Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCasts.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for cast operations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Target/TargetData.h"
     16 #include "llvm/Support/PatternMatch.h"
     17 using namespace llvm;
     18 using namespace PatternMatch;
     19 
     20 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
     21 /// expression.  If so, decompose it, returning some value X, such that Val is
     22 /// X*Scale+Offset.
     23 ///
     24 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
     25                                         uint64_t &Offset) {
     26   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
     27     Offset = CI->getZExtValue();
     28     Scale  = 0;
     29     return ConstantInt::get(Val->getType(), 0);
     30   }
     31 
     32   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
     33     // Cannot look past anything that might overflow.
     34     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
     35     if (OBI && !OBI->hasNoUnsignedWrap()) {
     36       Scale = 1;
     37       Offset = 0;
     38       return Val;
     39     }
     40 
     41     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
     42       if (I->getOpcode() == Instruction::Shl) {
     43         // This is a value scaled by '1 << the shift amt'.
     44         Scale = UINT64_C(1) << RHS->getZExtValue();
     45         Offset = 0;
     46         return I->getOperand(0);
     47       }
     48 
     49       if (I->getOpcode() == Instruction::Mul) {
     50         // This value is scaled by 'RHS'.
     51         Scale = RHS->getZExtValue();
     52         Offset = 0;
     53         return I->getOperand(0);
     54       }
     55 
     56       if (I->getOpcode() == Instruction::Add) {
     57         // We have X+C.  Check to see if we really have (X*C2)+C1,
     58         // where C1 is divisible by C2.
     59         unsigned SubScale;
     60         Value *SubVal =
     61           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
     62         Offset += RHS->getZExtValue();
     63         Scale = SubScale;
     64         return SubVal;
     65       }
     66     }
     67   }
     68 
     69   // Otherwise, we can't look past this.
     70   Scale = 1;
     71   Offset = 0;
     72   return Val;
     73 }
     74 
     75 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
     76 /// try to eliminate the cast by moving the type information into the alloc.
     77 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
     78                                                    AllocaInst &AI) {
     79   // This requires TargetData to get the alloca alignment and size information.
     80   if (!TD) return 0;
     81 
     82   PointerType *PTy = cast<PointerType>(CI.getType());
     83 
     84   BuilderTy AllocaBuilder(*Builder);
     85   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
     86 
     87   // Get the type really allocated and the type casted to.
     88   Type *AllocElTy = AI.getAllocatedType();
     89   Type *CastElTy = PTy->getElementType();
     90   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
     91 
     92   unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
     93   unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
     94   if (CastElTyAlign < AllocElTyAlign) return 0;
     95 
     96   // If the allocation has multiple uses, only promote it if we are strictly
     97   // increasing the alignment of the resultant allocation.  If we keep it the
     98   // same, we open the door to infinite loops of various kinds.
     99   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
    100 
    101   uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
    102   uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
    103   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
    104 
    105   // See if we can satisfy the modulus by pulling a scale out of the array
    106   // size argument.
    107   unsigned ArraySizeScale;
    108   uint64_t ArrayOffset;
    109   Value *NumElements = // See if the array size is a decomposable linear expr.
    110     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
    111 
    112   // If we can now satisfy the modulus, by using a non-1 scale, we really can
    113   // do the xform.
    114   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
    115       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
    116 
    117   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
    118   Value *Amt = 0;
    119   if (Scale == 1) {
    120     Amt = NumElements;
    121   } else {
    122     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    123     // Insert before the alloca, not before the cast.
    124     Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
    125   }
    126 
    127   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    128     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
    129                                   Offset, true);
    130     Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
    131   }
    132 
    133   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
    134   New->setAlignment(AI.getAlignment());
    135   New->takeName(&AI);
    136 
    137   // If the allocation has multiple real uses, insert a cast and change all
    138   // things that used it to use the new cast.  This will also hack on CI, but it
    139   // will die soon.
    140   if (!AI.hasOneUse()) {
    141     // New is the allocation instruction, pointer typed. AI is the original
    142     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    143     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
    144     ReplaceInstUsesWith(AI, NewCast);
    145   }
    146   return ReplaceInstUsesWith(CI, New);
    147 }
    148 
    149 
    150 
    151 /// EvaluateInDifferentType - Given an expression that
    152 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
    153 /// insert the code to evaluate the expression.
    154 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
    155                                              bool isSigned) {
    156   if (Constant *C = dyn_cast<Constant>(V)) {
    157     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    158     // If we got a constantexpr back, try to simplify it with TD info.
    159     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    160       C = ConstantFoldConstantExpression(CE, TD);
    161     return C;
    162   }
    163 
    164   // Otherwise, it must be an instruction.
    165   Instruction *I = cast<Instruction>(V);
    166   Instruction *Res = 0;
    167   unsigned Opc = I->getOpcode();
    168   switch (Opc) {
    169   case Instruction::Add:
    170   case Instruction::Sub:
    171   case Instruction::Mul:
    172   case Instruction::And:
    173   case Instruction::Or:
    174   case Instruction::Xor:
    175   case Instruction::AShr:
    176   case Instruction::LShr:
    177   case Instruction::Shl:
    178   case Instruction::UDiv:
    179   case Instruction::URem: {
    180     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    181     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    182     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    183     break;
    184   }
    185   case Instruction::Trunc:
    186   case Instruction::ZExt:
    187   case Instruction::SExt:
    188     // If the source type of the cast is the type we're trying for then we can
    189     // just return the source.  There's no need to insert it because it is not
    190     // new.
    191     if (I->getOperand(0)->getType() == Ty)
    192       return I->getOperand(0);
    193 
    194     // Otherwise, must be the same type of cast, so just reinsert a new one.
    195     // This also handles the case of zext(trunc(x)) -> zext(x).
    196     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
    197                                       Opc == Instruction::SExt);
    198     break;
    199   case Instruction::Select: {
    200     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    201     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    202     Res = SelectInst::Create(I->getOperand(0), True, False);
    203     break;
    204   }
    205   case Instruction::PHI: {
    206     PHINode *OPN = cast<PHINode>(I);
    207     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    208     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
    209       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
    210       NPN->addIncoming(V, OPN->getIncomingBlock(i));
    211     }
    212     Res = NPN;
    213     break;
    214   }
    215   default:
    216     // TODO: Can handle more cases here.
    217     llvm_unreachable("Unreachable!");
    218     break;
    219   }
    220 
    221   Res->takeName(I);
    222   return InsertNewInstWith(Res, *I);
    223 }
    224 
    225 
    226 /// This function is a wrapper around CastInst::isEliminableCastPair. It
    227 /// simply extracts arguments and returns what that function returns.
    228 static Instruction::CastOps
    229 isEliminableCastPair(
    230   const CastInst *CI, ///< The first cast instruction
    231   unsigned opcode,       ///< The opcode of the second cast instruction
    232   Type *DstTy,     ///< The target type for the second cast instruction
    233   TargetData *TD         ///< The target data for pointer size
    234 ) {
    235 
    236   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
    237   Type *MidTy = CI->getType();                  // B from above
    238 
    239   // Get the opcodes of the two Cast instructions
    240   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
    241   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
    242 
    243   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
    244                                                 DstTy,
    245                                   TD ? TD->getIntPtrType(CI->getContext()) : 0);
    246 
    247   // We don't want to form an inttoptr or ptrtoint that converts to an integer
    248   // type that differs from the pointer size.
