1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LazyValueInfo.h" 22 #include "llvm/Analysis/Loads.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/SSAUpdater.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ValueHandle.h" 36 #include "llvm/Support/raw_ostream.h" 37 using namespace llvm; 38 39 STATISTIC(NumThreads, "Number of jumps threaded"); 40 STATISTIC(NumFolds, "Number of terminators folded"); 41 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 42 43 static cl::opt<unsigned> 44 Threshold("jump-threading-threshold", 45 cl::desc("Max block size to duplicate for jump threading"), 46 cl::init(6), cl::Hidden); 47 48 namespace { 49 // These are at global scope so static functions can use them too. 50 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 51 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 52 53 // This is used to keep track of what kind of constant we're currently hoping 54 // to find. 55 enum ConstantPreference { 56 WantInteger, 57 WantBlockAddress 58 }; 59 60 /// This pass performs 'jump threading', which looks at blocks that have 61 /// multiple predecessors and multiple successors. If one or more of the 62 /// predecessors of the block can be proven to always jump to one of the 63 /// successors, we forward the edge from the predecessor to the successor by 64 /// duplicating the contents of this block. 65 /// 66 /// An example of when this can occur is code like this: 67 /// 68 /// if () { ... 69 /// X = 4; 70 /// } 71 /// if (X < 3) { 72 /// 73 /// In this case, the unconditional branch at the end of the first if can be 74 /// revectored to the false side of the second if. 75 /// 76 class JumpThreading : public FunctionPass { 77 TargetData *TD; 78 LazyValueInfo *LVI; 79 #ifdef NDEBUG 80 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 81 #else 82 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 83 #endif 84 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 85 86 // RAII helper for updating the recursion stack. 87 struct RecursionSetRemover { 88 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 89 std::pair<Value*, BasicBlock*> ThePair; 90 91 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 92 std::pair<Value*, BasicBlock*> P) 93 : TheSet(S), ThePair(P) { } 94 95 ~RecursionSetRemover() { 96 TheSet.erase(ThePair); 97 } 98 }; 99 public: 100 static char ID; // Pass identification 101 JumpThreading() : FunctionPass(ID) { 102 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 103 } 104 105 bool runOnFunction(Function &F); 106 107 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 108 AU.addRequired<LazyValueInfo>(); 109 AU.addPreserved<LazyValueInfo>(); 110 } 111 112 void FindLoopHeaders(Function &F); 113 bool ProcessBlock(BasicBlock *BB); 114 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 115 BasicBlock *SuccBB); 116 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 117 const SmallVectorImpl<BasicBlock *> &PredBBs); 118 119 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 120 PredValueInfo &Result, 121 ConstantPreference Preference); 122 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 123 ConstantPreference Preference); 124 125 bool ProcessBranchOnPHI(PHINode *PN); 126 bool ProcessBranchOnXOR(BinaryOperator *BO); 127 128 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 129 }; 130 } 131 132 char JumpThreading::ID = 0; 133 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 134 "Jump Threading", false, false) 135 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 136 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 137 "Jump Threading", false, false) 138 139 // Public interface to the Jump Threading pass 140 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 141 142 /// runOnFunction - Top level algorithm. 143 /// 144 bool JumpThreading::runOnFunction(Function &F) { 145 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 146 TD = getAnalysisIfAvailable<TargetData>(); 147 LVI = &getAnalysis<LazyValueInfo>(); 148 149 FindLoopHeaders(F); 150 151 bool Changed, EverChanged = false; 152 do { 153 Changed = false; 154 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 155 BasicBlock *BB = I; 156 // Thread all of the branches we can over this block. 157 while (ProcessBlock(BB)) 158 Changed = true; 159 160 ++I; 161 162 // If the block is trivially dead, zap it. This eliminates the successor 163 // edges which simplifies the CFG. 164 if (pred_begin(BB) == pred_end(BB) && 165 BB != &BB->getParent()->getEntryBlock()) { 166 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 167 << "' with terminator: " << *BB->getTerminator() << '\n'); 168 LoopHeaders.erase(BB); 169 LVI->eraseBlock(BB); 170 DeleteDeadBlock(BB); 171 Changed = true; 172 continue; 173 } 174 175 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 176 177 // Can't thread an unconditional jump, but if the block is "almost 178 // empty", we can replace uses of it with uses of the successor and make 179 // this dead. 180 if (BI && BI->isUnconditional() && 181 BB != &BB->getParent()->getEntryBlock() && 182 // If the terminator is the only non-phi instruction, try to nuke it. 183 BB->getFirstNonPHIOrDbg()->isTerminator()) { 184 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 185 // block, we have to make sure it isn't in the LoopHeaders set. We 186 // reinsert afterward if needed. 187 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 188 BasicBlock *Succ = BI->getSuccessor(0); 189 190 // FIXME: It is always conservatively correct to drop the info 191 // for a block even if it doesn't get erased. This isn't totally 192 // awesome, but it allows us to use AssertingVH to prevent nasty 193 // dangling pointer issues within LazyValueInfo. 