Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/IntrinsicInst.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Analysis/MemoryBuiltins.h"
     18 #include "llvm/Target/TargetData.h"
     19 #include "llvm/Support/ConstantRange.h"
     20 #include "llvm/Support/GetElementPtrTypeIterator.h"
     21 #include "llvm/Support/PatternMatch.h"
     22 using namespace llvm;
     23 using namespace PatternMatch;
     24 
     25 static ConstantInt *getOne(Constant *C) {
     26   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     27 }
     28 
     29 /// AddOne - Add one to a ConstantInt
     30 static Constant *AddOne(Constant *C) {
     31   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     32 }
     33 /// SubOne - Subtract one from a ConstantInt
     34 static Constant *SubOne(Constant *C) {
     35   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     36 }
     37 
     38 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     39   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     40 }
     41 
     42 static bool HasAddOverflow(ConstantInt *Result,
     43                            ConstantInt *In1, ConstantInt *In2,
     44                            bool IsSigned) {
     45   if (!IsSigned)
     46     return Result->getValue().ult(In1->getValue());
     47 
     48   if (In2->isNegative())
     49     return Result->getValue().sgt(In1->getValue());
     50   return Result->getValue().slt(In1->getValue());
     51 }
     52 
     53 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     54 /// overflowed for this type.
     55 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     56                             Constant *In2, bool IsSigned = false) {
     57   Result = ConstantExpr::getAdd(In1, In2);
     58 
     59   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     60     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     61       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     62       if (HasAddOverflow(ExtractElement(Result, Idx),
     63                          ExtractElement(In1, Idx),
     64                          ExtractElement(In2, Idx),
     65                          IsSigned))
     66         return true;
     67     }
     68     return false;
     69   }
     70 
     71   return HasAddOverflow(cast<ConstantInt>(Result),
     72                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     73                         IsSigned);
     74 }
     75 
     76 static bool HasSubOverflow(ConstantInt *Result,
     77                            ConstantInt *In1, ConstantInt *In2,
     78                            bool IsSigned) {
     79   if (!IsSigned)
     80     return Result->getValue().ugt(In1->getValue());
     81 
     82   if (In2->isNegative())
     83     return Result->getValue().slt(In1->getValue());
     84 
     85   return Result->getValue().sgt(In1->getValue());
     86 }
     87 
     88 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     89 /// overflowed for this type.
     90 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     91                             Constant *In2, bool IsSigned = false) {
     92   Result = ConstantExpr::getSub(In1, In2);
     93 
     94   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     95     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     96       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     97       if (HasSubOverflow(ExtractElement(Result, Idx),
     98                          ExtractElement(In1, Idx),
     99                          ExtractElement(In2, Idx),
    100                          IsSigned))
    101         return true;
    102     }
    103     return false;
    104   }
    105 
    106   return HasSubOverflow(cast<ConstantInt>(Result),
    107                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    108                         IsSigned);
    109 }
    110 
    111 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    112 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    113 /// TrueIfSigned if the result of the comparison is true when the input value is
    114 /// signed.
    115 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    116                            bool &TrueIfSigned) {
    117   switch (pred) {
    118   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    119     TrueIfSigned = true;
    120     return RHS->isZero();
    121   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    122     TrueIfSigned = true;
    123     return RHS->isAllOnesValue();
    124   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    125     TrueIfSigned = false;
    126     return RHS->isAllOnesValue();
    127   case ICmpInst::ICMP_UGT:
    128     // True if LHS u> RHS and RHS == high-bit-mask - 1
    129     TrueIfSigned = true;
    130     return RHS->isMaxValue(true);
    131   case ICmpInst::ICMP_UGE:
    132     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    133     TrueIfSigned = true;
    134     return RHS->getValue().isSignBit();
    135   default:
    136     return false;
    137   }
    138 }
    139 
    140 // isHighOnes - Return true if the constant is of the form 1+0+.
    141 // This is the same as lowones(~X).
    142 static bool isHighOnes(const ConstantInt *CI) {
    143   return (~CI->getValue() + 1).isPowerOf2();
    144 }
    145 
    146 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    147 /// set of known zero and one bits, compute the maximum and minimum values that
    148 /// could have the specified known zero and known one bits, returning them in
    149 /// min/max.
    150 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    151                                                    const APInt& KnownOne,
    152                                                    APInt& Min, APInt& Max) {
    153   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    154          KnownZero.getBitWidth() == Min.getBitWidth() &&
    155          KnownZero.getBitWidth() == Max.getBitWidth() &&
    156          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    157   APInt UnknownBits = ~(KnownZero|KnownOne);
    158 
    159   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    160   // bit if it is unknown.
    161   Min = KnownOne;
    162   Max = KnownOne|UnknownBits;
    163 
    164   if (UnknownBits.isNegative()) { // Sign bit is unknown
    165     Min.setBit(Min.getBitWidth()-1);
    166     Max.clearBit(Max.getBitWidth()-1);
    167   }
    168 }
    169 
    170 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    171 // a set of known zero and one bits, compute the maximum and minimum values that
    172 // could have the specified known zero and known one bits, returning them in
    173 // min/max.
    174 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    175                                                      const APInt &KnownOne,
    176                                                      APInt &Min, APInt &Max) {
    177   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    178          KnownZero.getBitWidth() == Min.getBitWidth() &&
    179          KnownZero.getBitWidth() == Max.getBitWidth() &&
    180          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    181   APInt UnknownBits = ~(KnownZero|KnownOne);
    182 
    183   // The minimum value is when the unknown bits are all zeros.
    184   Min = KnownOne;
    185   // The maximum value is when the unknown bits are all ones.
    186   Max = KnownOne|UnknownBits;
    187 }
    188 
    189 
    190 
    191 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    192 ///   cmp pred (load (gep GV, ...)), cmpcst
    193 /// where GV is a global variable with a constant initializer.  Try to simplify
    194 /// this into some simple computation that does not need the load.  For example
    195 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    196 ///
    197 /// If AndCst is non-null, then the loaded value is masked with that constant
    198 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    199 Instruction *InstCombiner::
    200 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    201                              CmpInst &ICI, ConstantInt *AndCst) {
    202   // We need TD information to know the pointer size unless this is inbounds.
    203   if (!GEP->isInBounds() && TD == 0) return 0;
    204 
    205   ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
    206   if (Init == 0 || Init->getNumOperands() > 1024) return 0;
    207 
    208   // There are many forms of this optimization we can handle, for now, just do
    209   // the simple index into a single-dimensional array.
    210   //
    211   // Require: GEP GV, 0, i {{, constant indices}}
    212   if (GEP->getNumOperands() < 3 ||
    213       !isa<ConstantInt>(GEP->getOperand(1)) ||
    214       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    215       isa<Constant>(GEP->getOperand(2)))
    216     return 0;
    217 
    218   // Check that indices after the variable are constants and in-range for the
    219   // type they index.  Collect the indices.  This is typically for arrays of
    220   // structs.
    221   SmallVector<unsigned, 4> LaterIndices;
    222 
    223   Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
    224   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    225     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    226     if (Idx == 0) return 0;  // Variable index.
    227 
    228     uint64_t IdxVal = Idx->getZExtValue();
    229     if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
    230 
    231     if (StructType *STy = dyn_cast<StructType>(EltTy))
    232       EltTy = STy->getElementType(IdxVal);
    233     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    234       if (IdxVal >= ATy->getNumElements()) return 0;
    235       EltTy = ATy->getElementType();
    236     } else {
    237       return 0; // Unknown type.
    238     }
    239 
    240     LaterIndices.push_back(IdxVal);
    241   }
    242 
    243   enum { Overdefined = -3, Undefined = -2 };
    244 
    245   // Variables for our state machines.
    246 
    247   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    248   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    249   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    250   // undefined, otherwise set to the first true element.  SecondTrueElement is
    251   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    252   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    253 
    254   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    255   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    256   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    257 
    258   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    259   /// define a state machine that triggers for ranges of values that the index
    260   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    261   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    262   /// index in the range (inclusive).  We use -2 for undefined here because we
    263   /// use relative comparisons and don't want 0-1 to match -1.
    264   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    265 
    266   // MagicBitvector - This is a magic bitvector where we set a bit if the
    267   // comparison is true for element 'i'.  If there are 64 elements or less in
    268   // the array, this will fully represent all the comparison results.
    269   uint64_t MagicBitvector = 0;
    270 
    271 
    272   // Scan the array and see if one of our patterns matches.
    273   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    274   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    275     Constant *Elt = Init->getOperand(i);
    276 
    277     // If this is indexing an array of structures, get the structure element.
    278     if (!LaterIndices.empty())
    279       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    280 
    281     // If the element is masked, handle it.
    282     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    283 
    284     // Find out if the comparison would be true or false for the i'th element.
    285     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    286                                                   CompareRHS, TD);
    287     // If the result is undef for this element, ignore it.
    288     if (isa<UndefValue>(C)) {
    289       // Extend range state machines to cover this element in case there is an
    290       // undef in the middle of the range.
    291       if (TrueRangeEnd == (int)i-1)
    292         TrueRangeEnd = i;
    293       if (FalseRangeEnd == (int)i-1)
    294         FalseRangeEnd = i;
    295       continue;
    296     }
    297 
    298     // If we can't compute the result for any of the elements, we have to give
    299     // up evaluating the entire conditional.
    300     if (!isa<ConstantInt>(C)) return 0;
    301 
    302     // Otherwise, we know if the comparison is true or false for this element,
    303     // update our state machines.
    304     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    305 
    306     // State machine for single/double/range index comparison.
    307     if (IsTrueForElt) {
    308       // Update the TrueElement state machine.
    309       if (FirstTrueElement == Undefined)
    310         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    311       else {
    312         // Update double-compare state machine.
    313         if (SecondTrueElement == Undefined)
    314           SecondTrueElement = i;
    315         else
    316           SecondTrueElement = Overdefined;
    317 
    318         // Update range state machine.
    319         if (TrueRangeEnd == (int)i-1)
    320           TrueRangeEnd = i;
    321         else
    322           TrueRangeEnd = Overdefined;
    323       }
    324     } else {
    325       // Update the FalseElement state machine.
    326       if (FirstFalseElement == Undefined)
    327         FirstFalseElement = FalseRangeEnd = i; // First false element.
    328       else {
    329         // Update double-compare state machine.
    330         if (SecondFalseElement == Undefined)
    331           SecondFalseElement = i;
    332         else
    333           SecondFalseElement = Overdefined;
    334 
    335         // Update range state machine.
    336         if (FalseRangeEnd == (int)i-1)
    337           FalseRangeEnd = i;
    338         else
    339           FalseRangeEnd = Overdefined;
    340       }
    341     }
    342 
    343 
    344     // If this element is in range, update our magic bitvector.
    345     if (i < 64 && IsTrueForElt)
    346       MagicBitvector |= 1ULL << i;
    347 
    348     // If all of our states become overdefined, bail out early.  Since the
    349     // predicate is expensive, only check it every 8 elements.  This is only
    350     // really useful for really huge arrays.
    351     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    352         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    353         FalseRangeEnd == Overdefined)
    354       return 0;
    355   }
    356 
    357   // Now that we've scanned the entire array, emit our new comparison(s).  We
    358   // order the state machines in complexity of the generated code.
    359   Value *Idx = GEP->getOperand(2);
    360 
    361   // If the index is larger than the pointer size of the target, truncate the
    362   // index down like the GEP would do implicitly.  We don't have to do this for
    363   // an inbounds GEP because the index can't be out of range.