    249   if ((Res == Instruction::IntToPtr &&
    250           (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
    251       (Res == Instruction::PtrToInt &&
    252           (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
    253     Res = 0;
    254 
    255   return Instruction::CastOps(Res);
    256 }
    257 
    258 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    259 /// results in any code being generated and is interesting to optimize out. If
    260 /// the cast can be eliminated by some other simple transformation, we prefer
    261 /// to do the simplification first.
    262 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
    263                                       Type *Ty) {
    264   // Noop casts and casts of constants should be eliminated trivially.
    265   if (V->getType() == Ty || isa<Constant>(V)) return false;
    266 
    267   // If this is another cast that can be eliminated, we prefer to have it
    268   // eliminated.
    269   if (const CastInst *CI = dyn_cast<CastInst>(V))
    270     if (isEliminableCastPair(CI, opc, Ty, TD))
    271       return false;
    272 
    273   // If this is a vector sext from a compare, then we don't want to break the
    274   // idiom where each element of the extended vector is either zero or all ones.
    275   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
    276     return false;
    277 
    278   return true;
    279 }
    280 
    281 
    282 /// @brief Implement the transforms common to all CastInst visitors.
    283 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
    284   Value *Src = CI.getOperand(0);
    285 
    286   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
    287   // eliminate it now.
    288   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    289     if (Instruction::CastOps opc =
    290         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
    291       // The first cast (CSrc) is eliminable so we need to fix up or replace
    292       // the second cast (CI). CSrc will then have a good chance of being dead.
    293       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
    294     }
    295   }
    296 
    297   // If we are casting a select then fold the cast into the select
    298   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
    299     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
    300       return NV;
    301 
    302   // If we are casting a PHI then fold the cast into the PHI
    303   if (isa<PHINode>(Src)) {
    304     // We don't do this if this would create a PHI node with an illegal type if
    305     // it is currently legal.
    306     if (!Src->getType()->isIntegerTy() ||
    307         !CI.getType()->isIntegerTy() ||
    308         ShouldChangeType(CI.getType(), Src->getType()))
    309       if (Instruction *NV = FoldOpIntoPhi(CI))
    310         return NV;
    311   }
    312 
    313   return 0;
    314 }
    315 
    316 /// CanEvaluateTruncated - Return true if we can evaluate the specified
    317 /// expression tree as type Ty instead of its larger type, and arrive with the
    318 /// same value.  This is used by code that tries to eliminate truncates.
    319 ///
    320 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
    321 /// can be computed by computing V in the smaller type.  If V is an instruction,
    322 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
    323 /// makes sense if x and y can be efficiently truncated.
    324 ///
    325 /// This function works on both vectors and scalars.
    326 ///
    327 static bool CanEvaluateTruncated(Value *V, Type *Ty) {
    328   // We can always evaluate constants in another type.
    329   if (isa<Constant>(V))
    330     return true;
    331 
    332   Instruction *I = dyn_cast<Instruction>(V);
    333   if (!I) return false;
    334 
    335   Type *OrigTy = V->getType();
    336 
    337   // If this is an extension from the dest type, we can eliminate it, even if it
    338   // has multiple uses.
    339   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
    340       I->getOperand(0)->getType() == Ty)
    341     return true;
    342 
    343   // We can't extend or shrink something that has multiple uses: doing so would
    344   // require duplicating the instruction in general, which isn't profitable.
    345   if (!I->hasOneUse()) return false;
    346 
    347   unsigned Opc = I->getOpcode();
    348   switch (Opc) {
    349   case Instruction::Add:
    350   case Instruction::Sub:
    351   case Instruction::Mul:
    352   case Instruction::And:
    353   case Instruction::Or:
    354   case Instruction::Xor:
    355     // These operators can all arbitrarily be extended or truncated.
    356     return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    357            CanEvaluateTruncated(I->getOperand(1), Ty);
    358 
    359   case Instruction::UDiv:
    360   case Instruction::URem: {
    361     // UDiv and URem can be truncated if all the truncated bits are zero.
    362     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    363     uint32_t BitWidth = Ty->getScalarSizeInBits();
    364     if (BitWidth < OrigBitWidth) {
    365       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
    366       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
    367           MaskedValueIsZero(I->getOperand(1), Mask)) {
    368         return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    369                CanEvaluateTruncated(I->getOperand(1), Ty);
    370       }
    371     }
    372     break;
    373   }
    374   case Instruction::Shl:
    375     // If we are truncating the result of this SHL, and if it's a shift of a
    376     // constant amount, we can always perform a SHL in a smaller type.
    377     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    378       uint32_t BitWidth = Ty->getScalarSizeInBits();
    379       if (CI->getLimitedValue(BitWidth) < BitWidth)
    380         return CanEvaluateTruncated(I->getOperand(0), Ty);
    381     }
    382     break;
    383   case Instruction::LShr:
    384     // If this is a truncate of a logical shr, we can truncate it to a smaller
    385     // lshr iff we know that the bits we would otherwise be shifting in are
    386     // already zeros.
    387     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    388       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    389       uint32_t BitWidth = Ty->getScalarSizeInBits();
    390       if (MaskedValueIsZero(I->getOperand(0),
    391             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
    392           CI->getLimitedValue(BitWidth) < BitWidth) {
    393         return CanEvaluateTruncated(I->getOperand(0), Ty);
    394       }
    395     }
    396     break;
    397   case Instruction::Trunc:
    398     // trunc(trunc(x)) -> trunc(x)
    399     return true;
    400   case Instruction::ZExt:
    401   case Instruction::SExt:
    402     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    403     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    404     return true;
    405   case Instruction::Select: {
    406     SelectInst *SI = cast<SelectInst>(I);
    407     return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
    408            CanEvaluateTruncated(SI->getFalseValue(), Ty);
    409   }
    410   case Instruction::PHI: {
    411     // We can change a phi if we can change all operands.  Note that we never
    412     // get into trouble with cyclic PHIs here because we only consider
    413     // instructions with a single use.
    414     PHINode *PN = cast<PHINode>(I);
    415     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    416       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
    417         return false;
    418     return true;
    419   }
    420   default:
    421     // TODO: Can handle more cases here.
    422     break;
    423   }
    424 
    425   return false;
    426 }
    427 
    428 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
    429   if (Instruction *Result = commonCastTransforms(CI))
    430     return Result;
    431 
    432   // See if we can simplify any instructions used by the input whose sole
    433   // purpose is to compute bits we don't care about.
    434   if (SimplifyDemandedInstructionBits(CI))
    435     return &CI;
    436 
    437   Value *Src = CI.getOperand(0);
    438   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
    439 
    440   // Attempt to truncate the entire input expression tree to the destination
    441   // type.   Only do this if the dest type is a simple type, don't convert the
    442   // expression tree to something weird like i93 unless the source is also
    443   // strange.
    444   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    445       CanEvaluateTruncated(Src, DestTy)) {
    446 
    447     // If this cast is a truncate, evaluting in a different type always
    448     // eliminates the cast, so it is always a win.