194 LVI->eraseBlock(BB); 195 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 196 Changed = true; 197 // If we deleted BB and BB was the header of a loop, then the 198 // successor is now the header of the loop. 199 BB = Succ; 200 } 201 202 if (ErasedFromLoopHeaders) 203 LoopHeaders.insert(BB); 204 } 205 } 206 EverChanged |= Changed; 207 } while (Changed); 208 209 LoopHeaders.clear(); 210 return EverChanged; 211 } 212 213 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 214 /// thread across it. 215 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 216 /// Ignore PHI nodes, these will be flattened when duplication happens. 217 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 218 219 // FIXME: THREADING will delete values that are just used to compute the 220 // branch, so they shouldn't count against the duplication cost. 221 222 223 // Sum up the cost of each instruction until we get to the terminator. Don't 224 // include the terminator because the copy won't include it. 225 unsigned Size = 0; 226 for (; !isa<TerminatorInst>(I); ++I) { 227 // Debugger intrinsics don't incur code size. 228 if (isa<DbgInfoIntrinsic>(I)) continue; 229 230 // If this is a pointer->pointer bitcast, it is free. 231 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 232 continue; 233 234 // All other instructions count for at least one unit. 235 ++Size; 236 237 // Calls are more expensive. If they are non-intrinsic calls, we model them 238 // as having cost of 4. If they are a non-vector intrinsic, we model them 239 // as having cost of 2 total, and if they are a vector intrinsic, we model 240 // them as having cost 1. 241 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 242 if (!isa<IntrinsicInst>(CI)) 243 Size += 3; 244 else if (!CI->getType()->isVectorTy()) 245 Size += 1; 246 } 247 } 248 249 // Threading through a switch statement is particularly profitable. If this 250 // block ends in a switch, decrease its cost to make it more likely to happen. 251 if (isa<SwitchInst>(I)) 252 Size = Size > 6 ? Size-6 : 0; 253 254 // The same holds for indirect branches, but slightly more so. 255 if (isa<IndirectBrInst>(I)) 256 Size = Size > 8 ? Size-8 : 0; 257 258 return Size; 259 } 260 261 /// FindLoopHeaders - We do not want jump threading to turn proper loop 262 /// structures into irreducible loops. Doing this breaks up the loop nesting 263 /// hierarchy and pessimizes later transformations. To prevent this from 264 /// happening, we first have to find the loop headers. Here we approximate this 265 /// by finding targets of backedges in the CFG. 266 /// 267 /// Note that there definitely are cases when we want to allow threading of 268 /// edges across a loop header. For example, threading a jump from outside the 269 /// loop (the preheader) to an exit block of the loop is definitely profitable. 270 /// It is also almost always profitable to thread backedges from within the loop 271 /// to exit blocks, and is often profitable to thread backedges to other blocks 272 /// within the loop (forming a nested loop). This simple analysis is not rich 273 /// enough to track all of these properties and keep it up-to-date as the CFG 274 /// mutates, so we don't allow any of these transformations. 275 /// 276 void JumpThreading::FindLoopHeaders(Function &F) { 277 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 278 FindFunctionBackedges(F, Edges); 279 280 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 281 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 282 } 283 284 /// getKnownConstant - Helper method to determine if we can thread over a 285 /// terminator with the given value as its condition, and if so what value to 286 /// use for that. What kind of value this is depends on whether we want an 287 /// integer or a block address, but an undef is always accepted. 288 /// Returns null if Val is null or not an appropriate constant. 289 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 290 if (!Val) 291 return 0; 292 293 // Undef is "known" enough. 294 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 295 return U; 296 297 if (Preference == WantBlockAddress) 298 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 299 300 return dyn_cast<ConstantInt>(Val); 301 } 302 303 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 304 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 305 /// in any of our predecessors. If so, return the known list of value and pred 306 /// BB in the result vector. 307 /// 308 /// This returns true if there were any known values. 309 /// 310 bool JumpThreading:: 311 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 312 ConstantPreference Preference) { 313 // This method walks up use-def chains recursively. Because of this, we could 314 // get into an infinite loop going around loops in the use-def chain. To 315 // prevent this, keep track of what (value, block) pairs we've already visited 316 // and terminate the search if we loop back to them 317 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 318 return false; 319 320 // An RAII help to remove this pair from the recursion set once the recursion 321 // stack pops back out again. 322 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 323 324 // If V is a constant, then it is known in all predecessors. 325 if (Constant *KC = getKnownConstant(V, Preference)) { 326 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 327 Result.push_back(std::make_pair(KC, *PI)); 328 329 return true; 330 } 331 332 // If V is a non-instruction value, or an instruction in a different block, 333 // then it can't be derived from a PHI. 334 Instruction *I = dyn_cast<Instruction>(V); 335 if (I == 0 || I->getParent() != BB) { 336 337 // Okay, if this is a live-in value, see if it has a known value at the end 338 // of any of our predecessors. 