1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "asm-printer" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #ifndef ANDROID_TARGET_BUILD 17 # include "DwarfDebug.h" 18 # include "DwarfException.h" 19 #endif // ANDROID_TARGET_BUILD 20 #include "llvm/Module.h" 21 #include "llvm/CodeGen/GCMetadataPrinter.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DebugInfo.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCContext.h" 32 #include "llvm/MC/MCExpr.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCSection.h" 35 #include "llvm/MC/MCStreamer.h" 36 #include "llvm/MC/MCSymbol.h" 37 #include "llvm/Target/Mangler.h" 38 #include "llvm/Target/TargetAsmInfo.h" 39 #include "llvm/Target/TargetData.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetLowering.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Target/TargetOptions.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Assembly/Writer.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/Timer.h" 51 #include <ctype.h> 52 using namespace llvm; 53 54 static const char *DWARFGroupName = "DWARF Emission"; 55 static const char *DbgTimerName = "DWARF Debug Writer"; 56 static const char *EHTimerName = "DWARF Exception Writer"; 57 58 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 59 60 char AsmPrinter::ID = 0; 61 62 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 63 static gcp_map_type &getGCMap(void *&P) { 64 if (P == 0) 65 P = new gcp_map_type(); 66 return *(gcp_map_type*)P; 67 } 68 69 70 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 71 /// value in log2 form. This rounds up to the preferred alignment if possible 72 /// and legal. 73 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, 74 unsigned InBits = 0) { 75 unsigned NumBits = 0; 76 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 77 NumBits = TD.getPreferredAlignmentLog(GVar); 78 79 // If InBits is specified, round it to it. 80 if (InBits > NumBits) 81 NumBits = InBits; 82 83 // If the GV has a specified alignment, take it into account. 84 if (GV->getAlignment() == 0) 85 return NumBits; 86 87 unsigned GVAlign = Log2_32(GV->getAlignment()); 88 89 // If the GVAlign is larger than NumBits, or if we are required to obey 90 // NumBits because the GV has an assigned section, obey it. 91 if (GVAlign > NumBits || GV->hasSection()) 92 NumBits = GVAlign; 93 return NumBits; 94 } 95 96 97 98 99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 100 : MachineFunctionPass(ID), 101 TM(tm), MAI(tm.getMCAsmInfo()), 102 OutContext(Streamer.getContext()), 103 OutStreamer(Streamer), 104 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 105 DD = 0; DE = 0; MMI = 0; LI = 0; 106 GCMetadataPrinters = 0; 107 VerboseAsm = Streamer.isVerboseAsm(); 108 } 109 110 AsmPrinter::~AsmPrinter() { 111 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 112 113 if (GCMetadataPrinters != 0) { 114 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 115 116 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 117 delete I->second; 118 delete &GCMap; 119 GCMetadataPrinters = 0; 120 } 121 122 delete &OutStreamer; 123 } 124 125 /// getFunctionNumber - Return a unique ID for the current function. 126 /// 127 unsigned AsmPrinter::getFunctionNumber() const { 128 return MF->getFunctionNumber(); 129 } 130 131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 132 return TM.getTargetLowering()->getObjFileLowering(); 133 } 134 135 136 /// getTargetData - Return information about data layout. 137 const TargetData &AsmPrinter::getTargetData() const { 138 return *TM.getTargetData(); 139 } 140 141 /// getCurrentSection() - Return the current section we are emitting to. 142 const MCSection *AsmPrinter::getCurrentSection() const { 143 return OutStreamer.getCurrentSection(); 144 } 145 146 147 148 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 149 AU.setPreservesAll(); 150 MachineFunctionPass::getAnalysisUsage(AU); 151 AU.addRequired<MachineModuleInfo>(); 152 AU.addRequired<GCModuleInfo>(); 153 if (isVerbose()) 154 AU.addRequired<MachineLoopInfo>(); 155 } 156 157 bool AsmPrinter::doInitialization(Module &M) { 158 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 159 MMI->AnalyzeModule(M); 160 161 // Initialize TargetLoweringObjectFile. 162 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 163 .Initialize(OutContext, TM); 164 165 Mang = new Mangler(OutContext, *TM.getTargetData()); 166 167 // Allow the target to emit any magic that it wants at the start of the file. 168 EmitStartOfAsmFile(M); 169 170 // Very minimal debug info. It is ignored if we emit actual debug info. If we 171 // don't, this at least helps the user find where a global came from. 172 if (MAI->hasSingleParameterDotFile()) { 173 // .file "foo.c" 174 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 175 } 176 177 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 178 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 179 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 180 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 181 MP->beginAssembly(*this); 182 183 // Emit module-level inline asm if it exists. 184 if (!M.getModuleInlineAsm().empty()) { 185 OutStreamer.AddComment("Start of file scope inline assembly"); 186 OutStreamer.AddBlankLine(); 187 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 188 OutStreamer.AddComment("End of file scope inline assembly"); 189 OutStreamer.AddBlankLine(); 190 } 191 192 #ifndef ANDROID_TARGET_BUILD 193 if (MAI->doesSupportDebugInformation()) 194 DD = new DwarfDebug(this, &M); 195 196 switch (MAI->getExceptionHandlingType()) { 197 case ExceptionHandling::None: 198 return false; 199 case ExceptionHandling::SjLj: 200 case ExceptionHandling::DwarfCFI: 201 DE = new DwarfCFIException(this); 202 return false; 203 case ExceptionHandling::ARM: 204 DE = new ARMException(this); 205 return false; 206 case ExceptionHandling::Win64: 207 DE = new Win64Exception(this); 208 return false; 209 } 210 #else 211 return false; 212 #endif // ANDROID_TARGET_BUILD 213 214 llvm_unreachable("Unknown exception type."); 215 } 216 217 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 218 switch ((GlobalValue::LinkageTypes)Linkage) { 219 case GlobalValue::CommonLinkage: 220 case GlobalValue::LinkOnceAnyLinkage: 221 case GlobalValue::LinkOnceODRLinkage: 222 case GlobalValue::WeakAnyLinkage: 223 case GlobalValue::WeakODRLinkage: 224 case GlobalValue::LinkerPrivateWeakLinkage: 225 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 226 if (MAI->getWeakDefDirective() != 0) { 227 // .globl _foo 228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 229 230 if ((GlobalValue::LinkageTypes)Linkage != 231 GlobalValue::LinkerPrivateWeakDefAutoLinkage) 232 // .weak_definition _foo 233 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 234 else 235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 236 } else if (MAI->getLinkOnceDirective() != 0) { 237 // .globl _foo 238 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 239 //NOTE: linkonce is handled by the section the symbol was assigned to. 240 } else { 241 // .weak _foo 242 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 243 } 244 break; 245 case GlobalValue::DLLExportLinkage: 246 case GlobalValue::AppendingLinkage: 247 // FIXME: appending linkage variables should go into a section of 248 // their name or something. For now, just emit them as external. 249 case GlobalValue::ExternalLinkage: 250 // If external or appending, declare as a global symbol. 251 // .globl _foo 252 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 253 break; 254 case GlobalValue::PrivateLinkage: 255 case GlobalValue::InternalLinkage: 256 case GlobalValue::LinkerPrivateLinkage: 257 break; 258 default: 259 llvm_unreachable("Unknown linkage type!"); 260 } 261 } 262 263 264 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 265 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 266 if (GV->hasInitializer()) { 267 // Check to see if this is a special global used by LLVM, if so, emit it. 268 if (EmitSpecialLLVMGlobal(GV)) 269 return; 270 271 if (isVerbose()) { 272 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 273 /*PrintType=*/false, GV->getParent()); 274 OutStreamer.GetCommentOS() << '\n'; 275 } 276 } 277 278 MCSymbol *GVSym = Mang->getSymbol(GV); 279 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 280 281 if (!GV->hasInitializer()) // External globals require no extra code. 282 return; 283 284 if (MAI->hasDotTypeDotSizeDirective()) 285 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 286 287 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 288 289 const TargetData *TD = TM.getTargetData(); 290 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 291 292 // If the alignment is specified, we *must* obey it. Overaligning a global 293 // with a specified alignment is a prompt way to break globals emitted to 294 // sections and expected to be contiguous (e.g. ObjC metadata). 