    449     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    450           " to avoid cast: " << CI << '\n');
    451     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    452     assert(Res->getType() == DestTy);
    453     return ReplaceInstUsesWith(CI, Res);
    454   }
    455 
    456   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
    457   if (DestTy->getScalarSizeInBits() == 1) {
    458     Constant *One = ConstantInt::get(Src->getType(), 1);
    459     Src = Builder->CreateAnd(Src, One, "tmp");
    460     Value *Zero = Constant::getNullValue(Src->getType());
    461     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
    462   }
    463 
    464   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
    465   Value *A = 0; ConstantInt *Cst = 0;
    466   if (Src->hasOneUse() &&
    467       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    468     // We have three types to worry about here, the type of A, the source of
    469     // the truncate (MidSize), and the destination of the truncate. We know that
    470     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    471     // between ASize and ResultSize.
    472     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    473 
    474     // If the shift amount is larger than the size of A, then the result is
    475     // known to be zero because all the input bits got shifted out.
    476     if (Cst->getZExtValue() >= ASize)
    477       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
    478 
    479     // Since we're doing an lshr and a zero extend, and know that the shift
    480     // amount is smaller than ASize, it is always safe to do the shift in A's
    481     // type, then zero extend or truncate to the result.
    482     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
    483     Shift->takeName(Src);
    484     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
    485   }
    486 
    487   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
    488   // type isn't non-native.
    489   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
    490       ShouldChangeType(Src->getType(), CI.getType()) &&
    491       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
    492     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
    493     return BinaryOperator::CreateAnd(NewTrunc,
    494                                      ConstantExpr::getTrunc(Cst, CI.getType()));
    495   }
    496 
    497   return 0;
    498 }
    499 
    500 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
    501 /// in order to eliminate the icmp.
    502 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    503                                              bool DoXform) {
    504   // If we are just checking for a icmp eq of a single bit and zext'ing it
    505   // to an integer, then shift the bit to the appropriate place and then
    506   // cast to integer to avoid the comparison.
    507   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
    508     const APInt &Op1CV = Op1C->getValue();
    509 
    510     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    511     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    512     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
    513         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
    514       if (!DoXform) return ICI;
    515 
    516       Value *In = ICI->getOperand(0);
    517       Value *Sh = ConstantInt::get(In->getType(),
    518                                    In->getType()->getScalarSizeInBits()-1);
    519       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
    520       if (In->getType() != CI.getType())
    521         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
    522 
    523       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
    524         Constant *One = ConstantInt::get(In->getType(), 1);
    525         In = Builder->CreateXor(In, One, In->getName()+".not");
    526       }
    527 
    528       return ReplaceInstUsesWith(CI, In);
    529     }
    530 
    531 
    532 
    533     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    534     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    535     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    536     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    537     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    538     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    539     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    540     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    541     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
    542         // This only works for EQ and NE
    543         ICI->isEquality()) {
    544       // If Op1C some other power of two, convert:
    545       uint32_t BitWidth = Op1C->getType()->getBitWidth();
    546       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    547       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
    548       ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
    549 
    550       APInt KnownZeroMask(~KnownZero);
    551       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
    552         if (!DoXform) return ICI;
    553 
    554         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
    555         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
    556           // (X&4) == 2 --> false
    557           // (X&4) != 2 --> true
    558           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
    559                                            isNE);
    560           Res = ConstantExpr::getZExt(Res, CI.getType());
    561           return ReplaceInstUsesWith(CI, Res);
    562         }
    563 
    564         uint32_t ShiftAmt = KnownZeroMask.logBase2();
    565         Value *In = ICI->getOperand(0);
    566         if (ShiftAmt) {
    567           // Perform a logical shr by shiftamt.
    568           // Insert the shift to put the result in the low bit.
    569           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
    570                                    In->getName()+".lobit");
    571         }
    572 
    573         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
    574           Constant *One = ConstantInt::get(In->getType(), 1);
    575           In = Builder->CreateXor(In, One, "tmp");
    576         }
    577 
    578         if (CI.getType() == In->getType())
    579           return ReplaceInstUsesWith(CI, In);
    580         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
    581       }
    582     }
    583   }
    584 
    585   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
    586   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
    587   // may lead to additional simplifications.
    588   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
    589     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
    590       uint32_t BitWidth = ITy->getBitWidth();
    591       Value *LHS = ICI->getOperand(0);
    592       Value *RHS = ICI->getOperand(1);
    593 
    594       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
    595       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
    596       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
    597       ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
    598       ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
    599 
    600       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
    601         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
    602         APInt UnknownBit = ~KnownBits;
    603         if (UnknownBit.countPopulation() == 1) {
    604           if (!DoXform) return ICI;
    605 
    606           Value *Result = Builder->CreateXor(LHS, RHS);
    607 
    608           // Mask off any bits that are set and won't be shifted away.
    609           if (KnownOneLHS.uge(UnknownBit))
    610             Result = Builder->CreateAnd(Result,
    611                                         ConstantInt::get(ITy, UnknownBit));
    612 
    613           // Shift the bit we're testing down to the lsb.
    614           Result = Builder->CreateLShr(
    615                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
    616 
    617           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    618             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
    619           Result->takeName(ICI);
    620           return ReplaceInstUsesWith(CI, Result);
    621         }
    622       }
    623     }
    624   }
    625 
    626   return 0;
    627 }
    628 
    629 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
    630 /// specified wider type and produce the same low bits.  If not, return false.
    631 ///
    632 /// If this function returns true, it can also return a non-zero number of bits
    633 /// (in BitsToClear) which indicates that the value it computes is correct for
    634 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
    635 /// out.  For example, to promote something like:
    636 ///
    637 ///   %B = trunc i64 %A to i32
    638 ///   %C = lshr i32 %B, 8
    639 ///   %E = zext i32 %C to i64
    640 ///
    641 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
    642 /// set to 8 to indicate that the promoted value needs to have bits 24-31
    643 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
    644 /// clear the top bits anyway, doing this has no extra cost.
    645 ///
    646 /// This function works on both vectors and scalars.
    647 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
    648   BitsToClear = 0;
    649   if (isa<Constant>(V))
    650     return true;
    651 
    652   Instruction *I = dyn_cast<Instruction>(V);
    653   if (!I) return false;
    654 
    655   // If the input is a truncate from the destination type, we can trivially
    656   // eliminate it, even if it has multiple uses.
    657   // FIXME: This is currently disabled until codegen can handle this without
    658   // pessimizing code, PR5997.
    659   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    660     return true;
    661 
    662   // We can't extend or shrink something that has multiple uses: doing so would
    663   // require duplicating the instruction in general, which isn't profitable.
    664   if (!I->hasOneUse()) return false;
    665 
    666   unsigned Opc = I->getOpcode(), Tmp;
    667   switch (Opc) {
    668   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
    669   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
    670   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    671     return true;
    672   case Instruction::And:
    673   case Instruction::Or:
    674   case Instruction::Xor:
    675   case Instruction::Add:
    676   case Instruction::Sub:
    677   case Instruction::Mul:
    678   case Instruction::Shl:
    679     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
    680         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
    681       return false;
    682     // These can all be promoted if neither operand has 'bits to clear'.
    683     if (BitsToClear == 0 && Tmp == 0)
    684       return true;
    685 
    686     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    687     // other side, BitsToClear is ok.
    688     if (Tmp == 0 &&
    689         (Opc == Instruction::And || Opc == Instruction::Or ||
    690          Opc == Instruction::Xor)) {
    691       // We use MaskedValueIsZero here for generality, but the case we care
    692       // about the most is constant RHS.
    693       unsigned VSize = V->getType()->getScalarSizeInBits();
    694       if (MaskedValueIsZero(I->getOperand(1),
    695                             APInt::getHighBitsSet(VSize, BitsToClear)))
    696         return true;
    697     }
    698 
    699     // Otherwise, we don't know how to analyze this BitsToClear case yet.
