectively).
   2013 bool
   2014 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
   2015   // Look inside the implicit cast, if it exists.
   2016   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
   2017     From = Cast->getSubExpr();
   2018 
   2019   // A string literal (2.13.4) that is not a wide string literal can
   2020   // be converted to an rvalue of type "pointer to char"; a wide
   2021   // string literal can be converted to an rvalue of type "pointer
   2022   // to wchar_t" (C++ 4.2p2).
   2023   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
   2024     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
   2025       if (const BuiltinType *ToPointeeType
   2026           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
   2027         // This conversion is considered only when there is an
   2028         // explicit appropriate pointer target type (C++ 4.2p2).
   2029         if (!ToPtrType->getPointeeType().hasQualifiers() &&
   2030             ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
   2031              (!StrLit->isWide() &&
   2032               (ToPointeeType->getKind() == BuiltinType::Char_U ||
   2033                ToPointeeType->getKind() == BuiltinType::Char_S))))
   2034           return true;
   2035       }
   2036 
   2037   return false;
   2038 }
   2039 
   2040 static ExprResult BuildCXXCastArgument(Sema &S,
   2041                                        SourceLocation CastLoc,
   2042                                        QualType Ty,
   2043                                        CastKind Kind,
   2044                                        CXXMethodDecl *Method,
   2045                                        NamedDecl *FoundDecl,
   2046                                        Expr *From) {
   2047   switch (Kind) {
   2048   default: assert(0 && "Unhandled cast kind!");
   2049   case CK_ConstructorConversion: {
   2050     ASTOwningVector<Expr*> ConstructorArgs(S);
   2051 
   2052     if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
   2053                                   MultiExprArg(&From, 1),
   2054                                   CastLoc, ConstructorArgs))
   2055       return ExprError();
   2056 
   2057     ExprResult Result =
   2058     S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
   2059                             move_arg(ConstructorArgs),
   2060                             /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
   2061                             SourceRange());
   2062     if (Result.isInvalid())
   2063       return ExprError();
   2064 
   2065     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
   2066   }
   2067 
   2068   case CK_UserDefinedConversion: {
   2069     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
   2070 
   2071     // Create an implicit call expr that calls it.
   2072     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
   2073     if (Result.isInvalid())
   2074       return ExprError();
   2075 
   2076     return S.MaybeBindToTemporary(Result.get());
   2077   }
   2078   }
   2079 }
   2080 
   2081 /// PerformImplicitConversion - Perform an implicit conversion of the
   2082 /// expression From to the type ToType using the pre-computed implicit
   2083 /// conversion sequence ICS. Returns the converted
   2084 /// expression. Action is the kind of conversion we're performing,
   2085 /// used in the error message.
   2086 ExprResult
   2087 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2088                                 const ImplicitConversionSequence &ICS,
   2089                                 AssignmentAction Action,
   2090                                 CheckedConversionKind CCK) {
   2091   switch (ICS.getKind()) {
   2092   case ImplicitConversionSequence::StandardConversion: {
   2093     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
   2094                                                Action, CCK);
   2095     if (Res.isInvalid())
   2096       return ExprError();
   2097     From = Res.take();
   2098     break;
   2099   }
   2100 
   2101   case ImplicitConversionSequence::UserDefinedConversion: {
   2102 
   2103       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
   2104       CastKind CastKind;
   2105       QualType BeforeToType;
   2106       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
   2107         CastKind = CK_UserDefinedConversion;
   2108 
   2109         // If the user-defined conversion is specified by a conversion function,
   2110         // the initial standard conversion sequence converts the source type to
   2111         // the implicit object parameter of the conversion function.
   2112         BeforeToType = Context.getTagDeclType(Conv->getParent());
   2113       } else {
   2114         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
   2115         CastKind = CK_ConstructorConversion;
   2116         // Do no conversion if dealing with ... for the first conversion.
   2117         if (!ICS.UserDefined.EllipsisConversion) {
   2118           // If the user-defined conversion is specified by a constructor, the
   2119           // initial standard conversion sequence converts the source type to the
   2120           // type required by the argument of the constructor
   2121           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
   2122         }
   2123       }
   2124       // Watch out for elipsis conversion.
   2125       if (!ICS.UserDefined.EllipsisConversion) {
   2126         ExprResult Res =
   2127           PerformImplicitConversion(From, BeforeToType,
   2128                                     ICS.UserDefined.Before, AA_Converting,
   2129                                     CCK);
   2130         if (Res.isInvalid())
   2131           return ExprError();
   2132         From = Res.take();
   2133       }
   2134 
   2135       ExprResult CastArg
   2136         = BuildCXXCastArgument(*this,
   2137                                From->getLocStart(),
   2138                                ToType.getNonReferenceType(),
   2139                                CastKind, cast<CXXMethodDecl>(FD),
   2140                                ICS.UserDefined.FoundConversionFunction,
   2141                                From);
   2142 
   2143       if (CastArg.isInvalid())
   2144         return ExprError();
   2145 
   2146       From = CastArg.take();
   2147 
   2148       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
   2149                                        AA_Converting, CCK);
   2150   }
   2151 
   2152   case ImplicitConversionSequence::AmbiguousConversion:
   2153     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
   2154                           PDiag(diag::err_typecheck_ambiguous_condition)
   2155                             << From->getSourceRange());
   2156      return ExprError();
   2157 
   2158   case ImplicitConversionSequence::EllipsisConversion:
   2159     assert(false && "Cannot perform an ellipsis conversion");
   2160     return Owned(From);
   2161 
   2162   case ImplicitConversionSequence::BadConversion:
   2163     return ExprError();
   2164   }
   2165 
   2166   // Everything went well.
   2167   return Owned(From);
   2168 }
   2169 
   2170 /// PerformImplicitConversion - Perform an implicit conversion of the
   2171 /// expression From to the type ToType by following the standard
   2172 /// conversion sequence SCS. Returns the converted
   2173 /// expression. Flavor is the context in which we're performing this
   2174 /// conversion, for use in error messages.
   2175 ExprResult
   2176 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2177                                 const StandardConversionSequence& SCS,
   2178                                 AssignmentAction Action,
   2179                                 CheckedConversionKind CCK) {
   2180   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
   2181 
   2182   // Overall FIXME: we are recomputing too many types here and doing far too
   2183   // much extra work. What this means is that we need to keep track of more
   2184   // information that is computed when we try the implicit conversion initially,
   2185   // so that we don't need to recompute anything here.
   2186   QualType FromType = From->getType();
   2187 
   2188   if (SCS.CopyConstructor) {
   2189     // FIXME: When can ToType be a reference type?
   2190     assert(!ToType->isReferenceType());
   2191     if (SCS.Second == ICK_Derived_To_Base) {
   2192       ASTOwningVector<Expr*> ConstructorArgs(*this);
   2193       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
   2194                                   MultiExprArg(*this, &From, 1),
   2195                                   /*FIXME:ConstructLoc*/SourceLocation(),
   2196                                   ConstructorArgs))
   2197         return ExprError();
   2198       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2199                                    ToType, SCS.CopyConstructor,
   2200                                    move_arg(ConstructorArgs),
   2201                                    /*ZeroInit*/ false,
   2202                                    CXXConstructExpr::CK_Complete,
   2203                                    SourceRange());
   2204     }
   2205     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2206                                  ToType, SCS.CopyConstructor,
   2207                                  MultiExprArg(*this, &From, 1),
   2208                                  /*ZeroInit*/ false,
   2209                                  CXXConstructExpr::CK_Complete,
   2210                                  SourceRange());
   2211   }
   2212 
   2213   // Resolve overloaded function references.
   2214   if (Context.hasSameType(FromType, Context.OverloadTy)) {
   2215     DeclAccessPair Found;
   2216     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
   2217                                                           true, Found);
   2218     if (!Fn)
   2219       return ExprError();
   2220 
   2221     if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
   2222       return ExprError();
   2223 
   2224     From = FixOverloadedFunctionReference(From, Found, Fn);
   2225     FromType = From->getType();
   2226   }
   2227 
   2228   // Perform the first implicit conversion.
   2229   switch (SCS.First) {
   2230   case ICK_Identity:
   2231     // Nothing to do.
   2232     break;
   2233 
   2234   case ICK_Lvalue_To_Rvalue:
   2235     // Should this get its own ICK?
   2236     if (From->getObjectKind() == OK_ObjCProperty) {
   2237       ExprResult FromRes = ConvertPropertyForRValue(From);
   2238       if (FromRes.isInvalid())
   2239         return ExprError();
   2240       From = FromRes.take();
   2241       if (!From->isGLValue()) break;
   2242     }
   2243 
   2244     // Check for trivial buffer overflows.
   2245     CheckArrayAccess(From);
   2246 
   2247     FromType = FromType.getUnqualifiedType();
   2248     From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
   2249                                     From, 0, VK_RValue);
   2250     break;
   2251 
   2252   case ICK_Array_To_Pointer:
   2253     FromType = Context.getArrayDecayedType(FromType);
   2254     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
   2255                              VK_RValue, /*BasePath=*/0, CCK).take();
   2256     break;
   2257 
   2258   case ICK_Function_To_Pointer:
   2259     FromType = Context.getPointerType(FromType);
   2260     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
   2261                              VK_RValue, /*BasePath=*/0, CCK).take();
   2262     break;
   2263 
   2264   default:
   2265     assert(false && "Improper first standard conversion");
   2266     break;
   2267   }
   2268 
   2269   // Perform the second implicit conversion
   2270   switch (SCS.Second) {
   2271   case ICK_Identity:
   2272     // If both sides are functions (or pointers/references to them), there could
   2273     // be incompatible exception declarations.
   2274     if (CheckExceptionSpecCompatibility(From, ToType))
   2275       return ExprError();
   2276     // Nothing else to do.
   2277     break;
   2278 
   2279   case ICK_NoReturn_Adjustment:
   2280     // If both sides are functions (or pointers/references to them), there could
   2281     // be incompatible exception declarations.