    364   if (!GEP->isInBounds() &&
    365       Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
    366     Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
    367 
    368   // If the comparison is only true for one or two elements, emit direct
    369   // comparisons.
    370   if (SecondTrueElement != Overdefined) {
    371     // None true -> false.
    372     if (FirstTrueElement == Undefined)
    373       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
    374 
    375     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    376 
    377     // True for one element -> 'i == 47'.
    378     if (SecondTrueElement == Undefined)
    379       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    380 
    381     // True for two elements -> 'i == 47 | i == 72'.
    382     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    383     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    384     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    385     return BinaryOperator::CreateOr(C1, C2);
    386   }
    387 
    388   // If the comparison is only false for one or two elements, emit direct
    389   // comparisons.
    390   if (SecondFalseElement != Overdefined) {
    391     // None false -> true.
    392     if (FirstFalseElement == Undefined)
    393       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
    394 
    395     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    396 
    397     // False for one element -> 'i != 47'.
    398     if (SecondFalseElement == Undefined)
    399       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    400 
    401     // False for two elements -> 'i != 47 & i != 72'.
    402     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    403     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    404     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    405     return BinaryOperator::CreateAnd(C1, C2);
    406   }
    407 
    408   // If the comparison can be replaced with a range comparison for the elements
    409   // where it is true, emit the range check.
    410   if (TrueRangeEnd != Overdefined) {
    411     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    412 
    413     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    414     if (FirstTrueElement) {
    415       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    416       Idx = Builder->CreateAdd(Idx, Offs);
    417     }
    418 
    419     Value *End = ConstantInt::get(Idx->getType(),
    420                                   TrueRangeEnd-FirstTrueElement+1);
    421     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    422   }
    423 
    424   // False range check.
    425   if (FalseRangeEnd != Overdefined) {
    426     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    427     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    428     if (FirstFalseElement) {
    429       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    430       Idx = Builder->CreateAdd(Idx, Offs);
    431     }
    432 
    433     Value *End = ConstantInt::get(Idx->getType(),
    434                                   FalseRangeEnd-FirstFalseElement);
    435     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    436   }
    437 
    438 
    439   // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
    440   // of this load, replace it with computation that does:
    441   //   ((magic_cst >> i) & 1) != 0
    442   if (Init->getNumOperands() <= 32 ||
    443       (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
    444     Type *Ty;
    445     if (Init->getNumOperands() <= 32)
    446       Ty = Type::getInt32Ty(Init->getContext());
    447     else
    448       Ty = Type::getInt64Ty(Init->getContext());
    449     Value *V = Builder->CreateIntCast(Idx, Ty, false);
    450     V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    451     V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    452     return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    453   }
    454 
    455   return 0;
    456 }
    457 
    458 
    459 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    460 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    461 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    462 /// be complex, and scales are involved.  The above expression would also be
    463 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    464 /// This later form is less amenable to optimization though, and we are allowed
    465 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    466 ///
    467 /// If we can't emit an optimized form for this expression, this returns null.
    468 ///
    469 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
    470   TargetData &TD = *IC.getTargetData();
    471   gep_type_iterator GTI = gep_type_begin(GEP);
    472 
    473   // Check to see if this gep only has a single variable index.  If so, and if
    474   // any constant indices are a multiple of its scale, then we can compute this
    475   // in terms of the scale of the variable index.  For example, if the GEP
    476   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    477   // because the expression will cross zero at the same point.
    478   unsigned i, e = GEP->getNumOperands();
    479   int64_t Offset = 0;
    480   for (i = 1; i != e; ++i, ++GTI) {
    481     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    482       // Compute the aggregate offset of constant indices.
    483       if (CI->isZero()) continue;
    484 
    485       // Handle a struct index, which adds its field offset to the pointer.
    486       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    487         Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    488       } else {
    489         uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    490         Offset += Size*CI->getSExtValue();
    491       }
    492     } else {
    493       // Found our variable index.
    494       break;
    495     }
    496   }
    497 
    498   // If there are no variable indices, we must have a constant offset, just
    499   // evaluate it the general way.
    500   if (i == e) return 0;
    501 
    502   Value *VariableIdx = GEP->getOperand(i);
    503   // Determine the scale factor of the variable element.  For example, this is
    504   // 4 if the variable index is into an array of i32.
    505   uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
    506 
    507   // Verify that there are no other variable indices.  If so, emit the hard way.
    508   for (++i, ++GTI; i != e; ++i, ++GTI) {
    509     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    510     if (!CI) return 0;
    511 
    512     // Compute the aggregate offset of constant indices.
    513     if (CI->isZero()) continue;
    514 
    515     // Handle a struct index, which adds its field offset to the pointer.
    516     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    517       Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    518     } else {
    519       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    520       Offset += Size*CI->getSExtValue();
    521     }
    522   }
    523 
    524   // Okay, we know we have a single variable index, which must be a
    525   // pointer/array/vector index.  If there is no offset, life is simple, return
    526   // the index.
    527   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    528   if (Offset == 0) {
    529     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    530     // we don't need to bother extending: the extension won't affect where the
    531     // computation crosses zero.
    532     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    533       Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    534       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    535     }
    536     return VariableIdx;
    537   }
    538 
    539   // Otherwise, there is an index.  The computation we will do will be modulo
    540   // the pointer size, so get it.
    541   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    542 
    543   Offset &= PtrSizeMask;
    544   VariableScale &= PtrSizeMask;
    545 
    546   // To do this transformation, any constant index must be a multiple of the
    547   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    548   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    549   // multiple of the variable scale.
    550   int64_t NewOffs = Offset / (int64_t)VariableScale;
    551   if (Offset != NewOffs*(int64_t)VariableScale)
    552     return 0;
    553 
    554   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    555   Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    556   if (VariableIdx->getType() != IntPtrTy)
    557     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    558                                             true /*Signed*/);
    559   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    560   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    561 }
    562 
    563 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    564 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    565 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    566                                        ICmpInst::Predicate Cond,
    567                                        Instruction &I) {
    568   // Look through bitcasts.
    569   if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
    570     RHS = BCI->getOperand(0);
    571 
    572   Value *PtrBase = GEPLHS->getOperand(0);
    573   if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
    574     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    575     // This transformation (ignoring the base and scales) is valid because we
    576     // know pointers can't overflow since the gep is inbounds.  See if we can
    577     // output an optimized form.
    578     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
    579 
    580     // If not, synthesize the offset the hard way.
    581     if (Offset == 0)
    582       Offset = EmitGEPOffset(GEPLHS);
    583     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    584                         Constant::getNullValue(Offset->getType()));
    585   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    586     // If the base pointers are different, but the indices are the same, just
    587     // compare the base pointer.
    588     if (PtrBase != GEPRHS->getOperand(0)) {
    589       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    590       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    591                         GEPRHS->getOperand(0)->getType();
    592       if (IndicesTheSame)
    593         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    594           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    595             IndicesTheSame = false;
    596             break;
    597           }
    598 
    599       // If all indices are the same, just compare the base pointers.
    600       if (IndicesTheSame)
    601         return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
    602                             GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    603 
    604       // Otherwise, the base pointers are different and the indices are
    605       // different, bail out.
    606       return 0;
    607     }
    608 
    609     // If one of the GEPs has all zero indices, recurse.
    610     bool AllZeros = true;
    611     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    612       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
    613           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
    614         AllZeros = false;
    615         break;
    616       }
    617     if (AllZeros)
    618       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    619                           ICmpInst::getSwappedPredicate(Cond), I);
    620 
    621     // If the other GEP has all zero indices, recurse.
    622     AllZeros = true;
    623     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    624       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
    625           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
    626         AllZeros = false;
    627         break;
    628       }
    629     if (AllZeros)
    630       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    631 
    632     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    633     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    634       // If the GEPs only differ by one index, compare it.
    635       unsigned NumDifferences = 0;  // Keep track of # differences.
    636       unsigned DiffOperand = 0;     // The operand that differs.
    637       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    638         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    639           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    640                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    641             // Irreconcilable differences.
    642             NumDifferences = 2;
    643             break;
    644           } else {
    645             if (NumDifferences++) break;
    646             DiffOperand = i;
    647           }
    648         }
    649 
    650       if (NumDifferences == 0)   // SAME GEP?
    651         return ReplaceInstUsesWith(I, // No comparison is needed here.
    652                                ConstantInt::get(Type::getInt1Ty(I.getContext()),
    653                                              ICmpInst::isTrueWhenEqual(Cond)));
    654 
    655       else if (NumDifferences == 1 && GEPsInBounds) {
    656         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    657         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    658         // Make sure we do a signed comparison here.
    659         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    660       }
    661     }
    662 
    663     // Only lower this if the icmp is the only user of the GEP or if we expect
    664     // the result to fold to a constant!
    665     if (TD &&
    666         GEPsInBounds &&
    667         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    668         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    669       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    670       Value *L = EmitGEPOffset(GEPLHS);
    671       Value *R = EmitGEPOffset(GEPRHS);
    672       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    673     }
    674   }
    675   return 0;
    676 }
    677 
    678 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    679 Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
    680                                             Value *X, ConstantInt *CI,
    681                                             ICmpInst::Predicate Pred,
    682                                             Value *TheAdd) {
    683   // If we have X+0, exit early (simplifying logic below) and let it get folded
    684   // elsewhere.   icmp X+0, X  -> icmp X, X
    685   if (CI->isZero()) {
    686     bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
    687     return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
    688   }
    689 
    690   // (X+4) == X -> false.
    691   if (Pred == ICmpInst::ICMP_EQ)
    692     return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
    693 
    694   // (X+4) != X -> true.
    695   if (Pred == ICmpInst::ICMP_NE)
    696     return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
    697 
    698   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    699   // so the values can never be equal.  Similarly for all other "or equals"
    700   // operators.
    701 
    702   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    703   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    704   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    705   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    706     Value *R =
    707       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    708     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    709   }
    710 
    711   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    712   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    713   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    714   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    715     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    716 
    717   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    718   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    719                                        APInt::getSignedMaxValue(BitWidth));
    720 
    721   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    722   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    723   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    724   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    725   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    726   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    727   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    728     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    729 
    730   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    731   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    732   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    733   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    734   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    735   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    736 
    737   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    738   Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
    739   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    740 }
    741 
    742 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    743 /// and CmpRHS are both known to be integer constants.
    744 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    745                                           ConstantInt *DivRHS) {
    746   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    747   const APInt &CmpRHSV = CmpRHS->getValue();
    748 
    749   // FIXME: If the operand types don't match the type of the divide
    750   // then don't attempt this transform. The code below doesn't have the
    751   // logic to deal with a signed divide and an unsigned compare (and
    752   // vice versa). This is because (x /s C1) <s C2  produces different
    753   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    754   // (x /u C1) <u C2.  Simply casting the operands and result won't
    755   // work. :(  The if statement below tests that condition and bails
    756   // if it finds it.
    757   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    758   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    759     return 0;
    760   if (DivRHS->isZero())
    761     return 0; // The ProdOV computation fails on divide by zero.
    762   if (DivIsSigned && DivRHS->isAllOnesValue())
    763     return 0; // The overflow computation also screws up here
    764   if (DivRHS->isOne()) {
    765     // This eliminates some funny cases with INT_MIN.
    766     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    767     return &ICI;
    768   }
    769 
    770   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    771   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    772   // C2 (CI). By solving for X we can turn this into a range check
    773   // instead of computing a divide.
