Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Intrinsics.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Support/ConstantRange.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 
     23 /// AddOne - Add one to a ConstantInt.
     24 static Constant *AddOne(Constant *C) {
     25   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     26 }
     27 /// SubOne - Subtract one from a ConstantInt.
     28 static Constant *SubOne(ConstantInt *C) {
     29   return ConstantInt::get(C->getContext(), C->getValue()-1);
     30 }
     31 
     32 /// isFreeToInvert - Return true if the specified value is free to invert (apply
     33 /// ~ to).  This happens in cases where the ~ can be eliminated.
     34 static inline bool isFreeToInvert(Value *V) {
     35   // ~(~(X)) -> X.
     36   if (BinaryOperator::isNot(V))
     37     return true;
     38 
     39   // Constants can be considered to be not'ed values.
     40   if (isa<ConstantInt>(V))
     41     return true;
     42 
     43   // Compares can be inverted if they have a single use.
     44   if (CmpInst *CI = dyn_cast<CmpInst>(V))
     45     return CI->hasOneUse();
     46 
     47   return false;
     48 }
     49 
     50 static inline Value *dyn_castNotVal(Value *V) {
     51   // If this is not(not(x)) don't return that this is a not: we want the two
     52   // not's to be folded first.
     53   if (BinaryOperator::isNot(V)) {
     54     Value *Operand = BinaryOperator::getNotArgument(V);
     55     if (!isFreeToInvert(Operand))
     56       return Operand;
     57   }
     58 
     59   // Constants can be considered to be not'ed values...
     60   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
     61     return ConstantInt::get(C->getType(), ~C->getValue());
     62   return 0;
     63 }
     64 
     65 
     66 /// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits
     67 /// are carefully arranged to allow folding of expressions such as:
     68 ///
     69 ///      (A < B) | (A > B) --> (A != B)
     70 ///
     71 /// Note that this is only valid if the first and second predicates have the
     72 /// same sign. Is illegal to do: (A u< B) | (A s> B)
     73 ///
     74 /// Three bits are used to represent the condition, as follows:
     75 ///   0  A > B
     76 ///   1  A == B
     77 ///   2  A < B
     78 ///
     79 /// <=>  Value  Definition
     80 /// 000     0   Always false
     81 /// 001     1   A >  B
     82 /// 010     2   A == B
     83 /// 011     3   A >= B
     84 /// 100     4   A <  B
     85 /// 101     5   A != B
     86 /// 110     6   A <= B
     87 /// 111     7   Always true
     88 ///
     89 static unsigned getICmpCode(const ICmpInst *ICI) {
     90   switch (ICI->getPredicate()) {
     91     // False -> 0
     92   case ICmpInst::ICMP_UGT: return 1;  // 001
     93   case ICmpInst::ICMP_SGT: return 1;  // 001
     94   case ICmpInst::ICMP_EQ:  return 2;  // 010
     95   case ICmpInst::ICMP_UGE: return 3;  // 011
     96   case ICmpInst::ICMP_SGE: return 3;  // 011
     97   case ICmpInst::ICMP_ULT: return 4;  // 100
     98   case ICmpInst::ICMP_SLT: return 4;  // 100
     99   case ICmpInst::ICMP_NE:  return 5;  // 101
    100   case ICmpInst::ICMP_ULE: return 6;  // 110
    101   case ICmpInst::ICMP_SLE: return 6;  // 110
    102     // True -> 7
    103   default:
    104     llvm_unreachable("Invalid ICmp predicate!");
    105     return 0;
    106   }
    107 }
    108 
    109 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
    110 /// predicate into a three bit mask. It also returns whether it is an ordered
    111 /// predicate by reference.
    112 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
    113   isOrdered = false;
    114   switch (CC) {
    115   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
    116   case FCmpInst::FCMP_UNO:                   return 0;  // 000
    117   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
    118   case FCmpInst::FCMP_UGT:                   return 1;  // 001
    119   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
    120   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
    121   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
    122   case FCmpInst::FCMP_UGE:                   return 3;  // 011
    123   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
    124   case FCmpInst::FCMP_ULT:                   return 4;  // 100
    125   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
    126   case FCmpInst::FCMP_UNE:                   return 5;  // 101
    127   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
    128   case FCmpInst::FCMP_ULE:                   return 6;  // 110
    129     // True -> 7
    130   default:
    131     // Not expecting FCMP_FALSE and FCMP_TRUE;
    132     llvm_unreachable("Unexpected FCmp predicate!");
    133     return 0;
    134   }
    135 }
    136 
    137 /// getICmpValue - This is the complement of getICmpCode, which turns an
    138 /// opcode and two operands into either a constant true or false, or a brand
    139 /// new ICmp instruction. The sign is passed in to determine which kind
    140 /// of predicate to use in the new icmp instruction.
    141 static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
    142                            InstCombiner::BuilderTy *Builder) {
    143   CmpInst::Predicate Pred;
    144   switch (Code) {
    145   default: assert(0 && "Illegal ICmp code!");
    146   case 0: // False.
    147     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    148   case 1: Pred = Sign ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
    149   case 2: Pred = ICmpInst::ICMP_EQ; break;
    150   case 3: Pred = Sign ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
    151   case 4: Pred = Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
    152   case 5: Pred = ICmpInst::ICMP_NE; break;
    153   case 6: Pred = Sign ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
    154   case 7: // True.
    155     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
    156   }
    157   return Builder->CreateICmp(Pred, LHS, RHS);
    158 }
    159 
    160 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
    161 /// opcode and two operands into either a FCmp instruction. isordered is passed
    162 /// in to determine which kind of predicate to use in the new fcmp instruction.
    163 static Value *getFCmpValue(bool isordered, unsigned code,
    164                            Value *LHS, Value *RHS,
    165                            InstCombiner::BuilderTy *Builder) {
    166   CmpInst::Predicate Pred;
    167   switch (code) {
    168   default: assert(0 && "Illegal FCmp code!");
    169   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
    170   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
    171   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
    172   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
    173   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
    174   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
    175   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
    176   case 7:
    177     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
    178     Pred = FCmpInst::FCMP_ORD; break;
    179   }
    180   return Builder->CreateFCmp(Pred, LHS, RHS);
    181 }
    182 
    183 /// PredicatesFoldable - Return true if both predicates match sign or if at
    184 /// least one of them is an equality comparison (which is signless).
    185 static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
    186   return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
    187          (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
    188          (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
    189 }
    190 
    191 // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
    192 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
    193 // guaranteed to be a binary operator.
    194 Instruction *InstCombiner::OptAndOp(Instruction *Op,
    195                                     ConstantInt *OpRHS,
    196                                     ConstantInt *AndRHS,
    197                                     BinaryOperator &TheAnd) {
    198   Value *X = Op->getOperand(0);
    199   Constant *Together = 0;
    200   if (!Op->isShift())
    201     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
    202 
    203   switch (Op->getOpcode()) {
    204   case Instruction::Xor:
    205     if (Op->hasOneUse()) {
    206       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
    207       Value *And = Builder->CreateAnd(X, AndRHS);
    208       And->takeName(Op);
    209       return BinaryOperator::CreateXor(And, Together);
    210     }
    211     break;
    212   case Instruction::Or:
    213     if (Op->hasOneUse()){
    214       if (Together != OpRHS) {
    215         // (X | C1) & C2 --> (X | (C1&C2)) & C2
    216         Value *Or = Builder->CreateOr(X, Together);
    217         Or->takeName(Op);
    218         return BinaryOperator::CreateAnd(Or, AndRHS);
    219       }
    220 
    221       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
    222       if (TogetherCI && !TogetherCI->isZero()){
    223         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
    224         // NOTE: This reduces the number of bits set in the & mask, which
    225         // can expose opportunities for store narrowing.
    226         Together = ConstantExpr::getXor(AndRHS, Together);
    227         Value *And = Builder->CreateAnd(X, Together);
    228         And->takeName(Op);
    229         return BinaryOperator::CreateOr(And, OpRHS);
    230       }
    231     }
    232 
    233     break;
    234   case Instruction::Add:
    235     if (Op->hasOneUse()) {
    236       // Adding a one to a single bit bit-field should be turned into an XOR
    237       // of the bit.  First thing to check is to see if this AND is with a
    238       // single bit constant.
    239       const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
    240 
    241       // If there is only one bit set.
    242       if (AndRHSV.isPowerOf2()) {
    243         // Ok, at this point, we know that we are masking the result of the
    244         // ADD down to exactly one bit.  If the constant we are adding has
    245         // no bits set below this bit, then we can eliminate the ADD.
    246         const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
    247 
    248         // Check to see if any bits below the one bit set in AndRHSV are set.
    249         if ((AddRHS & (AndRHSV-1)) == 0) {
    250           // If not, the only thing that can effect the output of the AND is
    251           // the bit specified by AndRHSV.  If that bit is set, the effect of
    252           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    253           // no effect.
    254           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
    255             TheAnd.setOperand(0, X);
    256             return &TheAnd;
    257           } else {
    258             // Pull the XOR out of the AND.
    259             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
    260             NewAnd->takeName(Op);
    261             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    262           }
    263         }
    264       }
    265     }
    266     break;
    267 
    268   case Instruction::Shl: {
    269     // We know that the AND will not produce any of the bits shifted in, so if
    270     // the anded constant includes them, clear them now!
    271     //
    272     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    273     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    274     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    275     ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
    276                                        AndRHS->getValue() & ShlMask);
    277 
    278     if (CI->getValue() == ShlMask)
    279       // Masking out bits that the shift already masks.