295 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 296 297 // Handle common and BSS local symbols (.lcomm). 298 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 299 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 300 301 // Handle common symbols. 302 if (GVKind.isCommon()) { 303 unsigned Align = 1 << AlignLog; 304 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 305 Align = 0; 306 307 // .comm _foo, 42, 4 308 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 309 return; 310 } 311 312 // Handle local BSS symbols. 313 if (MAI->hasMachoZeroFillDirective()) { 314 const MCSection *TheSection = 315 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 316 // .zerofill __DATA, __bss, _foo, 400, 5 317 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 318 return; 319 } 320 321 if (MAI->hasLCOMMDirective()) { 322 // .lcomm _foo, 42 323 OutStreamer.EmitLocalCommonSymbol(GVSym, Size); 324 return; 325 } 326 327 unsigned Align = 1 << AlignLog; 328 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 329 Align = 0; 330 331 // .local _foo 332 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 333 // .comm _foo, 42, 4 334 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 335 return; 336 } 337 338 const MCSection *TheSection = 339 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 340 341 // Handle the zerofill directive on darwin, which is a special form of BSS 342 // emission. 343 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 344 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 345 346 // .globl _foo 347 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 348 // .zerofill __DATA, __common, _foo, 400, 5 349 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 350 return; 351 } 352 353 // Handle thread local data for mach-o which requires us to output an 354 // additional structure of data and mangle the original symbol so that we 355 // can reference it later. 356 // 357 // TODO: This should become an "emit thread local global" method on TLOF. 358 // All of this macho specific stuff should be sunk down into TLOFMachO and 359 // stuff like "TLSExtraDataSection" should no longer be part of the parent 360 // TLOF class. This will also make it more obvious that stuff like 361 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 362 // specific code. 363 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 364 // Emit the .tbss symbol 365 MCSymbol *MangSym = 366 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 367 368 if (GVKind.isThreadBSS()) 369 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 370 else if (GVKind.isThreadData()) { 371 OutStreamer.SwitchSection(TheSection); 372 373 EmitAlignment(AlignLog, GV); 374 OutStreamer.EmitLabel(MangSym); 375 376 EmitGlobalConstant(GV->getInitializer()); 377 } 378 379 OutStreamer.AddBlankLine(); 380 381 // Emit the variable struct for the runtime. 382 const MCSection *TLVSect 383 = getObjFileLowering().getTLSExtraDataSection(); 384 385 OutStreamer.SwitchSection(TLVSect); 386 // Emit the linkage here. 387 EmitLinkage(GV->getLinkage(), GVSym); 388 OutStreamer.EmitLabel(GVSym); 389 390 // Three pointers in size: 391 // - __tlv_bootstrap - used to make sure support exists 392 // - spare pointer, used when mapped by the runtime 393 // - pointer to mangled symbol above with initializer 394 unsigned PtrSize = TD->getPointerSizeInBits()/8; 395 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 396 PtrSize, 0); 397 OutStreamer.EmitIntValue(0, PtrSize, 0); 398 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 399 400 OutStreamer.AddBlankLine(); 401 return; 402 } 403 404 OutStreamer.SwitchSection(TheSection); 405 406 EmitLinkage(GV->getLinkage(), GVSym); 407 EmitAlignment(AlignLog, GV); 408 409 OutStreamer.EmitLabel(GVSym); 410 411 EmitGlobalConstant(GV->getInitializer()); 412 413 if (MAI->hasDotTypeDotSizeDirective()) 414 // .size foo, 42 415 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 416 417 OutStreamer.AddBlankLine(); 418 } 419 420 /// EmitFunctionHeader - This method emits the header for the current 421 /// function. 422 void AsmPrinter::EmitFunctionHeader() { 423 // Print out constants referenced by the function 424 EmitConstantPool(); 425 426 // Print the 'header' of function. 427 const Function *F = MF->getFunction(); 428 429 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 430 EmitVisibility(CurrentFnSym, F->getVisibility()); 431 432 EmitLinkage(F->getLinkage(), CurrentFnSym); 433 EmitAlignment(MF->getAlignment(), F); 434 435 if (MAI->hasDotTypeDotSizeDirective()) 436 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 437 438 if (isVerbose()) { 439 WriteAsOperand(OutStreamer.GetCommentOS(), F, 440 /*PrintType=*/false, F->getParent()); 441 OutStreamer.GetCommentOS() << '\n'; 442 } 443 444 // Emit the CurrentFnSym. This is a virtual function to allow targets to 445 // do their wild and crazy things as required. 446 EmitFunctionEntryLabel(); 447 448 // If the function had address-taken blocks that got deleted, then we have 449 // references to the dangling symbols. Emit them at the start of the function 450 // so that we don't get references to undefined symbols. 451 std::vector<MCSymbol*> DeadBlockSyms; 452 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 453 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 454 OutStreamer.AddComment("Address taken block that was later removed"); 455 OutStreamer.EmitLabel(DeadBlockSyms[i]); 456 } 457 458 // Add some workaround for linkonce linkage on Cygwin\MinGW. 459 if (MAI->getLinkOnceDirective() != 0 && 460 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 461 // FIXME: What is this? 462 MCSymbol *FakeStub = 463 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 464 CurrentFnSym->getName()); 465 OutStreamer.EmitLabel(FakeStub); 466 } 467 468 // Emit pre-function debug and/or EH information. 469 #ifndef ANDROID_TARGET_BUILD 470 if (DE) { 471 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 472 DE->BeginFunction(MF); 473 } 474 if (DD) { 475 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 476 DD->beginFunction(MF); 477 } 478 #endif // ANDROID_TARGET_BUILD 479 } 480 481 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 482 /// function. This can be overridden by targets as required to do custom stuff. 483 void AsmPrinter::EmitFunctionEntryLabel() { 484 // The function label could have already been emitted if two symbols end up 485 // conflicting due to asm renaming. Detect this and emit an error. 486 if (CurrentFnSym->isUndefined()) 487 return OutStreamer.EmitLabel(CurrentFnSym); 488 489 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 490 "' label emitted multiple times to assembly file"); 491 } 492 493 494 /// EmitComments - Pretty-print comments for instructions. 495 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 496 const MachineFunction *MF = MI.getParent()->getParent(); 497 const TargetMachine &TM = MF->getTarget(); 498 499 // Check for spills and reloads 500 int FI; 501 502 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 503 504 // We assume a single instruction only has a spill or reload, not 505 // both. 506 const MachineMemOperand *MMO; 507 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 508 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 509 MMO = *MI.memoperands_begin(); 510 CommentOS << MMO->getSize() << "-byte Reload\n"; 511 } 512 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 513 if (FrameInfo->isSpillSlotObjectIndex(FI)) 514 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 515 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 516 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 517 MMO = *MI.memoperands_begin(); 518 CommentOS << MMO->getSize() << "-byte Spill\n"; 519 } 520 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 521 if (FrameInfo->isSpillSlotObjectIndex(FI)) 522 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 523 } 524 525 // Check for spill-induced copies 526 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 527 CommentOS << " Reload Reuse\n"; 528 } 529 530 /// EmitImplicitDef - This method emits the specified machine instruction 531 /// that is an implicit def. 532 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 533 unsigned RegNo = MI->getOperand(0).getReg(); 534 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 535 AP.TM.getRegisterInfo()->getName(RegNo)); 536 AP.OutStreamer.AddBlankLine(); 537 } 538 539 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) { 540 std::string Str = "kill:"; 541 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 542 const MachineOperand &Op = MI->getOperand(i); 543 assert(Op.isReg() && "KILL instruction must have only register operands"); 544 Str += ' '; 545 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 546 Str += (Op.isDef() ? "<def>" : "<kill>"); 547 } 548 AP.OutStreamer.AddComment(Str); 549 AP.OutStreamer.AddBlankLine(); 550 } 551 552 /// EmitDebugValueComment - This method handles the target-independent form 553 /// of DBG_VALUE, returning true if it was able to do so. A false return 554 /// means the target will need to handle MI in EmitInstruction. 