    700     return false;
    701 
    702   case Instruction::LShr:
    703     // We can promote lshr(x, cst) if we can promote x.  This requires the
    704     // ultimate 'and' to clear out the high zero bits we're clearing out though.
    705     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    706       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
    707         return false;
    708       BitsToClear += Amt->getZExtValue();
    709       if (BitsToClear > V->getType()->getScalarSizeInBits())
    710         BitsToClear = V->getType()->getScalarSizeInBits();
    711       return true;
    712     }
    713     // Cannot promote variable LSHR.
    714     return false;
    715   case Instruction::Select:
    716     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
    717         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
    718         // TODO: If important, we could handle the case when the BitsToClear are
    719         // known zero in the disagreeing side.
    720         Tmp != BitsToClear)
    721       return false;
    722     return true;
    723 
    724   case Instruction::PHI: {
    725     // We can change a phi if we can change all operands.  Note that we never
    726     // get into trouble with cyclic PHIs here because we only consider
    727     // instructions with a single use.
    728     PHINode *PN = cast<PHINode>(I);
    729     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
    730       return false;
    731     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
    732       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
    733           // TODO: If important, we could handle the case when the BitsToClear
    734           // are known zero in the disagreeing input.
    735           Tmp != BitsToClear)
    736         return false;
    737     return true;
    738   }
    739   default:
    740     // TODO: Can handle more cases here.
    741     return false;
    742   }
    743 }
    744 
    745 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
    746   // If this zero extend is only used by a truncate, let the truncate by
    747   // eliminated before we try to optimize this zext.
    748   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
    749     return 0;
    750 
    751   // If one of the common conversion will work, do it.
    752   if (Instruction *Result = commonCastTransforms(CI))
    753     return Result;
    754 
    755   // See if we can simplify any instructions used by the input whose sole
    756   // purpose is to compute bits we don't care about.
    757   if (SimplifyDemandedInstructionBits(CI))
    758     return &CI;
    759 
    760   Value *Src = CI.getOperand(0);
    761   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
    762 
    763   // Attempt to extend the entire input expression tree to the destination
    764   // type.   Only do this if the dest type is a simple type, don't convert the
    765   // expression tree to something weird like i93 unless the source is also
    766   // strange.
    767   unsigned BitsToClear;
    768   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    769       CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
    770     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
    771            "Unreasonable BitsToClear");
    772 
    773     // Okay, we can transform this!  Insert the new expression now.
    774     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    775           " to avoid zero extend: " << CI);
    776     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    777     assert(Res->getType() == DestTy);
    778 
    779     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    780     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
    781 
    782     // If the high bits are already filled with zeros, just replace this
    783     // cast with the result.
    784     if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
    785                                                      DestBitSize-SrcBitsKept)))
    786       return ReplaceInstUsesWith(CI, Res);
    787 
    788     // We need to emit an AND to clear the high bits.
    789     Constant *C = ConstantInt::get(Res->getType(),
    790                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    791     return BinaryOperator::CreateAnd(Res, C);
    792   }
    793 
    794   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
    795   // types and if the sizes are just right we can convert this into a logical
    796   // 'and' which will be much cheaper than the pair of casts.
    797   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    798     // TODO: Subsume this into EvaluateInDifferentType.
    799 
    800     // Get the sizes of the types involved.  We know that the intermediate type
    801     // will be smaller than A or C, but don't know the relation between A and C.
    802     Value *A = CSrc->getOperand(0);
    803     unsigned SrcSize = A->getType()->getScalarSizeInBits();
    804     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    805     unsigned DstSize = CI.getType()->getScalarSizeInBits();
    806     // If we're actually extending zero bits, then if
    807     // SrcSize <  DstSize: zext(a & mask)
    808     // SrcSize == DstSize: a & mask
    809     // SrcSize  > DstSize: trunc(a) & mask
    810     if (SrcSize < DstSize) {
    811       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    812       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
    813       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
    814       return new ZExtInst(And, CI.getType());
    815     }
    816 
    817     if (SrcSize == DstSize) {
    818       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    819       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
    820                                                            AndValue));
    821     }
    822     if (SrcSize > DstSize) {
    823       Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
    824       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
    825       return BinaryOperator::CreateAnd(Trunc,
    826                                        ConstantInt::get(Trunc->getType(),
    827                                                         AndValue));
    828     }
    829   }
    830 
    831   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    832     return transformZExtICmp(ICI, CI);
    833 
    834   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
    835   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    836     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
    837     // of the (zext icmp) will be transformed.
    838     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    839     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    840     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
    841         (transformZExtICmp(LHS, CI, false) ||
    842          transformZExtICmp(RHS, CI, false))) {
    843       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
    844       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
    845       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
    846     }
    847   }
    848 
    849   // zext(trunc(t) & C) -> (t & zext(C)).
    850   if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
    851     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    852       if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
    853         Value *TI0 = TI->getOperand(0);
    854         if (TI0->getType() == CI.getType())
    855           return
    856             BinaryOperator::CreateAnd(TI0,
    857                                 ConstantExpr::getZExt(C, CI.getType()));
    858       }
    859 
    860   // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
    861   if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
    862     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    863       if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
    864         if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
    865             And->getOperand(1) == C)
    866           if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
    867             Value *TI0 = TI->getOperand(0);
    868             if (TI0->getType() == CI.getType()) {
    869               Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    870               Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
    871               return BinaryOperator::CreateXor(NewAnd, ZC);
    872             }
    873           }
    874 
    875   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
    876   Value *X;
    877   if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
    878       match(SrcI, m_Not(m_Value(X))) &&
    879       (!X->hasOneUse() || !isa<CmpInst>(X))) {
    880     Value *New = Builder->CreateZExt(X, CI.getType());
    881     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
    882   }
    883 
    884   return 0;
    885 }
    886 
    887 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
    888 /// in order to eliminate the icmp.
    889 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
    890   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
    891   ICmpInst::Predicate Pred = ICI->getPredicate();
    892 
    893   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    894     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    895     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    896     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
    897         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
    898 
    899       Value *Sh = ConstantInt::get(Op0->getType(),
    900                                    Op0->getType()->getScalarSizeInBits()-1);
    901       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
    902       if (In->getType() != CI.getType())
    903         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
    904 
    905       if (Pred == ICmpInst::ICMP_SGT)
    906         In = Builder->CreateNot(In, In->getName()+".not");
    907       return ReplaceInstUsesWith(CI, In);
    908     }
    909 
    910     // If we know that only one bit of the LHS of the icmp can be set and we
    911     // have an equality comparison with zero or a power of 2, we can transform
    912     // the icmp and sext into bitwise/integer operations.
    913     if (ICI->hasOneUse() &&
    914         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
    915       unsigned BitWidth = Op1C->getType()->getBitWidth();
    916       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    917       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
    918       ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
    919 
    920       APInt KnownZeroMask(~KnownZero);
    921       if (KnownZeroMask.isPowerOf2()) {
    922         Value *In = ICI->getOperand(0);
    923 
    924         // If the icmp tests for a known zero bit we can constant fold it.
    925         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
    926           Value *V = Pred == ICmpInst::ICMP_NE ?
    927                        ConstantInt::getAllOnesValue(CI.getType()) :
    928                        ConstantInt::getNullValue(CI.getType());
    929           return ReplaceInstUsesWith(CI, V);
    930         }
    931 
    932         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
    933           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
    934           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
    935           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
    936           // Perform a right shift to place the desired bit in the LSB.