    280       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    281 
    282     if (CI != AndRHS) {                  // Reducing bits set in and.
    283       TheAnd.setOperand(1, CI);
    284       return &TheAnd;
    285     }
    286     break;
    287   }
    288   case Instruction::LShr: {
    289     // We know that the AND will not produce any of the bits shifted in, so if
    290     // the anded constant includes them, clear them now!  This only applies to
    291     // unsigned shifts, because a signed shr may bring in set bits!
    292     //
    293     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    294     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    295     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    296     ConstantInt *CI = ConstantInt::get(Op->getContext(),
    297                                        AndRHS->getValue() & ShrMask);
    298 
    299     if (CI->getValue() == ShrMask)
    300       // Masking out bits that the shift already masks.
    301       return ReplaceInstUsesWith(TheAnd, Op);
    302 
    303     if (CI != AndRHS) {
    304       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
    305       return &TheAnd;
    306     }
    307     break;
    308   }
    309   case Instruction::AShr:
    310     // Signed shr.
    311     // See if this is shifting in some sign extension, then masking it out
    312     // with an and.
    313     if (Op->hasOneUse()) {
    314       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    315       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    316       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    317       Constant *C = ConstantInt::get(Op->getContext(),
    318                                      AndRHS->getValue() & ShrMask);
    319       if (C == AndRHS) {          // Masking out bits shifted in.
    320         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
    321         // Make the argument unsigned.
    322         Value *ShVal = Op->getOperand(0);
    323         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
    324         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
    325       }
    326     }
    327     break;
    328   }
    329   return 0;
    330 }
    331 
    332 
    333 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
    334 /// true, otherwise (V < Lo || V >= Hi).  In practice, we emit the more efficient
    335 /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
    336 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
    337 /// insert new instructions.
    338 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    339                                      bool isSigned, bool Inside) {
    340   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
    341             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
    342          "Lo is not <= Hi in range emission code!");
    343 
    344   if (Inside) {
    345     if (Lo == Hi)  // Trivially false.
    346       return ConstantInt::getFalse(V->getContext());
    347 
    348     // V >= Min && V < Hi --> V < Hi
    349     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    350       ICmpInst::Predicate pred = (isSigned ?
    351         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
    352       return Builder->CreateICmp(pred, V, Hi);
    353     }
    354 
    355     // Emit V-Lo <u Hi-Lo
    356     Constant *NegLo = ConstantExpr::getNeg(Lo);
    357     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    358     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    359     return Builder->CreateICmpULT(Add, UpperBound);
    360   }
    361 
    362   if (Lo == Hi)  // Trivially true.
    363     return ConstantInt::getTrue(V->getContext());
    364 
    365   // V < Min || V >= Hi -> V > Hi-1
    366   Hi = SubOne(cast<ConstantInt>(Hi));
    367   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    368     ICmpInst::Predicate pred = (isSigned ?
    369         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    370     return Builder->CreateICmp(pred, V, Hi);
    371   }
    372 
    373   // Emit V-Lo >u Hi-1-Lo
    374   // Note that Hi has already had one subtracted from it, above.
    375   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
    376   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    377   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
    378   return Builder->CreateICmpUGT(Add, LowerBound);
    379 }
    380 
    381 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
    382 // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
    383 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
    384 // not, since all 1s are not contiguous.
    385 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
    386   const APInt& V = Val->getValue();
    387   uint32_t BitWidth = Val->getType()->getBitWidth();
    388   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
    389 
    390   // look for the first zero bit after the run of ones
    391   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
    392   // look for the first non-zero bit
    393   ME = V.getActiveBits();
    394   return true;
    395 }
    396 
    397 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
    398 /// where isSub determines whether the operator is a sub.  If we can fold one of
    399 /// the following xforms:
    400 ///
    401 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
    402 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    403 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    404 ///
    405 /// return (A +/- B).
    406 ///
    407 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
    408                                         ConstantInt *Mask, bool isSub,
    409                                         Instruction &I) {
    410   Instruction *LHSI = dyn_cast<Instruction>(LHS);
    411   if (!LHSI || LHSI->getNumOperands() != 2 ||
    412       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
    413 
    414   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
    415 
    416   switch (LHSI->getOpcode()) {
    417   default: return 0;
    418   case Instruction::And:
    419     if (ConstantExpr::getAnd(N, Mask) == Mask) {
    420       // If the AndRHS is a power of two minus one (0+1+), this is simple.
    421       if ((Mask->getValue().countLeadingZeros() +
    422            Mask->getValue().countPopulation()) ==
    423           Mask->getValue().getBitWidth())
    424         break;
    425 
    426       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
    427       // part, we don't need any explicit masks to take them out of A.  If that
    428       // is all N is, ignore it.
    429       uint32_t MB = 0, ME = 0;
    430       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
    431         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
    432         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
    433         if (MaskedValueIsZero(RHS, Mask))
    434           break;
    435       }
    436     }
    437     return 0;
    438   case Instruction::Or:
    439   case Instruction::Xor:
    440     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    441     if ((Mask->getValue().countLeadingZeros() +
    442          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
    443         && ConstantExpr::getAnd(N, Mask)->isNullValue())
    444       break;
    445     return 0;
    446   }
    447 
    448   if (isSub)
    449     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
    450   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
    451 }
    452 
    453 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
    454 /// One of A and B is considered the mask, the other the value. This is
    455 /// described as the "AMask" or "BMask" part of the enum. If the enum
    456 /// contains only "Mask", then both A and B can be considered masks.
    457 /// If A is the mask, then it was proven, that (A & C) == C. This
    458 /// is trivial if C == A, or C == 0. If both A and C are constants, this
    459 /// proof is also easy.
    460 /// For the following explanations we assume that A is the mask.
    461 /// The part "AllOnes" declares, that the comparison is true only
    462 /// if (A & B) == A, or all bits of A are set in B.
    463 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
    464 /// The part "AllZeroes" declares, that the comparison is true only
    465 /// if (A & B) == 0, or all bits of A are cleared in B.
    466 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
    467 /// The part "Mixed" declares, that (A & B) == C and C might or might not
    468 /// contain any number of one bits and zero bits.
    469 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
    470 /// The Part "Not" means, that in above descriptions "==" should be replaced
    471 /// by "!=".
    472 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
    473 /// If the mask A contains a single bit, then the following is equivalent:
    474 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    475 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    476 enum MaskedICmpType {
    477   FoldMskICmp_AMask_AllOnes           =     1,
    478   FoldMskICmp_AMask_NotAllOnes        =     2,
    479   FoldMskICmp_BMask_AllOnes           =     4,
    480   FoldMskICmp_BMask_NotAllOnes        =     8,
    481   FoldMskICmp_Mask_AllZeroes          =    16,
    482   FoldMskICmp_Mask_NotAllZeroes       =    32,
    483   FoldMskICmp_AMask_Mixed             =    64,
    484   FoldMskICmp_AMask_NotMixed          =   128,
    485   FoldMskICmp_BMask_Mixed             =   256,
    486   FoldMskICmp_BMask_NotMixed          =   512
    487 };
    488 
    489 /// return the set of pattern classes (from MaskedICmpType)
    490 /// that (icmp SCC (A & B), C) satisfies
    491 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
    492                                     ICmpInst::Predicate SCC)
    493 {
    494   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    495   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    496   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    497   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
    498   bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
    499                     ACst->getValue().isPowerOf2());
    500   bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
    501                     BCst->getValue().isPowerOf2());
    502   unsigned result = 0;
    503   if (CCst != 0 && CCst->isZero()) {
    504     // if C is zero, then both A and B qualify as mask
    505     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
    506                           FoldMskICmp_Mask_AllZeroes |
    507                           FoldMskICmp_AMask_Mixed |
    508                           FoldMskICmp_BMask_Mixed)
    509                        : (FoldMskICmp_Mask_NotAllZeroes |
    510                           FoldMskICmp_Mask_NotAllZeroes |
    511                           FoldMskICmp_AMask_NotMixed |
    512                           FoldMskICmp_BMask_NotMixed));
    513     if (icmp_abit)
    514       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
    515                             FoldMskICmp_AMask_NotMixed)
    516                          : (FoldMskICmp_AMask_AllOnes |
    517                             FoldMskICmp_AMask_Mixed));
    518     if (icmp_bbit)
    519       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
    520                             FoldMskICmp_BMask_NotMixed)
    521                          : (FoldMskICmp_BMask_AllOnes |
    522                             FoldMskICmp_BMask_Mixed));
    523     return result;
    524   }
    525   if (A == C) {
    526     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
    527                           FoldMskICmp_AMask_Mixed)
    528                        : (FoldMskICmp_AMask_NotAllOnes |
    529                           FoldMskICmp_AMask_NotMixed));
    530     if (icmp_abit)
    531       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    532                             FoldMskICmp_AMask_NotMixed)
    533                          : (FoldMskICmp_Mask_AllZeroes |
    534                             FoldMskICmp_AMask_Mixed));
    535   }
    536   else if (ACst != 0 && CCst != 0 &&
    537         ConstantExpr::getAnd(ACst, CCst) == CCst) {
    538     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
    539                        : FoldMskICmp_AMask_NotMixed);
    540   }
    541   if (B == C)
    542   {
    543     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
    544                           FoldMskICmp_BMask_Mixed)
    545                        : (FoldMskICmp_BMask_NotAllOnes |
    546                           FoldMskICmp_BMask_NotMixed));
    547     if (icmp_bbit)
    548       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    549                             FoldMskICmp_BMask_NotMixed)
    550                          : (FoldMskICmp_Mask_AllZeroes |
    551                             FoldMskICmp_BMask_Mixed));
    552   }
    553   else if (BCst != 0 && CCst != 0 &&
    554         ConstantExpr::getAnd(BCst, CCst) == CCst) {
    555     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
    556                        : FoldMskICmp_BMask_NotMixed);
    557   }
    558   return result;
    559 }
    560 
    561 /// foldLogOpOfMaskedICmpsHelper:
    562 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    563 /// return the set of pattern classes (from MaskedICmpType)
    564 /// that both LHS and RHS satisfy
    565 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
    566                                              Value*& B, Value*& C,
    567                                              Value*& D, Value*& E,
    568                                              ICmpInst *LHS, ICmpInst *RHS) {
    569   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    570   if (LHSCC != ICmpInst::ICMP_EQ && LHSCC != ICmpInst::ICMP_NE) return 0;
    571   if (RHSCC != ICmpInst::ICMP_EQ && RHSCC != ICmpInst::ICMP_NE) return 0;
    572   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
    573   // vectors are not (yet?) supported
    574   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
    575 
    576   // Here comes the tricky part:
    577   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    578   // and L11 & L12 == L21 & L22. The same goes for RHS.