   2282     if (CheckExceptionSpecCompatibility(From, ToType))
   2283       return ExprError();
   2284 
   2285     From = ImpCastExprToType(From, ToType, CK_NoOp,
   2286                              VK_RValue, /*BasePath=*/0, CCK).take();
   2287     break;
   2288 
   2289   case ICK_Integral_Promotion:
   2290   case ICK_Integral_Conversion:
   2291     From = ImpCastExprToType(From, ToType, CK_IntegralCast,
   2292                              VK_RValue, /*BasePath=*/0, CCK).take();
   2293     break;
   2294 
   2295   case ICK_Floating_Promotion:
   2296   case ICK_Floating_Conversion:
   2297     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
   2298                              VK_RValue, /*BasePath=*/0, CCK).take();
   2299     break;
   2300 
   2301   case ICK_Complex_Promotion:
   2302   case ICK_Complex_Conversion: {
   2303     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
   2304     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
   2305     CastKind CK;
   2306     if (FromEl->isRealFloatingType()) {
   2307       if (ToEl->isRealFloatingType())
   2308         CK = CK_FloatingComplexCast;
   2309       else
   2310         CK = CK_FloatingComplexToIntegralComplex;
   2311     } else if (ToEl->isRealFloatingType()) {
   2312       CK = CK_IntegralComplexToFloatingComplex;
   2313     } else {
   2314       CK = CK_IntegralComplexCast;
   2315     }
   2316     From = ImpCastExprToType(From, ToType, CK,
   2317                              VK_RValue, /*BasePath=*/0, CCK).take();
   2318     break;
   2319   }
   2320 
   2321   case ICK_Floating_Integral:
   2322     if (ToType->isRealFloatingType())
   2323       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
   2324                                VK_RValue, /*BasePath=*/0, CCK).take();
   2325     else
   2326       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
   2327                                VK_RValue, /*BasePath=*/0, CCK).take();
   2328     break;
   2329 
   2330   case ICK_Compatible_Conversion:
   2331       From = ImpCastExprToType(From, ToType, CK_NoOp,
   2332                                VK_RValue, /*BasePath=*/0, CCK).take();
   2333     break;
   2334 
   2335   case ICK_Writeback_Conversion:
   2336   case ICK_Pointer_Conversion: {
   2337     if (SCS.IncompatibleObjC && Action != AA_Casting) {
   2338       // Diagnose incompatible Objective-C conversions
   2339       if (Action == AA_Initializing || Action == AA_Assigning)
   2340         Diag(From->getSourceRange().getBegin(),
   2341              diag::ext_typecheck_convert_incompatible_pointer)
   2342           << ToType << From->getType() << Action
   2343           << From->getSourceRange();
   2344       else
   2345         Diag(From->getSourceRange().getBegin(),
   2346              diag::ext_typecheck_convert_incompatible_pointer)
   2347           << From->getType() << ToType << Action
   2348           << From->getSourceRange();
   2349 
   2350       if (From->getType()->isObjCObjectPointerType() &&
   2351           ToType->isObjCObjectPointerType())
   2352         EmitRelatedResultTypeNote(From);
   2353     }
   2354     else if (getLangOptions().ObjCAutoRefCount &&
   2355              !CheckObjCARCUnavailableWeakConversion(ToType,
   2356                                                     From->getType())) {
   2357            if (Action == AA_Initializing)
   2358              Diag(From->getSourceRange().getBegin(),
   2359                   diag::err_arc_weak_unavailable_assign);
   2360            else
   2361              Diag(From->getSourceRange().getBegin(),
   2362                   diag::err_arc_convesion_of_weak_unavailable)
   2363                   << (Action == AA_Casting) << From->getType() << ToType
   2364                   << From->getSourceRange();
   2365          }
   2366 
   2367     CastKind Kind = CK_Invalid;
   2368     CXXCastPath BasePath;
   2369     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2370       return ExprError();
   2371     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2372              .take();
   2373     break;
   2374   }
   2375 
   2376   case ICK_Pointer_Member: {
   2377     CastKind Kind = CK_Invalid;
   2378     CXXCastPath BasePath;
   2379     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2380       return ExprError();
   2381     if (CheckExceptionSpecCompatibility(From, ToType))
   2382       return ExprError();
   2383     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2384              .take();
   2385     break;
   2386   }
   2387 
   2388   case ICK_Boolean_Conversion:
   2389     From = ImpCastExprToType(From, Context.BoolTy,
   2390                              ScalarTypeToBooleanCastKind(FromType),
   2391                              VK_RValue, /*BasePath=*/0, CCK).take();
   2392     break;
   2393 
   2394   case ICK_Derived_To_Base: {
   2395     CXXCastPath BasePath;
   2396     if (CheckDerivedToBaseConversion(From->getType(),
   2397                                      ToType.getNonReferenceType(),
   2398                                      From->getLocStart(),
   2399                                      From->getSourceRange(),
   2400                                      &BasePath,
   2401                                      CStyle))
   2402       return ExprError();
   2403 
   2404     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
   2405                       CK_DerivedToBase, CastCategory(From),
   2406                       &BasePath, CCK).take();
   2407     break;
   2408   }
   2409 
   2410   case ICK_Vector_Conversion:
   2411     From = ImpCastExprToType(From, ToType, CK_BitCast,
   2412                              VK_RValue, /*BasePath=*/0, CCK).take();
   2413     break;
   2414 
   2415   case ICK_Vector_Splat:
   2416     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
   2417                              VK_RValue, /*BasePath=*/0, CCK).take();
   2418     break;
   2419 
   2420   case ICK_Complex_Real:
   2421     // Case 1.  x -> _Complex y
   2422     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
   2423       QualType ElType = ToComplex->getElementType();
   2424       bool isFloatingComplex = ElType->isRealFloatingType();
   2425 
   2426       // x -> y
   2427       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
   2428         // do nothing
   2429       } else if (From->getType()->isRealFloatingType()) {
   2430         From = ImpCastExprToType(From, ElType,
   2431                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
   2432       } else {
   2433         assert(From->getType()->isIntegerType());
   2434         From = ImpCastExprToType(From, ElType,
   2435                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
   2436       }
   2437       // y -> _Complex y
   2438       From = ImpCastExprToType(From, ToType,
   2439                    isFloatingComplex ? CK_FloatingRealToComplex
   2440                                      : CK_IntegralRealToComplex).take();
   2441 
   2442     // Case 2.  _Complex x -> y
   2443     } else {
   2444       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
   2445       assert(FromComplex);
   2446 
   2447       QualType ElType = FromComplex->getElementType();
   2448       bool isFloatingComplex = ElType->isRealFloatingType();
   2449 
   2450       // _Complex x -> x
   2451       From = ImpCastExprToType(From, ElType,
   2452                    isFloatingComplex ? CK_FloatingComplexToReal
   2453                                      : CK_IntegralComplexToReal,
   2454                                VK_RValue, /*BasePath=*/0, CCK).take();
   2455 
   2456       // x -> y
   2457       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
   2458         // do nothing
   2459       } else if (ToType->isRealFloatingType()) {
   2460         From = ImpCastExprToType(From, ToType,
   2461                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
   2462                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2463       } else {
   2464         assert(ToType->isIntegerType());
   2465         From = ImpCastExprToType(From, ToType,
   2466                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
   2467                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2468       }
   2469     }
   2470     break;
   2471 
   2472   case ICK_Block_Pointer_Conversion: {
   2473     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
   2474                              VK_RValue, /*BasePath=*/0, CCK).take();
   2475     break;
   2476   }
   2477 
   2478   case ICK_TransparentUnionConversion: {
   2479     ExprResult FromRes = Owned(From);
   2480     Sema::AssignConvertType ConvTy =
   2481       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
   2482     if (FromRes.isInvalid())
   2483       return ExprError();
   2484     From = FromRes.take();
   2485     assert ((ConvTy == Sema::Compatible) &&
   2486             "Improper transparent union conversion");
   2487     (void)ConvTy;
   2488     break;
   2489   }
   2490 
   2491   case ICK_Lvalue_To_Rvalue:
   2492   case ICK_Array_To_Pointer:
   2493   case ICK_Function_To_Pointer:
   2494   case ICK_Qualification:
   2495   case ICK_Num_Conversion_Kinds:
   2496     assert(false && "Improper second standard conversion");
   2497     break;
   2498   }
   2499 
   2500   switch (SCS.Third) {
   2501   case ICK_Identity:
   2502     // Nothing to do.
   2503     break;
   2504 
   2505   case ICK_Qualification: {
   2506     // The qualification keeps the category of the inner expression, unless the
   2507     // target type isn't a reference.
   2508     ExprValueKind VK = ToType->isReferenceType() ?
   2509                                   CastCategory(From) : VK_RValue;
   2510     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
   2511                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
   2512 
   2513     if (SCS.DeprecatedStringLiteralToCharPtr &&
   2514         !getLangOptions().WritableStrings)
   2515       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
   2516         << ToType.getNonReferenceType();
   2517 
   2518     break;
   2519     }
   2520 
   2521   default:
   2522     assert(false && "Improper third standard conversion");
   2523     break;
   2524   }
   2525 
   2526   return Owned(From);
   2527 }
   2528 
   2529 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
   2530                                      SourceLocation KWLoc,
   2531                                      ParsedType Ty,
   2532                                      SourceLocation RParen) {
   2533   TypeSourceInfo *TSInfo;
   2534   QualType T = GetTypeFromParser(Ty, &TSInfo);
   2535 
   2536   if (!TSInfo)
   2537     TSInfo = Context.getTrivialTypeSourceInfo(T);
   2538   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
   2539 }
   2540 
   2541 /// \brief Check the completeness of a type in a unary type trait.
   2542 ///
   2543 /// If the particular type trait requires a complete type, tries to complete
   2544 /// it. If completing the type fails, a diagnostic is emitted and false
   2545 /// returned. If completing the type succeeds or no completion was required,
   2546 /// returns true.
   2547 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
   2548                                                 UnaryTypeTrait UTT,
   2549                                                 SourceLocation Loc,
   2550                                                 QualType ArgTy) {
   2551   // C++0x [meta.unary.prop]p3:
   2552   //   For all of the class templates X declared in this Clause, instantiating
   2553   //   that template with a template argument that is a class template
   2554   //   specialization may result in the implicit instantiation of the template
   2555   //   argument if and only if the semantics of X require that the argument
   2556   //   must be a complete type.
   2557   // We apply this rule to all the type trait expressions used to implement
   2558   // these class templates. We also try to follow any GCC documented behavior
   2559   // in these expressions to ensure portability of standard libraries.
   2560   switch (UTT) {
   2561     // is_complete_type somewhat obviously cannot require a complete type.
   2562   case UTT_IsCompleteType:
   2563     // Fall-through
   2564 
   2565     // These traits are modeled on the type predicates in C++0x
   2566     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
   2567     // requiring a complete type, as whether or not they return true cannot be
   2568     // impacted by the completeness of the type.
   2569   case UTT_IsVoid:
   2570   case UTT_IsIntegral:
   2571   case UTT_IsFloatingPoint:
   2572   case UTT_IsArray:
   2573   case UTT_IsPointer:
   2574   case UTT_IsLvalueReference:
   2575   case UTT_IsRvalueReference:
   2576   case UTT_IsMemberFunctionPointer:
   2577   case UTT_IsMemberObjectPointer:
   2578   case UTT_IsEnum:
   2579   case UTT_IsUnion:
   2580   case UTT_IsClass:
   2581   case UTT_IsFunction:
   2582   case UTT_IsReference:
   2583   case UTT_IsArithmetic:
   2584   case UTT_IsFundamental:
   2585   case UTT_IsObject:
   2586   case UTT_IsScalar:
   2587   case UTT_IsCompound:
   2588   case UTT_IsMemberPointer:
   2589     // Fall-through
   2590 
   2591     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
   2592     // which requires some of its traits to have the complete type. However,
   2593     // the completeness of the type cannot impact these traits' semantics, and
   2594     // so they don't require it. This matches the comments on these traits in
   2595     // Table 49.
   2596   case UTT_IsConst:
   2597   case UTT_IsVolatile:
   2598   case UTT_IsSigned:
   2599   case UTT_IsUnsigned:
   2600     return true;
   2601 
   2602     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
   2603     // applied to a complete type.
   2604   case UTT_IsTrivial:
   2605   case UTT_IsTriviallyCopyable:
   2606   case UTT_IsStandardLayout:
   2607   case UTT_IsPOD:
   2608   case UTT_IsLiteral:
   2609   case UTT_IsEmpty:
   2610   case UTT_IsPolymorphic:
   2611   case UTT_IsAbstract:
   2612     // Fall-through
   2613 
   2614     // These trait expressions are designed to help implement predicates in
   2615     // [meta.unary.prop] despite not being named the same. They are specified
   2616     // by both GCC and the Embarcadero C++ compiler, and require the complete
   2617     // type due to the overarching C++0x type predicates being implemented
   2618     // requiring the complete type.
   2619   case UTT_HasNothrowAssign:
   2620   case UTT_HasNothrowConstructor:
   2621   case UTT_HasNothrowCopy:
   2622   case UTT_HasTrivialAssign:
   2623   case UTT_HasTrivialDefaultConstructor:
   2624   case UTT_HasTrivialCopy:
   2625   case UTT_HasTrivialDestructor:
   2626   case UTT_HasVirtualDestructor:
   2627     // Arrays of unknown bound are expressly allowed.
   2628     QualType ElTy = ArgTy;
   2629     if (ArgTy->isIncompleteArrayType())
   2630       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
   2631 
   2632     // The void type is expressly allowed.
   2633     if (ElTy->isVoidType())
   2634       return true;
   2635 
   2636     return !S.RequireCompleteType(
   2637       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
   2638   }
   2639   llvm_unreachable("Type trait not handled by switch");
   2640 }
   2641 
   2642 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
   2643                                    SourceLocation KeyLoc, QualType T) {
   2644   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   2645 
   2646   ASTContext &C = Self.Context;
   2647   switch(UTT) {
   2648     // Type trait expressions corresponding to the primary type category
   2649     // predicates in C++0x [meta.unary.cat].