    937           if (ShiftAmt)
    938             In = Builder->CreateLShr(In,
    939                                      ConstantInt::get(In->getType(), ShiftAmt));
    940 
    941           // At this point "In" is either 1 or 0. Subtract 1 to turn
    942           // {1, 0} -> {0, -1}.
    943           In = Builder->CreateAdd(In,
    944                                   ConstantInt::getAllOnesValue(In->getType()),
    945                                   "sext");
    946         } else {
    947           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
    948           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
    949           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
    950           // Perform a left shift to place the desired bit in the MSB.
    951           if (ShiftAmt)
    952             In = Builder->CreateShl(In,
    953                                     ConstantInt::get(In->getType(), ShiftAmt));
    954 
    955           // Distribute the bit over the whole bit width.
    956           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
    957                                                         BitWidth - 1), "sext");
    958         }
    959 
    960         if (CI.getType() == In->getType())
    961           return ReplaceInstUsesWith(CI, In);
    962         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
    963       }
    964     }
    965   }
    966 
    967   // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
    968   if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
    969     if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
    970         Op0->getType() == CI.getType()) {
    971       Type *EltTy = VTy->getElementType();
    972 
    973       // splat the shift constant to a constant vector.
    974       Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
    975       Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
    976       return ReplaceInstUsesWith(CI, In);
    977     }
    978   }
    979 
    980   return 0;
    981 }
    982 
    983 /// CanEvaluateSExtd - Return true if we can take the specified value
    984 /// and return it as type Ty without inserting any new casts and without
    985 /// changing the value of the common low bits.  This is used by code that tries
    986 /// to promote integer operations to a wider types will allow us to eliminate
    987 /// the extension.
    988 ///
    989 /// This function works on both vectors and scalars.
    990 ///
    991 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
    992   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
    993          "Can't sign extend type to a smaller type");
    994   // If this is a constant, it can be trivially promoted.
    995   if (isa<Constant>(V))
    996     return true;
    997 
    998   Instruction *I = dyn_cast<Instruction>(V);
    999   if (!I) return false;
   1000 
   1001   // If this is a truncate from the dest type, we can trivially eliminate it,
   1002   // even if it has multiple uses.
   1003   // FIXME: This is currently disabled until codegen can handle this without
   1004   // pessimizing code, PR5997.
   1005   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
   1006     return true;
   1007 
   1008   // We can't extend or shrink something that has multiple uses: doing so would
   1009   // require duplicating the instruction in general, which isn't profitable.
   1010   if (!I->hasOneUse()) return false;
   1011 
   1012   switch (I->getOpcode()) {
   1013   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
   1014   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
   1015   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
   1016     return true;
   1017   case Instruction::And:
   1018   case Instruction::Or:
   1019   case Instruction::Xor:
   1020   case Instruction::Add:
   1021   case Instruction::Sub:
   1022   case Instruction::Mul:
   1023     // These operators can all arbitrarily be extended if their inputs can.
   1024     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
   1025            CanEvaluateSExtd(I->getOperand(1), Ty);
   1026 
   1027   //case Instruction::Shl:   TODO
   1028   //case Instruction::LShr:  TODO
   1029 
   1030   case Instruction::Select:
   1031     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
   1032            CanEvaluateSExtd(I->getOperand(2), Ty);
   1033 
   1034   case Instruction::PHI: {
   1035     // We can change a phi if we can change all operands.  Note that we never
   1036     // get into trouble with cyclic PHIs here because we only consider
   1037     // instructions with a single use.
   1038     PHINode *PN = cast<PHINode>(I);
   1039     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1040       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
   1041     return true;
   1042   }
   1043   default:
   1044     // TODO: Can handle more cases here.
   1045     break;
   1046   }
   1047 
   1048   return false;
   1049 }
   1050 
   1051 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
   1052   // If this sign extend is only used by a truncate, let the truncate by
   1053   // eliminated before we try to optimize this zext.
   1054   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
   1055     return 0;
   1056 
   1057   if (Instruction *I = commonCastTransforms(CI))
   1058     return I;
   1059 
   1060   // See if we can simplify any instructions used by the input whose sole
   1061   // purpose is to compute bits we don't care about.
   1062   if (SimplifyDemandedInstructionBits(CI))
   1063     return &CI;
   1064 
   1065   Value *Src = CI.getOperand(0);
   1066   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
   1067 
   1068   // Attempt to extend the entire input expression tree to the destination
   1069   // type.   Only do this if the dest type is a simple type, don't convert the
   1070   // expression tree to something weird like i93 unless the source is also
   1071   // strange.
   1072   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
   1073       CanEvaluateSExtd(Src, DestTy)) {
   1074     // Okay, we can transform this!  Insert the new expression now.
   1075     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
   1076           " to avoid sign extend: " << CI);
   1077     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
   1078     assert(Res->getType() == DestTy);
   1079 
   1080     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1081     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1082 
   1083     // If the high bits are already filled with sign bit, just replace this
   1084     // cast with the result.
   1085     if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
   1086       return ReplaceInstUsesWith(CI, Res);
   1087 
   1088     // We need to emit a shl + ashr to do the sign extend.
   1089     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1090     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
   1091                                       ShAmt);
   1092   }
   1093 
   1094   // If this input is a trunc from our destination, then turn sext(trunc(x))
   1095   // into shifts.
   1096   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
   1097     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
   1098       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1099       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1100 
   1101       // We need to emit a shl + ashr to do the sign extend.
   1102       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1103       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
   1104       return BinaryOperator::CreateAShr(Res, ShAmt);
   1105     }
   1106 
   1107   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
   1108     return transformSExtICmp(ICI, CI);
   1109 
   1110   // If the input is a shl/ashr pair of a same constant, then this is a sign
   1111   // extension from a smaller value.  If we could trust arbitrary bitwidth
   1112   // integers, we could turn this into a truncate to the smaller bit and then
   1113   // use a sext for the whole extension.  Since we don't, look deeper and check
   1114   // for a truncate.  If the source and dest are the same type, eliminate the
   1115   // trunc and extend and just do shifts.  For example, turn:
   1116   //   %a = trunc i32 %i to i8
   1117   //   %b = shl i8 %a, 6
   1118   //   %c = ashr i8 %b, 6
   1119   //   %d = sext i8 %c to i32
   1120   // into:
   1121   //   %a = shl i32 %i, 30
   1122   //   %d = ashr i32 %a, 30
   1123   Value *A = 0;
   1124   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
   1125   ConstantInt *BA = 0, *CA = 0;
   1126   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
   1127                         m_ConstantInt(CA))) &&
   1128       BA == CA && A->getType() == CI.getType()) {
   1129     unsigned MidSize = Src->getType()->getScalarSizeInBits();
   1130     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
   1131     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
   1132     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
   1133     A = Builder->CreateShl(A, ShAmtV, CI.getName());
   1134     return BinaryOperator::CreateAShr(A, ShAmtV);
   1135   }
   1136 
   1137   return 0;
   1138 }
   1139 
   1140 
   1141 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
   1142 /// in the specified FP type without changing its value.
   1143 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
   1144   bool losesInfo;
   1145   APFloat F = CFP->getValueAPF();
   1146   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
   1147   if (!losesInfo)
   1148     return ConstantFP::get(CFP->getContext(), F);
   1149   return 0;
   1150 }
   1151 
   1152 /// LookThroughFPExtensions - If this is an fp extension instruction, look
   1153 /// through it until we get the source value.