    579   // Now we must find those components L** and R**, that are equal, so
    580   // that we can extract the parameters A, B, C, D, and E for the canonical
    581   // above.
    582   Value *L1 = LHS->getOperand(0);
    583   Value *L2 = LHS->getOperand(1);
    584   Value *L11,*L12,*L21,*L22;
    585   if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    586     if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
    587       L21 = L22 = 0;
    588   }
    589   else {
    590     if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
    591       return 0;
    592     std::swap(L1, L2);
    593     L21 = L22 = 0;
    594   }
    595 
    596   Value *R1 = RHS->getOperand(0);
    597   Value *R2 = RHS->getOperand(1);
    598   Value *R11,*R12;
    599   bool ok = false;
    600   if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    601     if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
    602       A = R11; D = R12; E = R2; ok = true;
    603     }
    604     else
    605     if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
    606       A = R12; D = R11; E = R2; ok = true;
    607     }
    608   }
    609   if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    610     if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
    611        A = R11; D = R12; E = R1; ok = true;
    612     }
    613     else
    614     if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
    615       A = R12; D = R11; E = R1; ok = true;
    616     }
    617     else
    618       return 0;
    619   }
    620   if (!ok)
    621     return 0;
    622 
    623   if (L11 == A) {
    624     B = L12; C = L2;
    625   }
    626   else if (L12 == A) {
    627     B = L11; C = L2;
    628   }
    629   else if (L21 == A) {
    630     B = L22; C = L1;
    631   }
    632   else if (L22 == A) {
    633     B = L21; C = L1;
    634   }
    635 
    636   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
    637   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
    638   return left_type & right_type;
    639 }
    640 /// foldLogOpOfMaskedICmps:
    641 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    642 /// into a single (icmp(A & X) ==/!= Y)
    643 static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
    644                                      ICmpInst::Predicate NEWCC,
    645                                      llvm::InstCombiner::BuilderTy* Builder) {
    646   Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
    647   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS);
    648   if (mask == 0) return 0;
    649 
    650   if (NEWCC == ICmpInst::ICMP_NE)
    651     mask >>= 1; // treat "Not"-states as normal states
    652 
    653   if (mask & FoldMskICmp_Mask_AllZeroes) {
    654     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    655     // -> (icmp eq (A & (B|D)), 0)
    656     Value* newOr = Builder->CreateOr(B, D);
    657     Value* newAnd = Builder->CreateAnd(A, newOr);
    658     // we can't use C as zero, because we might actually handle
    659     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    660     // with B and D, having a single bit set
    661     Value* zero = Constant::getNullValue(A->getType());
    662     return Builder->CreateICmp(NEWCC, newAnd, zero);
    663   }
    664   else if (mask & FoldMskICmp_BMask_AllOnes) {
    665     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    666     // -> (icmp eq (A & (B|D)), (B|D))
    667     Value* newOr = Builder->CreateOr(B, D);
    668     Value* newAnd = Builder->CreateAnd(A, newOr);
    669     return Builder->CreateICmp(NEWCC, newAnd, newOr);
    670   }
    671   else if (mask & FoldMskICmp_AMask_AllOnes) {
    672     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    673     // -> (icmp eq (A & (B&D)), A)
    674     Value* newAnd1 = Builder->CreateAnd(B, D);
    675     Value* newAnd = Builder->CreateAnd(A, newAnd1);
    676     return Builder->CreateICmp(NEWCC, newAnd, A);
    677   }
    678   else if (mask & FoldMskICmp_BMask_Mixed) {
    679     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    680     // We already know that B & C == C && D & E == E.
    681     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    682     // C and E, which are shared by both the mask B and the mask D, don't
    683     // contradict, then we can transform to
    684     // -> (icmp eq (A & (B|D)), (C|E))
    685     // Currently, we only handle the case of B, C, D, and E being constant.
    686     ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    687     if (BCst == 0) return 0;
    688     ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    689     if (DCst == 0) return 0;
    690     // we can't simply use C and E, because we might actually handle
    691     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    692     // with B and D, having a single bit set
    693 
    694     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    695     if (CCst == 0) return 0;
    696     if (LHS->getPredicate() != NEWCC)
    697       CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
    698     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    699     if (ECst == 0) return 0;
    700     if (RHS->getPredicate() != NEWCC)
    701       ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
    702     ConstantInt* MCst = dyn_cast<ConstantInt>(
    703       ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
    704                            ConstantExpr::getXor(CCst, ECst)) );
    705     // if there is a conflict we should actually return a false for the
    706     // whole construct
    707     if (!MCst->isZero())
    708       return 0;
    709     Value *newOr1 = Builder->CreateOr(B, D);
    710     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
    711     Value *newAnd = Builder->CreateAnd(A, newOr1);
    712     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
    713   }
    714   return 0;
    715 }
    716 
    717 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
    718 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
    719   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    720 
    721   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    722   if (PredicatesFoldable(LHSCC, RHSCC)) {
    723     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    724         LHS->getOperand(1) == RHS->getOperand(0))
    725       LHS->swapOperands();
    726     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    727         LHS->getOperand(1) == RHS->getOperand(1)) {
    728       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    729       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    730       bool isSigned = LHS->isSigned() || RHS->isSigned();
    731       return getICmpValue(isSigned, Code, Op0, Op1, Builder);
    732     }
    733   }
    734 
    735   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    736   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
    737     return V;
    738 
    739   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    740   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
    741   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
    742   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
    743   if (LHSCst == 0 || RHSCst == 0) return 0;
    744 
    745   if (LHSCst == RHSCst && LHSCC == RHSCC) {
    746     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    747     // where C is a power of 2
    748     if (LHSCC == ICmpInst::ICMP_ULT &&
    749         LHSCst->getValue().isPowerOf2()) {
    750       Value *NewOr = Builder->CreateOr(Val, Val2);
    751       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    752     }
    753 
    754     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    755     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
    756       Value *NewOr = Builder->CreateOr(Val, Val2);
    757       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    758     }
    759 
    760     // (icmp slt A, 0) & (icmp slt B, 0) --> (icmp slt (A&B), 0)
    761     if (LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero()) {
    762       Value *NewAnd = Builder->CreateAnd(Val, Val2);
    763       return Builder->CreateICmp(LHSCC, NewAnd, LHSCst);
    764     }
    765 
    766     // (icmp sgt A, -1) & (icmp sgt B, -1) --> (icmp sgt (A|B), -1)
    767     if (LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue()) {
    768       Value *NewOr = Builder->CreateOr(Val, Val2);
    769       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    770     }
    771   }
    772 
    773   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    774   // where CMAX is the all ones value for the truncated type,
    775   // iff the lower bits of C2 and CA are zero.
    776   if (LHSCC == RHSCC && ICmpInst::isEquality(LHSCC) &&
    777       LHS->hasOneUse() && RHS->hasOneUse()) {
    778     Value *V;
    779     ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
    780 
    781     // (trunc x) == C1 & (and x, CA) == C2
    782     if (match(Val2, m_Trunc(m_Value(V))) &&
    783         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    784       SmallCst = RHSCst;
    785       BigCst = LHSCst;
    786     }
    787     // (and x, CA) == C2 & (trunc x) == C1
    788     else if (match(Val, m_Trunc(m_Value(V))) &&
    789              match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    790       SmallCst = LHSCst;
    791       BigCst = RHSCst;
    792     }
    793 
    794     if (SmallCst && BigCst) {
    795       unsigned BigBitSize = BigCst->getType()->getBitWidth();
    796       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
    797 
    798       // Check that the low bits are zero.
    799       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    800       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
    801         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
    802         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
    803         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
    804         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
    805       }
    806     }
    807   }
    808 
    809   // From here on, we only handle:
    810   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    811   if (Val != Val2) return 0;
    812 
    813   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
    814   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
    815       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
    816       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
    817       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
    818     return 0;
    819 
    820   // Make a constant range that's the intersection of the two icmp ranges.
    821   // If the intersection is empty, we know that the result is false.
    822   ConstantRange LHSRange =
    823     ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
    824   ConstantRange RHSRange =
    825     ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
    826 
    827   if (LHSRange.intersectWith(RHSRange).isEmptySet())
    828     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    829 
    830   // We can't fold (ugt x, C) & (sgt x, C2).