339 // 340 // FIXME: This should be an edge property, not a block end property. 341 /// TODO: Per PR2563, we could infer value range information about a 342 /// predecessor based on its terminator. 343 // 344 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 345 // "I" is a non-local compare-with-a-constant instruction. This would be 346 // able to handle value inequalities better, for example if the compare is 347 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 348 // Perhaps getConstantOnEdge should be smart enough to do this? 349 350 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 351 BasicBlock *P = *PI; 352 // If the value is known by LazyValueInfo to be a constant in a 353 // predecessor, use that information to try to thread this block. 354 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 355 if (Constant *KC = getKnownConstant(PredCst, Preference)) 356 Result.push_back(std::make_pair(KC, P)); 357 } 358 359 return !Result.empty(); 360 } 361 362 /// If I is a PHI node, then we know the incoming values for any constants. 363 if (PHINode *PN = dyn_cast<PHINode>(I)) { 364 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 365 Value *InVal = PN->getIncomingValue(i); 366 if (Constant *KC = getKnownConstant(InVal, Preference)) { 367 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 368 } else { 369 Constant *CI = LVI->getConstantOnEdge(InVal, 370 PN->getIncomingBlock(i), BB); 371 if (Constant *KC = getKnownConstant(CI, Preference)) 372 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 373 } 374 } 375 376 return !Result.empty(); 377 } 378 379 PredValueInfoTy LHSVals, RHSVals; 380 381 // Handle some boolean conditions. 382 if (I->getType()->getPrimitiveSizeInBits() == 1) { 383 assert(Preference == WantInteger && "One-bit non-integer type?"); 384 // X | true -> true 385 // X & false -> false 386 if (I->getOpcode() == Instruction::Or || 387 I->getOpcode() == Instruction::And) { 388 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 389 WantInteger); 390 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 391 WantInteger); 392 393 if (LHSVals.empty() && RHSVals.empty()) 394 return false; 395 396 ConstantInt *InterestingVal; 397 if (I->getOpcode() == Instruction::Or) 398 InterestingVal = ConstantInt::getTrue(I->getContext()); 399 else 400 InterestingVal = ConstantInt::getFalse(I->getContext()); 401 402 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 403 404 // Scan for the sentinel. If we find an undef, force it to the 405 // interesting value: x|undef -> true and x&undef -> false. 406 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 407 if (LHSVals[i].first == InterestingVal || 408 isa<UndefValue>(LHSVals[i].first)) { 409 Result.push_back(LHSVals[i]); 410 Result.back().first = InterestingVal; 411 LHSKnownBBs.insert(LHSVals[i].second); 412 } 413 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 414 if (RHSVals[i].first == InterestingVal || 415 isa<UndefValue>(RHSVals[i].first)) { 416 // If we already inferred a value for this block on the LHS, don't 417 // re-add it. 418 if (!LHSKnownBBs.count(RHSVals[i].second)) { 419 Result.push_back(RHSVals[i]); 420 Result.back().first = InterestingVal; 421 } 422 } 423 424 return !Result.empty(); 425 } 426 427 // Handle the NOT form of XOR. 428 if (I->getOpcode() == Instruction::Xor && 429 isa<ConstantInt>(I->getOperand(1)) && 430 cast<ConstantInt>(I->getOperand(1))->isOne()) { 431 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 432 WantInteger); 433 if (Result.empty()) 434 return false; 435 436 // Invert the known values. 437 for (unsigned i = 0, e = Result.size(); i != e; ++i) 438 Result[i].first = ConstantExpr::getNot(Result[i].first); 439 440 return true; 441 } 442 443 // Try to simplify some other binary operator values. 444 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 445 assert(Preference != WantBlockAddress 446 && "A binary operator creating a block address?"); 447 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 448 PredValueInfoTy LHSVals; 449 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 450 WantInteger); 451 452 // Try to use constant folding to simplify the binary operator. 453 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 454 Constant *V = LHSVals[i].first; 455 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 456 457 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 458 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 459 } 460 } 461 462 return !Result.empty(); 463 } 464 465 // Handle compare with phi operand, where the PHI is defined in this block. 466 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 467 assert(Preference == WantInteger && "Compares only produce integers"); 468 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 469 if (PN && PN->getParent() == BB) { 470 // We can do this simplification if any comparisons fold to true or false. 471 // See if any do. 472 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 473 BasicBlock *PredBB = PN->getIncomingBlock(i); 474 Value *LHS = PN->getIncomingValue(i); 475 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 476 477 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 478 if (Res == 0) { 479 if (!isa<Constant>(RHS)) 480 continue; 481 482 LazyValueInfo::Tristate 483 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 484 cast<Constant>(RHS), PredBB, BB); 485 if (ResT == LazyValueInfo::Unknown) 486 continue; 487 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 488 } 489 490 if (Constant *KC = getKnownConstant(Res, WantInteger)) 491 Result.push_back(std::make_pair(KC, PredBB)); 492 } 493 494 return !Result.empty(); 495 } 496 497 498 // If comparing a live-in value against a constant, see if we know the 499 // live-in value on any predecessors. 