555 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 556 // This code handles only the 3-operand target-independent form. 557 if (MI->getNumOperands() != 3) 558 return false; 559 560 SmallString<128> Str; 561 raw_svector_ostream OS(Str); 562 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 563 564 // cast away const; DIetc do not take const operands for some reason. 565 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 566 if (V.getContext().isSubprogram()) 567 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 568 OS << V.getName() << " <- "; 569 570 // Register or immediate value. Register 0 means undef. 571 if (MI->getOperand(0).isFPImm()) { 572 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 573 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 574 OS << (double)APF.convertToFloat(); 575 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 576 OS << APF.convertToDouble(); 577 } else { 578 // There is no good way to print long double. Convert a copy to 579 // double. Ah well, it's only a comment. 580 bool ignored; 581 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 582 &ignored); 583 OS << "(long double) " << APF.convertToDouble(); 584 } 585 } else if (MI->getOperand(0).isImm()) { 586 OS << MI->getOperand(0).getImm(); 587 } else if (MI->getOperand(0).isCImm()) { 588 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 589 } else { 590 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 591 if (MI->getOperand(0).getReg() == 0) { 592 // Suppress offset, it is not meaningful here. 593 OS << "undef"; 594 // NOTE: Want this comment at start of line, don't emit with AddComment. 595 AP.OutStreamer.EmitRawText(OS.str()); 596 return true; 597 } 598 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 599 } 600 601 OS << '+' << MI->getOperand(1).getImm(); 602 // NOTE: Want this comment at start of line, don't emit with AddComment. 603 AP.OutStreamer.EmitRawText(OS.str()); 604 return true; 605 } 606 607 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 608 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 609 MF->getFunction()->needsUnwindTableEntry()) 610 return CFI_M_EH; 611 612 if (MMI->hasDebugInfo()) 613 return CFI_M_Debug; 614 615 return CFI_M_None; 616 } 617 618 bool AsmPrinter::needsSEHMoves() { 619 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 620 MF->getFunction()->needsUnwindTableEntry(); 621 } 622 623 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 624 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 625 626 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 627 return; 628 629 if (needsCFIMoves() == CFI_M_None) 630 return; 631 632 if (MMI->getCompactUnwindEncoding() != 0) 633 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 634 635 MachineModuleInfo &MMI = MF->getMMI(); 636 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 637 bool FoundOne = false; 638 (void)FoundOne; 639 for (std::vector<MachineMove>::iterator I = Moves.begin(), 640 E = Moves.end(); I != E; ++I) { 641 if (I->getLabel() == Label) { 642 EmitCFIFrameMove(*I); 643 FoundOne = true; 644 } 645 } 646 assert(FoundOne); 647 } 648 649 /// EmitFunctionBody - This method emits the body and trailer for a 650 /// function. 651 void AsmPrinter::EmitFunctionBody() { 652 // Emit target-specific gunk before the function body. 653 EmitFunctionBodyStart(); 654 655 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 656 657 // Print out code for the function. 658 bool HasAnyRealCode = false; 659 const MachineInstr *LastMI = 0; 660 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 661 I != E; ++I) { 662 // Print a label for the basic block. 663 EmitBasicBlockStart(I); 664 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 665 II != IE; ++II) { 666 LastMI = II; 667 668 // Print the assembly for the instruction. 669 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 670 !II->isDebugValue()) { 671 HasAnyRealCode = true; 672 673 ++EmittedInsts; 674 } 675 #ifndef ANDROID_TARGET_BUILD 676 if (ShouldPrintDebugScopes) { 677 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 678 DD->beginInstruction(II); 679 } 680 #endif // ANDROID_TARGET_BUILD 681 682 if (isVerbose()) 683 EmitComments(*II, OutStreamer.GetCommentOS()); 684 685 switch (II->getOpcode()) { 686 case TargetOpcode::PROLOG_LABEL: 687 emitPrologLabel(*II); 688 break; 689 690 case TargetOpcode::EH_LABEL: 691 case TargetOpcode::GC_LABEL: 692 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 693 break; 694 case TargetOpcode::INLINEASM: 695 EmitInlineAsm(II); 696 break; 697 case TargetOpcode::DBG_VALUE: 698 if (isVerbose()) { 699 if (!EmitDebugValueComment(II, *this)) 700 EmitInstruction(II); 701 } 702 break; 703 case TargetOpcode::IMPLICIT_DEF: 704 if (isVerbose()) EmitImplicitDef(II, *this); 705 break; 706 case TargetOpcode::KILL: 707 if (isVerbose()) EmitKill(II, *this); 708 break; 709 default: 710 if (!TM.hasMCUseLoc()) 711 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 712 713 EmitInstruction(II); 714 break; 715 } 716 717 #ifndef ANDROID_TARGET_BUILD 718 if (ShouldPrintDebugScopes) { 719 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 720 DD->endInstruction(II); 721 } 722 #endif // ANDROID_TARGET_BUILD 723 } 724 } 725 726 // If the last instruction was a prolog label, then we have a situation where 727 // we emitted a prolog but no function body. This results in the ending prolog 728 // label equaling the end of function label and an invalid "row" in the 729 // FDE. We need to emit a noop in this situation so that the FDE's rows are 730 // valid. 731 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 732 733 // If the function is empty and the object file uses .subsections_via_symbols, 734 // then we need to emit *something* to the function body to prevent the 735 // labels from collapsing together. Just emit a noop. 736 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 737 MCInst Noop; 738 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 739 if (Noop.getOpcode()) { 740 OutStreamer.AddComment("avoids zero-length function"); 741 OutStreamer.EmitInstruction(Noop); 742 } else // Target not mc-ized yet. 743 OutStreamer.EmitRawText(StringRef("\tnop\n")); 744 } 745 746 // Emit target-specific gunk after the function body. 747 EmitFunctionBodyEnd(); 748 749 // If the target wants a .size directive for the size of the function, emit 750 // it. 751 if (MAI->hasDotTypeDotSizeDirective()) { 752 // Create a symbol for the end of function, so we can get the size as 753 // difference between the function label and the temp label. 754 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 755 OutStreamer.EmitLabel(FnEndLabel); 756 757 const MCExpr *SizeExp = 758 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 759 MCSymbolRefExpr::Create(CurrentFnSym, OutContext), 760 OutContext); 761 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 762 } 763 764 // Emit post-function debug information. 765 #ifndef ANDROID_TARGET_BUILD 766 if (DD) { 767 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 768 DD->endFunction(MF); 769 } 770 if (DE) { 771 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 772 DE->EndFunction(); 773 } 774 #endif // ANDROID_TARGET_BUILD 775 MMI->EndFunction(); 776 777 // Print out jump tables referenced by the function. 778 EmitJumpTableInfo(); 779 780 OutStreamer.AddBlankLine(); 781 } 782 783 /// getDebugValueLocation - Get location information encoded by DBG_VALUE 784 /// operands. 785 MachineLocation AsmPrinter:: 786 getDebugValueLocation(const MachineInstr *MI) const { 787 // Target specific DBG_VALUE instructions are handled by each target. 788 return MachineLocation(); 789 } 790 791 /// EmitDwarfRegOp - Emit dwarf register operation. 792 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 793 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 794 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 795 796 for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg()); 797 *SR && Reg < 0; ++SR) { 798 Reg = TRI->getDwarfRegNum(*SR, false); 799 // FIXME: Get the bit range this register uses of the superregister 800 // so that we can produce a DW_OP_bit_piece 801 } 802 803 // FIXME: Handle cases like a super register being encoded as 804 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 805 806 // FIXME: We have no reasonable way of handling errors in here. The 807 // caller might be in the middle of an dwarf expression. We should 808 // probably assert that Reg >= 0 once debug info generation is more mature. 