    831   if (!PredicatesFoldable(LHSCC, RHSCC))
    832     return 0;
    833 
    834   // Ensure that the larger constant is on the RHS.
    835   bool ShouldSwap;
    836   if (CmpInst::isSigned(LHSCC) ||
    837       (ICmpInst::isEquality(LHSCC) &&
    838        CmpInst::isSigned(RHSCC)))
    839     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
    840   else
    841     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
    842 
    843   if (ShouldSwap) {
    844     std::swap(LHS, RHS);
    845     std::swap(LHSCst, RHSCst);
    846     std::swap(LHSCC, RHSCC);
    847   }
    848 
    849   // At this point, we know we have two icmp instructions
    850   // comparing a value against two constants and and'ing the result
    851   // together.  Because of the above check, we know that we only have
    852   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
    853   // (from the icmp folding check above), that the two constants
    854   // are not equal and that the larger constant is on the RHS
    855   assert(LHSCst != RHSCst && "Compares not folded above?");
    856 
    857   switch (LHSCC) {
    858   default: llvm_unreachable("Unknown integer condition code!");
    859   case ICmpInst::ICMP_EQ:
    860     switch (RHSCC) {
    861     default: llvm_unreachable("Unknown integer condition code!");
    862     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
    863     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
    864     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
    865       return LHS;
    866     }
    867   case ICmpInst::ICMP_NE:
    868     switch (RHSCC) {
    869     default: llvm_unreachable("Unknown integer condition code!");
    870     case ICmpInst::ICMP_ULT:
    871       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
    872         return Builder->CreateICmpULT(Val, LHSCst);
    873       break;                        // (X != 13 & X u< 15) -> no change
    874     case ICmpInst::ICMP_SLT:
    875       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
    876         return Builder->CreateICmpSLT(Val, LHSCst);
    877       break;                        // (X != 13 & X s< 15) -> no change
    878     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
    879     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
    880     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
    881       return RHS;
    882     case ICmpInst::ICMP_NE:
    883       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
    884         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
    885         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
    886         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
    887       }
    888       break;                        // (X != 13 & X != 15) -> no change
    889     }
    890     break;
    891   case ICmpInst::ICMP_ULT:
    892     switch (RHSCC) {
    893     default: llvm_unreachable("Unknown integer condition code!");
    894     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
    895     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
    896       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    897     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
    898       break;
    899     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
    900     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
    901       return LHS;
    902     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
    903       break;
    904     }
    905     break;
    906   case ICmpInst::ICMP_SLT:
    907     switch (RHSCC) {
    908     default: llvm_unreachable("Unknown integer condition code!");
    909     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
    910       break;
    911     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
    912     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
    913       return LHS;
    914     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
    915       break;
    916     }
    917     break;
    918   case ICmpInst::ICMP_UGT:
    919     switch (RHSCC) {
    920     default: llvm_unreachable("Unknown integer condition code!");
    921     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
    922     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
    923       return RHS;
    924     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
    925       break;
    926     case ICmpInst::ICMP_NE:
    927       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
    928         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    929       break;                        // (X u> 13 & X != 15) -> no change
    930     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
    931       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
    932     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
    933       break;
    934     }
    935     break;
    936   case ICmpInst::ICMP_SGT:
    937     switch (RHSCC) {
    938     default: llvm_unreachable("Unknown integer condition code!");
    939     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
    940     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
    941       return RHS;
    942     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
    943       break;
    944     case ICmpInst::ICMP_NE:
    945       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
    946         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    947       break;                        // (X s> 13 & X != 15) -> no change
    948     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
    949       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
    950     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
    951       break;
    952     }
    953     break;
    954   }
    955 
    956   return 0;
    957 }
    958 
    959 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
    960 /// instcombine, this returns a Value which should already be inserted into the
    961 /// function.
    962 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
    963   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
    964       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
    965     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
    966     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
    967       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
    968         // If either of the constants are nans, then the whole thing returns
    969         // false.
    970         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
    971           return ConstantInt::getFalse(LHS->getContext());
    972         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    973       }
    974 
    975     // Handle vector zeros.  This occurs because the canonical form of
    976     // "fcmp ord x,x" is "fcmp ord x, 0".
    977     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
    978         isa<ConstantAggregateZero>(RHS->getOperand(1)))
    979       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    980     return 0;
    981   }
    982 
    983   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
    984   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
    985   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
    986 
    987 
    988   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
    989     // Swap RHS operands to match LHS.
    990     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
    991     std::swap(Op1LHS, Op1RHS);
    992   }
    993 
    994   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
    995     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
    996     if (Op0CC == Op1CC)
    997       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
    998     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
    999       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1000     if (Op0CC == FCmpInst::FCMP_TRUE)
   1001       return RHS;
   1002     if (Op1CC == FCmpInst::FCMP_TRUE)
   1003       return LHS;
   1004 
   1005     bool Op0Ordered;
   1006     bool Op1Ordered;
   1007     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1008     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1009     if (Op1Pred == 0) {
   1010       std::swap(LHS, RHS);
   1011       std::swap(Op0Pred, Op1Pred);
   1012       std::swap(Op0Ordered, Op1Ordered);
   1013     }
   1014     if (Op0Pred == 0) {
   1015       // uno && ueq -> uno && (uno || eq) -> ueq
   1016       // ord && olt -> ord && (ord && lt) -> olt
   1017       if (Op0Ordered == Op1Ordered)
   1018         return RHS;
   1019 
   1020       // uno && oeq -> uno && (ord && eq) -> false
   1021       // uno && ord -> false
   1022       if (!Op0Ordered)
   1023         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1024       // ord && ueq -> ord && (uno || eq) -> oeq
   1025       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
   1026     }
   1027   }
   1028 
   1029   return 0;
   1030 }
   1031 
   1032 
   1033 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1034   bool Changed = SimplifyAssociativeOrCommutative(I);
   1035   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1036 
   1037   if (Value *V = SimplifyAndInst(Op0, Op1, TD))
   1038     return ReplaceInstUsesWith(I, V);
   1039 
   1040   // (A|B)&(A|C) -> A|(B&C) etc
   1041   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1042     return ReplaceInstUsesWith(I, V);
   1043 
   1044   // See if we can simplify any instructions used by the instruction whose sole
   1045   // purpose is to compute bits we don't care about.
   1046   if (SimplifyDemandedInstructionBits(I))
   1047     return &I;
   1048 
   1049   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1050     const APInt &AndRHSMask = AndRHS->getValue();
   1051 
   1052     // Optimize a variety of ((val OP C1) & C2) combinations...
   1053     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1054       Value *Op0LHS = Op0I->getOperand(0);
   1055       Value *Op0RHS = Op0I->getOperand(1);
   1056       switch (Op0I->getOpcode()) {
   1057       default: break;
   1058       case Instruction::Xor:
   1059       case Instruction::Or: {
   1060         // If the mask is only needed on one incoming arm, push it up.
   1061         if (!Op0I->hasOneUse()) break;
   1062 
   1063         APInt NotAndRHS(~AndRHSMask);
   1064         if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
   1065           // Not masking anything out for the LHS, move to RHS.
   1066           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
   1067                                              Op0RHS->getName()+".masked");
   1068           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
   1069         }
   1070         if (!isa<Constant>(Op0RHS) &&
   1071             MaskedValueIsZero(Op0RHS, NotAndRHS)) {
   1072           // Not masking anything out for the RHS, move to LHS.
   1073           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
   1074                                              Op0LHS->getName()+".masked");
   1075           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
   1076         }
   1077 
   1078         break;
   1079       }
   1080       case Instruction::Add:
   1081         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
   1082         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1083         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1084         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
   1085           return BinaryOperator::CreateAnd(V, AndRHS);
   1086         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
   1087           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
   1088         break;
   1089 
   1090       case Instruction::Sub:
   1091         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
   1092         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1093         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1094         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
   1095           return BinaryOperator::CreateAnd(V, AndRHS);
   1096 
   1097         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
   1098         // has 1's for all bits that the subtraction with A might affect.
   1099         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
   1100           uint32_t BitWidth = AndRHSMask.getBitWidth();
   1101           uint32_t Zeros = AndRHSMask.countLeadingZeros();
   1102           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
   1103 
   1104           if (MaskedValueIsZero(Op0LHS, Mask)) {
   1105             Value *NewNeg = Builder->CreateNeg(Op0RHS);
   1106             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
   1107           }
   1108         }
   1109         break;
   1110 
   1111       case Instruction::Shl:
   1112       case Instruction::LShr:
   1113         // (1 << x) & 1 --> zext(x == 0)
   1114         // (1 >> x) & 1 --> zext(x == 0)
   1115         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
   1116           Value *NewICmp =
   1117             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
   1118           return new ZExtInst(NewICmp, I.getType());
   1119         }
   1120         break;
   1121       }
   1122 
   1123       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1124         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1125           return Res;
   1126     }
   1127 
   1128     // If this is an integer truncation, and if the source is an 'and' with
   1129     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1130     {
   1131       Value *X = 0; ConstantInt *YC = 0;
   1132       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1133         // Change: and (trunc (and X, YC) to T), C2
   1134         // into  : and (trunc X to T), trunc(YC) & C2
   1135         // This will fold the two constants together, which may allow
   1136         // other simplifications.
   1137         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
   1138         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1139         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1140         return BinaryOperator::CreateAnd(NewCast, C3);
   1141       }
   1142     }
   1143 
   1144     // Try to fold constant and into select arguments.