   2650   case UTT_IsVoid:
   2651     return T->isVoidType();
   2652   case UTT_IsIntegral:
   2653     return T->isIntegralType(C);
   2654   case UTT_IsFloatingPoint:
   2655     return T->isFloatingType();
   2656   case UTT_IsArray:
   2657     return T->isArrayType();
   2658   case UTT_IsPointer:
   2659     return T->isPointerType();
   2660   case UTT_IsLvalueReference:
   2661     return T->isLValueReferenceType();
   2662   case UTT_IsRvalueReference:
   2663     return T->isRValueReferenceType();
   2664   case UTT_IsMemberFunctionPointer:
   2665     return T->isMemberFunctionPointerType();
   2666   case UTT_IsMemberObjectPointer:
   2667     return T->isMemberDataPointerType();
   2668   case UTT_IsEnum:
   2669     return T->isEnumeralType();
   2670   case UTT_IsUnion:
   2671     return T->isUnionType();
   2672   case UTT_IsClass:
   2673     return T->isClassType() || T->isStructureType();
   2674   case UTT_IsFunction:
   2675     return T->isFunctionType();
   2676 
   2677     // Type trait expressions which correspond to the convenient composition
   2678     // predicates in C++0x [meta.unary.comp].
   2679   case UTT_IsReference:
   2680     return T->isReferenceType();
   2681   case UTT_IsArithmetic:
   2682     return T->isArithmeticType() && !T->isEnumeralType();
   2683   case UTT_IsFundamental:
   2684     return T->isFundamentalType();
   2685   case UTT_IsObject:
   2686     return T->isObjectType();
   2687   case UTT_IsScalar:
   2688     // Note: semantic analysis depends on Objective-C lifetime types to be
   2689     // considered scalar types. However, such types do not actually behave
   2690     // like scalar types at run time (since they may require retain/release
   2691     // operations), so we report them as non-scalar.
   2692     if (T->isObjCLifetimeType()) {
   2693       switch (T.getObjCLifetime()) {
   2694       case Qualifiers::OCL_None:
   2695       case Qualifiers::OCL_ExplicitNone:
   2696         return true;
   2697 
   2698       case Qualifiers::OCL_Strong:
   2699       case Qualifiers::OCL_Weak:
   2700       case Qualifiers::OCL_Autoreleasing:
   2701         return false;
   2702       }
   2703     }
   2704 
   2705     return T->isScalarType();
   2706   case UTT_IsCompound:
   2707     return T->isCompoundType();
   2708   case UTT_IsMemberPointer:
   2709     return T->isMemberPointerType();
   2710 
   2711     // Type trait expressions which correspond to the type property predicates
   2712     // in C++0x [meta.unary.prop].
   2713   case UTT_IsConst:
   2714     return T.isConstQualified();
   2715   case UTT_IsVolatile:
   2716     return T.isVolatileQualified();
   2717   case UTT_IsTrivial:
   2718     return T.isTrivialType(Self.Context);
   2719   case UTT_IsTriviallyCopyable:
   2720     return T.isTriviallyCopyableType(Self.Context);
   2721   case UTT_IsStandardLayout:
   2722     return T->isStandardLayoutType();
   2723   case UTT_IsPOD:
   2724     return T.isPODType(Self.Context);
   2725   case UTT_IsLiteral:
   2726     return T->isLiteralType();
   2727   case UTT_IsEmpty:
   2728     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   2729       return !RD->isUnion() && RD->isEmpty();
   2730     return false;
   2731   case UTT_IsPolymorphic:
   2732     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   2733       return RD->isPolymorphic();
   2734     return false;
   2735   case UTT_IsAbstract:
   2736     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   2737       return RD->isAbstract();
   2738     return false;
   2739   case UTT_IsSigned:
   2740     return T->isSignedIntegerType();
   2741   case UTT_IsUnsigned:
   2742     return T->isUnsignedIntegerType();
   2743 
   2744     // Type trait expressions which query classes regarding their construction,
   2745     // destruction, and copying. Rather than being based directly on the
   2746     // related type predicates in the standard, they are specified by both
   2747     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
   2748     // specifications.
   2749     //
   2750     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
   2751     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   2752   case UTT_HasTrivialDefaultConstructor:
   2753     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   2754     //   If __is_pod (type) is true then the trait is true, else if type is
   2755     //   a cv class or union type (or array thereof) with a trivial default
   2756     //   constructor ([class.ctor]) then the trait is true, else it is false.
   2757     if (T.isPODType(Self.Context))
   2758       return true;
   2759     if (const RecordType *RT =
   2760           C.getBaseElementType(T)->getAs<RecordType>())
   2761       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
   2762     return false;
   2763   case UTT_HasTrivialCopy:
   2764     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   2765     //   If __is_pod (type) is true or type is a reference type then
   2766     //   the trait is true, else if type is a cv class or union type
   2767     //   with a trivial copy constructor ([class.copy]) then the trait
   2768     //   is true, else it is false.
   2769     if (T.isPODType(Self.Context) || T->isReferenceType())
   2770       return true;
   2771     if (const RecordType *RT = T->getAs<RecordType>())
   2772       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
   2773     return false;
   2774   case UTT_HasTrivialAssign:
   2775     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   2776     //   If type is const qualified or is a reference type then the
   2777     //   trait is false. Otherwise if __is_pod (type) is true then the
   2778     //   trait is true, else if type is a cv class or union type with
   2779     //   a trivial copy assignment ([class.copy]) then the trait is
   2780     //   true, else it is false.
   2781     // Note: the const and reference restrictions are interesting,
   2782     // given that const and reference members don't prevent a class
   2783     // from having a trivial copy assignment operator (but do cause
   2784     // errors if the copy assignment operator is actually used, q.v.
   2785     // [class.copy]p12).
   2786 
   2787     if (C.getBaseElementType(T).isConstQualified())
   2788       return false;
   2789     if (T.isPODType(Self.Context))
   2790       return true;
   2791     if (const RecordType *RT = T->getAs<RecordType>())
   2792       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
   2793     return false;
   2794   case UTT_HasTrivialDestructor:
   2795     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   2796     //   If __is_pod (type) is true or type is a reference type
   2797     //   then the trait is true, else if type is a cv class or union
   2798     //   type (or array thereof) with a trivial destructor
   2799     //   ([class.dtor]) then the trait is true, else it is
   2800     //   false.
   2801     if (T.isPODType(Self.Context) || T->isReferenceType())
   2802       return true;
   2803 
   2804     // Objective-C++ ARC: autorelease types don't require destruction.
   2805     if (T->isObjCLifetimeType() &&
   2806         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
   2807       return true;
   2808 
   2809     if (const RecordType *RT =
   2810           C.getBaseElementType(T)->getAs<RecordType>())
   2811       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
   2812     return false;
   2813   // TODO: Propagate nothrowness for implicitly declared special members.
   2814   case UTT_HasNothrowAssign:
   2815     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   2816     //   If type is const qualified or is a reference type then the
   2817     //   trait is false. Otherwise if __has_trivial_assign (type)
   2818     //   is true then the trait is true, else if type is a cv class
   2819     //   or union type with copy assignment operators that are known
   2820     //   not to throw an exception then the trait is true, else it is
   2821     //   false.
   2822     if (C.getBaseElementType(T).isConstQualified())
   2823       return false;
   2824     if (T->isReferenceType())
   2825       return false;
   2826     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
   2827       return true;
   2828     if (const RecordType *RT = T->getAs<RecordType>()) {
   2829       CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
   2830       if (RD->hasTrivialCopyAssignment())
   2831         return true;
   2832 
   2833       bool FoundAssign = false;
   2834       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
   2835       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
   2836                        Sema::LookupOrdinaryName);
   2837       if (Self.LookupQualifiedName(Res, RD)) {
   2838         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
   2839              Op != OpEnd; ++Op) {
   2840           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
   2841           if (Operator->isCopyAssignmentOperator()) {
   2842             FoundAssign = true;
   2843             const FunctionProtoType *CPT
   2844                 = Operator->getType()->getAs<FunctionProtoType>();
   2845             if (CPT->getExceptionSpecType() == EST_Delayed)
   2846               return false;
   2847             if (!CPT->isNothrow(Self.Context))
   2848               return false;
   2849           }
   2850         }
   2851       }
   2852 
   2853       return FoundAssign;
   2854     }
   2855     return false;
   2856   case UTT_HasNothrowCopy:
   2857     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   2858     //   If __has_trivial_copy (type) is true then the trait is true, else
   2859     //   if type is a cv class or union type with copy constructors that are
   2860     //   known not to throw an exception then the trait is true, else it is
   2861     //   false.
   2862     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
   2863       return true;
   2864     if (const RecordType *RT = T->getAs<RecordType>()) {
   2865       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   2866       if (RD->hasTrivialCopyConstructor())
   2867         return true;
   2868 
   2869       bool FoundConstructor = false;
   2870       unsigned FoundTQs;
   2871       DeclContext::lookup_const_iterator Con, ConEnd;
   2872       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
   2873            Con != ConEnd; ++Con) {
   2874         // A template constructor is never a copy constructor.
   2875         // FIXME: However, it may actually be selected at the actual overload
   2876         // resolution point.
   2877         if (isa<FunctionTemplateDecl>(*Con))
   2878           continue;
   2879         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   2880         if (Constructor->isCopyConstructor(FoundTQs)) {
   2881           FoundConstructor = true;
   2882           const FunctionProtoType *CPT
   2883               = Constructor->getType()->getAs<FunctionProtoType>();
   2884           if (CPT->getExceptionSpecType() == EST_Delayed)
   2885             return false;
   2886           // FIXME: check whether evaluating default arguments can throw.
   2887           // For now, we'll be conservative and assume that they can throw.
   2888           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
   2889             return false;
   2890         }
   2891       }
   2892 
   2893       return FoundConstructor;
   2894     }
   2895     return false;
   2896   case UTT_HasNothrowConstructor:
   2897     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   2898     //   If __has_trivial_constructor (type) is true then the trait is
   2899     //   true, else if type is a cv class or union type (or array
   2900     //   thereof) with a default constructor that is known not to
   2901     //   throw an exception then the trait is true, else it is false.
   2902     if (T.isPODType(C) || T->isObjCLifetimeType())
   2903       return true;
   2904     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
   2905       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   2906       if (RD->hasTrivialDefaultConstructor())
   2907         return true;
   2908 
   2909       DeclContext::lookup_const_iterator Con, ConEnd;
   2910       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
   2911            Con != ConEnd; ++Con) {
   2912         // FIXME: In C++0x, a constructor template can be a default constructor.
   2913         if (isa<FunctionTemplateDecl>(*Con))
   2914           continue;
   2915         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   2916         if (Constructor->isDefaultConstructor()) {
   2917           const FunctionProtoType *CPT
   2918               = Constructor->getType()->getAs<FunctionProtoType>();
   2919           if (CPT->getExceptionSpecType() == EST_Delayed)
   2920             return false;
   2921           // TODO: check whether evaluating default arguments can throw.
   2922           // For now, we'll be conservative and assume that they can throw.
   2923           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
   2924         }
   2925       }
   2926     }
   2927     return false;
   2928   case UTT_HasVirtualDestructor:
   2929     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   2930     //   If type is a class type with a virtual destructor ([class.dtor])
   2931     //   then the trait is true, else it is false.
   2932     if (const RecordType *Record = T->getAs<RecordType>()) {
   2933       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   2934       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
   2935         return Destructor->isVirtual();
   2936     }
   2937     return false;
   2938 
   2939     // These type trait expressions are modeled on the specifications for the
   2940     // Embarcadero C++0x type trait functions:
   2941     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   2942   case UTT_IsCompleteType:
   2943     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
   2944     //   Returns True if and only if T is a complete type at the point of the
   2945     //   function call.
   2946     return !T->isIncompleteType();
   2947   }
   2948   llvm_unreachable("Type trait not covered by switch");
   2949 }
   2950 
   2951 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
   2952                                      SourceLocation KWLoc,
   2953                                      TypeSourceInfo *TSInfo,
   2954                                      SourceLocation RParen) {
   2955   QualType T = TSInfo->getType();
   2956   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
   2957     return ExprError();
   2958 
   2959   bool Value = false;
   2960   if (!T->isDependentType())
   2961     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
   2962 
   2963   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
   2964                                                 RParen, Context.BoolTy));
   2965 }
   2966 
   2967 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
   2968                                       SourceLocation KWLoc,
   2969                                       ParsedType LhsTy,
   2970                                       ParsedType RhsTy,
   2971                                       SourceLocation RParen) {
   2972   TypeSourceInfo *LhsTSInfo;
   2973   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
   2974   if (!LhsTSInfo)
   2975     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
   2976 
   2977   TypeSourceInfo *RhsTSInfo;
   2978   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
   2979   if (!RhsTSInfo)
   2980     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
   2981 
   2982   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
   2983 }
   2984 
   2985 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
   2986                                     QualType LhsT, QualType RhsT,
   2987                                     SourceLocation KeyLoc) {
   2988   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
   2989          "Cannot evaluate traits of dependent types");
   2990 
   2991   switch(BTT) {
   2992   case BTT_IsBaseOf: {
   2993     // C++0x [meta.rel]p2
   2994     // Base is a base class of Derived without regard to cv-qualifiers or
   2995     // Base and Derived are not unions and name the same class type without
   2996     // regard to cv-qualifiers.