809 810 if (int Offset = MLoc.getOffset()) { 811 if (Reg < 32) { 812 OutStreamer.AddComment( 813 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 814 EmitInt8(dwarf::DW_OP_breg0 + Reg); 815 } else { 816 OutStreamer.AddComment("DW_OP_bregx"); 817 EmitInt8(dwarf::DW_OP_bregx); 818 OutStreamer.AddComment(Twine(Reg)); 819 EmitULEB128(Reg); 820 } 821 EmitSLEB128(Offset); 822 } else { 823 if (Reg < 32) { 824 OutStreamer.AddComment( 825 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 826 EmitInt8(dwarf::DW_OP_reg0 + Reg); 827 } else { 828 OutStreamer.AddComment("DW_OP_regx"); 829 EmitInt8(dwarf::DW_OP_regx); 830 OutStreamer.AddComment(Twine(Reg)); 831 EmitULEB128(Reg); 832 } 833 } 834 835 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 836 } 837 838 bool AsmPrinter::doFinalization(Module &M) { 839 // Emit global variables. 840 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 841 I != E; ++I) 842 EmitGlobalVariable(I); 843 844 // Emit visibility info for declarations 845 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 846 const Function &F = *I; 847 if (!F.isDeclaration()) 848 continue; 849 GlobalValue::VisibilityTypes V = F.getVisibility(); 850 if (V == GlobalValue::DefaultVisibility) 851 continue; 852 853 MCSymbol *Name = Mang->getSymbol(&F); 854 EmitVisibility(Name, V, false); 855 } 856 857 // Finalize debug and EH information. 858 #ifndef ANDROID_TARGET_BUILD 859 if (DE) { 860 { 861 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 862 DE->EndModule(); 863 } 864 delete DE; DE = 0; 865 } 866 if (DD) { 867 { 868 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 869 DD->endModule(); 870 } 871 delete DD; DD = 0; 872 } 873 #endif // ANDROID_TARGET_BUILD 874 875 // If the target wants to know about weak references, print them all. 876 if (MAI->getWeakRefDirective()) { 877 // FIXME: This is not lazy, it would be nice to only print weak references 878 // to stuff that is actually used. Note that doing so would require targets 879 // to notice uses in operands (due to constant exprs etc). This should 880 // happen with the MC stuff eventually. 881 882 // Print out module-level global variables here. 883 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 884 I != E; ++I) { 885 if (!I->hasExternalWeakLinkage()) continue; 886 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 887 } 888 889 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 890 if (!I->hasExternalWeakLinkage()) continue; 891 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 892 } 893 } 894 895 if (MAI->hasSetDirective()) { 896 OutStreamer.AddBlankLine(); 897 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 898 I != E; ++I) { 899 MCSymbol *Name = Mang->getSymbol(I); 900 901 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); 902 MCSymbol *Target = Mang->getSymbol(GV); 903 904 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 905 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 906 else if (I->hasWeakLinkage()) 907 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 908 else 909 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 910 911 EmitVisibility(Name, I->getVisibility()); 912 913 // Emit the directives as assignments aka .set: 914 OutStreamer.EmitAssignment(Name, 915 MCSymbolRefExpr::Create(Target, OutContext)); 916 } 917 } 918 919 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 920 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 921 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 922 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 923 MP->finishAssembly(*this); 924 925 // If we don't have any trampolines, then we don't require stack memory 926 // to be executable. Some targets have a directive to declare this. 927 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 928 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 929 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 930 OutStreamer.SwitchSection(S); 931 932 // Allow the target to emit any magic that it wants at the end of the file, 933 // after everything else has gone out. 934 EmitEndOfAsmFile(M); 935 936 delete Mang; Mang = 0; 937 MMI = 0; 938 939 OutStreamer.Finish(); 940 return false; 941 } 942 943 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 944 this->MF = &MF; 945 // Get the function symbol. 946 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 947 948 if (isVerbose()) 949 LI = &getAnalysis<MachineLoopInfo>(); 950 } 951 952 namespace { 953 // SectionCPs - Keep track the alignment, constpool entries per Section. 954 struct SectionCPs { 955 const MCSection *S; 956 unsigned Alignment; 957 SmallVector<unsigned, 4> CPEs; 958 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 959 }; 960 } 961 962 /// EmitConstantPool - Print to the current output stream assembly 963 /// representations of the constants in the constant pool MCP. This is 964 /// used to print out constants which have been "spilled to memory" by 965 /// the code generator. 966 /// 967 void AsmPrinter::EmitConstantPool() { 968 const MachineConstantPool *MCP = MF->getConstantPool(); 969 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 970 if (CP.empty()) return; 971 972 // Calculate sections for constant pool entries. We collect entries to go into 973 // the same section together to reduce amount of section switch statements. 974 SmallVector<SectionCPs, 4> CPSections; 975 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 976 const MachineConstantPoolEntry &CPE = CP[i]; 977 unsigned Align = CPE.getAlignment(); 978 979 SectionKind Kind; 980 switch (CPE.getRelocationInfo()) { 981 default: llvm_unreachable("Unknown section kind"); 982 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 983 case 1: 984 Kind = SectionKind::getReadOnlyWithRelLocal(); 985 break; 986 case 0: 987 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 988 case 4: Kind = SectionKind::getMergeableConst4(); break; 989 case 8: Kind = SectionKind::getMergeableConst8(); break; 990 case 16: Kind = SectionKind::getMergeableConst16();break; 991 default: Kind = SectionKind::getMergeableConst(); break; 992 } 993 } 994 995 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 996 997 // The number of sections are small, just do a linear search from the 998 // last section to the first. 999 bool Found = false; 1000 unsigned SecIdx = CPSections.size(); 1001 while (SecIdx != 0) { 1002 if (CPSections[--SecIdx].S == S) { 1003 Found = true; 1004 break; 1005 } 1006 } 1007 if (!Found) { 1008 SecIdx = CPSections.size(); 1009 CPSections.push_back(SectionCPs(S, Align)); 1010 } 1011 1012 if (Align > CPSections[SecIdx].Alignment) 1013 CPSections[SecIdx].Alignment = Align; 1014 CPSections[SecIdx].CPEs.push_back(i); 1015 } 1016 1017 // Now print stuff into the calculated sections. 1018 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1019 OutStreamer.SwitchSection(CPSections[i].S); 1020 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1021 1022 unsigned Offset = 0; 1023 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1024 unsigned CPI = CPSections[i].CPEs[j]; 1025 MachineConstantPoolEntry CPE = CP[CPI]; 1026 1027 // Emit inter-object padding for alignment. 1028 unsigned AlignMask = CPE.getAlignment() - 1; 1029 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1030 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1031 1032 Type *Ty = CPE.getType(); 1033 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 1034 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1035 1036 if (CPE.isMachineConstantPoolEntry()) 1037 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1038 else 1039 EmitGlobalConstant(CPE.Val.ConstVal); 1040 } 1041 } 1042 } 1043 1044 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1045 /// by the current function to the current output stream. 1046 /// 1047 void AsmPrinter::EmitJumpTableInfo() { 1048 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1049 if (MJTI == 0) return; 1050 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1051 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1052 if (JT.empty()) return; 1053 1054 // Pick the directive to use to print the jump table entries, and switch to 1055 // the appropriate section. 1056 const Function *F = MF->getFunction(); 1057 bool JTInDiffSection = false; 1058 if (// In PIC mode, we need to emit the jump table to the same section as the 1059 // function body itself, otherwise the label differences won't make sense. 1060 // FIXME: Need a better predicate for this: what about custom entries? 1061 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1062 // We should also do if the section name is NULL or function is declared 1063 // in discardable section 1064 // FIXME: this isn't the right predicate, should be based on the MCSection 1065 // for the function. 