   1154 static Value *LookThroughFPExtensions(Value *V) {
   1155   if (Instruction *I = dyn_cast<Instruction>(V))
   1156     if (I->getOpcode() == Instruction::FPExt)
   1157       return LookThroughFPExtensions(I->getOperand(0));
   1158 
   1159   // If this value is a constant, return the constant in the smallest FP type
   1160   // that can accurately represent it.  This allows us to turn
   1161   // (float)((double)X+2.0) into x+2.0f.
   1162   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1163     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
   1164       return V;  // No constant folding of this.
   1165     // See if the value can be truncated to float and then reextended.
   1166     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
   1167       return V;
   1168     if (CFP->getType()->isDoubleTy())
   1169       return V;  // Won't shrink.
   1170     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
   1171       return V;
   1172     // Don't try to shrink to various long double types.
   1173   }
   1174 
   1175   return V;
   1176 }
   1177 
   1178 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
   1179   if (Instruction *I = commonCastTransforms(CI))
   1180     return I;
   1181 
   1182   // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
   1183   // smaller than the destination type, we can eliminate the truncate by doing
   1184   // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
   1185   // as many builtins (sqrt, etc).
   1186   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
   1187   if (OpI && OpI->hasOneUse()) {
   1188     switch (OpI->getOpcode()) {
   1189     default: break;
   1190     case Instruction::FAdd:
   1191     case Instruction::FSub:
   1192     case Instruction::FMul:
   1193     case Instruction::FDiv:
   1194     case Instruction::FRem:
   1195       Type *SrcTy = OpI->getType();
   1196       Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
   1197       Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
   1198       if (LHSTrunc->getType() != SrcTy &&
   1199           RHSTrunc->getType() != SrcTy) {
   1200         unsigned DstSize = CI.getType()->getScalarSizeInBits();
   1201         // If the source types were both smaller than the destination type of
   1202         // the cast, do this xform.
   1203         if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
   1204             RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
   1205           LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
   1206           RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
   1207           return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
   1208         }
   1209       }
   1210       break;
   1211     }
   1212   }
   1213 
   1214   // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
   1215   // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
   1216   CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
   1217   if (Call && Call->getCalledFunction() &&
   1218       Call->getCalledFunction()->getName() == "sqrt" &&
   1219       Call->getNumArgOperands() == 1 &&
   1220       Call->hasOneUse()) {
   1221     CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
   1222     if (Arg && Arg->getOpcode() == Instruction::FPExt &&
   1223         CI.getType()->isFloatTy() &&
   1224         Call->getType()->isDoubleTy() &&
   1225         Arg->getType()->isDoubleTy() &&
   1226         Arg->getOperand(0)->getType()->isFloatTy()) {
   1227       Function *Callee = Call->getCalledFunction();
   1228       Module *M = CI.getParent()->getParent()->getParent();
   1229       Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
   1230                                                    Callee->getAttributes(),
   1231                                                    Builder->getFloatTy(),
   1232                                                    Builder->getFloatTy(),
   1233                                                    NULL);
   1234       CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
   1235                                        "sqrtfcall");
   1236       ret->setAttributes(Callee->getAttributes());
   1237 
   1238 
   1239       // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
   1240       ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
   1241       EraseInstFromFunction(*Call);
   1242       return ret;
   1243     }
   1244   }
   1245 
   1246   return 0;
   1247 }
   1248 
   1249 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
   1250   return commonCastTransforms(CI);
   1251 }
   1252 
   1253 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
   1254   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1255   if (OpI == 0)
   1256     return commonCastTransforms(FI);
   1257 
   1258   // fptoui(uitofp(X)) --> X
   1259   // fptoui(sitofp(X)) --> X
   1260   // This is safe if the intermediate type has enough bits in its mantissa to
   1261   // accurately represent all values of X.  For example, do not do this with
   1262   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1263   // 'X' value would cause an undefined result for the fptoui.
   1264   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1265       OpI->getOperand(0)->getType() == FI.getType() &&
   1266       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
   1267                     OpI->getType()->getFPMantissaWidth())
   1268     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1269 
   1270   return commonCastTransforms(FI);
   1271 }
   1272 
   1273 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
   1274   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1275   if (OpI == 0)
   1276     return commonCastTransforms(FI);
   1277 
   1278   // fptosi(sitofp(X)) --> X
   1279   // fptosi(uitofp(X)) --> X
   1280   // This is safe if the intermediate type has enough bits in its mantissa to
   1281   // accurately represent all values of X.  For example, do not do this with
   1282   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1283   // 'X' value would cause an undefined result for the fptoui.
   1284   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1285       OpI->getOperand(0)->getType() == FI.getType() &&
   1286       (int)FI.getType()->getScalarSizeInBits() <=
   1287                     OpI->getType()->getFPMantissaWidth())
   1288     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1289 
   1290   return commonCastTransforms(FI);
   1291 }
   1292 
   1293 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
   1294   return commonCastTransforms(CI);
   1295 }
   1296 
   1297 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
   1298   return commonCastTransforms(CI);
   1299 }
   1300 
   1301 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
   1302   // If the source integer type is not the intptr_t type for this target, do a
   1303   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
   1304   // cast to be exposed to other transforms.
   1305   if (TD) {
   1306     if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
   1307         TD->getPointerSizeInBits()) {
   1308       Value *P = Builder->CreateTrunc(CI.getOperand(0),
   1309                                       TD->getIntPtrType(CI.getContext()), "tmp");
   1310       return new IntToPtrInst(P, CI.getType());
   1311     }
   1312     if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
   1313         TD->getPointerSizeInBits()) {
   1314       Value *P = Builder->CreateZExt(CI.getOperand(0),
   1315                                      TD->getIntPtrType(CI.getContext()), "tmp");
   1316       return new IntToPtrInst(P, CI.getType());
   1317     }
   1318   }
   1319 
   1320   if (Instruction *I = commonCastTransforms(CI))
   1321     return I;
   1322 
   1323   return 0;
   1324 }
   1325 
   1326 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
   1327 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
   1328   Value *Src = CI.getOperand(0);
   1329 
   1330   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
   1331     // If casting the result of a getelementptr instruction with no offset, turn
   1332     // this into a cast of the original pointer!
   1333     if (GEP->hasAllZeroIndices()) {
   1334       // Changing the cast operand is usually not a good idea but it is safe
   1335       // here because the pointer operand is being replaced with another
   1336       // pointer operand so the opcode doesn't need to change.
   1337       Worklist.Add(GEP);
   1338       CI.setOperand(0, GEP->getOperand(0));
   1339       return &CI;
   1340     }
   1341 
   1342     // If the GEP has a single use, and the base pointer is a bitcast, and the
   1343     // GEP computes a constant offset, see if we can convert these three
   1344     // instructions into fewer.  This typically happens with unions and other
   1345     // non-type-safe code.
   1346     if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
   1347         GEP->hasAllConstantIndices()) {
   1348       // We are guaranteed to get a constant from EmitGEPOffset.
   1349       ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
   1350       int64_t Offset = OffsetV->getSExtValue();
   1351 
   1352       // Get the base pointer input of the bitcast, and the type it points to.