    774   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    775 
    776   // Determine if the product overflows by seeing if the product is
    777   // not equal to the divide. Make sure we do the same kind of divide
    778   // as in the LHS instruction that we're folding.
    779   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    780                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    781 
    782   // Get the ICmp opcode
    783   ICmpInst::Predicate Pred = ICI.getPredicate();
    784 
    785   /// If the division is known to be exact, then there is no remainder from the
    786   /// divide, so the covered range size is unit, otherwise it is the divisor.
    787   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    788 
    789   // Figure out the interval that is being checked.  For example, a comparison
    790   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    791   // Compute this interval based on the constants involved and the signedness of
    792   // the compare/divide.  This computes a half-open interval, keeping track of
    793   // whether either value in the interval overflows.  After analysis each
    794   // overflow variable is set to 0 if it's corresponding bound variable is valid
    795   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    796   int LoOverflow = 0, HiOverflow = 0;
    797   Constant *LoBound = 0, *HiBound = 0;
    798 
    799   if (!DivIsSigned) {  // udiv
    800     // e.g. X/5 op 3  --> [15, 20)
    801     LoBound = Prod;
    802     HiOverflow = LoOverflow = ProdOV;
    803     if (!HiOverflow) {
    804       // If this is not an exact divide, then many values in the range collapse
    805       // to the same result value.
    806       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    807     }
    808 
    809   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    810     if (CmpRHSV == 0) {       // (X / pos) op 0
    811       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    812       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    813       HiBound = RangeSize;
    814     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    815       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    816       HiOverflow = LoOverflow = ProdOV;
    817       if (!HiOverflow)
    818         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    819     } else {                       // (X / pos) op neg
    820       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    821       HiBound = AddOne(Prod);
    822       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    823       if (!LoOverflow) {
    824         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    825         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    826       }
    827     }
    828   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    829     if (DivI->isExact())
    830       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    831     if (CmpRHSV == 0) {       // (X / neg) op 0
    832       // e.g. X/-5 op 0  --> [-4, 5)
    833       LoBound = AddOne(RangeSize);
    834       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    835       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    836         HiOverflow = 1;            // [INTMIN+1, overflow)
    837         HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
    838       }
    839     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    840       // e.g. X/-5 op 3  --> [-19, -14)
    841       HiBound = AddOne(Prod);
    842       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    843       if (!LoOverflow)
    844         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    845     } else {                       // (X / neg) op neg
    846       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    847       LoOverflow = HiOverflow = ProdOV;
    848       if (!HiOverflow)
    849         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    850     }
    851 
    852     // Dividing by a negative swaps the condition.  LT <-> GT
    853     Pred = ICmpInst::getSwappedPredicate(Pred);
    854   }
    855 
    856   Value *X = DivI->getOperand(0);
    857   switch (Pred) {
    858   default: llvm_unreachable("Unhandled icmp opcode!");
    859   case ICmpInst::ICMP_EQ:
    860     if (LoOverflow && HiOverflow)
    861       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    862     if (HiOverflow)
    863       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    864                           ICmpInst::ICMP_UGE, X, LoBound);
    865     if (LoOverflow)
    866       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    867                           ICmpInst::ICMP_ULT, X, HiBound);
    868     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    869                                                     DivIsSigned, true));
    870   case ICmpInst::ICMP_NE:
    871     if (LoOverflow && HiOverflow)
    872       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    873     if (HiOverflow)
    874       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    875                           ICmpInst::ICMP_ULT, X, LoBound);
    876     if (LoOverflow)
    877       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    878                           ICmpInst::ICMP_UGE, X, HiBound);
    879     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    880                                                     DivIsSigned, false));
    881   case ICmpInst::ICMP_ULT:
    882   case ICmpInst::ICMP_SLT:
    883     if (LoOverflow == +1)   // Low bound is greater than input range.
    884       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    885     if (LoOverflow == -1)   // Low bound is less than input range.
    886       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    887     return new ICmpInst(Pred, X, LoBound);
    888   case ICmpInst::ICMP_UGT:
    889   case ICmpInst::ICMP_SGT:
    890     if (HiOverflow == +1)       // High bound greater than input range.
    891       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    892     if (HiOverflow == -1)       // High bound less than input range.
    893       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    894     if (Pred == ICmpInst::ICMP_UGT)
    895       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    896     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
    897   }
    898 }
    899 
    900 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
    901 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
    902                                           ConstantInt *ShAmt) {
    903   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
    904 
    905   // Check that the shift amount is in range.  If not, don't perform
    906   // undefined shifts.  When the shift is visited it will be
    907   // simplified.
    908   uint32_t TypeBits = CmpRHSV.getBitWidth();
    909   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
    910   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    911     return 0;
    912 
    913   if (!ICI.isEquality()) {
    914     // If we have an unsigned comparison and an ashr, we can't simplify this.
    915     // Similarly for signed comparisons with lshr.
    916     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
    917       return 0;
    918 
    919     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
    920     // by a power of 2.  Since we already have logic to simplify these,
    921     // transform to div and then simplify the resultant comparison.
    922     if (Shr->getOpcode() == Instruction::AShr &&
    923         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
    924       return 0;
    925 
    926     // Revisit the shift (to delete it).
    927     Worklist.Add(Shr);
    928 
    929     Constant *DivCst =
    930       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
    931 
    932     Value *Tmp =
    933       Shr->getOpcode() == Instruction::AShr ?
    934       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
    935       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
    936 
    937     ICI.setOperand(0, Tmp);
    938 
    939     // If the builder folded the binop, just return it.
    940     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
    941     if (TheDiv == 0)
    942       return &ICI;
    943 
    944     // Otherwise, fold this div/compare.
    945     assert(TheDiv->getOpcode() == Instruction::SDiv ||
    946            TheDiv->getOpcode() == Instruction::UDiv);
    947 
    948     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
    949     assert(Res && "This div/cst should have folded!");
    950     return Res;
    951   }
    952 
    953 
    954   // If we are comparing against bits always shifted out, the
    955   // comparison cannot succeed.
    956   APInt Comp = CmpRHSV << ShAmtVal;
    957   ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
    958   if (Shr->getOpcode() == Instruction::LShr)
    959     Comp = Comp.lshr(ShAmtVal);
    960   else
    961     Comp = Comp.ashr(ShAmtVal);
    962 
    963   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
    964     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
    965     Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
    966                                      IsICMP_NE);
    967     return ReplaceInstUsesWith(ICI, Cst);
    968   }
    969 
    970   // Otherwise, check to see if the bits shifted out are known to be zero.
    971   // If so, we can compare against the unshifted value:
    972   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
    973   if (Shr->hasOneUse() && Shr->isExact())
    974     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
    975 
    976   if (Shr->hasOneUse()) {
    977     // Otherwise strength reduce the shift into an and.
    978     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
    979     Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
    980 
    981     Value *And = Builder->CreateAnd(Shr->getOperand(0),
    982                                     Mask, Shr->getName()+".mask");
    983     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
    984   }
    985   return 0;
    986 }
    987 
    988 
    989 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
    990 ///
    991 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
    992                                                           Instruction *LHSI,
    993                                                           ConstantInt *RHS) {
    994   const APInt &RHSV = RHS->getValue();
    995 
    996   switch (LHSI->getOpcode()) {
    997   case Instruction::Trunc:
    998     if (ICI.isEquality() && LHSI->hasOneUse()) {
    999       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1000       // of the high bits truncated out of x are known.
   1001       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1002              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1003       APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
   1004       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1005       ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
   1006 
   1007       // If all the high bits are known, we can do this xform.
   1008       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1009         // Pull in the high bits from known-ones set.
   1010         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1011         NewRHS |= KnownOne;
   1012         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1013                             ConstantInt::get(ICI.getContext(), NewRHS));
   1014       }
   1015     }
   1016     break;
   1017 
   1018   case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
   1019     if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1020       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1021       // fold the xor.
   1022       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1023           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1024         Value *CompareVal = LHSI->getOperand(0);
   1025 
   1026         // If the sign bit of the XorCST is not set, there is no change to
   1027         // the operation, just stop using the Xor.
   1028         if (!XorCST->isNegative()) {
   1029           ICI.setOperand(0, CompareVal);
   1030           Worklist.Add(LHSI);
   1031           return &ICI;
   1032         }
   1033 
   1034         // Was the old condition true if the operand is positive?
   1035         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1036 
   1037         // If so, the new one isn't.
   1038         isTrueIfPositive ^= true;
   1039 
   1040         if (isTrueIfPositive)
   1041           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1042                               SubOne(RHS));
   1043         else
   1044           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1045                               AddOne(RHS));
   1046       }
   1047 
   1048       if (LHSI->hasOneUse()) {
   1049         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1050         if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
   1051           const APInt &SignBit = XorCST->getValue();
   1052           ICmpInst::Predicate Pred = ICI.isSigned()
   1053                                          ? ICI.getUnsignedPredicate()
   1054                                          : ICI.getSignedPredicate();
   1055           return new ICmpInst(Pred, LHSI->getOperand(0),
   1056                               ConstantInt::get(ICI.getContext(),
   1057                                                RHSV ^ SignBit));
   1058         }
   1059 
   1060         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1061         if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
   1062           const APInt &NotSignBit = XorCST->getValue();
   1063           ICmpInst::Predicate Pred = ICI.isSigned()
   1064                                          ? ICI.getUnsignedPredicate()
   1065                                          : ICI.getSignedPredicate();
   1066           Pred = ICI.getSwappedPredicate(Pred);
   1067           return new ICmpInst(Pred, LHSI->getOperand(0),
   1068                               ConstantInt::get(ICI.getContext(),
   1069                                                RHSV ^ NotSignBit));
   1070         }
   1071       }
   1072     }
   1073     break;
   1074   case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
   1075     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1076         LHSI->getOperand(0)->hasOneUse()) {
   1077       ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
   1078 
   1079       // If the LHS is an AND of a truncating cast, we can widen the
   1080       // and/compare to be the input width without changing the value
   1081       // produced, eliminating a cast.
   1082       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1083         // We can do this transformation if either the AND constant does not
   1084         // have its sign bit set or if it is an equality comparison.
   1085         // Extending a relational comparison when we're checking the sign
   1086         // bit would not work.
   1087         if (ICI.isEquality() ||
   1088             (!AndCST->isNegative() && RHSV.isNonNegative())) {
   1089           Value *NewAnd =
   1090             Builder->CreateAnd(Cast->getOperand(0),
   1091                                ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
   1092           NewAnd->takeName(LHSI);
   1093           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1094                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1095         }
   1096       }
   1097 
   1098       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1099       // shrink the and/compare to the smaller type, eliminating the cast.
   1100       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1101         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1102         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1103         // should fold the icmp to true/false in that case.
   1104         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1105           Value *NewAnd =
   1106             Builder->CreateAnd(Cast->getOperand(0),
   1107                                ConstantExpr::getTrunc(AndCST, Ty));
   1108           NewAnd->takeName(LHSI);
   1109           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1110                               ConstantExpr::getTrunc(RHS, Ty));
   1111         }
   1112       }
   1113 
   1114       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1115       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1116       // happens a LOT in code produced by the C front-end, for bitfield
   1117       // access.
   1118       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1119       if (Shift && !Shift->isShift())
   1120         Shift = 0;
   1121 
   1122       ConstantInt *ShAmt;
   1123       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
   1124       Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
   1125       Type *AndTy = AndCST->getType();          // Type of the and.
   1126 
   1127       // We can fold this as long as we can't shift unknown bits
   1128       // into the mask.  This can only happen with signed shift
   1129       // rights, as they sign-extend.