500 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 501 if (!isa<Instruction>(Cmp->getOperand(0)) || 502 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 503 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 504 505 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 506 BasicBlock *P = *PI; 507 // If the value is known by LazyValueInfo to be a constant in a 508 // predecessor, use that information to try to thread this block. 509 LazyValueInfo::Tristate Res = 510 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 511 RHSCst, P, BB); 512 if (Res == LazyValueInfo::Unknown) 513 continue; 514 515 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 516 Result.push_back(std::make_pair(ResC, P)); 517 } 518 519 return !Result.empty(); 520 } 521 522 // Try to find a constant value for the LHS of a comparison, 523 // and evaluate it statically if we can. 524 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 525 PredValueInfoTy LHSVals; 526 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 527 WantInteger); 528 529 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 530 Constant *V = LHSVals[i].first; 531 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 532 V, CmpConst); 533 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 534 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 535 } 536 537 return !Result.empty(); 538 } 539 } 540 } 541 542 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 543 // Handle select instructions where at least one operand is a known constant 544 // and we can figure out the condition value for any predecessor block. 545 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 546 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 547 PredValueInfoTy Conds; 548 if ((TrueVal || FalseVal) && 549 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 550 WantInteger)) { 551 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 552 Constant *Cond = Conds[i].first; 553 554 // Figure out what value to use for the condition. 555 bool KnownCond; 556 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 557 // A known boolean. 558 KnownCond = CI->isOne(); 559 } else { 560 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 561 // Either operand will do, so be sure to pick the one that's a known 562 // constant. 563 // FIXME: Do this more cleverly if both values are known constants? 564 KnownCond = (TrueVal != 0); 565 } 566 567 // See if the select has a known constant value for this predecessor. 568 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 569 Result.push_back(std::make_pair(Val, Conds[i].second)); 570 } 571 572 return !Result.empty(); 573 } 574 } 575 576 // If all else fails, see if LVI can figure out a constant value for us. 577 Constant *CI = LVI->getConstant(V, BB); 578 if (Constant *KC = getKnownConstant(CI, Preference)) { 579 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 580 Result.push_back(std::make_pair(KC, *PI)); 581 } 582 583 return !Result.empty(); 584 } 585 586 587 588 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 589 /// in an undefined jump, decide which block is best to revector to. 590 /// 591 /// Since we can pick an arbitrary destination, we pick the successor with the 592 /// fewest predecessors. This should reduce the in-degree of the others. 593 /// 594 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 595 TerminatorInst *BBTerm = BB->getTerminator(); 596 unsigned MinSucc = 0; 597 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 598 // Compute the successor with the minimum number of predecessors. 599 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 600 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 601 TestBB = BBTerm->getSuccessor(i); 602 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 603 if (NumPreds < MinNumPreds) { 604 MinSucc = i; 605 MinNumPreds = NumPreds; 606 } 607 } 608 609 return MinSucc; 610 } 611 612 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 613 if (!BB->hasAddressTaken()) return false; 614 615 // If the block has its address taken, it may be a tree of dead constants 616 // hanging off of it. These shouldn't keep the block alive. 617 BlockAddress *BA = BlockAddress::get(BB); 618 BA->removeDeadConstantUsers(); 619 return !BA->use_empty(); 620 } 621 622 /// ProcessBlock - If there are any predecessors whose control can be threaded 623 /// through to a successor, transform them now. 624 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 625 // If the block is trivially dead, just return and let the caller nuke it. 626 // This simplifies other transformations. 627 if (pred_begin(BB) == pred_end(BB) && 628 BB != &BB->getParent()->getEntryBlock()) 629 return false; 630 631 // If this block has a single predecessor, and if that pred has a single 632 // successor, merge the blocks. This encourages recursive jump threading 633 // because now the condition in this block can be threaded through 634 // predecessors of our predecessor block. 635 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 636 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 637 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 638 // If SinglePred was a loop header, BB becomes one. 639 if (LoopHeaders.erase(SinglePred)) 640 LoopHeaders.insert(BB); 641 642 // Remember if SinglePred was the entry block of the function. If so, we 643 // will need to move BB back to the entry position. 