   1353       Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
   1354       Type *GEPIdxTy =
   1355       cast<PointerType>(OrigBase->getType())->getElementType();
   1356       SmallVector<Value*, 8> NewIndices;
   1357       if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
   1358         // If we were able to index down into an element, create the GEP
   1359         // and bitcast the result.  This eliminates one bitcast, potentially
   1360         // two.
   1361         Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
   1362         Builder->CreateInBoundsGEP(OrigBase,
   1363                                    NewIndices.begin(), NewIndices.end()) :
   1364         Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
   1365         NGEP->takeName(GEP);
   1366 
   1367         if (isa<BitCastInst>(CI))
   1368           return new BitCastInst(NGEP, CI.getType());
   1369         assert(isa<PtrToIntInst>(CI));
   1370         return new PtrToIntInst(NGEP, CI.getType());
   1371       }
   1372     }
   1373   }
   1374 
   1375   return commonCastTransforms(CI);
   1376 }
   1377 
   1378 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
   1379   // If the destination integer type is not the intptr_t type for this target,
   1380   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
   1381   // to be exposed to other transforms.
   1382   if (TD) {
   1383     if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
   1384       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
   1385                                          TD->getIntPtrType(CI.getContext()),
   1386                                          "tmp");
   1387       return new TruncInst(P, CI.getType());
   1388     }
   1389     if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
   1390       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
   1391                                          TD->getIntPtrType(CI.getContext()),
   1392                                          "tmp");
   1393       return new ZExtInst(P, CI.getType());
   1394     }
   1395   }
   1396 
   1397   return commonPointerCastTransforms(CI);
   1398 }
   1399 
   1400 /// OptimizeVectorResize - This input value (which is known to have vector type)
   1401 /// is being zero extended or truncated to the specified vector type.  Try to
   1402 /// replace it with a shuffle (and vector/vector bitcast) if possible.
   1403 ///
   1404 /// The source and destination vector types may have different element types.
   1405 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
   1406                                          InstCombiner &IC) {
   1407   // We can only do this optimization if the output is a multiple of the input
   1408   // element size, or the input is a multiple of the output element size.
   1409   // Convert the input type to have the same element type as the output.
   1410   VectorType *SrcTy = cast<VectorType>(InVal->getType());
   1411 
   1412   if (SrcTy->getElementType() != DestTy->getElementType()) {
   1413     // The input types don't need to be identical, but for now they must be the
   1414     // same size.  There is no specific reason we couldn't handle things like
   1415     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
   1416     // there yet.
   1417     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
   1418         DestTy->getElementType()->getPrimitiveSizeInBits())
   1419       return 0;
   1420 
   1421     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
   1422     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
   1423   }
   1424 
   1425   // Now that the element types match, get the shuffle mask and RHS of the
   1426   // shuffle to use, which depends on whether we're increasing or decreasing the
   1427   // size of the input.
   1428   SmallVector<Constant*, 16> ShuffleMask;
   1429   Value *V2;
   1430   IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
   1431 
   1432   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
   1433     // If we're shrinking the number of elements, just shuffle in the low
   1434     // elements from the input and use undef as the second shuffle input.
   1435     V2 = UndefValue::get(SrcTy);
   1436     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
   1437       ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
   1438 
   1439   } else {
   1440     // If we're increasing the number of elements, shuffle in all of the
   1441     // elements from InVal and fill the rest of the result elements with zeros
   1442     // from a constant zero.
   1443     V2 = Constant::getNullValue(SrcTy);
   1444     unsigned SrcElts = SrcTy->getNumElements();
   1445     for (unsigned i = 0, e = SrcElts; i != e; ++i)
   1446       ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
   1447 
   1448     // The excess elements reference the first element of the zero input.
   1449     ShuffleMask.append(DestTy->getNumElements()-SrcElts,
   1450                        ConstantInt::get(Int32Ty, SrcElts));
   1451   }
   1452 
   1453   return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
   1454 }
   1455 
   1456 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
   1457   return Value % Ty->getPrimitiveSizeInBits() == 0;
   1458 }
   1459 
   1460 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
   1461   return Value / Ty->getPrimitiveSizeInBits();
   1462 }
   1463 
   1464 /// CollectInsertionElements - V is a value which is inserted into a vector of
   1465 /// VecEltTy.  Look through the value to see if we can decompose it into
   1466 /// insertions into the vector.  See the example in the comment for
   1467 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
   1468 /// The type of V is always a non-zero multiple of VecEltTy's size.
   1469 ///
   1470 /// This returns false if the pattern can't be matched or true if it can,
   1471 /// filling in Elements with the elements found here.
   1472 static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
   1473                                      SmallVectorImpl<Value*> &Elements,
   1474                                      Type *VecEltTy) {
   1475   // Undef values never contribute useful bits to the result.
   1476   if (isa<UndefValue>(V)) return true;
   1477 
   1478   // If we got down to a value of the right type, we win, try inserting into the
   1479   // right element.
   1480   if (V->getType() == VecEltTy) {
   1481     // Inserting null doesn't actually insert any elements.
   1482     if (Constant *C = dyn_cast<Constant>(V))
   1483       if (C->isNullValue())
   1484         return true;
   1485 
   1486     // Fail if multiple elements are inserted into this slot.
   1487     if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
   1488       return false;
   1489 
   1490     Elements[ElementIndex] = V;
   1491     return true;
   1492   }
   1493 
   1494   if (Constant *C = dyn_cast<Constant>(V)) {
   1495     // Figure out the # elements this provides, and bitcast it or slice it up
   1496     // as required.
   1497     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
   1498                                         VecEltTy);
   1499     // If the constant is the size of a vector element, we just need to bitcast
   1500     // it to the right type so it gets properly inserted.
   1501     if (NumElts == 1)
   1502       return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
   1503                                       ElementIndex, Elements, VecEltTy);
   1504 
   1505     // Okay, this is a constant that covers multiple elements.  Slice it up into
   1506     // pieces and insert each element-sized piece into the vector.
   1507     if (!isa<IntegerType>(C->getType()))
   1508       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
   1509                                        C->getType()->getPrimitiveSizeInBits()));
   1510     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
   1511     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
   1512 
   1513     for (unsigned i = 0; i != NumElts; ++i) {
   1514       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
   1515                                                                i*ElementSize));
   1516       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
   1517       if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
   1518         return false;
   1519     }
   1520     return true;
   1521   }
   1522 
   1523   if (!V->hasOneUse()) return false;
   1524 
   1525   Instruction *I = dyn_cast<Instruction>(V);
   1526   if (I == 0) return false;
   1527   switch (I->getOpcode()) {
   1528   default: return false; // Unhandled case.
   1529   case Instruction::BitCast:
   1530     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1531                                     Elements, VecEltTy);
   1532   case Instruction::ZExt:
   1533     if (!isMultipleOfTypeSize(
   1534                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
   1535                               VecEltTy))
   1536       return false;
   1537     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1538                                     Elements, VecEltTy);
   1539   case Instruction::Or:
   1540     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1541                                     Elements, VecEltTy) &&
   1542            CollectInsertionElements(I->getOperand(1), ElementIndex,
   1543                                     Elements, VecEltTy);
   1544   case Instruction::Shl: {
   1545     // Must be shifting by a constant that is a multiple of the element size.
   1546     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
   1547     if (CI == 0) return false;
   1548     if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
   1549     unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
   1550 
   1551     return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
   1552                                     Elements, VecEltTy);
   1553   }
   1554 
   1555   }
   1556 }
   1557 
   1558 
   1559 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
   1560 /// may be doing shifts and ors to assemble the elements of the vector manually.