   2997 
   2998     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
   2999     if (!lhsRecord) return false;
   3000 
   3001     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
   3002     if (!rhsRecord) return false;
   3003 
   3004     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
   3005              == (lhsRecord == rhsRecord));
   3006 
   3007     if (lhsRecord == rhsRecord)
   3008       return !lhsRecord->getDecl()->isUnion();
   3009 
   3010     // C++0x [meta.rel]p2:
   3011     //   If Base and Derived are class types and are different types
   3012     //   (ignoring possible cv-qualifiers) then Derived shall be a
   3013     //   complete type.
   3014     if (Self.RequireCompleteType(KeyLoc, RhsT,
   3015                           diag::err_incomplete_type_used_in_type_trait_expr))
   3016       return false;
   3017 
   3018     return cast<CXXRecordDecl>(rhsRecord->getDecl())
   3019       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
   3020   }
   3021   case BTT_IsSame:
   3022     return Self.Context.hasSameType(LhsT, RhsT);
   3023   case BTT_TypeCompatible:
   3024     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
   3025                                            RhsT.getUnqualifiedType());
   3026   case BTT_IsConvertible:
   3027   case BTT_IsConvertibleTo: {
   3028     // C++0x [meta.rel]p4:
   3029     //   Given the following function prototype:
   3030     //
   3031     //     template <class T>
   3032     //       typename add_rvalue_reference<T>::type create();
   3033     //
   3034     //   the predicate condition for a template specialization
   3035     //   is_convertible<From, To> shall be satisfied if and only if
   3036     //   the return expression in the following code would be
   3037     //   well-formed, including any implicit conversions to the return
   3038     //   type of the function:
   3039     //
   3040     //     To test() {
   3041     //       return create<From>();
   3042     //     }
   3043     //
   3044     //   Access checking is performed as if in a context unrelated to To and
   3045     //   From. Only the validity of the immediate context of the expression
   3046     //   of the return-statement (including conversions to the return type)
   3047     //   is considered.
   3048     //
   3049     // We model the initialization as a copy-initialization of a temporary
   3050     // of the appropriate type, which for this expression is identical to the
   3051     // return statement (since NRVO doesn't apply).
   3052     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3053       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3054 
   3055     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
   3056     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3057                          Expr::getValueKindForType(LhsT));
   3058     Expr *FromPtr = &From;
   3059     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
   3060                                                            SourceLocation()));
   3061 
   3062     // Perform the initialization within a SFINAE trap at translation unit
   3063     // scope.
   3064     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3065     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3066     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
   3067     if (Init.Failed())
   3068       return false;
   3069 
   3070     ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
   3071     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
   3072   }
   3073   }
   3074   llvm_unreachable("Unknown type trait or not implemented");
   3075 }
   3076 
   3077 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
   3078                                       SourceLocation KWLoc,
   3079                                       TypeSourceInfo *LhsTSInfo,
   3080                                       TypeSourceInfo *RhsTSInfo,
   3081                                       SourceLocation RParen) {
   3082   QualType LhsT = LhsTSInfo->getType();
   3083   QualType RhsT = RhsTSInfo->getType();
   3084 
   3085   if (BTT == BTT_TypeCompatible) {
   3086     if (getLangOptions().CPlusPlus) {
   3087       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
   3088         << SourceRange(KWLoc, RParen);
   3089       return ExprError();
   3090     }
   3091   }
   3092 
   3093   bool Value = false;
   3094   if (!LhsT->isDependentType() && !RhsT->isDependentType())
   3095     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
   3096 
   3097   // Select trait result type.
   3098   QualType ResultType;
   3099   switch (BTT) {
   3100   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
   3101   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
   3102   case BTT_IsSame:         ResultType = Context.BoolTy; break;
   3103   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
   3104   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
   3105   }
   3106 
   3107   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
   3108                                                  RhsTSInfo, Value, RParen,
   3109                                                  ResultType));
   3110 }
   3111 
   3112 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
   3113                                      SourceLocation KWLoc,
   3114                                      ParsedType Ty,
   3115                                      Expr* DimExpr,
   3116                                      SourceLocation RParen) {
   3117   TypeSourceInfo *TSInfo;
   3118   QualType T = GetTypeFromParser(Ty, &TSInfo);
   3119   if (!TSInfo)
   3120     TSInfo = Context.getTrivialTypeSourceInfo(T);
   3121 
   3122   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
   3123 }
   3124 
   3125 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
   3126                                            QualType T, Expr *DimExpr,
   3127                                            SourceLocation KeyLoc) {
   3128   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3129 
   3130   switch(ATT) {
   3131   case ATT_ArrayRank:
   3132     if (T->isArrayType()) {
   3133       unsigned Dim = 0;
   3134       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3135         ++Dim;
   3136         T = AT->getElementType();
   3137       }
   3138       return Dim;
   3139     }
   3140     return 0;
   3141 
   3142   case ATT_ArrayExtent: {
   3143     llvm::APSInt Value;
   3144     uint64_t Dim;
   3145     if (DimExpr->isIntegerConstantExpr(Value, Self.Context, 0, false)) {
   3146       if (Value < llvm::APSInt(Value.getBitWidth(), Value.isUnsigned())) {
   3147         Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
   3148           DimExpr->getSourceRange();
   3149         return false;
   3150       }
   3151       Dim = Value.getLimitedValue();
   3152     } else {
   3153       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
   3154         DimExpr->getSourceRange();
   3155       return false;
   3156     }
   3157 
   3158     if (T->isArrayType()) {
   3159       unsigned D = 0;
   3160       bool Matched = false;
   3161       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3162         if (Dim == D) {
   3163           Matched = true;
   3164           break;
   3165         }
   3166         ++D;
   3167         T = AT->getElementType();
   3168       }
   3169 
   3170       if (Matched && T->isArrayType()) {
   3171         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
   3172           return CAT->getSize().getLimitedValue();
   3173       }
   3174     }
   3175     return 0;
   3176   }
   3177   }
   3178   llvm_unreachable("Unknown type trait or not implemented");
   3179 }
   3180 
   3181 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
   3182                                      SourceLocation KWLoc,
   3183                                      TypeSourceInfo *TSInfo,
   3184                                      Expr* DimExpr,
   3185                                      SourceLocation RParen) {
   3186   QualType T = TSInfo->getType();
   3187 
   3188   // FIXME: This should likely be tracked as an APInt to remove any host
   3189   // assumptions about the width of size_t on the target.
   3190   uint64_t Value = 0;
   3191   if (!T->isDependentType())
   3192     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
   3193 
   3194   // While the specification for these traits from the Embarcadero C++
   3195   // compiler's documentation says the return type is 'unsigned int', Clang
   3196   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
   3197   // compiler, there is no difference. On several other platforms this is an
   3198   // important distinction.
   3199   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
   3200                                                 DimExpr, RParen,
   3201                                                 Context.getSizeType()));
   3202 }
   3203 
   3204 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
   3205                                       SourceLocation KWLoc,
   3206                                       Expr *Queried,
   3207                                       SourceLocation RParen) {
   3208   // If error parsing the expression, ignore.
   3209   if (!Queried)
   3210     return ExprError();
   3211 
   3212   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
   3213 
   3214   return move(Result);
   3215 }
   3216 
   3217 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
   3218   switch (ET) {
   3219   case ET_IsLValueExpr: return E->isLValue();
   3220   case ET_IsRValueExpr: return E->isRValue();
   3221   }
   3222   llvm_unreachable("Expression trait not covered by switch");
   3223 }
   3224 
   3225 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
   3226                                       SourceLocation KWLoc,
   3227                                       Expr *Queried,
   3228                                       SourceLocation RParen) {
   3229   if (Queried->isTypeDependent()) {
   3230     // Delay type-checking for type-dependent expressions.
   3231   } else if (Queried->getType()->isPlaceholderType()) {
   3232     ExprResult PE = CheckPlaceholderExpr(Queried);
   3233     if (PE.isInvalid()) return ExprError();
   3234     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
   3235   }
   3236 
   3237   bool Value = EvaluateExpressionTrait(ET, Queried);
   3238 
   3239   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
   3240                                                  RParen, Context.BoolTy));
   3241 }
   3242 
   3243 QualType Sema::CheckPointerToMemberOperands(ExprResult &lex, ExprResult &rex,
   3244                                             ExprValueKind &VK,
   3245                                             SourceLocation Loc,
   3246                                             bool isIndirect) {
   3247   assert(!lex.get()->getType()->isPlaceholderType() &&
   3248          !rex.get()->getType()->isPlaceholderType() &&
   3249          "placeholders should have been weeded out by now");
   3250 
   3251   // The LHS undergoes lvalue conversions if this is ->*.
   3252   if (isIndirect) {
   3253     lex = DefaultLvalueConversion(lex.take());
   3254     if (lex.isInvalid()) return QualType();
   3255   }
   3256 
   3257   // The RHS always undergoes lvalue conversions.
   3258   rex = DefaultLvalueConversion(rex.take());
   3259   if (rex.isInvalid()) return QualType();
   3260 
   3261   const char *OpSpelling = isIndirect ? "->*" : ".*";
   3262   // C++ 5.5p2
   3263   //   The binary operator .* [p3: ->*] binds its second operand, which shall
   3264   //   be of type "pointer to member of T" (where T is a completely-defined
   3265   //   class type) [...]
   3266   QualType RType = rex.get()->getType();
   3267   const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
   3268   if (!MemPtr) {
   3269     Diag(Loc, diag::err_bad_memptr_rhs)
   3270       << OpSpelling << RType << rex.get()->getSourceRange();
   3271     return QualType();
   3272   }
   3273 
   3274   QualType Class(MemPtr->getClass(), 0);
   3275 
   3276   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
   3277   // member pointer points must be completely-defined. However, there is no
   3278   // reason for this semantic distinction, and the rule is not enforced by
   3279   // other compilers. Therefore, we do not check this property, as it is
   3280   // likely to be considered a defect.
   3281 
   3282   // C++ 5.5p2
   3283   //   [...] to its first operand, which shall be of class T or of a class of
   3284   //   which T is an unambiguous and accessible base class. [p3: a pointer to
   3285   //   such a class]
   3286   QualType LType = lex.get()->getType();
   3287   if (isIndirect) {
   3288     if (const PointerType *Ptr = LType->getAs<PointerType>())
   3289       LType = Ptr->getPointeeType();
   3290     else {
   3291       Diag(Loc, diag::err_bad_memptr_lhs)
   3292         << OpSpelling << 1 << LType
   3293         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
   3294       return QualType();
   3295     }
   3296   }
   3297 
   3298   if (!Context.hasSameUnqualifiedType(Class, LType)) {
   3299     // If we want to check the hierarchy, we need a complete type.
   3300     if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
   3301         << OpSpelling << (int)isIndirect)) {
   3302       return QualType();
   3303     }
   3304     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   3305                        /*DetectVirtual=*/false);
   3306     // FIXME: Would it be useful to print full ambiguity paths, or is that
   3307     // overkill?
   3308     if (!IsDerivedFrom(LType, Class, Paths) ||
   3309         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
   3310       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
   3311         << (int)isIndirect << lex.get()->getType();
   3312       return QualType();
   3313     }
   3314     // Cast LHS to type of use.
   3315     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
   3316     ExprValueKind VK =
   3317         isIndirect ? VK_RValue : CastCategory(lex.get());
   3318 
   3319     CXXCastPath BasePath;
   3320     BuildBasePathArray(Paths, BasePath);
   3321     lex = ImpCastExprToType(lex.take(), UseType, CK_DerivedToBase, VK, &BasePath);
   3322   }
   3323 
   3324   if (isa<CXXScalarValueInitExpr>(rex.get()->IgnoreParens())) {
   3325     // Diagnose use of pointer-to-member type which when used as
   3326     // the functional cast in a pointer-to-member expression.