644 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 645 LVI->eraseBlock(SinglePred); 646 MergeBasicBlockIntoOnlyPred(BB); 647 648 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 649 BB->moveBefore(&BB->getParent()->getEntryBlock()); 650 return true; 651 } 652 } 653 654 // What kind of constant we're looking for. 655 ConstantPreference Preference = WantInteger; 656 657 // Look to see if the terminator is a conditional branch, switch or indirect 658 // branch, if not we can't thread it. 659 Value *Condition; 660 Instruction *Terminator = BB->getTerminator(); 661 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 662 // Can't thread an unconditional jump. 663 if (BI->isUnconditional()) return false; 664 Condition = BI->getCondition(); 665 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 666 Condition = SI->getCondition(); 667 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 668 Condition = IB->getAddress()->stripPointerCasts(); 669 Preference = WantBlockAddress; 670 } else { 671 return false; // Must be an invoke. 672 } 673 674 // Run constant folding to see if we can reduce the condition to a simple 675 // constant. 676 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 677 Value *SimpleVal = ConstantFoldInstruction(I, TD); 678 if (SimpleVal) { 679 I->replaceAllUsesWith(SimpleVal); 680 I->eraseFromParent(); 681 Condition = SimpleVal; 682 } 683 } 684 685 // If the terminator is branching on an undef, we can pick any of the 686 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 687 if (isa<UndefValue>(Condition)) { 688 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 689 690 // Fold the branch/switch. 691 TerminatorInst *BBTerm = BB->getTerminator(); 692 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 693 if (i == BestSucc) continue; 694 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 695 } 696 697 DEBUG(dbgs() << " In block '" << BB->getName() 698 << "' folding undef terminator: " << *BBTerm << '\n'); 699 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 700 BBTerm->eraseFromParent(); 701 return true; 702 } 703 704 // If the terminator of this block is branching on a constant, simplify the 705 // terminator to an unconditional branch. This can occur due to threading in 706 // other blocks. 707 if (getKnownConstant(Condition, Preference)) { 708 DEBUG(dbgs() << " In block '" << BB->getName() 709 << "' folding terminator: " << *BB->getTerminator() << '\n'); 710 ++NumFolds; 711 ConstantFoldTerminator(BB, true); 712 return true; 713 } 714 715 Instruction *CondInst = dyn_cast<Instruction>(Condition); 716 717 // All the rest of our checks depend on the condition being an instruction. 718 if (CondInst == 0) { 719 // FIXME: Unify this with code below. 720 if (ProcessThreadableEdges(Condition, BB, Preference)) 721 return true; 722 return false; 723 } 724 725 726 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 727 // For a comparison where the LHS is outside this block, it's possible 728 // that we've branched on it before. Used LVI to see if we can simplify 729 // the branch based on that. 730 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 731 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 732 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 733 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 734 (!isa<Instruction>(CondCmp->getOperand(0)) || 735 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 736 // For predecessor edge, determine if the comparison is true or false 737 // on that edge. If they're all true or all false, we can simplify the 738 // branch. 739 // FIXME: We could handle mixed true/false by duplicating code. 740 LazyValueInfo::Tristate Baseline = 741 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 742 CondConst, *PI, BB); 743 if (Baseline != LazyValueInfo::Unknown) { 744 // Check that all remaining incoming values match the first one. 745 while (++PI != PE) { 746 LazyValueInfo::Tristate Ret = 747 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 748 CondCmp->getOperand(0), CondConst, *PI, BB); 749 if (Ret != Baseline) break; 750 } 751 752 // If we terminated early, then one of the values didn't match. 753 if (PI == PE) { 754 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 755 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 756 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 757 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 758 CondBr->eraseFromParent(); 759 return true; 760 } 761 } 762 } 763 } 764 765 // Check for some cases that are worth simplifying. Right now we want to look 766 // for loads that are used by a switch or by the condition for the branch. If 767 // we see one, check to see if it's partially redundant. If so, insert a PHI 768 // which can then be used to thread the values. 769 // 770 Value *SimplifyValue = CondInst; 771 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 772 if (isa<Constant>(CondCmp->getOperand(1))) 773 SimplifyValue = CondCmp->getOperand(0); 774 775 // TODO: There are other places where load PRE would be profitable, such as 776 // more complex comparisons. 777 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 778 if (SimplifyPartiallyRedundantLoad(LI)) 779 return true; 780 781 782 // Handle a variety of cases where we are branching on something derived from 783 // a PHI node in the current block. If we can prove that any predecessors 784 // compute a predictable value based on a PHI node, thread those predecessors. 785 // 786 if (ProcessThreadableEdges(CondInst, BB, Preference)) 787 return true; 788 789 // If this is an otherwise-unfoldable branch on a phi node in the current 790 // block, see if we can simplify. 791 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 792 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 793 return ProcessBranchOnPHI(PN); 794 795 796 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 797 if (CondInst->getOpcode() == Instruction::Xor && 798 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 799 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 800 801 802 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 803 // "(X == 4)", thread through this block. 