   1130       if (ShAmt) {
   1131         bool CanFold = Shift->isLogicalShift();
   1132         if (!CanFold) {
   1133           // To test for the bad case of the signed shr, see if any
   1134           // of the bits shifted in could be tested after the mask.
   1135           uint32_t TyBits = Ty->getPrimitiveSizeInBits();
   1136           int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
   1137 
   1138           uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
   1139           if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
   1140                AndCST->getValue()) == 0)
   1141             CanFold = true;
   1142         }
   1143 
   1144         if (CanFold) {
   1145           Constant *NewCst;
   1146           if (Shift->getOpcode() == Instruction::Shl)
   1147             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1148           else
   1149             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1150 
   1151           // Check to see if we are shifting out any of the bits being
   1152           // compared.
   1153           if (ConstantExpr::get(Shift->getOpcode(),
   1154                                        NewCst, ShAmt) != RHS) {
   1155             // If we shifted bits out, the fold is not going to work out.
   1156             // As a special case, check to see if this means that the
   1157             // result is always true or false now.
   1158             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1159               return ReplaceInstUsesWith(ICI,
   1160                                        ConstantInt::getFalse(ICI.getContext()));
   1161             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1162               return ReplaceInstUsesWith(ICI,
   1163                                        ConstantInt::getTrue(ICI.getContext()));
   1164           } else {
   1165             ICI.setOperand(1, NewCst);
   1166             Constant *NewAndCST;
   1167             if (Shift->getOpcode() == Instruction::Shl)
   1168               NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
   1169             else
   1170               NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
   1171             LHSI->setOperand(1, NewAndCST);
   1172             LHSI->setOperand(0, Shift->getOperand(0));
   1173             Worklist.Add(Shift); // Shift is dead.
   1174             return &ICI;
   1175           }
   1176         }
   1177       }
   1178 
   1179       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1180       // preferable because it allows the C<<Y expression to be hoisted out
   1181       // of a loop if Y is invariant and X is not.
   1182       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1183           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1184           !isa<Constant>(Shift->getOperand(0))) {
   1185         // Compute C << Y.
   1186         Value *NS;
   1187         if (Shift->getOpcode() == Instruction::LShr) {
   1188           NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
   1189         } else {
   1190           // Insert a logical shift.
   1191           NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
   1192         }
   1193 
   1194         // Compute X & (C << Y).
   1195         Value *NewAnd =
   1196           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1197 
   1198         ICI.setOperand(0, NewAnd);
   1199         return &ICI;
   1200       }
   1201     }
   1202 
   1203     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1204     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1205       if (GetElementPtrInst *GEP =
   1206           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1207         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1208           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1209               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1210             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1211             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1212               return Res;
   1213           }
   1214     }
   1215     break;
   1216 
   1217   case Instruction::Or: {
   1218     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1219       break;
   1220     Value *P, *Q;
   1221     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1222       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1223       // -> and (icmp eq P, null), (icmp eq Q, null).
   1224       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1225                                         Constant::getNullValue(P->getType()));
   1226       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1227                                         Constant::getNullValue(Q->getType()));
   1228       Instruction *Op;
   1229       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1230         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1231       else
   1232         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1233       return Op;
   1234     }
   1235     break;
   1236   }
   1237 
   1238   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1239     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1240     if (!ShAmt) break;
   1241 
   1242     uint32_t TypeBits = RHSV.getBitWidth();
   1243 
   1244     // Check that the shift amount is in range.  If not, don't perform
   1245     // undefined shifts.  When the shift is visited it will be
   1246     // simplified.
   1247     if (ShAmt->uge(TypeBits))
   1248       break;
   1249 
   1250     if (ICI.isEquality()) {
   1251       // If we are comparing against bits always shifted out, the
   1252       // comparison cannot succeed.
   1253       Constant *Comp =
   1254         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1255                                                                  ShAmt);
   1256       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1257         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1258         Constant *Cst =
   1259           ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
   1260         return ReplaceInstUsesWith(ICI, Cst);
   1261       }
   1262 
   1263       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1264       // AND.
   1265       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1266         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1267                             ConstantExpr::getLShr(RHS, ShAmt));
   1268 
   1269       if (LHSI->hasOneUse()) {
   1270         // Otherwise strength reduce the shift into an and.
   1271         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1272         Constant *Mask =
   1273           ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
   1274                                                        TypeBits-ShAmtVal));
   1275 
   1276         Value *And =
   1277           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1278         return new ICmpInst(ICI.getPredicate(), And,
   1279                             ConstantExpr::getLShr(RHS, ShAmt));
   1280       }
   1281     }
   1282 
   1283     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1284     bool TrueIfSigned = false;
   1285     if (LHSI->hasOneUse() &&
   1286         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1287       // (X << 31) <s 0  --> (X&1) != 0
   1288       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1289                                         APInt::getOneBitSet(TypeBits,
   1290                                             TypeBits-ShAmt->getZExtValue()-1));
   1291       Value *And =
   1292         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1293       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1294                           And, Constant::getNullValue(And->getType()));
   1295     }
   1296     break;
   1297   }
   1298 
   1299   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1300   case Instruction::AShr: {
   1301     // Handle equality comparisons of shift-by-constant.
   1302     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1303     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1304       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1305         return Res;
   1306     }
   1307 
   1308     // Handle exact shr's.
   1309     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1310       if (RHSV.isMinValue())
   1311         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1312     }
   1313     break;
   1314   }
   1315 
   1316   case Instruction::SDiv:
   1317   case Instruction::UDiv:
   1318     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1319     // Fold this div into the comparison, producing a range check.
   1320     // Determine, based on the divide type, what the range is being
   1321     // checked.  If there is an overflow on the low or high side, remember
   1322     // it, otherwise compute the range [low, hi) bounding the new value.
   1323     // See: InsertRangeTest above for the kinds of replacements possible.
   1324     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1325       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1326                                           DivRHS))
   1327         return R;
   1328     break;
   1329 
   1330   case Instruction::Add:
   1331     // Fold: icmp pred (add X, C1), C2
   1332     if (!ICI.isEquality()) {
   1333       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1334       if (!LHSC) break;
   1335       const APInt &LHSV = LHSC->getValue();
   1336 
   1337       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1338                             .subtract(LHSV);
   1339 
   1340       if (ICI.isSigned()) {
   1341         if (CR.getLower().isSignBit()) {
   1342           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1343                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1344         } else if (CR.getUpper().isSignBit()) {
   1345           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1346                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1347         }
   1348       } else {
   1349         if (CR.getLower().isMinValue()) {
   1350           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1351                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1352         } else if (CR.getUpper().isMinValue()) {
   1353           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1354                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1355         }
   1356       }
   1357     }
   1358     break;
   1359   }
   1360 
   1361   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1362   if (ICI.isEquality()) {
   1363     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1364 
   1365     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1366     // the second operand is a constant, simplify a bit.
   1367     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1368       switch (BO->getOpcode()) {
   1369       case Instruction::SRem:
   1370         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1371         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1372           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1373           if (V.sgt(1) && V.isPowerOf2()) {
   1374             Value *NewRem =
   1375               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1376                                   BO->getName());
   1377             return new ICmpInst(ICI.getPredicate(), NewRem,
   1378                                 Constant::getNullValue(BO->getType()));
   1379           }
   1380         }
   1381         break;
   1382       case Instruction::Add:
   1383         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1384         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1385           if (BO->hasOneUse())
   1386             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1387                                 ConstantExpr::getSub(RHS, BOp1C));
   1388         } else if (RHSV == 0) {
   1389           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1390           // efficiently invertible, or if the add has just this one use.
   1391           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1392 
   1393           if (Value *NegVal = dyn_castNegVal(BOp1))
   1394             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1395           if (Value *NegVal = dyn_castNegVal(BOp0))
   1396             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1397           if (BO->hasOneUse()) {
   1398             Value *Neg = Builder->CreateNeg(BOp1);
   1399             Neg->takeName(BO);
   1400             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1401           }
   1402         }
   1403         break;
   1404       case Instruction::Xor:
   1405         // For the xor case, we can xor two constants together, eliminating
   1406         // the explicit xor.
   1407         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1408           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1409                               ConstantExpr::getXor(RHS, BOC));
   1410         } else if (RHSV == 0) {
   1411           // Replace ((xor A, B) != 0) with (A != B)
   1412           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1413                               BO->getOperand(1));
   1414         }
   1415         break;
   1416       case Instruction::Sub:
   1417         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1418         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1419           if (BO->hasOneUse())
   1420             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1421                                 ConstantExpr::getSub(BOp0C, RHS));
   1422         } else if (RHSV == 0) {
   1423           // Replace ((sub A, B) != 0) with (A != B)
   1424           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1425                               BO->getOperand(1));
   1426         }
   1427         break;
   1428       case Instruction::Or:
   1429         // If bits are being or'd in that are not present in the constant we
   1430         // are comparing against, then the comparison could never succeed!
   1431         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1432           Constant *NotCI = ConstantExpr::getNot(RHS);
   1433           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1434             return ReplaceInstUsesWith(ICI,
   1435                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1436                                        isICMP_NE));
   1437         }
   1438         break;
   1439 
   1440       case Instruction::And:
   1441         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1442           // If bits are being compared against that are and'd out, then the
   1443           // comparison can never succeed!
   1444           if ((RHSV & ~BOC->getValue()) != 0)
   1445             return ReplaceInstUsesWith(ICI,
   1446                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1447                                        isICMP_NE));
   1448 
   1449           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1450           if (RHS == BOC && RHSV.isPowerOf2())
   1451             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1452                                 ICmpInst::ICMP_NE, LHSI,
   1453                                 Constant::getNullValue(RHS->getType()));
   1454 
   1455           // Don't perform the following transforms if the AND has multiple uses
   1456           if (!BO->hasOneUse())
   1457             break;
   1458 
   1459           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1460           if (BOC->getValue().isSignBit()) {
   1461             Value *X = BO->getOperand(0);
   1462             Constant *Zero = Constant::getNullValue(X->getType());
   1463             ICmpInst::Predicate pred = isICMP_NE ?
   1464               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1465             return new ICmpInst(pred, X, Zero);
   1466           }
   1467 
   1468           // ((X & ~7) == 0) --> X < 8
   1469           if (RHSV == 0 && isHighOnes(BOC)) {
   1470             Value *X = BO->getOperand(0);
   1471             Constant *NegX = ConstantExpr::getNeg(BOC);
   1472             ICmpInst::Predicate pred = isICMP_NE ?
   1473               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1474             return new ICmpInst(pred, X, NegX);
   1475           }
   1476         }
   1477       default: break;
   1478       }
   1479     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1480       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1481       switch (II->getIntrinsicID()) {
   1482       case Intrinsic::bswap:
   1483         Worklist.Add(II);
   1484         ICI.setOperand(0, II->getArgOperand(0));
   1485         ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
   1486         return &ICI;
   1487       case Intrinsic::ctlz:
   1488       case Intrinsic::cttz:
   1489         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1490         if (RHSV == RHS->getType()->getBitWidth()) {
   1491           Worklist.Add(II);
   1492           ICI.setOperand(0, II->getArgOperand(0));
   1493           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1494           return &ICI;
   1495         }
   1496         break;
   1497       case Intrinsic::ctpop:
   1498         // popcount(A) == 0  ->  A == 0 and likewise for !=
   1499         if (RHS->isZero()) {
   1500           Worklist.Add(II);
   1501           ICI.setOperand(0, II->getArgOperand(0));
   1502           ICI.setOperand(1, RHS);
   1503           return &ICI;
   1504         }
   1505         break;
   1506       default:
   1507         break;
   1508       }
   1509     }
   1510   }
   1511   return 0;
   1512 }
   1513 
   1514 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   1515 /// We only handle extending casts so far.