1066 F->isWeakForLinker()) { 1067 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1068 } else { 1069 // Otherwise, drop it in the readonly section. 1070 const MCSection *ReadOnlySection = 1071 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1072 OutStreamer.SwitchSection(ReadOnlySection); 1073 JTInDiffSection = true; 1074 } 1075 1076 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 1077 1078 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1079 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1080 1081 // If this jump table was deleted, ignore it. 1082 if (JTBBs.empty()) continue; 1083 1084 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1085 // .set directive for each unique entry. This reduces the number of 1086 // relocations the assembler will generate for the jump table. 1087 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1088 MAI->hasSetDirective()) { 1089 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1090 const TargetLowering *TLI = TM.getTargetLowering(); 1091 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1092 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1093 const MachineBasicBlock *MBB = JTBBs[ii]; 1094 if (!EmittedSets.insert(MBB)) continue; 1095 1096 // .set LJTSet, LBB32-base 1097 const MCExpr *LHS = 1098 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1099 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1100 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1101 } 1102 } 1103 1104 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1105 // before each jump table. The first label is never referenced, but tells 1106 // the assembler and linker the extents of the jump table object. The 1107 // second label is actually referenced by the code. 1108 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1109 // FIXME: This doesn't have to have any specific name, just any randomly 1110 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1111 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1112 1113 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1114 1115 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1116 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1117 } 1118 } 1119 1120 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1121 /// current stream. 1122 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1123 const MachineBasicBlock *MBB, 1124 unsigned UID) const { 1125 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1126 const MCExpr *Value = 0; 1127 switch (MJTI->getEntryKind()) { 1128 case MachineJumpTableInfo::EK_Inline: 1129 llvm_unreachable("Cannot emit EK_Inline jump table entry"); break; 1130 case MachineJumpTableInfo::EK_Custom32: 1131 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1132 OutContext); 1133 break; 1134 case MachineJumpTableInfo::EK_BlockAddress: 1135 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1136 // .word LBB123 1137 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1138 break; 1139 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1140 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1141 // with a relocation as gp-relative, e.g.: 1142 // .gprel32 LBB123 1143 MCSymbol *MBBSym = MBB->getSymbol(); 1144 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1145 return; 1146 } 1147 1148 case MachineJumpTableInfo::EK_LabelDifference32: { 1149 // EK_LabelDifference32 - Each entry is the address of the block minus 1150 // the address of the jump table. This is used for PIC jump tables where 1151 // gprel32 is not supported. e.g.: 1152 // .word LBB123 - LJTI1_2 1153 // If the .set directive is supported, this is emitted as: 1154 // .set L4_5_set_123, LBB123 - LJTI1_2 1155 // .word L4_5_set_123 1156 1157 // If we have emitted set directives for the jump table entries, print 1158 // them rather than the entries themselves. If we're emitting PIC, then 1159 // emit the table entries as differences between two text section labels. 1160 if (MAI->hasSetDirective()) { 1161 // If we used .set, reference the .set's symbol. 1162 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1163 OutContext); 1164 break; 1165 } 1166 // Otherwise, use the difference as the jump table entry. 1167 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1168 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1169 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1170 break; 1171 } 1172 } 1173 1174 assert(Value && "Unknown entry kind!"); 1175 1176 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 1177 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1178 } 1179 1180 1181 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1182 /// special global used by LLVM. If so, emit it and return true, otherwise 1183 /// do nothing and return false. 1184 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1185 if (GV->getName() == "llvm.used") { 1186 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1187 EmitLLVMUsedList(GV->getInitializer()); 1188 return true; 1189 } 1190 1191 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1192 if (GV->getSection() == "llvm.metadata" || 1193 GV->hasAvailableExternallyLinkage()) 1194 return true; 1195 1196 if (!GV->hasAppendingLinkage()) return false; 1197 1198 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1199 1200 const TargetData *TD = TM.getTargetData(); 1201 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1202 if (GV->getName() == "llvm.global_ctors") { 1203 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 1204 EmitAlignment(Align); 1205 EmitXXStructorList(GV->getInitializer()); 1206 1207 if (TM.getRelocationModel() == Reloc::Static && 1208 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1209 StringRef Sym(".constructors_used"); 1210 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1211 MCSA_Reference); 1212 } 1213 return true; 1214 } 1215 1216 if (GV->getName() == "llvm.global_dtors") { 1217 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 1218 EmitAlignment(Align); 1219 EmitXXStructorList(GV->getInitializer()); 1220 1221 if (TM.getRelocationModel() == Reloc::Static && 1222 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1223 StringRef Sym(".destructors_used"); 1224 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1225 MCSA_Reference); 1226 } 1227 return true; 1228 } 1229 1230 return false; 1231 } 1232 1233 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1234 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1235 /// is true, as being used with this directive. 1236 void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1237 // Should be an array of 'i8*'. 1238 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1239 if (InitList == 0) return; 1240 1241 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1242 const GlobalValue *GV = 1243 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1244 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1245 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1246 } 1247 } 1248 1249 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the 1250 /// function pointers, ignoring the init priority. 1251 void AsmPrinter::EmitXXStructorList(const Constant *List) { 1252 // Should be an array of '{ int, void ()* }' structs. The first value is the 1253 // init priority, which we ignore. 1254 if (!isa<ConstantArray>(List)) return; 1255 const ConstantArray *InitList = cast<ConstantArray>(List); 1256 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 1257 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 1258 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 1259 1260 if (CS->getOperand(1)->isNullValue()) 1261 return; // Found a null terminator, exit printing. 1262 // Emit the function pointer. 1263 EmitGlobalConstant(CS->getOperand(1)); 1264 } 1265 } 1266 1267 //===--------------------------------------------------------------------===// 1268 // Emission and print routines 1269 // 1270 1271 /// EmitInt8 - Emit a byte directive and value. 1272 /// 1273 void AsmPrinter::EmitInt8(int Value) const { 1274 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1275 } 1276 1277 /// EmitInt16 - Emit a short directive and value. 1278 /// 1279 void AsmPrinter::EmitInt16(int Value) const { 1280 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1281 } 1282 1283 /// EmitInt32 - Emit a long directive and value. 1284 /// 1285 void AsmPrinter::EmitInt32(int Value) const { 1286 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1287 } 1288 1289 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1290 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1291 /// labels. This implicitly uses .set if it is available. 1292 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1293 unsigned Size) const { 1294 // Get the Hi-Lo expression. 