804 805 return false; 806 } 807 808 809 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 810 /// load instruction, eliminate it by replacing it with a PHI node. This is an 811 /// important optimization that encourages jump threading, and needs to be run 812 /// interlaced with other jump threading tasks. 813 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 814 // Don't hack volatile loads. 815 if (LI->isVolatile()) return false; 816 817 // If the load is defined in a block with exactly one predecessor, it can't be 818 // partially redundant. 819 BasicBlock *LoadBB = LI->getParent(); 820 if (LoadBB->getSinglePredecessor()) 821 return false; 822 823 Value *LoadedPtr = LI->getOperand(0); 824 825 // If the loaded operand is defined in the LoadBB, it can't be available. 826 // TODO: Could do simple PHI translation, that would be fun :) 827 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 828 if (PtrOp->getParent() == LoadBB) 829 return false; 830 831 // Scan a few instructions up from the load, to see if it is obviously live at 832 // the entry to its block. 833 BasicBlock::iterator BBIt = LI; 834 835 if (Value *AvailableVal = 836 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 837 // If the value if the load is locally available within the block, just use 838 // it. This frequently occurs for reg2mem'd allocas. 839 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 840 841 // If the returned value is the load itself, replace with an undef. This can 842 // only happen in dead loops. 843 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 844 LI->replaceAllUsesWith(AvailableVal); 845 LI->eraseFromParent(); 846 return true; 847 } 848 849 // Otherwise, if we scanned the whole block and got to the top of the block, 850 // we know the block is locally transparent to the load. If not, something 851 // might clobber its value. 852 if (BBIt != LoadBB->begin()) 853 return false; 854 855 856 SmallPtrSet<BasicBlock*, 8> PredsScanned; 857 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 858 AvailablePredsTy AvailablePreds; 859 BasicBlock *OneUnavailablePred = 0; 860 861 // If we got here, the loaded value is transparent through to the start of the 862 // block. Check to see if it is available in any of the predecessor blocks. 863 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 864 PI != PE; ++PI) { 865 BasicBlock *PredBB = *PI; 866 867 // If we already scanned this predecessor, skip it. 868 if (!PredsScanned.insert(PredBB)) 869 continue; 870 871 // Scan the predecessor to see if the value is available in the pred. 872 BBIt = PredBB->end(); 873 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 874 if (!PredAvailable) { 875 OneUnavailablePred = PredBB; 876 continue; 877 } 878 879 // If so, this load is partially redundant. Remember this info so that we 880 // can create a PHI node. 881 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 882 } 883 884 // If the loaded value isn't available in any predecessor, it isn't partially 885 // redundant. 886 if (AvailablePreds.empty()) return false; 887 888 // Okay, the loaded value is available in at least one (and maybe all!) 889 // predecessors. If the value is unavailable in more than one unique 890 // predecessor, we want to insert a merge block for those common predecessors. 891 // This ensures that we only have to insert one reload, thus not increasing 892 // code size. 893 BasicBlock *UnavailablePred = 0; 894 895 // If there is exactly one predecessor where the value is unavailable, the 896 // already computed 'OneUnavailablePred' block is it. If it ends in an 897 // unconditional branch, we know that it isn't a critical edge. 898 if (PredsScanned.size() == AvailablePreds.size()+1 && 899 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 900 UnavailablePred = OneUnavailablePred; 901 } else if (PredsScanned.size() != AvailablePreds.size()) { 902 // Otherwise, we had multiple unavailable predecessors or we had a critical 903 // edge from the one. 904 SmallVector<BasicBlock*, 8> PredsToSplit; 905 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 906 907 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 908 AvailablePredSet.insert(AvailablePreds[i].first); 909 910 // Add all the unavailable predecessors to the PredsToSplit list. 911 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 912 PI != PE; ++PI) { 913 BasicBlock *P = *PI; 914 // If the predecessor is an indirect goto, we can't split the edge. 915 if (isa<IndirectBrInst>(P->getTerminator())) 916 return false; 917 918 if (!AvailablePredSet.count(P)) 919 PredsToSplit.push_back(P); 920 } 921 922 // Split them out to their own block. 923 UnavailablePred = 924 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 925 "thread-pre-split", this); 926 } 927 928 // If the value isn't available in all predecessors, then there will be 929 // exactly one where it isn't available. Insert a load on that edge and add 930 // it to the AvailablePreds list. 931 if (UnavailablePred) { 932 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 933 "Can't handle critical edge here!"); 934 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 935 LI->getAlignment(), 936 UnavailablePred->getTerminator()); 937 NewVal->setDebugLoc(LI->getDebugLoc()); 938 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 939 } 940 941 // Now we know that each predecessor of this block has a value in 942 // AvailablePreds, sort them for efficient access as we're walking the preds. 