   3327     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
   3328      return QualType();
   3329   }
   3330 
   3331   // C++ 5.5p2
   3332   //   The result is an object or a function of the type specified by the
   3333   //   second operand.
   3334   // The cv qualifiers are the union of those in the pointer and the left side,
   3335   // in accordance with 5.5p5 and 5.2.5.
   3336   QualType Result = MemPtr->getPointeeType();
   3337   Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
   3338 
   3339   // C++0x [expr.mptr.oper]p6:
   3340   //   In a .* expression whose object expression is an rvalue, the program is
   3341   //   ill-formed if the second operand is a pointer to member function with
   3342   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
   3343   //   expression is an lvalue, the program is ill-formed if the second operand
   3344   //   is a pointer to member function with ref-qualifier &&.
   3345   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
   3346     switch (Proto->getRefQualifier()) {
   3347     case RQ_None:
   3348       // Do nothing
   3349       break;
   3350 
   3351     case RQ_LValue:
   3352       if (!isIndirect && !lex.get()->Classify(Context).isLValue())
   3353         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   3354           << RType << 1 << lex.get()->getSourceRange();
   3355       break;
   3356 
   3357     case RQ_RValue:
   3358       if (isIndirect || !lex.get()->Classify(Context).isRValue())
   3359         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   3360           << RType << 0 << lex.get()->getSourceRange();
   3361       break;
   3362     }
   3363   }
   3364 
   3365   // C++ [expr.mptr.oper]p6:
   3366   //   The result of a .* expression whose second operand is a pointer
   3367   //   to a data member is of the same value category as its
   3368   //   first operand. The result of a .* expression whose second
   3369   //   operand is a pointer to a member function is a prvalue. The
   3370   //   result of an ->* expression is an lvalue if its second operand
   3371   //   is a pointer to data member and a prvalue otherwise.
   3372   if (Result->isFunctionType()) {
   3373     VK = VK_RValue;
   3374     return Context.BoundMemberTy;
   3375   } else if (isIndirect) {
   3376     VK = VK_LValue;
   3377   } else {
   3378     VK = lex.get()->getValueKind();
   3379   }
   3380 
   3381   return Result;
   3382 }
   3383 
   3384 /// \brief Try to convert a type to another according to C++0x 5.16p3.
   3385 ///
   3386 /// This is part of the parameter validation for the ? operator. If either
   3387 /// value operand is a class type, the two operands are attempted to be
   3388 /// converted to each other. This function does the conversion in one direction.
   3389 /// It returns true if the program is ill-formed and has already been diagnosed
   3390 /// as such.
   3391 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
   3392                                 SourceLocation QuestionLoc,
   3393                                 bool &HaveConversion,
   3394                                 QualType &ToType) {
   3395   HaveConversion = false;
   3396   ToType = To->getType();
   3397 
   3398   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
   3399                                                            SourceLocation());
   3400   // C++0x 5.16p3
   3401   //   The process for determining whether an operand expression E1 of type T1
   3402   //   can be converted to match an operand expression E2 of type T2 is defined
   3403   //   as follows:
   3404   //   -- If E2 is an lvalue:
   3405   bool ToIsLvalue = To->isLValue();
   3406   if (ToIsLvalue) {
   3407     //   E1 can be converted to match E2 if E1 can be implicitly converted to
   3408     //   type "lvalue reference to T2", subject to the constraint that in the
   3409     //   conversion the reference must bind directly to E1.
   3410     QualType T = Self.Context.getLValueReferenceType(ToType);
   3411     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   3412 
   3413     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3414     if (InitSeq.isDirectReferenceBinding()) {
   3415       ToType = T;
   3416       HaveConversion = true;
   3417       return false;
   3418     }
   3419 
   3420     if (InitSeq.isAmbiguous())
   3421       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3422   }
   3423 
   3424   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
   3425   //      -- if E1 and E2 have class type, and the underlying class types are
   3426   //         the same or one is a base class of the other:
   3427   QualType FTy = From->getType();
   3428   QualType TTy = To->getType();
   3429   const RecordType *FRec = FTy->getAs<RecordType>();
   3430   const RecordType *TRec = TTy->getAs<RecordType>();
   3431   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
   3432                        Self.IsDerivedFrom(FTy, TTy);
   3433   if (FRec && TRec &&
   3434       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
   3435     //         E1 can be converted to match E2 if the class of T2 is the
   3436     //         same type as, or a base class of, the class of T1, and
   3437     //         [cv2 > cv1].
   3438     if (FRec == TRec || FDerivedFromT) {
   3439       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
   3440         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   3441         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3442         if (InitSeq) {
   3443           HaveConversion = true;
   3444           return false;
   3445         }
   3446 
   3447         if (InitSeq.isAmbiguous())
   3448           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3449       }
   3450     }
   3451 
   3452     return false;
   3453   }
   3454 
   3455   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
   3456   //        implicitly converted to the type that expression E2 would have
   3457   //        if E2 were converted to an rvalue (or the type it has, if E2 is
   3458   //        an rvalue).
   3459   //
   3460   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
   3461   // to the array-to-pointer or function-to-pointer conversions.
   3462   if (!TTy->getAs<TagType>())
   3463     TTy = TTy.getUnqualifiedType();
   3464 
   3465   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   3466   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3467   HaveConversion = !InitSeq.Failed();
   3468   ToType = TTy;
   3469   if (InitSeq.isAmbiguous())
   3470     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3471 
   3472   return false;
   3473 }
   3474 
   3475 /// \brief Try to find a common type for two according to C++0x 5.16p5.
   3476 ///
   3477 /// This is part of the parameter validation for the ? operator. If either
   3478 /// value operand is a class type, overload resolution is used to find a
   3479 /// conversion to a common type.
   3480 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
   3481                                     SourceLocation QuestionLoc) {
   3482   Expr *Args[2] = { LHS.get(), RHS.get() };
   3483   OverloadCandidateSet CandidateSet(QuestionLoc);
   3484   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
   3485                                     CandidateSet);
   3486 
   3487   OverloadCandidateSet::iterator Best;
   3488   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
   3489     case OR_Success: {
   3490       // We found a match. Perform the conversions on the arguments and move on.
   3491       ExprResult LHSRes =
   3492         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
   3493                                        Best->Conversions[0], Sema::AA_Converting);
   3494       if (LHSRes.isInvalid())
   3495         break;
   3496       LHS = move(LHSRes);
   3497 
   3498       ExprResult RHSRes =
   3499         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
   3500                                        Best->Conversions[1], Sema::AA_Converting);
   3501       if (RHSRes.isInvalid())
   3502         break;
   3503       RHS = move(RHSRes);
   3504       if (Best->Function)
   3505         Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
   3506       return false;
   3507     }
   3508 
   3509     case OR_No_Viable_Function:
   3510 
   3511       // Emit a better diagnostic if one of the expressions is a null pointer
   3512       // constant and the other is a pointer type. In this case, the user most
   3513       // likely forgot to take the address of the other expression.
   3514       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   3515         return true;
   3516 
   3517       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   3518         << LHS.get()->getType() << RHS.get()->getType()
   3519         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   3520       return true;
   3521 
   3522     case OR_Ambiguous:
   3523       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
   3524         << LHS.get()->getType() << RHS.get()->getType()
   3525         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   3526       // FIXME: Print the possible common types by printing the return types of
   3527       // the viable candidates.
   3528       break;
   3529 
   3530     case OR_Deleted:
   3531       assert(false && "Conditional operator has only built-in overloads");
   3532       break;
   3533   }
   3534   return true;
   3535 }
   3536 
   3537 /// \brief Perform an "extended" implicit conversion as returned by
   3538 /// TryClassUnification.
   3539 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
   3540   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   3541   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
   3542                                                            SourceLocation());
   3543   Expr *Arg = E.take();
   3544   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
   3545   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
   3546   if (Result.isInvalid())
   3547     return true;
   3548 
   3549   E = Result;
   3550   return false;
   3551 }
   3552 
   3553 /// \brief Check the operands of ?: under C++ semantics.
   3554 ///
   3555 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
   3556 /// extension. In this case, LHS == Cond. (But they're not aliases.)
   3557 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
   3558                                            ExprValueKind &VK, ExprObjectKind &OK,
   3559                                            SourceLocation QuestionLoc) {
   3560   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
   3561   // interface pointers.
   3562 
   3563   // C++0x 5.16p1
   3564   //   The first expression is contextually converted to bool.
   3565   if (!Cond.get()->isTypeDependent()) {
   3566     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
   3567     if (CondRes.isInvalid())
   3568       return QualType();
   3569     Cond = move(CondRes);
   3570   }
   3571 
   3572   // Assume r-value.
   3573   VK = VK_RValue;
   3574   OK = OK_Ordinary;
   3575 
   3576   // Either of the arguments dependent?
   3577   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
   3578     return Context.DependentTy;
   3579 
   3580   // C++0x 5.16p2
   3581   //   If either the second or the third operand has type (cv) void, ...
   3582   QualType LTy = LHS.get()->getType();
   3583   QualType RTy = RHS.get()->getType();
   3584   bool LVoid = LTy->isVoidType();
   3585   bool RVoid = RTy->isVoidType();
   3586   if (LVoid || RVoid) {
   3587     //   ... then the [l2r] conversions are performed on the second and third
   3588     //   operands ...
   3589     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   3590     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   3591     if (LHS.isInvalid() || RHS.isInvalid())
   3592       return QualType();
   3593     LTy = LHS.get()->getType();
   3594     RTy = RHS.get()->getType();
   3595 
   3596     //   ... and one of the following shall hold:
   3597     //   -- The second or the third operand (but not both) is a throw-
   3598     //      expression; the result is of the type of the other and is an rvalue.
   3599     bool LThrow = isa<CXXThrowExpr>(LHS.get());
   3600     bool RThrow = isa<CXXThrowExpr>(RHS.get());
   3601     if (LThrow && !RThrow)
   3602       return RTy;
   3603     if (RThrow && !LThrow)
   3604       return LTy;
   3605 
   3606     //   -- Both the second and third operands have type void; the result is of
   3607     //      type void and is an rvalue.
   3608     if (LVoid && RVoid)
   3609       return Context.VoidTy;
   3610 
   3611     // Neither holds, error.
   3612     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
   3613       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
   3614       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   3615     return QualType();
   3616   }
   3617 
   3618   // Neither is void.
   3619 
   3620   // C++0x 5.16p3
   3621   //   Otherwise, if the second and third operand have different types, and
   3622   //   either has (cv) class type, and attempt is made to convert each of those
   3623   //   operands to the other.
   3624   if (!Context.hasSameType(LTy, RTy) &&
   3625       (LTy->isRecordType() || RTy->isRecordType())) {
   3626     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
   3627     // These return true if a single direction is already ambiguous.
   3628     QualType L2RType, R2LType;
   3629     bool HaveL2R, HaveR2L;
   3630     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
   3631       return QualType();
   3632     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
   3633       return QualType();
   3634 
   3635     //   If both can be converted, [...] the program is ill-formed.
   3636     if (HaveL2R && HaveR2L) {
   3637       Diag(QuestionLoc, diag::err_conditional_ambiguous)
   3638         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   3639       return QualType();
   3640     }
   3641 
   3642     //   If exactly one conversion is possible, that conversion is applied to
   3643     //   the chosen operand and the converted operands are used in place of the
   3644     //   original operands for the remainder of this section.
   3645     if (HaveL2R) {
   3646       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
   3647         return QualType();
   3648       LTy = LHS.get()->getType();
   3649     } else if (HaveR2L) {
   3650       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
   3651         return QualType();
   3652       RTy = RHS.get()->getType();
   3653     }
   3654   }
   3655 
   3656   // C++0x 5.16p4
   3657   //   If the second and third operands are glvalues of the same value
   3658   //   category and have the same type, the result is of that type and
   3659   //   value category and it is a bit-field if the second or the third
   3660   //   operand is a bit-field, or if both are bit-fields.
   3661   // We only extend this to bitfields, not to the crazy other kinds of
   3662   // l-values.