1295 const MCExpr *Diff = 1296 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1297 MCSymbolRefExpr::Create(Lo, OutContext), 1298 OutContext); 1299 1300 if (!MAI->hasSetDirective()) { 1301 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1302 return; 1303 } 1304 1305 // Otherwise, emit with .set (aka assignment). 1306 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1307 OutStreamer.EmitAssignment(SetLabel, Diff); 1308 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1309 } 1310 1311 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1312 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1313 /// specify the labels. This implicitly uses .set if it is available. 1314 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1315 const MCSymbol *Lo, unsigned Size) 1316 const { 1317 1318 // Emit Hi+Offset - Lo 1319 // Get the Hi+Offset expression. 1320 const MCExpr *Plus = 1321 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1322 MCConstantExpr::Create(Offset, OutContext), 1323 OutContext); 1324 1325 // Get the Hi+Offset-Lo expression. 1326 const MCExpr *Diff = 1327 MCBinaryExpr::CreateSub(Plus, 1328 MCSymbolRefExpr::Create(Lo, OutContext), 1329 OutContext); 1330 1331 if (!MAI->hasSetDirective()) 1332 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1333 else { 1334 // Otherwise, emit with .set (aka assignment). 1335 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1336 OutStreamer.EmitAssignment(SetLabel, Diff); 1337 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1338 } 1339 } 1340 1341 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1342 /// where the size in bytes of the directive is specified by Size and Label 1343 /// specifies the label. This implicitly uses .set if it is available. 1344 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1345 unsigned Size) 1346 const { 1347 1348 // Emit Label+Offset 1349 const MCExpr *Plus = 1350 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext), 1351 MCConstantExpr::Create(Offset, OutContext), 1352 OutContext); 1353 1354 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/); 1355 } 1356 1357 1358 //===----------------------------------------------------------------------===// 1359 1360 // EmitAlignment - Emit an alignment directive to the specified power of 1361 // two boundary. For example, if you pass in 3 here, you will get an 8 1362 // byte alignment. If a global value is specified, and if that global has 1363 // an explicit alignment requested, it will override the alignment request 1364 // if required for correctness. 1365 // 1366 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1367 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); 1368 1369 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1370 1371 if (getCurrentSection()->getKind().isText()) 1372 OutStreamer.EmitCodeAlignment(1 << NumBits); 1373 else 1374 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1375 } 1376 1377 //===----------------------------------------------------------------------===// 1378 // Constant emission. 1379 //===----------------------------------------------------------------------===// 1380 1381 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr. 1382 /// 1383 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { 1384 MCContext &Ctx = AP.OutContext; 1385 1386 if (CV->isNullValue() || isa<UndefValue>(CV)) 1387 return MCConstantExpr::Create(0, Ctx); 1388 1389 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1390 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1391 1392 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1393 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1394 1395 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1396 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1397 1398 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1399 if (CE == 0) { 1400 llvm_unreachable("Unknown constant value to lower!"); 1401 return MCConstantExpr::Create(0, Ctx); 1402 } 1403 1404 switch (CE->getOpcode()) { 1405 default: 1406 // If the code isn't optimized, there may be outstanding folding 1407 // opportunities. Attempt to fold the expression using TargetData as a 1408 // last resort before giving up. 1409 if (Constant *C = 1410 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 1411 if (C != CE) 1412 return LowerConstant(C, AP); 1413 1414 // Otherwise report the problem to the user. 1415 { 1416 std::string S; 1417 raw_string_ostream OS(S); 1418 OS << "Unsupported expression in static initializer: "; 1419 WriteAsOperand(OS, CE, /*PrintType=*/false, 1420 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1421 report_fatal_error(OS.str()); 1422 } 1423 return MCConstantExpr::Create(0, Ctx); 1424 case Instruction::GetElementPtr: { 1425 const TargetData &TD = *AP.TM.getTargetData(); 1426 // Generate a symbolic expression for the byte address 1427 const Constant *PtrVal = CE->getOperand(0); 1428 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1429 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1430 1431 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); 1432 if (Offset == 0) 1433 return Base; 1434 1435 // Truncate/sext the offset to the pointer size. 1436 if (TD.getPointerSizeInBits() != 64) { 1437 int SExtAmount = 64-TD.getPointerSizeInBits(); 1438 Offset = (Offset << SExtAmount) >> SExtAmount; 1439 } 1440 1441 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1442 Ctx); 1443 } 1444 1445 case Instruction::Trunc: 1446 // We emit the value and depend on the assembler to truncate the generated 1447 // expression properly. This is important for differences between 1448 // blockaddress labels. Since the two labels are in the same function, it 1449 // is reasonable to treat their delta as a 32-bit value. 1450 // FALL THROUGH. 1451 case Instruction::BitCast: 1452 return LowerConstant(CE->getOperand(0), AP); 1453 1454 case Instruction::IntToPtr: { 1455 const TargetData &TD = *AP.TM.getTargetData(); 1456 // Handle casts to pointers by changing them into casts to the appropriate 1457 // integer type. This promotes constant folding and simplifies this code. 1458 Constant *Op = CE->getOperand(0); 1459 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1460 false/*ZExt*/); 1461 return LowerConstant(Op, AP); 1462 } 1463 1464 case Instruction::PtrToInt: { 1465 const TargetData &TD = *AP.TM.getTargetData(); 1466 // Support only foldable casts to/from pointers that can be eliminated by 1467 // changing the pointer to the appropriately sized integer type. 1468 Constant *Op = CE->getOperand(0); 1469 Type *Ty = CE->getType(); 1470 1471 const MCExpr *OpExpr = LowerConstant(Op, AP); 1472 1473 // We can emit the pointer value into this slot if the slot is an 1474 // integer slot equal to the size of the pointer. 1475 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1476 return OpExpr; 1477 1478 // Otherwise the pointer is smaller than the resultant integer, mask off 1479 // the high bits so we are sure to get a proper truncation if the input is 1480 // a constant expr. 1481 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1482 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1483 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1484 } 1485 1486 // The MC library also has a right-shift operator, but it isn't consistently 1487 // signed or unsigned between different targets. 1488 case Instruction::Add: 1489 case Instruction::Sub: 1490 case Instruction::Mul: 1491 case Instruction::SDiv: 1492 case Instruction::SRem: 1493 case Instruction::Shl: 1494 case Instruction::And: 1495 case Instruction::Or: 1496 case Instruction::Xor: { 1497 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); 1498 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); 1499 switch (CE->getOpcode()) { 1500 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1501 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1502 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1503 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1504 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1505 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1506 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1507 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1508 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1509 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1510 } 1511 } 1512 } 1513 } 1514 1515 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1516 AsmPrinter &AP); 1517 1518 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1519 AsmPrinter &AP) { 1520 if (AddrSpace != 0 || !CA->isString()) { 1521 // Not a string. Print the values in successive locations 1522 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1523 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1524 return; 1525 } 1526 1527 // Otherwise, it can be emitted as .ascii. 