943 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 944 945 // Create a PHI node at the start of the block for the PRE'd load value. 946 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 947 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 948 LoadBB->begin()); 949 PN->takeName(LI); 950 PN->setDebugLoc(LI->getDebugLoc()); 951 952 // Insert new entries into the PHI for each predecessor. A single block may 953 // have multiple entries here. 954 for (pred_iterator PI = PB; PI != PE; ++PI) { 955 BasicBlock *P = *PI; 956 AvailablePredsTy::iterator I = 957 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 958 std::make_pair(P, (Value*)0)); 959 960 assert(I != AvailablePreds.end() && I->first == P && 961 "Didn't find entry for predecessor!"); 962 963 PN->addIncoming(I->second, I->first); 964 } 965 966 //cerr << "PRE: " << *LI << *PN << "\n"; 967 968 LI->replaceAllUsesWith(PN); 969 LI->eraseFromParent(); 970 971 return true; 972 } 973 974 /// FindMostPopularDest - The specified list contains multiple possible 975 /// threadable destinations. Pick the one that occurs the most frequently in 976 /// the list. 977 static BasicBlock * 978 FindMostPopularDest(BasicBlock *BB, 979 const SmallVectorImpl<std::pair<BasicBlock*, 980 BasicBlock*> > &PredToDestList) { 981 assert(!PredToDestList.empty()); 982 983 // Determine popularity. If there are multiple possible destinations, we 984 // explicitly choose to ignore 'undef' destinations. We prefer to thread 985 // blocks with known and real destinations to threading undef. We'll handle 986 // them later if interesting. 987 DenseMap<BasicBlock*, unsigned> DestPopularity; 988 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 989 if (PredToDestList[i].second) 990 DestPopularity[PredToDestList[i].second]++; 991 992 // Find the most popular dest. 993 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 994 BasicBlock *MostPopularDest = DPI->first; 995 unsigned Popularity = DPI->second; 996 SmallVector<BasicBlock*, 4> SamePopularity; 997 998 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 999 // If the popularity of this entry isn't higher than the popularity we've 1000 // seen so far, ignore it. 1001 if (DPI->second < Popularity) 1002 ; // ignore. 1003 else if (DPI->second == Popularity) { 1004 // If it is the same as what we've seen so far, keep track of it. 1005 SamePopularity.push_back(DPI->first); 1006 } else { 1007 // If it is more popular, remember it. 1008 SamePopularity.clear(); 1009 MostPopularDest = DPI->first; 1010 Popularity = DPI->second; 1011 } 1012 } 1013 1014 // Okay, now we know the most popular destination. If there is more than one 1015 // destination, we need to determine one. This is arbitrary, but we need 1016 // to make a deterministic decision. Pick the first one that appears in the 1017 // successor list. 1018 if (!SamePopularity.empty()) { 1019 SamePopularity.push_back(MostPopularDest); 1020 TerminatorInst *TI = BB->getTerminator(); 1021 for (unsigned i = 0; ; ++i) { 1022 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1023 1024 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1025 TI->getSuccessor(i)) == SamePopularity.end()) 1026 continue; 1027 1028 MostPopularDest = TI->getSuccessor(i); 1029 break; 1030 } 1031 } 1032 1033 // Okay, we have finally picked the most popular destination. 1034 return MostPopularDest; 1035 } 1036 1037 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1038 ConstantPreference Preference) { 1039 // If threading this would thread across a loop header, don't even try to 1040 // thread the edge. 1041 if (LoopHeaders.count(BB)) 1042 return false; 1043 1044 PredValueInfoTy PredValues; 1045 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) 1046 return false; 1047 1048 assert(!PredValues.empty() && 1049 "ComputeValueKnownInPredecessors returned true with no values"); 1050 1051 DEBUG(dbgs() << "IN BB: " << *BB; 1052 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1053 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1054 << *PredValues[i].first 1055 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1056 }); 1057 1058 // Decide what we want to thread through. Convert our list of known values to 1059 // a list of known destinations for each pred. This also discards duplicate 1060 // predecessors and keeps track of the undefined inputs (which are represented 1061 // as a null dest in the PredToDestList). 1062 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1063 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1064 1065 BasicBlock *OnlyDest = 0; 1066 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1067 1068 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1069 BasicBlock *Pred = PredValues[i].second; 1070 if (!SeenPreds.insert(Pred)) 1071 continue; // Duplicate predecessor entry. 1072 1073 // If the predecessor ends with an indirect goto, we can't change its 1074 // destination. 1075 if (isa<IndirectBrInst>(Pred->getTerminator())) 1076 continue; 1077 1078 Constant *Val = PredValues[i].first; 1079 1080 BasicBlock *DestBB; 1081 if (isa<UndefValue>(Val)) 1082 DestBB = 0; 1083 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1084 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1085 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1086 DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val))); 1087 else { 1088 assert(isa<IndirectBrInst>(BB->getTerminator()) 1089 && "Unexpected terminator"); 1090 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1091 } 1092 1093 // If we have exactly one destination, remember it for efficiency below. 