   3663   bool Same = Context.hasSameType(LTy, RTy);
   3664   if (Same &&
   3665       LHS.get()->isGLValue() &&
   3666       LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
   3667       LHS.get()->isOrdinaryOrBitFieldObject() &&
   3668       RHS.get()->isOrdinaryOrBitFieldObject()) {
   3669     VK = LHS.get()->getValueKind();
   3670     if (LHS.get()->getObjectKind() == OK_BitField ||
   3671         RHS.get()->getObjectKind() == OK_BitField)
   3672       OK = OK_BitField;
   3673     return LTy;
   3674   }
   3675 
   3676   // C++0x 5.16p5
   3677   //   Otherwise, the result is an rvalue. If the second and third operands
   3678   //   do not have the same type, and either has (cv) class type, ...
   3679   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
   3680     //   ... overload resolution is used to determine the conversions (if any)
   3681     //   to be applied to the operands. If the overload resolution fails, the
   3682     //   program is ill-formed.
   3683     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
   3684       return QualType();
   3685   }
   3686 
   3687   // C++0x 5.16p6
   3688   //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
   3689   //   conversions are performed on the second and third operands.
   3690   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   3691   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   3692   if (LHS.isInvalid() || RHS.isInvalid())
   3693     return QualType();
   3694   LTy = LHS.get()->getType();
   3695   RTy = RHS.get()->getType();
   3696 
   3697   //   After those conversions, one of the following shall hold:
   3698   //   -- The second and third operands have the same type; the result
   3699   //      is of that type. If the operands have class type, the result
   3700   //      is a prvalue temporary of the result type, which is
   3701   //      copy-initialized from either the second operand or the third
   3702   //      operand depending on the value of the first operand.
   3703   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
   3704     if (LTy->isRecordType()) {
   3705       // The operands have class type. Make a temporary copy.
   3706       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
   3707       ExprResult LHSCopy = PerformCopyInitialization(Entity,
   3708                                                      SourceLocation(),
   3709                                                      LHS);
   3710       if (LHSCopy.isInvalid())
   3711         return QualType();
   3712 
   3713       ExprResult RHSCopy = PerformCopyInitialization(Entity,
   3714                                                      SourceLocation(),
   3715                                                      RHS);
   3716       if (RHSCopy.isInvalid())
   3717         return QualType();
   3718 
   3719       LHS = LHSCopy;
   3720       RHS = RHSCopy;
   3721     }
   3722 
   3723     return LTy;
   3724   }
   3725 
   3726   // Extension: conditional operator involving vector types.
   3727   if (LTy->isVectorType() || RTy->isVectorType())
   3728     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   3729 
   3730   //   -- The second and third operands have arithmetic or enumeration type;
   3731   //      the usual arithmetic conversions are performed to bring them to a
   3732   //      common type, and the result is of that type.
   3733   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
   3734     UsualArithmeticConversions(LHS, RHS);
   3735     if (LHS.isInvalid() || RHS.isInvalid())
   3736       return QualType();
   3737     return LHS.get()->getType();
   3738   }
   3739 
   3740   //   -- The second and third operands have pointer type, or one has pointer
   3741   //      type and the other is a null pointer constant; pointer conversions
   3742   //      and qualification conversions are performed to bring them to their
   3743   //      composite pointer type. The result is of the composite pointer type.
   3744   //   -- The second and third operands have pointer to member type, or one has
   3745   //      pointer to member type and the other is a null pointer constant;
   3746   //      pointer to member conversions and qualification conversions are
   3747   //      performed to bring them to a common type, whose cv-qualification
   3748   //      shall match the cv-qualification of either the second or the third
   3749   //      operand. The result is of the common type.
   3750   bool NonStandardCompositeType = false;
   3751   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
   3752                               isSFINAEContext()? 0 : &NonStandardCompositeType);
   3753   if (!Composite.isNull()) {
   3754     if (NonStandardCompositeType)
   3755       Diag(QuestionLoc,
   3756            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
   3757         << LTy << RTy << Composite
   3758         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   3759 
   3760     return Composite;
   3761   }
   3762 
   3763   // Similarly, attempt to find composite type of two objective-c pointers.
   3764   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
   3765   if (!Composite.isNull())
   3766     return Composite;
   3767 
   3768   // Check if we are using a null with a non-pointer type.
   3769   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   3770     return QualType();
   3771 
   3772   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   3773     << LHS.get()->getType() << RHS.get()->getType()
   3774     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   3775   return QualType();
   3776 }
   3777 
   3778 /// \brief Find a merged pointer type and convert the two expressions to it.
   3779 ///
   3780 /// This finds the composite pointer type (or member pointer type) for @p E1
   3781 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
   3782 /// type and returns it.
   3783 /// It does not emit diagnostics.
   3784 ///
   3785 /// \param Loc The location of the operator requiring these two expressions to
   3786 /// be converted to the composite pointer type.
   3787 ///
   3788 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
   3789 /// a non-standard (but still sane) composite type to which both expressions
   3790 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
   3791 /// will be set true.
   3792 QualType Sema::FindCompositePointerType(SourceLocation Loc,
   3793                                         Expr *&E1, Expr *&E2,
   3794                                         bool *NonStandardCompositeType) {
   3795   if (NonStandardCompositeType)
   3796     *NonStandardCompositeType = false;
   3797 
   3798   assert(getLangOptions().CPlusPlus && "This function assumes C++");
   3799   QualType T1 = E1->getType(), T2 = E2->getType();
   3800 
   3801   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
   3802       !T2->isAnyPointerType() && !T2->isMemberPointerType())
   3803    return QualType();
   3804 
   3805   // C++0x 5.9p2
   3806   //   Pointer conversions and qualification conversions are performed on
   3807   //   pointer operands to bring them to their composite pointer type. If
   3808   //   one operand is a null pointer constant, the composite pointer type is
   3809   //   the type of the other operand.
   3810   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   3811     if (T2->isMemberPointerType())
   3812       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
   3813     else
   3814       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
   3815     return T2;
   3816   }
   3817   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   3818     if (T1->isMemberPointerType())
   3819       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
   3820     else
   3821       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
   3822     return T1;
   3823   }
   3824 
   3825   // Now both have to be pointers or member pointers.
   3826   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
   3827       (!T2->isPointerType() && !T2->isMemberPointerType()))
   3828     return QualType();
   3829 
   3830   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
   3831   //   the other has type "pointer to cv2 T" and the composite pointer type is
   3832   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
   3833   //   Otherwise, the composite pointer type is a pointer type similar to the
   3834   //   type of one of the operands, with a cv-qualification signature that is
   3835   //   the union of the cv-qualification signatures of the operand types.
   3836   // In practice, the first part here is redundant; it's subsumed by the second.
   3837   // What we do here is, we build the two possible composite types, and try the
   3838   // conversions in both directions. If only one works, or if the two composite
   3839   // types are the same, we have succeeded.
   3840   // FIXME: extended qualifiers?
   3841   typedef llvm::SmallVector<unsigned, 4> QualifierVector;
   3842   QualifierVector QualifierUnion;
   3843   typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
   3844       ContainingClassVector;
   3845   ContainingClassVector MemberOfClass;
   3846   QualType Composite1 = Context.getCanonicalType(T1),
   3847            Composite2 = Context.getCanonicalType(T2);
   3848   unsigned NeedConstBefore = 0;
   3849   do {
   3850     const PointerType *Ptr1, *Ptr2;
   3851     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
   3852         (Ptr2 = Composite2->getAs<PointerType>())) {
   3853       Composite1 = Ptr1->getPointeeType();
   3854       Composite2 = Ptr2->getPointeeType();
   3855 
   3856       // If we're allowed to create a non-standard composite type, keep track
   3857       // of where we need to fill in additional 'const' qualifiers.
   3858       if (NonStandardCompositeType &&
   3859           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   3860         NeedConstBefore = QualifierUnion.size();
   3861 
   3862       QualifierUnion.push_back(
   3863                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   3864       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
   3865       continue;
   3866     }
   3867 
   3868     const MemberPointerType *MemPtr1, *MemPtr2;
   3869     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
   3870         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
   3871       Composite1 = MemPtr1->getPointeeType();
   3872       Composite2 = MemPtr2->getPointeeType();
   3873 
   3874       // If we're allowed to create a non-standard composite type, keep track
   3875       // of where we need to fill in additional 'const' qualifiers.
   3876       if (NonStandardCompositeType &&
   3877           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   3878         NeedConstBefore = QualifierUnion.size();
   3879 
   3880       QualifierUnion.push_back(
   3881                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   3882       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
   3883                                              MemPtr2->getClass()));
   3884       continue;
   3885     }
   3886 
   3887     // FIXME: block pointer types?
   3888 
   3889     // Cannot unwrap any more types.
   3890     break;
   3891   } while (true);
   3892 
   3893   if (NeedConstBefore && NonStandardCompositeType) {
   3894     // Extension: Add 'const' to qualifiers that come before the first qualifier
   3895     // mismatch, so that our (non-standard!) composite type meets the
   3896     // requirements of C++ [conv.qual]p4 bullet 3.
   3897     for (unsigned I = 0; I != NeedConstBefore; ++I) {
   3898       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
   3899         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
   3900         *NonStandardCompositeType = true;
   3901       }
   3902     }
   3903   }
   3904 
   3905   // Rewrap the composites as pointers or member pointers with the union CVRs.
   3906   ContainingClassVector::reverse_iterator MOC
   3907     = MemberOfClass.rbegin();
   3908   for (QualifierVector::reverse_iterator
   3909          I = QualifierUnion.rbegin(),
   3910          E = QualifierUnion.rend();
   3911        I != E; (void)++I, ++MOC) {
   3912     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
   3913     if (MOC->first && MOC->second) {
   3914       // Rebuild member pointer type
   3915       Composite1 = Context.getMemberPointerType(
   3916                                     Context.getQualifiedType(Composite1, Quals),
   3917                                     MOC->first);
   3918       Composite2 = Context.getMemberPointerType(
   3919                                     Context.getQualifiedType(Composite2, Quals),
   3920                                     MOC->second);
   3921     } else {
   3922       // Rebuild pointer type
   3923       Composite1
   3924         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
   3925       Composite2
   3926         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
   3927     }
   3928   }
   3929 
   3930   // Try to convert to the first composite pointer type.
   3931   InitializedEntity Entity1
   3932     = InitializedEntity::InitializeTemporary(Composite1);
   3933   InitializationKind Kind
   3934     = InitializationKind::CreateCopy(Loc, SourceLocation());
   3935   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
   3936   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
   3937 
   3938   if (E1ToC1 && E2ToC1) {
   3939     // Conversion to Composite1 is viable.
   3940     if (!Context.hasSameType(Composite1, Composite2)) {
   3941       // Composite2 is a different type from Composite1. Check whether
   3942       // Composite2 is also viable.
   3943       InitializedEntity Entity2
   3944         = InitializedEntity::InitializeTemporary(Composite2);
   3945       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
   3946       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
   3947       if (E1ToC2 && E2ToC2) {
   3948         // Both Composite1 and Composite2 are viable and are different;
   3949         // this is an ambiguity.
   3950         return QualType();
   3951       }
   3952     }
   3953 
   3954     // Convert E1 to Composite1
   3955     ExprResult E1Result
   3956       = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
   3957     if (E1Result.isInvalid())
   3958       return QualType();
   3959     E1 = E1Result.takeAs<Expr>();
   3960 
   3961     // Convert E2 to Composite1
   3962     ExprResult E2Result
   3963       = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
   3964     if (E2Result.isInvalid())
   3965       return QualType();
   3966     E2 = E2Result.takeAs<Expr>();
   3967 
   3968     return Composite1;
   3969   }
   3970 
   3971   // Check whether Composite2 is viable.
   3972   InitializedEntity Entity2
   3973     = InitializedEntity::InitializeTemporary(Composite2);
   3974   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
   3975   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
   3976   if (!E1ToC2 || !E2ToC2)
   3977     return QualType();
   3978 
   3979   // Convert E1 to Composite2
   3980   ExprResult E1Result
   3981     = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
   3982   if (E1Result.isInvalid())
   3983     return QualType();
   3984   E1 = E1Result.takeAs<Expr>();
   3985 
   3986   // Convert E2 to Composite2
   3987   ExprResult E2Result
   3988     = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
   3989   if (E2Result.isInvalid())
   3990     return QualType();
   3991   E2 = E2Result.takeAs<Expr>();
   3992 
   3993   return Composite2;
   3994 }
   3995 
   3996 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
   3997   if (!E)
   3998     return ExprError();
   3999 
   4000   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
   4001 
   4002   // If the result is a glvalue, we shouldn't bind it.