1528 SmallVector<char, 128> TmpVec; 1529 TmpVec.reserve(CA->getNumOperands()); 1530 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1531 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue()); 1532 1533 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace); 1534 } 1535 1536 static void EmitGlobalConstantVector(const ConstantVector *CV, 1537 unsigned AddrSpace, AsmPrinter &AP) { 1538 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1539 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1540 1541 const TargetData &TD = *AP.TM.getTargetData(); 1542 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1543 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1544 CV->getType()->getNumElements(); 1545 if (unsigned Padding = Size - EmittedSize) 1546 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1547 } 1548 1549 static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1550 unsigned AddrSpace, AsmPrinter &AP) { 1551 // Print the fields in successive locations. Pad to align if needed! 1552 const TargetData *TD = AP.TM.getTargetData(); 1553 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1554 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1555 uint64_t SizeSoFar = 0; 1556 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1557 const Constant *Field = CS->getOperand(i); 1558 1559 // Check if padding is needed and insert one or more 0s. 1560 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1561 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1562 - Layout->getElementOffset(i)) - FieldSize; 1563 SizeSoFar += FieldSize + PadSize; 1564 1565 // Now print the actual field value. 1566 EmitGlobalConstantImpl(Field, AddrSpace, AP); 1567 1568 // Insert padding - this may include padding to increase the size of the 1569 // current field up to the ABI size (if the struct is not packed) as well 1570 // as padding to ensure that the next field starts at the right offset. 1571 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1572 } 1573 assert(SizeSoFar == Layout->getSizeInBytes() && 1574 "Layout of constant struct may be incorrect!"); 1575 } 1576 1577 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1578 AsmPrinter &AP) { 1579 // FP Constants are printed as integer constants to avoid losing 1580 // precision. 1581 if (CFP->getType()->isDoubleTy()) { 1582 if (AP.isVerbose()) { 1583 double Val = CFP->getValueAPF().convertToDouble(); 1584 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; 1585 } 1586 1587 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1588 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1589 return; 1590 } 1591 1592 if (CFP->getType()->isFloatTy()) { 1593 if (AP.isVerbose()) { 1594 float Val = CFP->getValueAPF().convertToFloat(); 1595 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; 1596 } 1597 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1598 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1599 return; 1600 } 1601 1602 if (CFP->getType()->isX86_FP80Ty()) { 1603 // all long double variants are printed as hex 1604 // API needed to prevent premature destruction 1605 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1606 const uint64_t *p = API.getRawData(); 1607 if (AP.isVerbose()) { 1608 // Convert to double so we can print the approximate val as a comment. 1609 APFloat DoubleVal = CFP->getValueAPF(); 1610 bool ignored; 1611 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1612 &ignored); 1613 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1614 << DoubleVal.convertToDouble() << '\n'; 1615 } 1616 1617 if (AP.TM.getTargetData()->isBigEndian()) { 1618 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1619 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1620 } else { 1621 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1622 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1623 } 1624 1625 // Emit the tail padding for the long double. 1626 const TargetData &TD = *AP.TM.getTargetData(); 1627 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1628 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1629 return; 1630 } 1631 1632 assert(CFP->getType()->isPPC_FP128Ty() && 1633 "Floating point constant type not handled"); 1634 // All long double variants are printed as hex 1635 // API needed to prevent premature destruction. 1636 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1637 const uint64_t *p = API.getRawData(); 1638 if (AP.TM.getTargetData()->isBigEndian()) { 1639 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1640 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1641 } else { 1642 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1643 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1644 } 1645 } 1646 1647 static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1648 unsigned AddrSpace, AsmPrinter &AP) { 1649 const TargetData *TD = AP.TM.getTargetData(); 1650 unsigned BitWidth = CI->getBitWidth(); 1651 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1652 1653 // We don't expect assemblers to support integer data directives 1654 // for more than 64 bits, so we emit the data in at most 64-bit 1655 // quantities at a time. 1656 const uint64_t *RawData = CI->getValue().getRawData(); 1657 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1658 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1659 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1660 } 1661 } 1662 1663 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1664 AsmPrinter &AP) { 1665 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { 1666 uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1667 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1668 } 1669 1670 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1671 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1672 switch (Size) { 1673 case 1: 1674 case 2: 1675 case 4: 1676 case 8: 1677 if (AP.isVerbose()) 1678 AP.OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue()); 1679 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1680 return; 1681 default: 1682 EmitGlobalConstantLargeInt(CI, AddrSpace, AP); 1683 return; 1684 } 1685 } 1686 1687 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1688 return EmitGlobalConstantArray(CVA, AddrSpace, AP); 1689 1690 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1691 return EmitGlobalConstantStruct(CVS, AddrSpace, AP); 1692 1693 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1694 return EmitGlobalConstantFP(CFP, AddrSpace, AP); 1695 1696 if (isa<ConstantPointerNull>(CV)) { 1697 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1698 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1699 return; 1700 } 1701 1702 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1703 return EmitGlobalConstantVector(V, AddrSpace, AP); 1704 1705 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1706 // thread the streamer with EmitValue. 1707 AP.OutStreamer.EmitValue(LowerConstant(CV, AP), 1708 AP.TM.getTargetData()->getTypeAllocSize(CV->getType()), 1709 AddrSpace); 1710 } 1711 1712 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1713 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1714 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1715 if (Size) 1716 EmitGlobalConstantImpl(CV, AddrSpace, *this); 1717 else if (MAI->hasSubsectionsViaSymbols()) { 1718 // If the global has zero size, emit a single byte so that two labels don't 1719 // look like they are at the same location. 1720 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1721 } 1722 } 1723 1724 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1725 // Target doesn't support this yet! 1726 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1727 } 1728 1729 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1730 if (Offset > 0) 1731 OS << '+' << Offset; 1732 else if (Offset < 0) 1733 OS << Offset; 1734 } 1735 1736 //===----------------------------------------------------------------------===// 1737 // Symbol Lowering Routines. 1738 //===----------------------------------------------------------------------===// 1739 1740 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1741 /// temporary label with the specified stem and unique ID. 1742 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1743 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1744 Name + Twine(ID)); 1745 } 1746 1747 /// GetTempSymbol - Return an assembler temporary label with the specified 1748 /// stem. 1749 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1750 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1751 Name); 1752 } 1753 1754 1755 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1756 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1757 } 1758 1759 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1760 return MMI->getAddrLabelSymbol(BB); 1761 } 1762 1763 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 1764 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1765 return OutContext.GetOrCreateSymbol 1766 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1767 + "_" + Twine(CPID)); 1768 } 1769 1770 /// GetJTISymbol - Return the symbol for the specified jump table entry. 