   1561 /// Try to rip the code out and replace it with insertelements.  This is to
   1562 /// optimize code like this:
   1563 ///
   1564 ///    %tmp37 = bitcast float %inc to i32
   1565 ///    %tmp38 = zext i32 %tmp37 to i64
   1566 ///    %tmp31 = bitcast float %inc5 to i32
   1567 ///    %tmp32 = zext i32 %tmp31 to i64
   1568 ///    %tmp33 = shl i64 %tmp32, 32
   1569 ///    %ins35 = or i64 %tmp33, %tmp38
   1570 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
   1571 ///
   1572 /// Into two insertelements that do "buildvector{%inc, %inc5}".
   1573 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
   1574                                                 InstCombiner &IC) {
   1575   VectorType *DestVecTy = cast<VectorType>(CI.getType());
   1576   Value *IntInput = CI.getOperand(0);
   1577 
   1578   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
   1579   if (!CollectInsertionElements(IntInput, 0, Elements,
   1580                                 DestVecTy->getElementType()))
   1581     return 0;
   1582 
   1583   // If we succeeded, we know that all of the element are specified by Elements
   1584   // or are zero if Elements has a null entry.  Recast this as a set of
   1585   // insertions.
   1586   Value *Result = Constant::getNullValue(CI.getType());
   1587   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   1588     if (Elements[i] == 0) continue;  // Unset element.
   1589 
   1590     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
   1591                                              IC.Builder->getInt32(i));
   1592   }
   1593 
   1594   return Result;
   1595 }
   1596 
   1597 
   1598 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
   1599 /// bitcast.  The various long double bitcasts can't get in here.
   1600 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
   1601   Value *Src = CI.getOperand(0);
   1602   Type *DestTy = CI.getType();
   1603 
   1604   // If this is a bitcast from int to float, check to see if the int is an
   1605   // extraction from a vector.
   1606   Value *VecInput = 0;
   1607   // bitcast(trunc(bitcast(somevector)))
   1608   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
   1609       isa<VectorType>(VecInput->getType())) {
   1610     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1611     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1612 
   1613     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
   1614       // If the element type of the vector doesn't match the result type,
   1615       // bitcast it to be a vector type we can extract from.
   1616       if (VecTy->getElementType() != DestTy) {
   1617         VecTy = VectorType::get(DestTy,
   1618                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1619         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1620       }
   1621 
   1622       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
   1623     }
   1624   }
   1625 
   1626   // bitcast(trunc(lshr(bitcast(somevector), cst))
   1627   ConstantInt *ShAmt = 0;
   1628   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
   1629                                 m_ConstantInt(ShAmt)))) &&
   1630       isa<VectorType>(VecInput->getType())) {
   1631     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1632     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1633     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
   1634         ShAmt->getZExtValue() % DestWidth == 0) {
   1635       // If the element type of the vector doesn't match the result type,
   1636       // bitcast it to be a vector type we can extract from.
   1637       if (VecTy->getElementType() != DestTy) {
   1638         VecTy = VectorType::get(DestTy,
   1639                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1640         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1641       }
   1642 
   1643       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
   1644       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
   1645     }
   1646   }
   1647   return 0;
   1648 }
   1649 
   1650 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
   1651   // If the operands are integer typed then apply the integer transforms,
   1652   // otherwise just apply the common ones.
   1653   Value *Src = CI.getOperand(0);
   1654   Type *SrcTy = Src->getType();
   1655   Type *DestTy = CI.getType();
   1656 
   1657   // Get rid of casts from one type to the same type. These are useless and can
   1658   // be replaced by the operand.
   1659   if (DestTy == Src->getType())
   1660     return ReplaceInstUsesWith(CI, Src);
   1661 
   1662   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
   1663     PointerType *SrcPTy = cast<PointerType>(SrcTy);
   1664     Type *DstElTy = DstPTy->getElementType();
   1665     Type *SrcElTy = SrcPTy->getElementType();
   1666 
   1667     // If the address spaces don't match, don't eliminate the bitcast, which is
   1668     // required for changing types.
   1669     if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
   1670       return 0;
   1671 
   1672     // If we are casting a alloca to a pointer to a type of the same
   1673     // size, rewrite the allocation instruction to allocate the "right" type.
   1674     // There is no need to modify malloc calls because it is their bitcast that
   1675     // needs to be cleaned up.
   1676     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
   1677       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
   1678         return V;
   1679 
   1680     // If the source and destination are pointers, and this cast is equivalent
   1681     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
   1682     // This can enhance SROA and other transforms that want type-safe pointers.
   1683     Constant *ZeroUInt =
   1684       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
   1685     unsigned NumZeros = 0;
   1686     while (SrcElTy != DstElTy &&
   1687            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
   1688            SrcElTy->getNumContainedTypes() /* not "{}" */) {
   1689       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
   1690       ++NumZeros;
   1691     }
   1692 
   1693     // If we found a path from the src to dest, create the getelementptr now.
   1694     if (SrcElTy == DstElTy) {
   1695       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
   1696       return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end());
   1697     }
   1698   }
   1699 
   1700   // Try to optimize int -> float bitcasts.
   1701   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
   1702     if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
   1703       return I;
   1704 
   1705   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
   1706     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
   1707       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
   1708       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
   1709                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1710       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
   1711     }
   1712 
   1713     if (isa<IntegerType>(SrcTy)) {
   1714       // If this is a cast from an integer to vector, check to see if the input
   1715       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
   1716       // the casts with a shuffle and (potentially) a bitcast.
   1717       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
   1718         CastInst *SrcCast = cast<CastInst>(Src);
   1719         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
   1720           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
   1721             if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
   1722                                                cast<VectorType>(DestTy), *this))
   1723               return I;
   1724       }
   1725 
   1726       // If the input is an 'or' instruction, we may be doing shifts and ors to
   1727       // assemble the elements of the vector manually.  Try to rip the code out
   1728       // and replace it with insertelements.
   1729       if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
   1730         return ReplaceInstUsesWith(CI, V);
   1731     }
   1732   }
   1733 
   1734   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
   1735     if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
   1736       Value *Elem =
   1737         Builder->CreateExtractElement(Src,
   1738                    Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1739       return CastInst::Create(Instruction::BitCast, Elem, DestTy);
   1740     }
   1741   }
   1742 
   1743   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
   1744     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
   1745     // a bitcast to a vector with the same # elts.
   1746     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
   1747         cast<VectorType>(DestTy)->getNumElements() ==
   1748               SVI->getType()->getNumElements() &&
   1749         SVI->getType()->getNumElements() ==
   1750           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
   1751       BitCastInst *Tmp;
   1752       // If either of the operands is a cast from CI.getType(), then
   1753       // evaluating the shuffle in the casted destination's type will allow
   1754       // us to eliminate at least one cast.
   1755       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
   1756            Tmp->getOperand(0)->getType() == DestTy) ||
   1757           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
   1758            Tmp->getOperand(0)->getType() == DestTy)) {
   1759         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
   1760         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
   1761         // Return a new shuffle vector.  Use the same element ID's, as we
   1762         // know the vector types match #elts.
   1763         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
   1764       }
   1765     }
   1766   }
   1767 
   1768   if (SrcTy->isPointerTy())
   1769     return commonPointerCastTransforms(CI);
   1770   return commonCastTransforms(CI);
   1771 }
   1772