   4003   if (!E->isRValue())
   4004     return Owned(E);
   4005 
   4006   // In ARC, calls that return a retainable type can return retained,
   4007   // in which case we have to insert a consuming cast.
   4008   if (getLangOptions().ObjCAutoRefCount &&
   4009       E->getType()->isObjCRetainableType()) {
   4010 
   4011     bool ReturnsRetained;
   4012 
   4013     // For actual calls, we compute this by examining the type of the
   4014     // called value.
   4015     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
   4016       Expr *Callee = Call->getCallee()->IgnoreParens();
   4017       QualType T = Callee->getType();
   4018 
   4019       if (T == Context.BoundMemberTy) {
   4020         // Handle pointer-to-members.
   4021         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
   4022           T = BinOp->getRHS()->getType();
   4023         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
   4024           T = Mem->getMemberDecl()->getType();
   4025       }
   4026 
   4027       if (const PointerType *Ptr = T->getAs<PointerType>())
   4028         T = Ptr->getPointeeType();
   4029       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
   4030         T = Ptr->getPointeeType();
   4031       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
   4032         T = MemPtr->getPointeeType();
   4033 
   4034       const FunctionType *FTy = T->getAs<FunctionType>();
   4035       assert(FTy && "call to value not of function type?");
   4036       ReturnsRetained = FTy->getExtInfo().getProducesResult();
   4037 
   4038     // ActOnStmtExpr arranges things so that StmtExprs of retainable
   4039     // type always produce a +1 object.
   4040     } else if (isa<StmtExpr>(E)) {
   4041       ReturnsRetained = true;
   4042 
   4043     // For message sends and property references, we try to find an
   4044     // actual method.  FIXME: we should infer retention by selector in
   4045     // cases where we don't have an actual method.
   4046     } else {
   4047       Decl *D = 0;
   4048       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
   4049         D = Send->getMethodDecl();
   4050       } else {
   4051         CastExpr *CE = cast<CastExpr>(E);
   4052         // FIXME. What other cast kinds to check for?
   4053         if (CE->getCastKind() == CK_ObjCProduceObject ||
   4054             CE->getCastKind() == CK_LValueToRValue)
   4055           return MaybeBindToTemporary(CE->getSubExpr());
   4056         assert(CE->getCastKind() == CK_GetObjCProperty);
   4057         const ObjCPropertyRefExpr *PRE = CE->getSubExpr()->getObjCProperty();
   4058         D = (PRE->isImplicitProperty() ? PRE->getImplicitPropertyGetter() : 0);
   4059       }
   4060 
   4061       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
   4062     }
   4063 
   4064     ExprNeedsCleanups = true;
   4065 
   4066     CastKind ck = (ReturnsRetained ? CK_ObjCConsumeObject
   4067                                    : CK_ObjCReclaimReturnedObject);
   4068     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
   4069                                           VK_RValue));
   4070   }
   4071 
   4072   if (!getLangOptions().CPlusPlus)
   4073     return Owned(E);
   4074 
   4075   const RecordType *RT = E->getType()->getAs<RecordType>();
   4076   if (!RT)
   4077     return Owned(E);
   4078 
   4079   // That should be enough to guarantee that this type is complete.
   4080   // If it has a trivial destructor, we can avoid the extra copy.
   4081   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4082   if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
   4083     return Owned(E);
   4084 
   4085   CXXDestructorDecl *Destructor = LookupDestructor(RD);
   4086 
   4087   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
   4088   if (Destructor) {
   4089     MarkDeclarationReferenced(E->getExprLoc(), Destructor);
   4090     CheckDestructorAccess(E->getExprLoc(), Destructor,
   4091                           PDiag(diag::err_access_dtor_temp)
   4092                             << E->getType());
   4093 
   4094     ExprTemporaries.push_back(Temp);
   4095     ExprNeedsCleanups = true;
   4096   }
   4097   return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
   4098 }
   4099 
   4100 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
   4101   assert(SubExpr && "sub expression can't be null!");
   4102 
   4103   unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
   4104   assert(ExprTemporaries.size() >= FirstTemporary);
   4105   assert(ExprNeedsCleanups || ExprTemporaries.size() == FirstTemporary);
   4106   if (!ExprNeedsCleanups)
   4107     return SubExpr;
   4108 
   4109   Expr *E = ExprWithCleanups::Create(Context, SubExpr,
   4110                                      ExprTemporaries.begin() + FirstTemporary,
   4111                                      ExprTemporaries.size() - FirstTemporary);
   4112   ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
   4113                         ExprTemporaries.end());
   4114   ExprNeedsCleanups = false;
   4115 
   4116   return E;
   4117 }
   4118 
   4119 ExprResult
   4120 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
   4121   if (SubExpr.isInvalid())
   4122     return ExprError();
   4123 
   4124   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
   4125 }
   4126 
   4127 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
   4128   assert(SubStmt && "sub statement can't be null!");
   4129 
   4130   if (!ExprNeedsCleanups)
   4131     return SubStmt;
   4132 
   4133   // FIXME: In order to attach the temporaries, wrap the statement into
   4134   // a StmtExpr; currently this is only used for asm statements.
   4135   // This is hacky, either create a new CXXStmtWithTemporaries statement or
   4136   // a new AsmStmtWithTemporaries.
   4137   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
   4138                                                       SourceLocation(),
   4139                                                       SourceLocation());
   4140   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
   4141                                    SourceLocation());
   4142   return MaybeCreateExprWithCleanups(E);
   4143 }
   4144 
   4145 ExprResult
   4146 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
   4147                                    tok::TokenKind OpKind, ParsedType &ObjectType,
   4148                                    bool &MayBePseudoDestructor) {
   4149   // Since this might be a postfix expression, get rid of ParenListExprs.
   4150   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   4151   if (Result.isInvalid()) return ExprError();
   4152   Base = Result.get();
   4153 
   4154   QualType BaseType = Base->getType();
   4155   MayBePseudoDestructor = false;
   4156   if (BaseType->isDependentType()) {
   4157     // If we have a pointer to a dependent type and are using the -> operator,
   4158     // the object type is the type that the pointer points to. We might still
   4159     // have enough information about that type to do something useful.
   4160     if (OpKind == tok::arrow)
   4161       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   4162         BaseType = Ptr->getPointeeType();
   4163 
   4164     ObjectType = ParsedType::make(BaseType);
   4165     MayBePseudoDestructor = true;
   4166     return Owned(Base);
   4167   }
   4168 
   4169   // C++ [over.match.oper]p8:
   4170   //   [...] When operator->returns, the operator-> is applied  to the value
   4171   //   returned, with the original second operand.
   4172   if (OpKind == tok::arrow) {
   4173     // The set of types we've considered so far.
   4174     llvm::SmallPtrSet<CanQualType,8> CTypes;
   4175     llvm::SmallVector<SourceLocation, 8> Locations;
   4176     CTypes.insert(Context.getCanonicalType(BaseType));
   4177 
   4178     while (BaseType->isRecordType()) {
   4179       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
   4180       if (Result.isInvalid())
   4181         return ExprError();
   4182       Base = Result.get();
   4183       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
   4184         Locations.push_back(OpCall->getDirectCallee()->getLocation());
   4185       BaseType = Base->getType();
   4186       CanQualType CBaseType = Context.getCanonicalType(BaseType);
   4187       if (!CTypes.insert(CBaseType)) {
   4188         Diag(OpLoc, diag::err_operator_arrow_circular);
   4189         for (unsigned i = 0; i < Locations.size(); i++)
   4190           Diag(Locations[i], diag::note_declared_at);
   4191         return ExprError();
   4192       }
   4193     }
   4194 
   4195     if (BaseType->isPointerType())
   4196       BaseType = BaseType->getPointeeType();
   4197   }
   4198 
   4199   // We could end up with various non-record types here, such as extended
   4200   // vector types or Objective-C interfaces. Just return early and let
   4201   // ActOnMemberReferenceExpr do the work.
   4202   if (!BaseType->isRecordType()) {
   4203     // C++ [basic.lookup.classref]p2:
   4204     //   [...] If the type of the object expression is of pointer to scalar
   4205     //   type, the unqualified-id is looked up in the context of the complete
   4206     //   postfix-expression.
   4207     //
   4208     // This also indicates that we should be parsing a
   4209     // pseudo-destructor-name.
   4210     ObjectType = ParsedType();
   4211     MayBePseudoDestructor = true;
   4212     return Owned(Base);
   4213   }
   4214 
   4215   // The object type must be complete (or dependent).
   4216   if (!BaseType->isDependentType() &&
   4217       RequireCompleteType(OpLoc, BaseType,
   4218                           PDiag(diag::err_incomplete_member_access)))
   4219     return ExprError();
   4220 
   4221   // C++ [basic.lookup.classref]p2:
   4222   //   If the id-expression in a class member access (5.2.5) is an
   4223   //   unqualified-id, and the type of the object expression is of a class
   4224   //   type C (or of pointer to a class type C), the unqualified-id is looked
   4225   //   up in the scope of class C. [...]
   4226   ObjectType = ParsedType::make(BaseType);
   4227   return move(Base);
   4228 }
   4229 
   4230 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
   4231                                                    Expr *MemExpr) {
   4232   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
   4233   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
   4234     << isa<CXXPseudoDestructorExpr>(MemExpr)
   4235     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
   4236 
   4237   return ActOnCallExpr(/*Scope*/ 0,
   4238                        MemExpr,
   4239                        /*LPLoc*/ ExpectedLParenLoc,
   4240                        MultiExprArg(),
   4241                        /*RPLoc*/ ExpectedLParenLoc);
   4242 }
   4243 
   4244 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
   4245                                            SourceLocation OpLoc,
   4246                                            tok::TokenKind OpKind,
   4247                                            const CXXScopeSpec &SS,
   4248                                            TypeSourceInfo *ScopeTypeInfo,
   4249                                            SourceLocation CCLoc,
   4250                                            SourceLocation TildeLoc,
   4251                                          PseudoDestructorTypeStorage Destructed,
   4252                                            bool HasTrailingLParen) {
   4253   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
   4254 
   4255   // C++ [expr.pseudo]p2:
   4256   //   The left-hand side of the dot operator shall be of scalar type. The
   4257   //   left-hand side of the arrow operator shall be of pointer to scalar type.
   4258   //   This scalar type is the object type.
   4259   QualType ObjectType = Base->getType();
   4260   if (OpKind == tok::arrow) {
   4261     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
   4262       ObjectType = Ptr->getPointeeType();
   4263     } else if (!Base->isTypeDependent()) {
   4264       // The user wrote "p->" when she probably meant "p."; fix it.
   4265       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   4266         << ObjectType << true
   4267         << FixItHint::CreateReplacement(OpLoc, ".");
   4268       if (isSFINAEContext())
   4269         return ExprError();
   4270 
   4271       OpKind = tok::period;
   4272     }
   4273   }
   4274 
   4275   if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
   4276     Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
   4277       << ObjectType << Base->getSourceRange();
   4278     return ExprError();
   4279   }
   4280 
   4281   // C++ [expr.pseudo]p2:
   4282   //   [...] The cv-unqualified versions of the object type and of the type
   4283   //   designated by the pseudo-destructor-name shall be the same type.
   4284   if (DestructedTypeInfo) {
   4285     QualType DestructedType = DestructedTypeInfo->getType();
   4286     SourceLocation DestructedTypeStart
   4287       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
   4288     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
   4289       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
   4290         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
   4291           << ObjectType << DestructedType << Base->getSourceRange()
   4292           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   4293 
   4294         // Recover by setting the destructed type to the object type.
   4295         DestructedType = ObjectType;
   4296         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   4297                                                            DestructedTypeStart);
   4298         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   4299       } else if (DestructedType.getObjCLifetime() !=
   4300                                                 ObjectType.getObjCLifetime()) {
   4301 
   4302         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
   4303           // Okay: just pretend that the user provided the correctly-qualified
   4304           // type.