   1145     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1146       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1147         return R;
   1148     if (isa<PHINode>(Op0))
   1149       if (Instruction *NV = FoldOpIntoPhi(I))
   1150         return NV;
   1151   }
   1152 
   1153 
   1154   // (~A & ~B) == (~(A | B)) - De Morgan's Law
   1155   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1156     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1157       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1158         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
   1159                                       I.getName()+".demorgan");
   1160         return BinaryOperator::CreateNot(Or);
   1161       }
   1162 
   1163   {
   1164     Value *A = 0, *B = 0, *C = 0, *D = 0;
   1165     // (A|B) & ~(A&B) -> A^B
   1166     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1167         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1168         ((A == C && B == D) || (A == D && B == C)))
   1169       return BinaryOperator::CreateXor(A, B);
   1170 
   1171     // ~(A&B) & (A|B) -> A^B
   1172     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1173         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1174         ((A == C && B == D) || (A == D && B == C)))
   1175       return BinaryOperator::CreateXor(A, B);
   1176 
   1177     if (Op0->hasOneUse() &&
   1178         match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   1179       if (A == Op1) {                                // (A^B)&A -> A&(A^B)
   1180         I.swapOperands();     // Simplify below
   1181         std::swap(Op0, Op1);
   1182       } else if (B == Op1) {                         // (A^B)&B -> B&(B^A)
   1183         cast<BinaryOperator>(Op0)->swapOperands();
   1184         I.swapOperands();     // Simplify below
   1185         std::swap(Op0, Op1);
   1186       }
   1187     }
   1188 
   1189     if (Op1->hasOneUse() &&
   1190         match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   1191       if (B == Op0) {                                // B&(A^B) -> B&(B^A)
   1192         cast<BinaryOperator>(Op1)->swapOperands();
   1193         std::swap(A, B);
   1194       }
   1195       // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
   1196       // A is originally -1 (or a vector of -1 and undefs), then we enter
   1197       // an endless loop. By checking that A is non-constant we ensure that
   1198       // we will never get to the loop.
   1199       if (A == Op0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
   1200         return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
   1201     }
   1202 
   1203     // (A&((~A)|B)) -> A&B
   1204     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
   1205         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
   1206       return BinaryOperator::CreateAnd(A, Op1);
   1207     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
   1208         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
   1209       return BinaryOperator::CreateAnd(A, Op0);
   1210   }
   1211 
   1212   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
   1213     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
   1214       if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1215         return ReplaceInstUsesWith(I, Res);
   1216 
   1217   // If and'ing two fcmp, try combine them into one.
   1218   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1219     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1220       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1221         return ReplaceInstUsesWith(I, Res);
   1222 
   1223 
   1224   // fold (and (cast A), (cast B)) -> (cast (and A, B))
   1225   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
   1226     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
   1227       Type *SrcTy = Op0C->getOperand(0)->getType();
   1228       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
   1229           SrcTy == Op1C->getOperand(0)->getType() &&
   1230           SrcTy->isIntOrIntVectorTy()) {
   1231         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1232 
   1233         // Only do this if the casts both really cause code to be generated.
   1234         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1235             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1236           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
   1237           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1238         }
   1239 
   1240         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
   1241         // cast is otherwise not optimizable.  This happens for vector sexts.
   1242         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1243           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1244             if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1245               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1246 
   1247         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
   1248         // cast is otherwise not optimizable.  This happens for vector sexts.
   1249         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   1250           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   1251             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1252               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1253       }
   1254     }
   1255 
   1256   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
   1257   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1258     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1259       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1260           SI0->getOperand(1) == SI1->getOperand(1) &&
   1261           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1262         Value *NewOp =
   1263           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
   1264                              SI0->getName());
   1265         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1266                                       SI1->getOperand(1));
   1267       }
   1268   }
   1269 
   1270   return Changed ? &I : 0;
   1271 }
   1272 
   1273 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
   1274 /// capable of providing pieces of a bswap.  The subexpression provides pieces
   1275 /// of a bswap if it is proven that each of the non-zero bytes in the output of
   1276 /// the expression came from the corresponding "byte swapped" byte in some other
   1277 /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
   1278 /// we know that the expression deposits the low byte of %X into the high byte
   1279 /// of the bswap result and that all other bytes are zero.  This expression is
   1280 /// accepted, the high byte of ByteValues is set to X to indicate a correct
   1281 /// match.
   1282 ///
   1283 /// This function returns true if the match was unsuccessful and false if so.
   1284 /// On entry to the function the "OverallLeftShift" is a signed integer value
   1285 /// indicating the number of bytes that the subexpression is later shifted.  For
   1286 /// example, if the expression is later right shifted by 16 bits, the
   1287 /// OverallLeftShift value would be -2 on entry.  This is used to specify which
   1288 /// byte of ByteValues is actually being set.
   1289 ///
   1290 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
   1291 /// byte is masked to zero by a user.  For example, in (X & 255), X will be
   1292 /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
   1293 /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
   1294 /// always in the local (OverallLeftShift) coordinate space.
   1295 ///
   1296 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
   1297                               SmallVector<Value*, 8> &ByteValues) {
   1298   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1299     // If this is an or instruction, it may be an inner node of the bswap.
   1300     if (I->getOpcode() == Instruction::Or) {
   1301       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1302                                ByteValues) ||
   1303              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
   1304                                ByteValues);
   1305     }
   1306 
   1307     // If this is a logical shift by a constant multiple of 8, recurse with
   1308     // OverallLeftShift and ByteMask adjusted.
   1309     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1310       unsigned ShAmt =
   1311         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1312       // Ensure the shift amount is defined and of a byte value.
   1313       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
   1314         return true;
   1315 
   1316       unsigned ByteShift = ShAmt >> 3;
   1317       if (I->getOpcode() == Instruction::Shl) {
   1318         // X << 2 -> collect(X, +2)
   1319         OverallLeftShift += ByteShift;
   1320         ByteMask >>= ByteShift;
   1321       } else {
   1322         // X >>u 2 -> collect(X, -2)
   1323         OverallLeftShift -= ByteShift;
   1324         ByteMask <<= ByteShift;
   1325         ByteMask &= (~0U >> (32-ByteValues.size()));
   1326       }
   1327 
   1328       if (OverallLeftShift >= (int)ByteValues.size()) return true;
   1329       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
   1330 
   1331       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1332                                ByteValues);
   1333     }
   1334 
   1335     // If this is a logical 'and' with a mask that clears bytes, clear the
   1336     // corresponding bytes in ByteMask.
   1337     if (I->getOpcode() == Instruction::And &&
   1338         isa<ConstantInt>(I->getOperand(1))) {
   1339       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
   1340       unsigned NumBytes = ByteValues.size();
   1341       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
   1342       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1343 
   1344       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
   1345         // If this byte is masked out by a later operation, we don't care what
   1346         // the and mask is.
   1347         if ((ByteMask & (1 << i)) == 0)
   1348           continue;
   1349 
   1350         // If the AndMask is all zeros for this byte, clear the bit.
   1351         APInt MaskB = AndMask & Byte;
   1352         if (MaskB == 0) {
   1353           ByteMask &= ~(1U << i);
   1354           continue;
   1355         }
   1356 
   1357         // If the AndMask is not all ones for this byte, it's not a bytezap.
   1358         if (MaskB != Byte)
   1359           return true;
   1360 
   1361         // Otherwise, this byte is kept.
   1362       }
   1363 
   1364       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1365                                ByteValues);
   1366     }
   1367   }
   1368 
   1369   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1370   // the input value to the bswap.  Some observations: 1) if more than one byte
   1371   // is demanded from this input, then it could not be successfully assembled
   1372   // into a byteswap.  At least one of the two bytes would not be aligned with
   1373   // their ultimate destination.
   1374   if (!isPowerOf2_32(ByteMask)) return true;
   1375   unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
   1376 
   1377   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
   1378   // is demanded, it needs to go into byte 0 of the result.  This means that the
   1379   // byte needs to be shifted until it lands in the right byte bucket.  The
   1380   // shift amount depends on the position: if the byte is coming from the high
   1381   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
   1382   // low part, it must be shifted left.
   1383   unsigned DestByteNo = InputByteNo + OverallLeftShift;
   1384   if (InputByteNo < ByteValues.size()/2) {
   1385     if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1386       return true;
   1387   } else {
   1388     if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1389       return true;
   1390   }
   1391 
   1392   // If the destination byte value is already defined, the values are or'd
   1393   // together, which isn't a bswap (unless it's an or of the same bits).
   1394   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
   1395     return true;
   1396   ByteValues[DestByteNo] = V;
   1397   return false;
   1398 }
   1399 
   1400 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
   1401 /// If so, insert the new bswap intrinsic and return it.
   1402 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
   1403   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
   1404   if (!ITy || ITy->getBitWidth() % 16 ||
   1405       // ByteMask only allows up to 32-byte values.
   1406       ITy->getBitWidth() > 32*8)
   1407     return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
   1408 
   1409   /// ByteValues - For each byte of the result, we keep track of which value
   1410   /// defines each byte.
   1411   SmallVector<Value*, 8> ByteValues;
   1412   ByteValues.resize(ITy->getBitWidth()/8);
   1413 
   1414   // Try to find all the pieces corresponding to the bswap.
   1415   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
   1416   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
   1417     return 0;
   1418 
   1419   // Check to see if all of the bytes come from the same value.
   1420   Value *V = ByteValues[0];
   1421   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
   1422 
   1423   // Check to make sure that all of the bytes come from the same value.