   1516 ///
   1517 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   1518   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   1519   Value *LHSCIOp        = LHSCI->getOperand(0);
   1520   Type *SrcTy     = LHSCIOp->getType();
   1521   Type *DestTy    = LHSCI->getType();
   1522   Value *RHSCIOp;
   1523 
   1524   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   1525   // integer type is the same size as the pointer type.
   1526   if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
   1527       TD->getPointerSizeInBits() ==
   1528          cast<IntegerType>(DestTy)->getBitWidth()) {
   1529     Value *RHSOp = 0;
   1530     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
   1531       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   1532     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
   1533       RHSOp = RHSC->getOperand(0);
   1534       // If the pointer types don't match, insert a bitcast.
   1535       if (LHSCIOp->getType() != RHSOp->getType())
   1536         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   1537     }
   1538 
   1539     if (RHSOp)
   1540       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   1541   }
   1542 
   1543   // The code below only handles extension cast instructions, so far.
   1544   // Enforce this.
   1545   if (LHSCI->getOpcode() != Instruction::ZExt &&
   1546       LHSCI->getOpcode() != Instruction::SExt)
   1547     return 0;
   1548 
   1549   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   1550   bool isSignedCmp = ICI.isSigned();
   1551 
   1552   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   1553     // Not an extension from the same type?
   1554     RHSCIOp = CI->getOperand(0);
   1555     if (RHSCIOp->getType() != LHSCIOp->getType())
   1556       return 0;
   1557 
   1558     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   1559     // and the other is a zext), then we can't handle this.
   1560     if (CI->getOpcode() != LHSCI->getOpcode())
   1561       return 0;
   1562 
   1563     // Deal with equality cases early.
   1564     if (ICI.isEquality())
   1565       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1566 
   1567     // A signed comparison of sign extended values simplifies into a
   1568     // signed comparison.
   1569     if (isSignedCmp && isSignedExt)
   1570       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1571 
   1572     // The other three cases all fold into an unsigned comparison.
   1573     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   1574   }
   1575 
   1576   // If we aren't dealing with a constant on the RHS, exit early
   1577   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   1578   if (!CI)
   1579     return 0;
   1580 
   1581   // Compute the constant that would happen if we truncated to SrcTy then
   1582   // reextended to DestTy.
   1583   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   1584   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   1585                                                 Res1, DestTy);
   1586 
   1587   // If the re-extended constant didn't change...
   1588   if (Res2 == CI) {
   1589     // Deal with equality cases early.
   1590     if (ICI.isEquality())
   1591       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1592 
   1593     // A signed comparison of sign extended values simplifies into a
   1594     // signed comparison.
   1595     if (isSignedExt && isSignedCmp)
   1596       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1597 
   1598     // The other three cases all fold into an unsigned comparison.
   1599     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   1600   }
   1601 
   1602   // The re-extended constant changed so the constant cannot be represented
   1603   // in the shorter type. Consequently, we cannot emit a simple comparison.
   1604   // All the cases that fold to true or false will have already been handled
   1605   // by SimplifyICmpInst, so only deal with the tricky case.
   1606 
   1607   if (isSignedCmp || !isSignedExt)
   1608     return 0;
   1609 
   1610   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   1611   // should have been folded away previously and not enter in here.
   1612 
   1613   // We're performing an unsigned comp with a sign extended value.
   1614   // This is true if the input is >= 0. [aka >s -1]
   1615   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   1616   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   1617 
   1618   // Finally, return the value computed.
   1619   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   1620     return ReplaceInstUsesWith(ICI, Result);
   1621 
   1622   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   1623   return BinaryOperator::CreateNot(Result);
   1624 }
   1625 
   1626 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   1627 ///   I = icmp ugt (add (add A, B), CI2), CI1
   1628 /// If this is of the form:
   1629 ///   sum = a + b
   1630 ///   if (sum+128 >u 255)
   1631 /// Then replace it with llvm.sadd.with.overflow.i8.
   1632 ///
   1633 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   1634                                           ConstantInt *CI2, ConstantInt *CI1,
   1635                                           InstCombiner &IC) {
   1636   // The transformation we're trying to do here is to transform this into an
   1637   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   1638   // with a narrower add, and discard the add-with-constant that is part of the
   1639   // range check (if we can't eliminate it, this isn't profitable).
   1640 
   1641   // In order to eliminate the add-with-constant, the compare can be its only
   1642   // use.
   1643   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   1644   if (!AddWithCst->hasOneUse()) return 0;
   1645 
   1646   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   1647   if (!CI2->getValue().isPowerOf2()) return 0;
   1648   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   1649   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
   1650 
   1651   // The width of the new add formed is 1 more than the bias.
   1652   ++NewWidth;
   1653 
   1654   // Check to see that CI1 is an all-ones value with NewWidth bits.
   1655   if (CI1->getBitWidth() == NewWidth ||
   1656       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   1657     return 0;
   1658 
   1659   // In order to replace the original add with a narrower
   1660   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   1661   // and truncates that discard the high bits of the add.  Verify that this is
   1662   // the case.
   1663   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   1664   for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
   1665        UI != E; ++UI) {
   1666     if (*UI == AddWithCst) continue;
   1667 
   1668     // Only accept truncates for now.  We would really like a nice recursive
   1669     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   1670     // chain to see which bits of a value are actually demanded.  If the
   1671     // original add had another add which was then immediately truncated, we
   1672     // could still do the transformation.
   1673     TruncInst *TI = dyn_cast<TruncInst>(*UI);
   1674     if (TI == 0 ||
   1675         TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
   1676   }
   1677 
   1678   // If the pattern matches, truncate the inputs to the narrower type and
   1679   // use the sadd_with_overflow intrinsic to efficiently compute both the
   1680   // result and the overflow bit.
   1681   Module *M = I.getParent()->getParent()->getParent();
   1682 
   1683   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   1684   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
   1685                                        NewType);
   1686 
   1687   InstCombiner::BuilderTy *Builder = IC.Builder;
   1688 
   1689   // Put the new code above the original add, in case there are any uses of the
   1690   // add between the add and the compare.
   1691   Builder->SetInsertPoint(OrigAdd);
   1692 
   1693   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   1694   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   1695   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
   1696   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   1697   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   1698 
   1699   // The inner add was the result of the narrow add, zero extended to the
   1700   // wider type.  Replace it with the result computed by the intrinsic.
   1701   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   1702 
   1703   // The original icmp gets replaced with the overflow value.
   1704   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   1705 }
   1706 
   1707 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
   1708                                      InstCombiner &IC) {
   1709   // Don't bother doing this transformation for pointers, don't do it for
   1710   // vectors.
   1711   if (!isa<IntegerType>(OrigAddV->getType())) return 0;
   1712 
   1713   // If the add is a constant expr, then we don't bother transforming it.
   1714   Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
   1715   if (OrigAdd == 0) return 0;
   1716 
   1717   Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
   1718 
   1719   // Put the new code above the original add, in case there are any uses of the
   1720   // add between the add and the compare.
   1721   InstCombiner::BuilderTy *Builder = IC.Builder;
   1722   Builder->SetInsertPoint(OrigAdd);
   1723 
   1724   Module *M = I.getParent()->getParent()->getParent();
   1725   Type *Ty = LHS->getType();
   1726   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
   1727   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
   1728   Value *Add = Builder->CreateExtractValue(Call, 0);
   1729 
   1730   IC.ReplaceInstUsesWith(*OrigAdd, Add);
   1731 
   1732   // The original icmp gets replaced with the overflow value.
   1733   return ExtractValueInst::Create(Call, 1, "uadd.overflow");
   1734 }
   1735 
   1736 // DemandedBitsLHSMask - When performing a comparison against a constant,
   1737 // it is possible that not all the bits in the LHS are demanded.  This helper
   1738 // method computes the mask that IS demanded.
   1739 static APInt DemandedBitsLHSMask(ICmpInst &I,
   1740                                  unsigned BitWidth, bool isSignCheck) {
   1741   if (isSignCheck)
   1742     return APInt::getSignBit(BitWidth);
   1743 
   1744   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   1745   if (!CI) return APInt::getAllOnesValue(BitWidth);
   1746   const APInt &RHS = CI->getValue();
   1747 
   1748   switch (I.getPredicate()) {
   1749   // For a UGT comparison, we don't care about any bits that
   1750   // correspond to the trailing ones of the comparand.  The value of these
   1751   // bits doesn't impact the outcome of the comparison, because any value
   1752   // greater than the RHS must differ in a bit higher than these due to carry.
   1753   case ICmpInst::ICMP_UGT: {
   1754     unsigned trailingOnes = RHS.countTrailingOnes();
   1755     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   1756     return ~lowBitsSet;
   1757   }
   1758 
   1759   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   1760   // Any value less than the RHS must differ in a higher bit because of carries.
   1761   case ICmpInst::ICMP_ULT: {
   1762     unsigned trailingZeros = RHS.countTrailingZeros();
   1763     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   1764     return ~lowBitsSet;
   1765   }
   1766 
   1767   default:
   1768     return APInt::getAllOnesValue(BitWidth);
   1769   }
   1770 
   1771 }
   1772 
   1773 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   1774   bool Changed = false;
   1775   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1776 
   1777   /// Orders the operands of the compare so that they are listed from most
   1778   /// complex to least complex.  This puts constants before unary operators,
   1779   /// before binary operators.
   1780   if (getComplexity(Op0) < getComplexity(Op1)) {
   1781     I.swapOperands();
   1782     std::swap(Op0, Op1);
   1783     Changed = true;
   1784   }
   1785 
   1786   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
   1787     return ReplaceInstUsesWith(I, V);
   1788 
   1789   Type *Ty = Op0->getType();
   1790 
   1791   // icmp's with boolean values can always be turned into bitwise operations
   1792   if (Ty->isIntegerTy(1)) {
   1793     switch (I.getPredicate()) {
   1794     default: llvm_unreachable("Invalid icmp instruction!");
   1795     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   1796       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   1797       return BinaryOperator::CreateNot(Xor);
   1798     }
   1799     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   1800       return BinaryOperator::CreateXor(Op0, Op1);
   1801 
   1802     case ICmpInst::ICMP_UGT:
   1803       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   1804       // FALL THROUGH
   1805     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   1806       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1807       return BinaryOperator::CreateAnd(Not, Op1);
   1808     }
   1809     case ICmpInst::ICMP_SGT:
   1810       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   1811       // FALL THROUGH
   1812     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   1813       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1814       return BinaryOperator::CreateAnd(Not, Op0);
   1815     }
   1816     case ICmpInst::ICMP_UGE:
   1817       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   1818       // FALL THROUGH
   1819     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   1820       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1821       return BinaryOperator::CreateOr(Not, Op1);
   1822     }
   1823     case ICmpInst::ICMP_SGE:
   1824       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   1825       // FALL THROUGH
   1826     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   1827       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1828       return BinaryOperator::CreateOr(Not, Op0);
   1829     }
   1830     }
   1831   }
   1832 
   1833   unsigned BitWidth = 0;
   1834   if (Ty->isIntOrIntVectorTy())
   1835     BitWidth = Ty->getScalarSizeInBits();
   1836   else if (TD)  // Pointers require TD info to get their size.