   4305         } else {
   4306           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
   4307             << ObjectType << DestructedType << Base->getSourceRange()
   4308             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   4309         }
   4310 
   4311         // Recover by setting the destructed type to the object type.
   4312         DestructedType = ObjectType;
   4313         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   4314                                                            DestructedTypeStart);
   4315         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   4316       }
   4317     }
   4318   }
   4319 
   4320   // C++ [expr.pseudo]p2:
   4321   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
   4322   //   form
   4323   //
   4324   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
   4325   //
   4326   //   shall designate the same scalar type.
   4327   if (ScopeTypeInfo) {
   4328     QualType ScopeType = ScopeTypeInfo->getType();
   4329     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
   4330         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
   4331 
   4332       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
   4333            diag::err_pseudo_dtor_type_mismatch)
   4334         << ObjectType << ScopeType << Base->getSourceRange()
   4335         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
   4336 
   4337       ScopeType = QualType();
   4338       ScopeTypeInfo = 0;
   4339     }
   4340   }
   4341 
   4342   Expr *Result
   4343     = new (Context) CXXPseudoDestructorExpr(Context, Base,
   4344                                             OpKind == tok::arrow, OpLoc,
   4345                                             SS.getWithLocInContext(Context),
   4346                                             ScopeTypeInfo,
   4347                                             CCLoc,
   4348                                             TildeLoc,
   4349                                             Destructed);
   4350 
   4351   if (HasTrailingLParen)
   4352     return Owned(Result);
   4353 
   4354   return DiagnoseDtorReference(Destructed.getLocation(), Result);
   4355 }
   4356 
   4357 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   4358                                            SourceLocation OpLoc,
   4359                                            tok::TokenKind OpKind,
   4360                                            CXXScopeSpec &SS,
   4361                                            UnqualifiedId &FirstTypeName,
   4362                                            SourceLocation CCLoc,
   4363                                            SourceLocation TildeLoc,
   4364                                            UnqualifiedId &SecondTypeName,
   4365                                            bool HasTrailingLParen) {
   4366   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   4367           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   4368          "Invalid first type name in pseudo-destructor");
   4369   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   4370           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   4371          "Invalid second type name in pseudo-destructor");
   4372 
   4373   // C++ [expr.pseudo]p2:
   4374   //   The left-hand side of the dot operator shall be of scalar type. The
   4375   //   left-hand side of the arrow operator shall be of pointer to scalar type.
   4376   //   This scalar type is the object type.
   4377   QualType ObjectType = Base->getType();
   4378   if (OpKind == tok::arrow) {
   4379     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
   4380       ObjectType = Ptr->getPointeeType();
   4381     } else if (!ObjectType->isDependentType()) {
   4382       // The user wrote "p->" when she probably meant "p."; fix it.
   4383       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   4384         << ObjectType << true
   4385         << FixItHint::CreateReplacement(OpLoc, ".");
   4386       if (isSFINAEContext())
   4387         return ExprError();
   4388 
   4389       OpKind = tok::period;
   4390     }
   4391   }
   4392 
   4393   // Compute the object type that we should use for name lookup purposes. Only
   4394   // record types and dependent types matter.
   4395   ParsedType ObjectTypePtrForLookup;
   4396   if (!SS.isSet()) {
   4397     if (ObjectType->isRecordType())
   4398       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
   4399     else if (ObjectType->isDependentType())
   4400       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
   4401   }
   4402 
   4403   // Convert the name of the type being destructed (following the ~) into a
   4404   // type (with source-location information).
   4405   QualType DestructedType;
   4406   TypeSourceInfo *DestructedTypeInfo = 0;
   4407   PseudoDestructorTypeStorage Destructed;
   4408   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   4409     ParsedType T = getTypeName(*SecondTypeName.Identifier,
   4410                                SecondTypeName.StartLocation,
   4411                                S, &SS, true, false, ObjectTypePtrForLookup);
   4412     if (!T &&
   4413         ((SS.isSet() && !computeDeclContext(SS, false)) ||
   4414          (!SS.isSet() && ObjectType->isDependentType()))) {
   4415       // The name of the type being destroyed is a dependent name, and we
   4416       // couldn't find anything useful in scope. Just store the identifier and
   4417       // it's location, and we'll perform (qualified) name lookup again at
   4418       // template instantiation time.
   4419       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
   4420                                                SecondTypeName.StartLocation);
   4421     } else if (!T) {
   4422       Diag(SecondTypeName.StartLocation,
   4423            diag::err_pseudo_dtor_destructor_non_type)
   4424         << SecondTypeName.Identifier << ObjectType;
   4425       if (isSFINAEContext())
   4426         return ExprError();
   4427 
   4428       // Recover by assuming we had the right type all along.
   4429       DestructedType = ObjectType;
   4430     } else
   4431       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
   4432   } else {
   4433     // Resolve the template-id to a type.
   4434     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
   4435     ASTTemplateArgsPtr TemplateArgsPtr(*this,
   4436                                        TemplateId->getTemplateArgs(),
   4437                                        TemplateId->NumArgs);
   4438     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   4439                                        TemplateId->Template,
   4440                                        TemplateId->TemplateNameLoc,
   4441                                        TemplateId->LAngleLoc,
   4442                                        TemplateArgsPtr,
   4443                                        TemplateId->RAngleLoc);
   4444     if (T.isInvalid() || !T.get()) {
   4445       // Recover by assuming we had the right type all along.
   4446       DestructedType = ObjectType;
   4447     } else
   4448       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
   4449   }
   4450 
   4451   // If we've performed some kind of recovery, (re-)build the type source
   4452   // information.
   4453   if (!DestructedType.isNull()) {
   4454     if (!DestructedTypeInfo)
   4455       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
   4456                                                   SecondTypeName.StartLocation);
   4457     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   4458   }
   4459 
   4460   // Convert the name of the scope type (the type prior to '::') into a type.
   4461   TypeSourceInfo *ScopeTypeInfo = 0;
   4462   QualType ScopeType;
   4463   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   4464       FirstTypeName.Identifier) {
   4465     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   4466       ParsedType T = getTypeName(*FirstTypeName.Identifier,
   4467                                  FirstTypeName.StartLocation,
   4468                                  S, &SS, true, false, ObjectTypePtrForLookup);
   4469       if (!T) {
   4470         Diag(FirstTypeName.StartLocation,
   4471              diag::err_pseudo_dtor_destructor_non_type)
   4472           << FirstTypeName.Identifier << ObjectType;
   4473 
   4474         if (isSFINAEContext())
   4475           return ExprError();
   4476 
   4477         // Just drop this type. It's unnecessary anyway.
   4478         ScopeType = QualType();
   4479       } else
   4480         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
   4481     } else {
   4482       // Resolve the template-id to a type.
   4483       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
   4484       ASTTemplateArgsPtr TemplateArgsPtr(*this,
   4485                                          TemplateId->getTemplateArgs(),
   4486                                          TemplateId->NumArgs);
   4487       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   4488                                          TemplateId->Template,
   4489                                          TemplateId->TemplateNameLoc,
   4490                                          TemplateId->LAngleLoc,
   4491                                          TemplateArgsPtr,
   4492                                          TemplateId->RAngleLoc);
   4493       if (T.isInvalid() || !T.get()) {
   4494         // Recover by dropping this type.
   4495         ScopeType = QualType();
   4496       } else
   4497         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
   4498     }
   4499   }
   4500 
   4501   if (!ScopeType.isNull() && !ScopeTypeInfo)
   4502     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
   4503                                                   FirstTypeName.StartLocation);
   4504 
   4505 
   4506   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
   4507                                    ScopeTypeInfo, CCLoc, TildeLoc,
   4508                                    Destructed, HasTrailingLParen);
   4509 }
   4510 
   4511 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
   4512                                         CXXMethodDecl *Method) {
   4513   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
   4514                                           FoundDecl, Method);
   4515   if (Exp.isInvalid())
   4516     return true;
   4517 
   4518   MemberExpr *ME =
   4519       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
   4520                                SourceLocation(), Method->getType(),
   4521                                VK_RValue, OK_Ordinary);
   4522   QualType ResultType = Method->getResultType();
   4523   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   4524   ResultType = ResultType.getNonLValueExprType(Context);
   4525 
   4526   MarkDeclarationReferenced(Exp.get()->getLocStart(), Method);
   4527   CXXMemberCallExpr *CE =
   4528     new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
   4529                                     Exp.get()->getLocEnd());
   4530   return CE;
   4531 }
   4532 
   4533 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
   4534                                       SourceLocation RParen) {
   4535   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
   4536                                              Operand->CanThrow(Context),
   4537                                              KeyLoc, RParen));
   4538 }
   4539 
   4540 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
   4541                                    Expr *Operand, SourceLocation RParen) {
   4542   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
   4543 }
   4544 
   4545 /// Perform the conversions required for an expression used in a
   4546 /// context that ignores the result.
   4547 ExprResult Sema::IgnoredValueConversions(Expr *E) {
   4548   // C99 6.3.2.1:
   4549   //   [Except in specific positions,] an lvalue that does not have
   4550   //   array type is converted to the value stored in the
   4551   //   designated object (and is no longer an lvalue).
   4552   if (E->isRValue()) {
   4553     // In C, function designators (i.e. expressions of function type)
   4554     // are r-values, but we still want to do function-to-pointer decay
   4555     // on them.  This is both technically correct and convenient for
   4556     // some clients.
   4557     if (!getLangOptions().CPlusPlus && E->getType()->isFunctionType())
   4558       return DefaultFunctionArrayConversion(E);
   4559 
   4560     return Owned(E);
   4561   }
   4562 
   4563   // We always want to do this on ObjC property references.
   4564   if (E->getObjectKind() == OK_ObjCProperty) {
   4565     ExprResult Res = ConvertPropertyForRValue(E);
   4566     if (Res.isInvalid()) return Owned(E);
   4567     E = Res.take();
   4568     if (E->isRValue()) return Owned(E);
   4569   }
   4570 
   4571   // Otherwise, this rule does not apply in C++, at least not for the moment.
   4572   if (getLangOptions().CPlusPlus) return Owned(E);
   4573 
   4574   // GCC seems to also exclude expressions of incomplete enum type.
   4575   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
   4576     if (!T->getDecl()->isComplete()) {
   4577       // FIXME: stupid workaround for a codegen bug!
   4578       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
   4579       return Owned(E);
   4580     }
   4581   }
   4582 
   4583   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
   4584   if (Res.isInvalid())
   4585     return Owned(E);
   4586   E = Res.take();
   4587 
   4588   if (!E->getType()->isVoidType())
   4589     RequireCompleteType(E->getExprLoc(), E->getType(),
   4590                         diag::err_incomplete_type);
   4591   return Owned(E);
   4592 }
   4593 
   4594 ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
   4595   ExprResult FullExpr = Owned(FE);
   4596 
   4597   if (!FullExpr.get())
   4598     return ExprError();
   4599 
   4600   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
   4601     return ExprError();
   4602 
   4603   FullExpr = CheckPlaceholderExpr(FullExpr.take());
   4604   if (FullExpr.isInvalid())
   4605     return ExprError();
   4606 
   4607   FullExpr = IgnoredValueConversions(FullExpr.take());
   4608   if (FullExpr.isInvalid())
   4609     return ExprError();
   4610 
   4611   CheckImplicitConversions(FullExpr.get());
   4612   return MaybeCreateExprWithCleanups(FullExpr);
   4613 }
   4614 
   4615 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
   4616   if (!FullStmt) return StmtError();
   4617 
   4618   return MaybeCreateStmtWithCleanups(FullStmt);
   4619 }
   4620 
   4621 bool Sema::CheckMicrosoftIfExistsSymbol(CXXScopeSpec &SS,
   4622                                         UnqualifiedId &Name) {
   4623   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   4624   DeclarationName TargetName = TargetNameInfo.getName();
   4625   if (!TargetName)
   4626     return false;
   4627 
   4628   // Do the redeclaration lookup in the current scope.
   4629   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
   4630                  Sema::NotForRedeclaration);
   4631   R.suppressDiagnostics();
   4632   LookupParsedName(R, getCurScope(), &SS);
   4633   return !R.empty();
   4634 }
   4635