   1424   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
   1425     if (ByteValues[i] != V)
   1426       return 0;
   1427   Module *M = I.getParent()->getParent()->getParent();
   1428   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
   1429   return CallInst::Create(F, V);
   1430 }
   1431 
   1432 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
   1433 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
   1434 /// we can simplify this expression to "cond ? C : D or B".
   1435 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
   1436                                          Value *C, Value *D) {
   1437   // If A is not a select of -1/0, this cannot match.
   1438   Value *Cond = 0;
   1439   if (!match(A, m_SExt(m_Value(Cond))) ||
   1440       !Cond->getType()->isIntegerTy(1))
   1441     return 0;
   1442 
   1443   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
   1444   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
   1445     return SelectInst::Create(Cond, C, B);
   1446   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
   1447     return SelectInst::Create(Cond, C, B);
   1448 
   1449   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
   1450   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
   1451     return SelectInst::Create(Cond, C, D);
   1452   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
   1453     return SelectInst::Create(Cond, C, D);
   1454   return 0;
   1455 }
   1456 
   1457 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
   1458 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
   1459   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
   1460 
   1461   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1462   if (PredicatesFoldable(LHSCC, RHSCC)) {
   1463     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1464         LHS->getOperand(1) == RHS->getOperand(0))
   1465       LHS->swapOperands();
   1466     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1467         LHS->getOperand(1) == RHS->getOperand(1)) {
   1468       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1469       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1470       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1471       return getICmpValue(isSigned, Code, Op0, Op1, Builder);
   1472     }
   1473   }
   1474 
   1475   // handle (roughly):
   1476   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1477   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
   1478     return V;
   1479 
   1480   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1481   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
   1482   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1483   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1484   if (LHSCst == 0 || RHSCst == 0) return 0;
   1485 
   1486   if (LHSCst == RHSCst && LHSCC == RHSCC) {
   1487     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1488     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
   1489       Value *NewOr = Builder->CreateOr(Val, Val2);
   1490       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1491     }
   1492 
   1493     // (icmp slt A, 0) | (icmp slt B, 0) --> (icmp slt (A|B), 0)
   1494     if (LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero()) {
   1495       Value *NewOr = Builder->CreateOr(Val, Val2);
   1496       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1497     }
   1498 
   1499     // (icmp sgt A, -1) | (icmp sgt B, -1) --> (icmp sgt (A&B), -1)
   1500     if (LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue()) {
   1501       Value *NewAnd = Builder->CreateAnd(Val, Val2);
   1502       return Builder->CreateICmp(LHSCC, NewAnd, LHSCst);
   1503     }
   1504   }
   1505 
   1506   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1507   //   iff C2 + CA == C1.
   1508   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
   1509     ConstantInt *AddCst;
   1510     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
   1511       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
   1512         return Builder->CreateICmpULE(Val, LHSCst);
   1513   }
   1514 
   1515   // From here on, we only handle:
   1516   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1517   if (Val != Val2) return 0;
   1518 
   1519   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
   1520   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
   1521       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
   1522       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
   1523       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
   1524     return 0;
   1525 
   1526   // We can't fold (ugt x, C) | (sgt x, C2).
   1527   if (!PredicatesFoldable(LHSCC, RHSCC))
   1528     return 0;
   1529 
   1530   // Ensure that the larger constant is on the RHS.
   1531   bool ShouldSwap;
   1532   if (CmpInst::isSigned(LHSCC) ||
   1533       (ICmpInst::isEquality(LHSCC) &&
   1534        CmpInst::isSigned(RHSCC)))
   1535     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
   1536   else
   1537     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1538 
   1539   if (ShouldSwap) {
   1540     std::swap(LHS, RHS);
   1541     std::swap(LHSCst, RHSCst);
   1542     std::swap(LHSCC, RHSCC);
   1543   }
   1544 
   1545   // At this point, we know we have two icmp instructions
   1546   // comparing a value against two constants and or'ing the result
   1547   // together.  Because of the above check, we know that we only have
   1548   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1549   // icmp folding check above), that the two constants are not
   1550   // equal.
   1551   assert(LHSCst != RHSCst && "Compares not folded above?");
   1552 
   1553   switch (LHSCC) {
   1554   default: llvm_unreachable("Unknown integer condition code!");
   1555   case ICmpInst::ICMP_EQ:
   1556     switch (RHSCC) {
   1557     default: llvm_unreachable("Unknown integer condition code!");
   1558     case ICmpInst::ICMP_EQ:
   1559       if (LHSCst == SubOne(RHSCst)) {
   1560         // (X == 13 | X == 14) -> X-13 <u 2
   1561         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1562         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1563         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
   1564         return Builder->CreateICmpULT(Add, AddCST);
   1565       }
   1566       break;                         // (X == 13 | X == 15) -> no change
   1567     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
   1568     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
   1569       break;
   1570     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
   1571     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
   1572     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
   1573       return RHS;
   1574     }
   1575     break;
   1576   case ICmpInst::ICMP_NE:
   1577     switch (RHSCC) {
   1578     default: llvm_unreachable("Unknown integer condition code!");
   1579     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
   1580     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
   1581     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
   1582       return LHS;
   1583     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
   1584     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
   1585     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
   1586       return ConstantInt::getTrue(LHS->getContext());
   1587     }
   1588     break;
   1589   case ICmpInst::ICMP_ULT:
   1590     switch (RHSCC) {
   1591     default: llvm_unreachable("Unknown integer condition code!");
   1592     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
   1593       break;
   1594     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
   1595       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1596       // this can cause overflow.
   1597       if (RHSCst->isMaxValue(false))
   1598         return LHS;
   1599       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
   1600     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
   1601       break;
   1602     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
   1603     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
   1604       return RHS;
   1605     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
   1606       break;
   1607     }
   1608     break;
   1609   case ICmpInst::ICMP_SLT:
   1610     switch (RHSCC) {
   1611     default: llvm_unreachable("Unknown integer condition code!");
   1612     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
   1613       break;
   1614     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
   1615       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1616       // this can cause overflow.
   1617       if (RHSCst->isMaxValue(true))
   1618         return LHS;
   1619       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
   1620     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
   1621       break;
   1622     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
   1623     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
   1624       return RHS;
   1625     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
   1626       break;
   1627     }
   1628     break;
   1629   case ICmpInst::ICMP_UGT:
   1630     switch (RHSCC) {
   1631     default: llvm_unreachable("Unknown integer condition code!");
   1632     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
   1633     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
   1634       return LHS;
   1635     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
   1636       break;
   1637     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
   1638     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
   1639       return ConstantInt::getTrue(LHS->getContext());
   1640     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
   1641       break;
   1642     }
   1643     break;
   1644   case ICmpInst::ICMP_SGT:
   1645     switch (RHSCC) {
   1646     default: llvm_unreachable("Unknown integer condition code!");
   1647     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
   1648     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
   1649       return LHS;
   1650     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
   1651       break;
   1652     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
   1653     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
   1654       return ConstantInt::getTrue(LHS->getContext());
   1655     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
   1656       break;
   1657     }
   1658     break;
   1659   }
   1660   return 0;
   1661 }
   1662 
   1663 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
   1664 /// instcombine, this returns a Value which should already be inserted into the
   1665 /// function.
   1666 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   1667   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1668       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1669       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
   1670     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   1671       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   1672         // If either of the constants are nans, then the whole thing returns
   1673         // true.
   1674         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   1675           return ConstantInt::getTrue(LHS->getContext());
   1676 
   1677         // Otherwise, no need to compare the two constants, compare the
   1678         // rest.
   1679         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1680       }
   1681 
   1682     // Handle vector zeros.  This occurs because the canonical form of
   1683     // "fcmp uno x,x" is "fcmp uno x, 0".
   1684     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   1685         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   1686       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1687 
   1688     return 0;
   1689   }
   1690 
   1691   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   1692   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   1693   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   1694 
   1695   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   1696     // Swap RHS operands to match LHS.
   1697     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   1698     std::swap(Op1LHS, Op1RHS);
   1699   }
   1700   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   1701     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
   1702     if (Op0CC == Op1CC)
   1703       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   1704     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
   1705       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
   1706     if (Op0CC == FCmpInst::FCMP_FALSE)
   1707       return RHS;
   1708     if (Op1CC == FCmpInst::FCMP_FALSE)
   1709       return LHS;
   1710     bool Op0Ordered;
   1711     bool Op1Ordered;
   1712     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1713     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1714     if (Op0Ordered == Op1Ordered) {
   1715       // If both are ordered or unordered, return a new fcmp with
   1716       // or'ed predicates.
   1717       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
   1718     }
   1719   }
   1720   return 0;
   1721 }
   1722 
   1723 /// FoldOrWithConstants - This helper function folds:
   1724 ///
   1725 ///     ((A | B) & C1) | (B & C2)
   1726 ///
   1727 /// into:
   1728 ///
   1729 ///     (A & C1) | B
   1730 ///
   1731 /// when the XOR of the two constants is "all ones" (-1).
   1732 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
   1733                                                Value *A, Value *B, Value *C) {
   1734   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   1735   if (!CI1) return 0;
   1736 
   1737   Value *V1 = 0;
   1738   ConstantInt *CI2 = 0;
   1739   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
   1740 
   1741   APInt Xor = CI1->getValue() ^ CI2->getValue();
   1742   if (!Xor.isAllOnesValue()) return 0;
   1743 
   1744   if (V1 == A || V1 == B) {
   1745     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
   1746     return BinaryOperator::CreateOr(NewOp, V1);
   1747   }
   1748 
   1749   return 0;
   1750 }
   1751 
   1752 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   1753   bool Changed = SimplifyAssociativeOrCommutative(I);
   1754   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1755 
   1756   if (Value *V = SimplifyOrInst(Op0, Op1, TD))
   1757     return ReplaceInstUsesWith(I, V);
   1758 
   1759   // (A&B)|(A&C) -> A&(B|C) etc
   1760   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1761     return ReplaceInstUsesWith(I, V);
   1762 
   1763   // See if we can simplify any instructions used by the instruction whose sole
   1764   // purpose is to compute bits we don't care about.