   1837     BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
   1838 
   1839   bool isSignBit = false;
   1840 
   1841   // See if we are doing a comparison with a constant.
   1842   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   1843     Value *A = 0, *B = 0;
   1844 
   1845     // Match the following pattern, which is a common idiom when writing
   1846     // overflow-safe integer arithmetic function.  The source performs an
   1847     // addition in wider type, and explicitly checks for overflow using
   1848     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   1849     // sadd_with_overflow intrinsic.
   1850     //
   1851     // TODO: This could probably be generalized to handle other overflow-safe
   1852     // operations if we worked out the formulas to compute the appropriate
   1853     // magic constants.
   1854     //
   1855     // sum = a + b
   1856     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   1857     {
   1858     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   1859     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   1860         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   1861       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   1862         return Res;
   1863     }
   1864 
   1865     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   1866     if (I.isEquality() && CI->isZero() &&
   1867         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
   1868       // (icmp cond A B) if cond is equality
   1869       return new ICmpInst(I.getPredicate(), A, B);
   1870     }
   1871 
   1872     // If we have an icmp le or icmp ge instruction, turn it into the
   1873     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   1874     // them being folded in the code below.  The SimplifyICmpInst code has
   1875     // already handled the edge cases for us, so we just assert on them.
   1876     switch (I.getPredicate()) {
   1877     default: break;
   1878     case ICmpInst::ICMP_ULE:
   1879       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   1880       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   1881                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1882     case ICmpInst::ICMP_SLE:
   1883       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   1884       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   1885                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1886     case ICmpInst::ICMP_UGE:
   1887       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   1888       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   1889                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1890     case ICmpInst::ICMP_SGE:
   1891       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   1892       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   1893                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1894     }
   1895 
   1896     // If this comparison is a normal comparison, it demands all
   1897     // bits, if it is a sign bit comparison, it only demands the sign bit.
   1898     bool UnusedBit;
   1899     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   1900   }
   1901 
   1902   // See if we can fold the comparison based on range information we can get
   1903   // by checking whether bits are known to be zero or one in the input.
   1904   if (BitWidth != 0) {
   1905     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   1906     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   1907 
   1908     if (SimplifyDemandedBits(I.getOperandUse(0),
   1909                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   1910                              Op0KnownZero, Op0KnownOne, 0))
   1911       return &I;
   1912     if (SimplifyDemandedBits(I.getOperandUse(1),
   1913                              APInt::getAllOnesValue(BitWidth),
   1914                              Op1KnownZero, Op1KnownOne, 0))
   1915       return &I;
   1916 
   1917     // Given the known and unknown bits, compute a range that the LHS could be
   1918     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   1919     // EQ and NE we use unsigned values.
   1920     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   1921     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   1922     if (I.isSigned()) {
   1923       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   1924                                              Op0Min, Op0Max);
   1925       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   1926                                              Op1Min, Op1Max);
   1927     } else {
   1928       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   1929                                                Op0Min, Op0Max);
   1930       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   1931                                                Op1Min, Op1Max);
   1932     }
   1933 
   1934     // If Min and Max are known to be the same, then SimplifyDemandedBits
   1935     // figured out that the LHS is a constant.  Just constant fold this now so
   1936     // that code below can assume that Min != Max.
   1937     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   1938       return new ICmpInst(I.getPredicate(),
   1939                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   1940     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   1941       return new ICmpInst(I.getPredicate(), Op0,
   1942                           ConstantInt::get(Op1->getType(), Op1Min));
   1943 
   1944     // Based on the range information we know about the LHS, see if we can
   1945     // simplify this comparison.  For example, (x&4) < 8 is always true.
   1946     switch (I.getPredicate()) {
   1947     default: llvm_unreachable("Unknown icmp opcode!");
   1948     case ICmpInst::ICMP_EQ: {
   1949       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   1950         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   1951 
   1952       // If all bits are known zero except for one, then we know at most one
   1953       // bit is set.   If the comparison is against zero, then this is a check
   1954       // to see if *that* bit is set.
   1955       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   1956       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   1957         // If the LHS is an AND with the same constant, look through it.
   1958         Value *LHS = 0;
   1959         ConstantInt *LHSC = 0;
   1960         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   1961             LHSC->getValue() != Op0KnownZeroInverted)
   1962           LHS = Op0;
   1963 
   1964         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   1965         // then turn "((1 << x)&8) == 0" into "x != 3".
   1966         Value *X = 0;
   1967         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   1968           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   1969           return new ICmpInst(ICmpInst::ICMP_NE, X,
   1970                               ConstantInt::get(X->getType(), CmpVal));
   1971         }
   1972 
   1973         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   1974         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   1975         const APInt *CI;
   1976         if (Op0KnownZeroInverted == 1 &&
   1977             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   1978           return new ICmpInst(ICmpInst::ICMP_NE, X,
   1979                               ConstantInt::get(X->getType(),
   1980                                                CI->countTrailingZeros()));
   1981       }
   1982 
   1983       break;
   1984     }
   1985     case ICmpInst::ICMP_NE: {
   1986       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   1987         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   1988 
   1989       // If all bits are known zero except for one, then we know at most one
   1990       // bit is set.   If the comparison is against zero, then this is a check
   1991       // to see if *that* bit is set.
   1992       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   1993       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   1994         // If the LHS is an AND with the same constant, look through it.
   1995         Value *LHS = 0;
   1996         ConstantInt *LHSC = 0;
   1997         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   1998             LHSC->getValue() != Op0KnownZeroInverted)
   1999           LHS = Op0;
   2000 
   2001         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2002         // then turn "((1 << x)&8) != 0" into "x == 3".
   2003         Value *X = 0;
   2004         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2005           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2006           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2007                               ConstantInt::get(X->getType(), CmpVal));
   2008         }
   2009 
   2010         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2011         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   2012         const APInt *CI;
   2013         if (Op0KnownZeroInverted == 1 &&
   2014             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2015           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2016                               ConstantInt::get(X->getType(),
   2017                                                CI->countTrailingZeros()));
   2018       }
   2019 
   2020       break;
   2021     }
   2022     case ICmpInst::ICMP_ULT:
   2023       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   2024         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2025       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   2026         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2027       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   2028         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2029       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2030         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   2031           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2032                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2033 
   2034         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   2035         if (CI->isMinValue(true))
   2036           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2037                            Constant::getAllOnesValue(Op0->getType()));
   2038       }
   2039       break;
   2040     case ICmpInst::ICMP_UGT:
   2041       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   2042         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2043       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   2044         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2045 
   2046       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   2047         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2048       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2049         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   2050           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2051                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2052 
   2053         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   2054         if (CI->isMaxValue(true))
   2055           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2056                               Constant::getNullValue(Op0->getType()));
   2057       }
   2058       break;
   2059     case ICmpInst::ICMP_SLT:
   2060       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   2061         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2062       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   2063         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2064       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   2065         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2066       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2067         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   2068           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2069                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2070       }
   2071       break;
   2072     case ICmpInst::ICMP_SGT:
   2073       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   2074         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2075       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   2076         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2077 
   2078       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   2079         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2080       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2081         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   2082           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2083                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2084       }
   2085       break;
   2086     case ICmpInst::ICMP_SGE:
   2087       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   2088       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   2089         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2090       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   2091         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2092       break;
   2093     case ICmpInst::ICMP_SLE:
   2094       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   2095       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   2096         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2097       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   2098         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2099       break;
   2100     case ICmpInst::ICMP_UGE:
   2101       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   2102       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   2103         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2104       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   2105         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2106       break;
   2107     case ICmpInst::ICMP_ULE:
   2108       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   2109       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   2110         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2111       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   2112         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2113       break;
   2114     }
   2115 
   2116     // Turn a signed comparison into an unsigned one if both operands
   2117     // are known to have the same sign.
   2118     if (I.isSigned() &&
   2119         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   2120          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   2121       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   2122   }
   2123 
   2124   // Test if the ICmpInst instruction is used exclusively by a select as
   2125   // part of a minimum or maximum operation. If so, refrain from doing
   2126   // any other folding. This helps out other analyses which understand
   2127   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   2128   // and CodeGen. And in this case, at least one of the comparison
   2129   // operands has at least one user besides the compare (the select),
   2130   // which would often largely negate the benefit of folding anyway.
   2131   if (I.hasOneUse())
   2132     if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
   2133       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   2134           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   2135         return 0;
   2136 
   2137   // See if we are doing a comparison between a constant and an instruction that
   2138   // can be folded into the comparison.
   2139   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2140     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   2141     // instruction, see if that instruction also has constants so that the
   2142     // instruction can be folded into the icmp
   2143     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2144       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   2145         return Res;
   2146   }
   2147 
   2148   // Handle icmp with constant (but not simple integer constant) RHS
   2149   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2150     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2151       switch (LHSI->getOpcode()) {
   2152       case Instruction::GetElementPtr:
   2153           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   2154         if (RHSC->isNullValue() &&
   2155             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   2156           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2157                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2158         break;
   2159       case Instruction::PHI:
   2160         // Only fold icmp into the PHI if the phi and icmp are in the same
   2161         // block.  If in the same block, we're encouraging jump threading.  If
   2162         // not, we are just pessimizing the code by making an i1 phi.
   2163         if (LHSI->getParent() == I.getParent())
   2164           if (Instruction *NV = FoldOpIntoPhi(I))
   2165             return NV;
   2166         break;
   2167       case Instruction::Select: {
   2168         // If either operand of the select is a constant, we can fold the
   2169         // comparison into the select arms, which will cause one to be
   2170         // constant folded and the select turned into a bitwise or.
   2171         Value *Op1 = 0, *Op2 = 0;
   2172         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
   2173           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2174         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
   2175           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2176 
   2177         // We only want to perform this transformation if it will not lead to
   2178         // additional code. This is true if either both sides of the select
   2179         // fold to a constant (in which case the icmp is replaced with a select
   2180         // which will usually simplify) or this is the only user of the
   2181         // select (in which case we are trading a select+icmp for a simpler
   2182         // select+icmp).
   2183         if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
   2184           if (!Op1)
   2185             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   2186                                       RHSC, I.getName());
   2187           if (!Op2)
   2188             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   2189                                       RHSC, I.getName());
   2190           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2191         }
   2192         break;
   2193       }
   2194       case Instruction::IntToPtr:
   2195         // icmp pred inttoptr(X), null -> icmp pred X, 0
   2196         if (RHSC->isNullValue() && TD &&
   2197             TD->getIntPtrType(RHSC->getContext()) ==
   2198                LHSI->getOperand(0)->getType())
   2199           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2200                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2201         break;
   2202 
   2203       case Instruction::Load:
   2204         // Try to optimize things like "A[i] > 4" to index computations.
   2205         if (GetElementPtrInst *GEP =
   2206               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2207           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2208             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2209                 !cast<LoadInst>(LHSI)->isVolatile())
   2210               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2211                 return Res;
   2212         }
   2213         break;
   2214       }
   2215   }
   2216 
   2217   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   2218   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   2219     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   2220       return NI;
   2221   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   2222     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   2223                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   2224       return NI;
   2225 
   2226   // Test to see if the operands of the icmp are casted versions of other
   2227   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   2228   // now.