1771 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1772 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1773 } 1774 1775 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 1776 /// FIXME: privatize to AsmPrinter. 1777 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1778 return OutContext.GetOrCreateSymbol 1779 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1780 Twine(UID) + "_set_" + Twine(MBBID)); 1781 } 1782 1783 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1784 /// global value name as its base, with the specified suffix, and where the 1785 /// symbol is forced to have private linkage if ForcePrivate is true. 1786 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1787 StringRef Suffix, 1788 bool ForcePrivate) const { 1789 SmallString<60> NameStr; 1790 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1791 NameStr.append(Suffix.begin(), Suffix.end()); 1792 return OutContext.GetOrCreateSymbol(NameStr.str()); 1793 } 1794 1795 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1796 /// ExternalSymbol. 1797 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1798 SmallString<60> NameStr; 1799 Mang->getNameWithPrefix(NameStr, Sym); 1800 return OutContext.GetOrCreateSymbol(NameStr.str()); 1801 } 1802 1803 1804 1805 /// PrintParentLoopComment - Print comments about parent loops of this one. 1806 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1807 unsigned FunctionNumber) { 1808 if (Loop == 0) return; 1809 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 1810 OS.indent(Loop->getLoopDepth()*2) 1811 << "Parent Loop BB" << FunctionNumber << "_" 1812 << Loop->getHeader()->getNumber() 1813 << " Depth=" << Loop->getLoopDepth() << '\n'; 1814 } 1815 1816 1817 /// PrintChildLoopComment - Print comments about child loops within 1818 /// the loop for this basic block, with nesting. 1819 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1820 unsigned FunctionNumber) { 1821 // Add child loop information 1822 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 1823 OS.indent((*CL)->getLoopDepth()*2) 1824 << "Child Loop BB" << FunctionNumber << "_" 1825 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 1826 << '\n'; 1827 PrintChildLoopComment(OS, *CL, FunctionNumber); 1828 } 1829 } 1830 1831 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks. 1832 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB, 1833 const MachineLoopInfo *LI, 1834 const AsmPrinter &AP) { 1835 // Add loop depth information 1836 const MachineLoop *Loop = LI->getLoopFor(&MBB); 1837 if (Loop == 0) return; 1838 1839 MachineBasicBlock *Header = Loop->getHeader(); 1840 assert(Header && "No header for loop"); 1841 1842 // If this block is not a loop header, just print out what is the loop header 1843 // and return. 1844 if (Header != &MBB) { 1845 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 1846 Twine(AP.getFunctionNumber())+"_" + 1847 Twine(Loop->getHeader()->getNumber())+ 1848 " Depth="+Twine(Loop->getLoopDepth())); 1849 return; 1850 } 1851 1852 // Otherwise, it is a loop header. Print out information about child and 1853 // parent loops. 1854 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 1855 1856 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 1857 1858 OS << "=>"; 1859 OS.indent(Loop->getLoopDepth()*2-2); 1860 1861 OS << "This "; 1862 if (Loop->empty()) 1863 OS << "Inner "; 1864 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 1865 1866 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 1867 } 1868 1869 1870 /// EmitBasicBlockStart - This method prints the label for the specified 1871 /// MachineBasicBlock, an alignment (if present) and a comment describing 1872 /// it if appropriate. 1873 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1874 // Emit an alignment directive for this block, if needed. 1875 if (unsigned Align = MBB->getAlignment()) 1876 EmitAlignment(Log2_32(Align)); 1877 1878 // If the block has its address taken, emit any labels that were used to 1879 // reference the block. It is possible that there is more than one label 1880 // here, because multiple LLVM BB's may have been RAUW'd to this block after 1881 // the references were generated. 1882 if (MBB->hasAddressTaken()) { 1883 const BasicBlock *BB = MBB->getBasicBlock(); 1884 if (isVerbose()) 1885 OutStreamer.AddComment("Block address taken"); 1886 1887 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 1888 1889 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 1890 OutStreamer.EmitLabel(Syms[i]); 1891 } 1892 1893 // Print the main label for the block. 1894 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 1895 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 1896 if (const BasicBlock *BB = MBB->getBasicBlock()) 1897 if (BB->hasName()) 1898 OutStreamer.AddComment("%" + BB->getName()); 1899 1900 EmitBasicBlockLoopComments(*MBB, LI, *this); 1901 1902 // NOTE: Want this comment at start of line, don't emit with AddComment. 1903 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 1904 Twine(MBB->getNumber()) + ":"); 1905 } 1906 } else { 1907 if (isVerbose()) { 1908 if (const BasicBlock *BB = MBB->getBasicBlock()) 1909 if (BB->hasName()) 1910 OutStreamer.AddComment("%" + BB->getName()); 1911 EmitBasicBlockLoopComments(*MBB, LI, *this); 1912 } 1913 1914 OutStreamer.EmitLabel(MBB->getSymbol()); 1915 } 1916 } 1917 1918 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 1919 bool IsDefinition) const { 1920 MCSymbolAttr Attr = MCSA_Invalid; 1921 1922 switch (Visibility) { 1923 default: break; 1924 case GlobalValue::HiddenVisibility: 1925 if (IsDefinition) 1926 Attr = MAI->getHiddenVisibilityAttr(); 1927 else 1928 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 1929 break; 1930 case GlobalValue::ProtectedVisibility: 1931 Attr = MAI->getProtectedVisibilityAttr(); 1932 break; 1933 } 1934 1935 if (Attr != MCSA_Invalid) 1936 OutStreamer.EmitSymbolAttribute(Sym, Attr); 1937 } 1938 1939 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 1940 /// exactly one predecessor and the control transfer mechanism between 1941 /// the predecessor and this block is a fall-through. 1942 bool AsmPrinter:: 1943 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 1944 // If this is a landing pad, it isn't a fall through. If it has no preds, 1945 // then nothing falls through to it. 1946 if (MBB->isLandingPad() || MBB->pred_empty()) 1947 return false; 1948 1949 // If there isn't exactly one predecessor, it can't be a fall through. 1950 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 1951 ++PI2; 1952 if (PI2 != MBB->pred_end()) 1953 return false; 1954 1955 // The predecessor has to be immediately before this block. 1956 MachineBasicBlock *Pred = *PI; 1957 1958 if (!Pred->isLayoutSuccessor(MBB)) 1959 return false; 1960 1961 // If the block is completely empty, then it definitely does fall through. 1962 if (Pred->empty()) 1963 return true; 1964 1965 // Check the terminators in the previous blocks 1966 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 1967 IE = Pred->end(); II != IE; ++II) { 1968 MachineInstr &MI = *II; 1969 1970 // If it is not a simple branch, we are in a table somewhere. 1971 if (!MI.getDesc().isBranch() || MI.getDesc().isIndirectBranch()) 1972 return false; 1973 1974 // If we are the operands of one of the branches, this is not 1975 // a fall through. 1976 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 1977 OE = MI.operands_end(); OI != OE; ++OI) { 1978 const MachineOperand& OP = *OI; 1979 if (OP.isJTI()) 1980 return false; 1981 if (OP.isMBB() && OP.getMBB() == MBB) 1982 return false; 1983 } 1984 } 1985 1986 return true; 1987 } 1988 1989 1990 1991 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 1992 if (!S->usesMetadata()) 1993 return 0; 1994 1995 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 1996 gcp_map_type::iterator GCPI = GCMap.find(S); 1997 if (GCPI != GCMap.end()) 1998 return GCPI->second; 1999 2000 const char *Name = S->getName().c_str(); 2001 2002 for (GCMetadataPrinterRegistry::iterator 2003 I = GCMetadataPrinterRegistry::begin(), 2004 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2005 if (strcmp(Name, I->getName()) == 0) { 2006 GCMetadataPrinter *GMP = I->instantiate(); 2007 GMP->S = S; 2008 GCMap.insert(std::make_pair(S, GMP)); 2009 return GMP; 2010 } 2011 2012 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2013 return 0; 2014 } 2015 2016