   1765   if (SimplifyDemandedInstructionBits(I))
   1766     return &I;
   1767 
   1768   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   1769     ConstantInt *C1 = 0; Value *X = 0;
   1770     // (X & C1) | C2 --> (X | C2) & (C1|C2)
   1771     // iff (C1 & C2) == 0.
   1772     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
   1773         (RHS->getValue() & C1->getValue()) != 0 &&
   1774         Op0->hasOneUse()) {
   1775       Value *Or = Builder->CreateOr(X, RHS);
   1776       Or->takeName(Op0);
   1777       return BinaryOperator::CreateAnd(Or,
   1778                          ConstantInt::get(I.getContext(),
   1779                                           RHS->getValue() | C1->getValue()));
   1780     }
   1781 
   1782     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
   1783     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
   1784         Op0->hasOneUse()) {
   1785       Value *Or = Builder->CreateOr(X, RHS);
   1786       Or->takeName(Op0);
   1787       return BinaryOperator::CreateXor(Or,
   1788                  ConstantInt::get(I.getContext(),
   1789                                   C1->getValue() & ~RHS->getValue()));
   1790     }
   1791 
   1792     // Try to fold constant and into select arguments.
   1793     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1794       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1795         return R;
   1796 
   1797     if (isa<PHINode>(Op0))
   1798       if (Instruction *NV = FoldOpIntoPhi(I))
   1799         return NV;
   1800   }
   1801 
   1802   Value *A = 0, *B = 0;
   1803   ConstantInt *C1 = 0, *C2 = 0;
   1804 
   1805   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   1806   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   1807   if (match(Op0, m_Or(m_Value(), m_Value())) ||
   1808       match(Op1, m_Or(m_Value(), m_Value())) ||
   1809       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   1810        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
   1811     if (Instruction *BSwap = MatchBSwap(I))
   1812       return BSwap;
   1813   }
   1814 
   1815   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   1816   if (Op0->hasOneUse() &&
   1817       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1818       MaskedValueIsZero(Op1, C1->getValue())) {
   1819     Value *NOr = Builder->CreateOr(A, Op1);
   1820     NOr->takeName(Op0);
   1821     return BinaryOperator::CreateXor(NOr, C1);
   1822   }
   1823 
   1824   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   1825   if (Op1->hasOneUse() &&
   1826       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1827       MaskedValueIsZero(Op0, C1->getValue())) {
   1828     Value *NOr = Builder->CreateOr(A, Op0);
   1829     NOr->takeName(Op0);
   1830     return BinaryOperator::CreateXor(NOr, C1);
   1831   }
   1832 
   1833   // (A & C)|(B & D)
   1834   Value *C = 0, *D = 0;
   1835   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1836       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1837     Value *V1 = 0, *V2 = 0;
   1838     C1 = dyn_cast<ConstantInt>(C);
   1839     C2 = dyn_cast<ConstantInt>(D);
   1840     if (C1 && C2) {  // (A & C1)|(B & C2)
   1841       // If we have: ((V + N) & C1) | (V & C2)
   1842       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1843       // replace with V+N.
   1844       if (C1->getValue() == ~C2->getValue()) {
   1845         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
   1846             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1847           // Add commutes, try both ways.
   1848           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
   1849             return ReplaceInstUsesWith(I, A);
   1850           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
   1851             return ReplaceInstUsesWith(I, A);
   1852         }
   1853         // Or commutes, try both ways.
   1854         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
   1855             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1856           // Add commutes, try both ways.
   1857           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
   1858             return ReplaceInstUsesWith(I, B);
   1859           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
   1860             return ReplaceInstUsesWith(I, B);
   1861         }
   1862       }
   1863 
   1864       if ((C1->getValue() & C2->getValue()) == 0) {
   1865         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   1866         // iff (C1&C2) == 0 and (N&~C1) == 0
   1867         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   1868             ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
   1869              (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
   1870           return BinaryOperator::CreateAnd(A,
   1871                                ConstantInt::get(A->getContext(),
   1872                                                 C1->getValue()|C2->getValue()));
   1873         // Or commutes, try both ways.
   1874         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   1875             ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
   1876              (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
   1877           return BinaryOperator::CreateAnd(B,
   1878                                ConstantInt::get(B->getContext(),
   1879                                                 C1->getValue()|C2->getValue()));
   1880 
   1881         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   1882         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   1883         ConstantInt *C3 = 0, *C4 = 0;
   1884         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   1885             (C3->getValue() & ~C1->getValue()) == 0 &&
   1886             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   1887             (C4->getValue() & ~C2->getValue()) == 0) {
   1888           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   1889           return BinaryOperator::CreateAnd(V2,
   1890                                ConstantInt::get(B->getContext(),
   1891                                                 C1->getValue()|C2->getValue()));
   1892         }
   1893       }
   1894     }
   1895 
   1896     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
   1897     // Don't do this for vector select idioms, the code generator doesn't handle
   1898     // them well yet.
   1899     if (!I.getType()->isVectorTy()) {
   1900       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
   1901         return Match;
   1902       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
   1903         return Match;
   1904       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
   1905         return Match;
   1906       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
   1907         return Match;
   1908     }
   1909 
   1910     // ((A&~B)|(~A&B)) -> A^B
   1911     if ((match(C, m_Not(m_Specific(D))) &&
   1912          match(B, m_Not(m_Specific(A)))))
   1913       return BinaryOperator::CreateXor(A, D);
   1914     // ((~B&A)|(~A&B)) -> A^B
   1915     if ((match(A, m_Not(m_Specific(D))) &&
   1916          match(B, m_Not(m_Specific(C)))))
   1917       return BinaryOperator::CreateXor(C, D);
   1918     // ((A&~B)|(B&~A)) -> A^B
   1919     if ((match(C, m_Not(m_Specific(B))) &&
   1920          match(D, m_Not(m_Specific(A)))))
   1921       return BinaryOperator::CreateXor(A, B);
   1922     // ((~B&A)|(B&~A)) -> A^B
   1923     if ((match(A, m_Not(m_Specific(B))) &&
   1924          match(D, m_Not(m_Specific(C)))))
   1925       return BinaryOperator::CreateXor(C, B);
   1926 
   1927     // ((A|B)&1)|(B&-2) -> (A&1) | B
   1928     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
   1929         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
   1930       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
   1931       if (Ret) return Ret;
   1932     }
   1933     // (B&-2)|((A|B)&1) -> (A&1) | B
   1934     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
   1935         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
   1936       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
   1937       if (Ret) return Ret;
   1938     }
   1939   }
   1940 
   1941   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
   1942   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1943     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1944       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1945           SI0->getOperand(1) == SI1->getOperand(1) &&
   1946           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1947         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
   1948                                          SI0->getName());
   1949         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1950                                       SI1->getOperand(1));
   1951       }
   1952   }
   1953 
   1954   // (~A | ~B) == (~(A & B)) - De Morgan's Law
   1955   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1956     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1957       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1958         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
   1959                                         I.getName()+".demorgan");
   1960         return BinaryOperator::CreateNot(And);
   1961       }
   1962 
   1963   // Canonicalize xor to the RHS.
   1964   if (match(Op0, m_Xor(m_Value(), m_Value())))
   1965     std::swap(Op0, Op1);
   1966 
   1967   // A | ( A ^ B) -> A |  B
   1968   // A | (~A ^ B) -> A | ~B
   1969   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   1970     if (Op0 == A || Op0 == B)
   1971       return BinaryOperator::CreateOr(A, B);
   1972 
   1973     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   1974       Value *Not = Builder->CreateNot(B, B->getName()+".not");
   1975       return BinaryOperator::CreateOr(Not, Op0);
   1976     }
   1977     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   1978       Value *Not = Builder->CreateNot(A, A->getName()+".not");
   1979       return BinaryOperator::CreateOr(Not, Op0);
   1980     }
   1981   }
   1982 
   1983   // A | ~(A | B) -> A | ~B
   1984   // A | ~(A ^ B) -> A | ~B
   1985   if (match(Op1, m_Not(m_Value(A))))
   1986     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   1987       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   1988           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   1989                                B->getOpcode() == Instruction::Xor)) {
   1990         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   1991                                                  B->getOperand(0);
   1992         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
   1993         return BinaryOperator::CreateOr(Not, Op0);
   1994       }
   1995 
   1996   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   1997     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   1998       if (Value *Res = FoldOrOfICmps(LHS, RHS))
   1999         return ReplaceInstUsesWith(I, Res);
   2000 
   2001   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
   2002   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   2003     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   2004       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2005         return ReplaceInstUsesWith(I, Res);
   2006 
   2007   // fold (or (cast A), (cast B)) -> (cast (or A, B))
   2008   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2009     CastInst *Op1C = dyn_cast<CastInst>(Op1);
   2010     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
   2011       Type *SrcTy = Op0C->getOperand(0)->getType();
   2012       if (SrcTy == Op1C->getOperand(0)->getType() &&
   2013           SrcTy->isIntOrIntVectorTy()) {
   2014         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   2015 
   2016         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
   2017             // Only do this if the casts both really cause code to be
   2018             // generated.