   2229   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   2230     if (Op0->getType()->isPointerTy() &&
   2231         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   2232       // We keep moving the cast from the left operand over to the right
   2233       // operand, where it can often be eliminated completely.
   2234       Op0 = CI->getOperand(0);
   2235 
   2236       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   2237       // so eliminate it as well.
   2238       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   2239         Op1 = CI2->getOperand(0);
   2240 
   2241       // If Op1 is a constant, we can fold the cast into the constant.
   2242       if (Op0->getType() != Op1->getType()) {
   2243         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   2244           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   2245         } else {
   2246           // Otherwise, cast the RHS right before the icmp
   2247           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   2248         }
   2249       }
   2250       return new ICmpInst(I.getPredicate(), Op0, Op1);
   2251     }
   2252   }
   2253 
   2254   if (isa<CastInst>(Op0)) {
   2255     // Handle the special case of: icmp (cast bool to X), <cst>
   2256     // This comes up when you have code like
   2257     //   int X = A < B;
   2258     //   if (X) ...
   2259     // For generality, we handle any zero-extension of any operand comparison
   2260     // with a constant or another cast from the same type.
   2261     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   2262       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   2263         return R;
   2264   }
   2265 
   2266   // Special logic for binary operators.
   2267   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   2268   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   2269   if (BO0 || BO1) {
   2270     CmpInst::Predicate Pred = I.getPredicate();
   2271     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   2272     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   2273       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   2274         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   2275         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   2276     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   2277       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   2278         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   2279         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   2280 
   2281     // Analyze the case when either Op0 or Op1 is an add instruction.
   2282     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   2283     Value *A = 0, *B = 0, *C = 0, *D = 0;
   2284     if (BO0 && BO0->getOpcode() == Instruction::Add)
   2285       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2286     if (BO1 && BO1->getOpcode() == Instruction::Add)
   2287       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2288 
   2289     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2290     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   2291       return new ICmpInst(Pred, A == Op1 ? B : A,
   2292                           Constant::getNullValue(Op1->getType()));
   2293 
   2294     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2295     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   2296       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   2297                           C == Op0 ? D : C);
   2298 
   2299     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   2300     if (A && C && (A == C || A == D || B == C || B == D) &&
   2301         NoOp0WrapProblem && NoOp1WrapProblem &&
   2302         // Try not to increase register pressure.
   2303         BO0->hasOneUse() && BO1->hasOneUse()) {
   2304       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2305       Value *Y = (A == C || A == D) ? B : A;
   2306       Value *Z = (C == A || C == B) ? D : C;
   2307       return new ICmpInst(Pred, Y, Z);
   2308     }
   2309 
   2310     // Analyze the case when either Op0 or Op1 is a sub instruction.
   2311     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   2312     A = 0; B = 0; C = 0; D = 0;
   2313     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   2314       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2315     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   2316       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2317 
   2318     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   2319     if (A == Op1 && NoOp0WrapProblem)
   2320       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   2321 
   2322     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   2323     if (C == Op0 && NoOp1WrapProblem)
   2324       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   2325 
   2326     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   2327     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   2328         // Try not to increase register pressure.
   2329         BO0->hasOneUse() && BO1->hasOneUse())
   2330       return new ICmpInst(Pred, A, C);
   2331 
   2332     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   2333     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2334         // Try not to increase register pressure.
   2335         BO0->hasOneUse() && BO1->hasOneUse())
   2336       return new ICmpInst(Pred, D, B);
   2337 
   2338     BinaryOperator *SRem = NULL;
   2339     // icmp (srem X, Y), Y
   2340     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   2341         Op1 == BO0->getOperand(1))
   2342       SRem = BO0;
   2343     // icmp Y, (srem X, Y)
   2344     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   2345              Op0 == BO1->getOperand(1))
   2346       SRem = BO1;
   2347     if (SRem) {
   2348       // We don't check hasOneUse to avoid increasing register pressure because
   2349       // the value we use is the same value this instruction was already using.
   2350       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   2351         default: break;
   2352         case ICmpInst::ICMP_EQ:
   2353           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2354         case ICmpInst::ICMP_NE:
   2355           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2356         case ICmpInst::ICMP_SGT:
   2357         case ICmpInst::ICMP_SGE:
   2358           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   2359                               Constant::getAllOnesValue(SRem->getType()));
   2360         case ICmpInst::ICMP_SLT:
   2361         case ICmpInst::ICMP_SLE:
   2362           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   2363                               Constant::getNullValue(SRem->getType()));
   2364       }
   2365     }
   2366 
   2367     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   2368         BO0->hasOneUse() && BO1->hasOneUse() &&
   2369         BO0->getOperand(1) == BO1->getOperand(1)) {
   2370       switch (BO0->getOpcode()) {
   2371       default: break;
   2372       case Instruction::Add:
   2373       case Instruction::Sub:
   2374       case Instruction::Xor:
   2375         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   2376           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2377                               BO1->getOperand(0));
   2378         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   2379         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2380           if (CI->getValue().isSignBit()) {
   2381             ICmpInst::Predicate Pred = I.isSigned()
   2382                                            ? I.getUnsignedPredicate()
   2383                                            : I.getSignedPredicate();
   2384             return new ICmpInst(Pred, BO0->getOperand(0),
   2385                                 BO1->getOperand(0));
   2386           }
   2387 
   2388           if (CI->isMaxValue(true)) {
   2389             ICmpInst::Predicate Pred = I.isSigned()
   2390                                            ? I.getUnsignedPredicate()
   2391                                            : I.getSignedPredicate();
   2392             Pred = I.getSwappedPredicate(Pred);
   2393             return new ICmpInst(Pred, BO0->getOperand(0),
   2394                                 BO1->getOperand(0));
   2395           }
   2396         }
   2397         break;
   2398       case Instruction::Mul:
   2399         if (!I.isEquality())
   2400           break;
   2401 
   2402         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2403           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   2404           // Mask = -1 >> count-trailing-zeros(Cst).
   2405           if (!CI->isZero() && !CI->isOne()) {
   2406             const APInt &AP = CI->getValue();
   2407             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   2408                                     APInt::getLowBitsSet(AP.getBitWidth(),
   2409                                                          AP.getBitWidth() -
   2410                                                     AP.countTrailingZeros()));
   2411             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   2412             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   2413             return new ICmpInst(I.getPredicate(), And1, And2);
   2414           }
   2415         }
   2416         break;
   2417       case Instruction::UDiv:
   2418       case Instruction::LShr:
   2419         if (I.isSigned())
   2420           break;
   2421         // fall-through
   2422       case Instruction::SDiv:
   2423       case Instruction::AShr:
   2424         if (!BO0->isExact() || !BO1->isExact())
   2425           break;
   2426         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2427                             BO1->getOperand(0));
   2428       case Instruction::Shl: {
   2429         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   2430         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   2431         if (!NUW && !NSW)
   2432           break;
   2433         if (!NSW && I.isSigned())
   2434           break;
   2435         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2436                             BO1->getOperand(0));
   2437       }
   2438       }
   2439     }
   2440   }
   2441 
   2442   { Value *A, *B;
   2443     // ~x < ~y --> y < x
   2444     // ~x < cst --> ~cst < x
   2445     if (match(Op0, m_Not(m_Value(A)))) {
   2446       if (match(Op1, m_Not(m_Value(B))))
   2447         return new ICmpInst(I.getPredicate(), B, A);
   2448       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   2449         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   2450     }
   2451 
   2452     // (a+b) <u a  --> llvm.uadd.with.overflow.
   2453     // (a+b) <u b  --> llvm.uadd.with.overflow.
   2454     if (I.getPredicate() == ICmpInst::ICMP_ULT &&
   2455         match(Op0, m_Add(m_Value(A), m_Value(B))) &&
   2456         (Op1 == A || Op1 == B))
   2457       if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
   2458         return R;
   2459 
   2460     // a >u (a+b)  --> llvm.uadd.with.overflow.
   2461     // b >u (a+b)  --> llvm.uadd.with.overflow.
   2462     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2463         match(Op1, m_Add(m_Value(A), m_Value(B))) &&
   2464         (Op0 == A || Op0 == B))
   2465       if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
   2466         return R;
   2467   }
   2468 
   2469   if (I.isEquality()) {
   2470     Value *A, *B, *C, *D;
   2471 
   2472     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   2473       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   2474         Value *OtherVal = A == Op1 ? B : A;
   2475         return new ICmpInst(I.getPredicate(), OtherVal,
   2476                             Constant::getNullValue(A->getType()));
   2477       }
   2478 
   2479       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   2480         // A^c1 == C^c2 --> A == C^(c1^c2)
   2481         ConstantInt *C1, *C2;
   2482         if (match(B, m_ConstantInt(C1)) &&
   2483             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   2484           Constant *NC = ConstantInt::get(I.getContext(),
   2485                                           C1->getValue() ^ C2->getValue());
   2486           Value *Xor = Builder->CreateXor(C, NC, "tmp");
   2487           return new ICmpInst(I.getPredicate(), A, Xor);
   2488         }
   2489 
   2490         // A^B == A^D -> B == D
   2491         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   2492         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   2493         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   2494         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   2495       }
   2496     }
   2497 
   2498     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   2499         (A == Op0 || B == Op0)) {
   2500       // A == (A^B)  ->  B == 0
   2501       Value *OtherVal = A == Op0 ? B : A;
   2502       return new ICmpInst(I.getPredicate(), OtherVal,
   2503                           Constant::getNullValue(A->getType()));
   2504     }
   2505 
   2506     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   2507     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   2508         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   2509       Value *X = 0, *Y = 0, *Z = 0;
   2510 
   2511       if (A == C) {
   2512         X = B; Y = D; Z = A;
   2513       } else if (A == D) {
   2514         X = B; Y = C; Z = A;
   2515       } else if (B == C) {
   2516         X = A; Y = D; Z = B;
   2517       } else if (B == D) {
   2518         X = A; Y = C; Z = B;
   2519       }
   2520 
   2521       if (X) {   // Build (X^Y) & Z
   2522         Op1 = Builder->CreateXor(X, Y, "tmp");
   2523         Op1 = Builder->CreateAnd(Op1, Z, "tmp");
   2524         I.setOperand(0, Op1);
   2525         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   2526         return &I;
   2527       }
   2528     }
   2529 
   2530     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   2531     // "icmp (and X, mask), cst"
   2532     uint64_t ShAmt = 0;
   2533     ConstantInt *Cst1;
   2534     if (Op0->hasOneUse() &&
   2535         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   2536                                            m_ConstantInt(ShAmt))))) &&
   2537         match(Op1, m_ConstantInt(Cst1)) &&
   2538         // Only do this when A has multiple uses.  This is most important to do
   2539         // when it exposes other optimizations.
   2540         !A->hasOneUse()) {
   2541       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   2542 
   2543       if (ShAmt < ASize) {
   2544         APInt MaskV =
   2545           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   2546         MaskV <<= ShAmt;
   2547 
   2548         APInt CmpV = Cst1->getValue().zext(ASize);
   2549         CmpV <<= ShAmt;
   2550 
   2551         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   2552         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   2553       }
   2554     }
   2555   }
   2556 
   2557   {
   2558     Value *X; ConstantInt *Cst;
   2559     // icmp X+Cst, X
   2560     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   2561       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
   2562 
   2563     // icmp X, X+Cst
   2564     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   2565       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
   2566   }
   2567   return Changed ? &I : 0;
   2568 }
   2569 
   2570 
   2571 
   2572 
   2573 
   2574 
   2575 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   2576 ///
   2577 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   2578                                                 Instruction *LHSI,
   2579                                                 Constant *RHSC) {
   2580   if (!isa<ConstantFP>(RHSC)) return 0;
   2581   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   2582 
   2583   // Get the width of the mantissa.  We don't want to hack on conversions that
   2584   // might lose information from the integer, e.g. "i64 -> float"
   2585   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   2586   if (MantissaWidth == -1) return 0;  // Unknown.