   2019             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   2020             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   2021           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
   2022           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2023         }
   2024 
   2025         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
   2026         // cast is otherwise not optimizable.  This happens for vector sexts.
   2027         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   2028           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   2029             if (Value *Res = FoldOrOfICmps(LHS, RHS))
   2030               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2031 
   2032         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
   2033         // cast is otherwise not optimizable.  This happens for vector sexts.
   2034         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   2035           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   2036             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2037               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2038       }
   2039     }
   2040   }
   2041 
   2042   // or(sext(A), B) -> A ? -1 : B where A is an i1
   2043   // or(A, sext(B)) -> B ? -1 : A where B is an i1
   2044   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2045     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2046   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2047     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2048 
   2049   // Note: If we've gotten to the point of visiting the outer OR, then the
   2050   // inner one couldn't be simplified.  If it was a constant, then it won't
   2051   // be simplified by a later pass either, so we try swapping the inner/outer
   2052   // ORs in the hopes that we'll be able to simplify it this way.
   2053   // (X|C) | V --> (X|V) | C
   2054   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2055       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2056     Value *Inner = Builder->CreateOr(A, Op1);
   2057     Inner->takeName(Op0);
   2058     return BinaryOperator::CreateOr(Inner, C1);
   2059   }
   2060 
   2061   return Changed ? &I : 0;
   2062 }
   2063 
   2064 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2065   bool Changed = SimplifyAssociativeOrCommutative(I);
   2066   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2067 
   2068   if (Value *V = SimplifyXorInst(Op0, Op1, TD))
   2069     return ReplaceInstUsesWith(I, V);
   2070 
   2071   // (A&B)^(A&C) -> A&(B^C) etc
   2072   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2073     return ReplaceInstUsesWith(I, V);
   2074 
   2075   // See if we can simplify any instructions used by the instruction whose sole
   2076   // purpose is to compute bits we don't care about.
   2077   if (SimplifyDemandedInstructionBits(I))
   2078     return &I;
   2079 
   2080   // Is this a ~ operation?
   2081   if (Value *NotOp = dyn_castNotVal(&I)) {
   2082     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
   2083       if (Op0I->getOpcode() == Instruction::And ||
   2084           Op0I->getOpcode() == Instruction::Or) {
   2085         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
   2086         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
   2087         if (dyn_castNotVal(Op0I->getOperand(1)))
   2088           Op0I->swapOperands();
   2089         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
   2090           Value *NotY =
   2091             Builder->CreateNot(Op0I->getOperand(1),
   2092                                Op0I->getOperand(1)->getName()+".not");
   2093           if (Op0I->getOpcode() == Instruction::And)
   2094             return BinaryOperator::CreateOr(Op0NotVal, NotY);
   2095           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
   2096         }
   2097 
   2098         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
   2099         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
   2100         if (isFreeToInvert(Op0I->getOperand(0)) &&
   2101             isFreeToInvert(Op0I->getOperand(1))) {
   2102           Value *NotX =
   2103             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
   2104           Value *NotY =
   2105             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
   2106           if (Op0I->getOpcode() == Instruction::And)
   2107             return BinaryOperator::CreateOr(NotX, NotY);
   2108           return BinaryOperator::CreateAnd(NotX, NotY);
   2109         }
   2110 
   2111       } else if (Op0I->getOpcode() == Instruction::AShr) {
   2112         // ~(~X >>s Y) --> (X >>s Y)
   2113         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
   2114           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
   2115       }
   2116     }
   2117   }
   2118 
   2119 
   2120   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2121     if (RHS->isOne() && Op0->hasOneUse())
   2122       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
   2123       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
   2124         return CmpInst::Create(CI->getOpcode(),
   2125                                CI->getInversePredicate(),
   2126                                CI->getOperand(0), CI->getOperand(1));
   2127 
   2128     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
   2129     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2130       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
   2131         if (CI->hasOneUse() && Op0C->hasOneUse()) {
   2132           Instruction::CastOps Opcode = Op0C->getOpcode();
   2133           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
   2134               (RHS == ConstantExpr::getCast(Opcode,
   2135                                            ConstantInt::getTrue(I.getContext()),
   2136                                             Op0C->getDestTy()))) {
   2137             CI->setPredicate(CI->getInversePredicate());
   2138             return CastInst::Create(Opcode, CI, Op0C->getType());
   2139           }
   2140         }
   2141       }
   2142     }
   2143 
   2144     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2145       // ~(c-X) == X-c-1 == X+(-c-1)
   2146       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
   2147         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
   2148           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
   2149           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
   2150                                       ConstantInt::get(I.getType(), 1));
   2151           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
   2152         }
   2153 
   2154       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2155         if (Op0I->getOpcode() == Instruction::Add) {
   2156           // ~(X-c) --> (-c-1)-X
   2157           if (RHS->isAllOnesValue()) {
   2158             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
   2159             return BinaryOperator::CreateSub(
   2160                            ConstantExpr::getSub(NegOp0CI,
   2161                                       ConstantInt::get(I.getType(), 1)),
   2162                                       Op0I->getOperand(0));
   2163           } else if (RHS->getValue().isSignBit()) {
   2164             // (X + C) ^ signbit -> (X + C + signbit)
   2165             Constant *C = ConstantInt::get(I.getContext(),
   2166                                            RHS->getValue() + Op0CI->getValue());
   2167             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
   2168 
   2169           }
   2170         } else if (Op0I->getOpcode() == Instruction::Or) {
   2171           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
   2172           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
   2173             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
   2174             // Anything in both C1 and C2 is known to be zero, remove it from
   2175             // NewRHS.
   2176             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
   2177             NewRHS = ConstantExpr::getAnd(NewRHS,
   2178                                        ConstantExpr::getNot(CommonBits));
   2179             Worklist.Add(Op0I);
   2180             I.setOperand(0, Op0I->getOperand(0));
   2181             I.setOperand(1, NewRHS);
   2182             return &I;
   2183           }
   2184         }
   2185       }
   2186     }
   2187 
   2188     // Try to fold constant and into select arguments.
   2189     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2190       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2191         return R;
   2192     if (isa<PHINode>(Op0))
   2193       if (Instruction *NV = FoldOpIntoPhi(I))
   2194         return NV;
   2195   }
   2196 
   2197   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
   2198   if (Op1I) {
   2199     Value *A, *B;
   2200     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2201       if (A == Op0) {              // B^(B|A) == (A|B)^B
   2202         Op1I->swapOperands();
   2203         I.swapOperands();
   2204         std::swap(Op0, Op1);
   2205       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
   2206         I.swapOperands();     // Simplified below.
   2207         std::swap(Op0, Op1);
   2208       }
   2209     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
   2210                Op1I->hasOneUse()){
   2211       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2212         Op1I->swapOperands();
   2213         std::swap(A, B);
   2214       }
   2215       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2216         I.swapOperands();     // Simplified below.
   2217         std::swap(Op0, Op1);
   2218       }
   2219     }
   2220   }
   2221 
   2222   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
   2223   if (Op0I) {
   2224     Value *A, *B;
   2225     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2226         Op0I->hasOneUse()) {
   2227       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2228         std::swap(A, B);
   2229       if (B == Op1)                                  // (A|B)^B == A & ~B
   2230         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
   2231     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2232                Op0I->hasOneUse()){
   2233       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2234         std::swap(A, B);
   2235       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2236           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
   2237         return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
   2238       }
   2239     }
   2240   }
   2241 
   2242   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
   2243   if (Op0I && Op1I && Op0I->isShift() &&
   2244       Op0I->getOpcode() == Op1I->getOpcode() &&
   2245       Op0I->getOperand(1) == Op1I->getOperand(1) &&
   2246       (Op1I->hasOneUse() || Op1I->hasOneUse())) {
   2247     Value *NewOp =
   2248       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
   2249                          Op0I->getName());
   2250     return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
   2251                                   Op1I->getOperand(1));
   2252   }
   2253 
   2254   if (Op0I && Op1I) {
   2255     Value *A, *B, *C, *D;
   2256     // (A & B)^(A | B) -> A ^ B
   2257     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2258         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
   2259       if ((A == C && B == D) || (A == D && B == C))
   2260         return BinaryOperator::CreateXor(A, B);
   2261     }
   2262     // (A | B)^(A & B) -> A ^ B
   2263     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2264         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
   2265       if ((A == C && B == D) || (A == D && B == C))
   2266         return BinaryOperator::CreateXor(A, B);
   2267     }
   2268   }
   2269 
   2270   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2271   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2272     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2273       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2274         if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2275             LHS->getOperand(1) == RHS->getOperand(0))
   2276           LHS->swapOperands();
   2277         if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2278             LHS->getOperand(1) == RHS->getOperand(1)) {
   2279           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2280           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2281           bool isSigned = LHS->isSigned() || RHS->isSigned();
   2282           return ReplaceInstUsesWith(I,
   2283                                getICmpValue(isSigned, Code, Op0, Op1, Builder));
   2284         }
   2285       }
   2286 
   2287   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
   2288   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2289     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
   2290       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
   2291         Type *SrcTy = Op0C->getOperand(0)->getType();
   2292         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
   2293             // Only do this if the casts both really cause code to be generated.
   2294             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
   2295                                I.getType()) &&
   2296             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
   2297                                I.getType())) {
   2298           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
   2299                                             Op1C->getOperand(0), I.getName());
   2300           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2301         }
   2302       }
   2303   }
   2304 
   2305   return Changed ? &I : 0;
   2306 }
   2307