   2587 
   2588   // Check to see that the input is converted from an integer type that is small
   2589   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   2590   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   2591   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
   2592 
   2593   // If this is a uitofp instruction, we need an extra bit to hold the sign.
   2594   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   2595   if (LHSUnsigned)
   2596     ++InputSize;
   2597 
   2598   // If the conversion would lose info, don't hack on this.
   2599   if ((int)InputSize > MantissaWidth)
   2600     return 0;
   2601 
   2602   // Otherwise, we can potentially simplify the comparison.  We know that it
   2603   // will always come through as an integer value and we know the constant is
   2604   // not a NAN (it would have been previously simplified).
   2605   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   2606 
   2607   ICmpInst::Predicate Pred;
   2608   switch (I.getPredicate()) {
   2609   default: llvm_unreachable("Unexpected predicate!");
   2610   case FCmpInst::FCMP_UEQ:
   2611   case FCmpInst::FCMP_OEQ:
   2612     Pred = ICmpInst::ICMP_EQ;
   2613     break;
   2614   case FCmpInst::FCMP_UGT:
   2615   case FCmpInst::FCMP_OGT:
   2616     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   2617     break;
   2618   case FCmpInst::FCMP_UGE:
   2619   case FCmpInst::FCMP_OGE:
   2620     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   2621     break;
   2622   case FCmpInst::FCMP_ULT:
   2623   case FCmpInst::FCMP_OLT:
   2624     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   2625     break;
   2626   case FCmpInst::FCMP_ULE:
   2627   case FCmpInst::FCMP_OLE:
   2628     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   2629     break;
   2630   case FCmpInst::FCMP_UNE:
   2631   case FCmpInst::FCMP_ONE:
   2632     Pred = ICmpInst::ICMP_NE;
   2633     break;
   2634   case FCmpInst::FCMP_ORD:
   2635     return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2636   case FCmpInst::FCMP_UNO:
   2637     return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2638   }
   2639 
   2640   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   2641 
   2642   // Now we know that the APFloat is a normal number, zero or inf.
   2643 
   2644   // See if the FP constant is too large for the integer.  For example,
   2645   // comparing an i8 to 300.0.
   2646   unsigned IntWidth = IntTy->getScalarSizeInBits();
   2647 
   2648   if (!LHSUnsigned) {
   2649     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   2650     // and large values.
   2651     APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
   2652     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   2653                           APFloat::rmNearestTiesToEven);
   2654     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   2655       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   2656           Pred == ICmpInst::ICMP_SLE)
   2657         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2658       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2659     }
   2660   } else {
   2661     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   2662     // +INF and large values.
   2663     APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
   2664     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   2665                           APFloat::rmNearestTiesToEven);
   2666     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   2667       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   2668           Pred == ICmpInst::ICMP_ULE)
   2669         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2670       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2671     }
   2672   }
   2673 
   2674   if (!LHSUnsigned) {
   2675     // See if the RHS value is < SignedMin.
   2676     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
   2677     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   2678                           APFloat::rmNearestTiesToEven);
   2679     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   2680       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   2681           Pred == ICmpInst::ICMP_SGE)
   2682         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2683       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2684     }
   2685   }
   2686 
   2687   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   2688   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   2689   // casting the FP value to the integer value and back, checking for equality.
   2690   // Don't do this for zero, because -0.0 is not fractional.
   2691   Constant *RHSInt = LHSUnsigned
   2692     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   2693     : ConstantExpr::getFPToSI(RHSC, IntTy);
   2694   if (!RHS.isZero()) {
   2695     bool Equal = LHSUnsigned
   2696       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   2697       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   2698     if (!Equal) {
   2699       // If we had a comparison against a fractional value, we have to adjust
   2700       // the compare predicate and sometimes the value.  RHSC is rounded towards
   2701       // zero at this point.
   2702       switch (Pred) {
   2703       default: llvm_unreachable("Unexpected integer comparison!");
   2704       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   2705         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2706       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   2707         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2708       case ICmpInst::ICMP_ULE:
   2709         // (float)int <= 4.4   --> int <= 4
   2710         // (float)int <= -4.4  --> false
   2711         if (RHS.isNegative())
   2712           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2713         break;
   2714       case ICmpInst::ICMP_SLE:
   2715         // (float)int <= 4.4   --> int <= 4
   2716         // (float)int <= -4.4  --> int < -4
   2717         if (RHS.isNegative())
   2718           Pred = ICmpInst::ICMP_SLT;
   2719         break;
   2720       case ICmpInst::ICMP_ULT:
   2721         // (float)int < -4.4   --> false
   2722         // (float)int < 4.4    --> int <= 4
   2723         if (RHS.isNegative())
   2724           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2725         Pred = ICmpInst::ICMP_ULE;
   2726         break;
   2727       case ICmpInst::ICMP_SLT:
   2728         // (float)int < -4.4   --> int < -4
   2729         // (float)int < 4.4    --> int <= 4
   2730         if (!RHS.isNegative())
   2731           Pred = ICmpInst::ICMP_SLE;
   2732         break;
   2733       case ICmpInst::ICMP_UGT:
   2734         // (float)int > 4.4    --> int > 4
   2735         // (float)int > -4.4   --> true
   2736         if (RHS.isNegative())
   2737           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2738         break;
   2739       case ICmpInst::ICMP_SGT:
   2740         // (float)int > 4.4    --> int > 4
   2741         // (float)int > -4.4   --> int >= -4
   2742         if (RHS.isNegative())
   2743           Pred = ICmpInst::ICMP_SGE;
   2744         break;
   2745       case ICmpInst::ICMP_UGE:
   2746         // (float)int >= -4.4   --> true
   2747         // (float)int >= 4.4    --> int > 4
   2748         if (!RHS.isNegative())
   2749           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2750         Pred = ICmpInst::ICMP_UGT;
   2751         break;
   2752       case ICmpInst::ICMP_SGE:
   2753         // (float)int >= -4.4   --> int >= -4
   2754         // (float)int >= 4.4    --> int > 4
   2755         if (!RHS.isNegative())
   2756           Pred = ICmpInst::ICMP_SGT;
   2757         break;
   2758       }
   2759     }
   2760   }
   2761 
   2762   // Lower this FP comparison into an appropriate integer version of the
   2763   // comparison.
   2764   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   2765 }
   2766 
   2767 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   2768   bool Changed = false;
   2769 
   2770   /// Orders the operands of the compare so that they are listed from most
   2771   /// complex to least complex.  This puts constants before unary operators,
   2772   /// before binary operators.
   2773   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   2774     I.swapOperands();
   2775     Changed = true;
   2776   }
   2777 
   2778   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2779 
   2780   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
   2781     return ReplaceInstUsesWith(I, V);
   2782 
   2783   // Simplify 'fcmp pred X, X'
   2784   if (Op0 == Op1) {
   2785     switch (I.getPredicate()) {
   2786     default: llvm_unreachable("Unknown predicate!");
   2787     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   2788     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   2789     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   2790     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   2791       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   2792       I.setPredicate(FCmpInst::FCMP_UNO);
   2793       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2794       return &I;
   2795 
   2796     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   2797     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   2798     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   2799     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   2800       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   2801       I.setPredicate(FCmpInst::FCMP_ORD);
   2802       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2803       return &I;
   2804     }
   2805   }
   2806 
   2807   // Handle fcmp with constant RHS
   2808   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2809     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2810       switch (LHSI->getOpcode()) {
   2811       case Instruction::FPExt: {
   2812         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   2813         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   2814         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   2815         if (!RHSF)
   2816           break;
   2817 
   2818         // We can't convert a PPC double double.
   2819         if (RHSF->getType()->isPPC_FP128Ty())
   2820           break;
   2821 
   2822         const fltSemantics *Sem;
   2823         // FIXME: This shouldn't be here.
   2824         if (LHSExt->getSrcTy()->isFloatTy())
   2825           Sem = &APFloat::IEEEsingle;
   2826         else if (LHSExt->getSrcTy()->isDoubleTy())
   2827           Sem = &APFloat::IEEEdouble;
   2828         else if (LHSExt->getSrcTy()->isFP128Ty())
   2829           Sem = &APFloat::IEEEquad;
   2830         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   2831           Sem = &APFloat::x87DoubleExtended;
   2832         else
   2833           break;
   2834 
   2835         bool Lossy;
   2836         APFloat F = RHSF->getValueAPF();
   2837         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   2838 
   2839         // Avoid lossy conversions and denormals.
   2840         if (!Lossy &&
   2841             F.compare(APFloat::getSmallestNormalized(*Sem)) !=
   2842                                                            APFloat::cmpLessThan)
   2843           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   2844                               ConstantFP::get(RHSC->getContext(), F));
   2845         break;
   2846       }
   2847       case Instruction::PHI:
   2848         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   2849         // block.  If in the same block, we're encouraging jump threading.  If
   2850         // not, we are just pessimizing the code by making an i1 phi.
   2851         if (LHSI->getParent() == I.getParent())
   2852           if (Instruction *NV = FoldOpIntoPhi(I))
   2853             return NV;
   2854         break;
   2855       case Instruction::SIToFP:
   2856       case Instruction::UIToFP:
   2857         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   2858           return NV;
   2859         break;
   2860       case Instruction::Select: {
   2861         // If either operand of the select is a constant, we can fold the
   2862         // comparison into the select arms, which will cause one to be
   2863         // constant folded and the select turned into a bitwise or.
   2864         Value *Op1 = 0, *Op2 = 0;
   2865         if (LHSI->hasOneUse()) {
   2866           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   2867             // Fold the known value into the constant operand.
   2868             Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   2869             // Insert a new FCmp of the other select operand.
   2870             Op2 = Builder->CreateFCmp(I.getPredicate(),
   2871                                       LHSI->getOperand(2), RHSC, I.getName());
   2872           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   2873             // Fold the known value into the constant operand.
   2874             Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   2875             // Insert a new FCmp of the other select operand.
   2876             Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
   2877                                       RHSC, I.getName());
   2878           }
   2879         }
   2880 
   2881         if (Op1)
   2882           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2883         break;
   2884       }
   2885       case Instruction::FSub: {
   2886         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   2887         Value *Op;
   2888         if (match(LHSI, m_FNeg(m_Value(Op))))
   2889           return new FCmpInst(I.getSwappedPredicate(), Op,
   2890                               ConstantExpr::getFNeg(RHSC));
   2891         break;
   2892       }
   2893       case Instruction::Load:
   2894         if (GetElementPtrInst *GEP =
   2895             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2896           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2897             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2898                 !cast<LoadInst>(LHSI)->isVolatile())
   2899               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2900                 return Res;
   2901         }
   2902         break;
   2903       }
   2904   }
   2905 
   2906   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   2907   Value *X, *Y;
   2908   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   2909     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   2910 
   2911   // fcmp (fpext x), (fpext y) -> fcmp x, y
   2912   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   2913     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   2914       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   2915         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   2916                             RHSExt->getOperand(0));
   2917 
   2918   return Changed ? &I : 0;
   2919 }
   2920