1094 if (PredToDestList.empty()) 1095 OnlyDest = DestBB; 1096 else if (OnlyDest != DestBB) 1097 OnlyDest = MultipleDestSentinel; 1098 1099 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1100 } 1101 1102 // If all edges were unthreadable, we fail. 1103 if (PredToDestList.empty()) 1104 return false; 1105 1106 // Determine which is the most common successor. If we have many inputs and 1107 // this block is a switch, we want to start by threading the batch that goes 1108 // to the most popular destination first. If we only know about one 1109 // threadable destination (the common case) we can avoid this. 1110 BasicBlock *MostPopularDest = OnlyDest; 1111 1112 if (MostPopularDest == MultipleDestSentinel) 1113 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1114 1115 // Now that we know what the most popular destination is, factor all 1116 // predecessors that will jump to it into a single predecessor. 1117 SmallVector<BasicBlock*, 16> PredsToFactor; 1118 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1119 if (PredToDestList[i].second == MostPopularDest) { 1120 BasicBlock *Pred = PredToDestList[i].first; 1121 1122 // This predecessor may be a switch or something else that has multiple 1123 // edges to the block. Factor each of these edges by listing them 1124 // according to # occurrences in PredsToFactor. 1125 TerminatorInst *PredTI = Pred->getTerminator(); 1126 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1127 if (PredTI->getSuccessor(i) == BB) 1128 PredsToFactor.push_back(Pred); 1129 } 1130 1131 // If the threadable edges are branching on an undefined value, we get to pick 1132 // the destination that these predecessors should get to. 1133 if (MostPopularDest == 0) 1134 MostPopularDest = BB->getTerminator()-> 1135 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1136 1137 // Ok, try to thread it! 1138 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1139 } 1140 1141 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1142 /// a PHI node in the current block. See if there are any simplifications we 1143 /// can do based on inputs to the phi node. 1144 /// 1145 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1146 BasicBlock *BB = PN->getParent(); 1147 1148 // TODO: We could make use of this to do it once for blocks with common PHI 1149 // values. 1150 SmallVector<BasicBlock*, 1> PredBBs; 1151 PredBBs.resize(1); 1152 1153 // If any of the predecessor blocks end in an unconditional branch, we can 1154 // *duplicate* the conditional branch into that block in order to further 1155 // encourage jump threading and to eliminate cases where we have branch on a 1156 // phi of an icmp (branch on icmp is much better). 1157 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1158 BasicBlock *PredBB = PN->getIncomingBlock(i); 1159 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1160 if (PredBr->isUnconditional()) { 1161 PredBBs[0] = PredBB; 1162 // Try to duplicate BB into PredBB. 1163 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1164 return true; 1165 } 1166 } 1167 1168 return false; 1169 } 1170 1171 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1172 /// a xor instruction in the current block. See if there are any 1173 /// simplifications we can do based on inputs to the xor. 1174 /// 1175 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1176 BasicBlock *BB = BO->getParent(); 1177 1178 // If either the LHS or RHS of the xor is a constant, don't do this 1179 // optimization. 1180 if (isa<ConstantInt>(BO->getOperand(0)) || 1181 isa<ConstantInt>(BO->getOperand(1))) 1182 return false; 1183 1184 // If the first instruction in BB isn't a phi, we won't be able to infer 1185 // anything special about any particular predecessor. 1186 if (!isa<PHINode>(BB->front())) 1187 return false; 1188 1189 // If we have a xor as the branch input to this block, and we know that the 1190 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1191 // the condition into the predecessor and fix that value to true, saving some 1192 // logical ops on that path and encouraging other paths to simplify. 1193 // 1194 // This copies something like this: 1195 // 1196 // BB: 1197 // %X = phi i1 [1], [%X'] 1198 // %Y = icmp eq i32 %A, %B 1199 // %Z = xor i1 %X, %Y 1200 // br i1 %Z, ... 1201 // 1202 // Into: 1203 // BB': 1204 // %Y = icmp ne i32 %A, %B 1205 // br i1 %Z, ... 1206 1207 PredValueInfoTy XorOpValues; 1208 bool isLHS = true; 1209 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1210 WantInteger)) { 1211 assert(XorOpValues.empty()); 1212 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1213 WantInteger)) 1214 return false; 1215 isLHS = false; 1216 } 1217 1218 assert(!XorOpValues.empty() && 1219 "ComputeValueKnownInPredecessors returned true with no values"); 1220 1221 // Scan the information to see which is most popular: true or false. The 1222 // predecessors can be of the set true, false, or undef. 1223 unsigned NumTrue = 0, NumFalse = 0; 1224 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1225 if (isa<UndefValue>(XorOpValues[i].first)) 1226 // Ignore undefs for the count. 1227 continue; 1228 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1229 ++NumFalse; 1230 else 1231 ++NumTrue; 1232 } 1233 1234 // Determine which value to split on, true, false, or undef if neither. 1235 ConstantInt *SplitVal = 0; 1236 if (NumTrue > NumFalse) 1237 SplitVal = ConstantInt::getTrue(BB->getContext()); 1238 else if (NumTrue != 0 || NumFalse != 0) 1239 SplitVal = ConstantInt::getFalse(BB->getContext()); 1240 1241 // Collect all of the blocks that this can be folded into so that we can 1242 // factor this once and clone it once. 1243 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1244 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1245 if (XorOpValues[i].first != SplitVal && 1246 !isa<UndefValue>(XorOpValues[i].first)) 1247 continue; 1248 1249 BlocksToFoldInto.push_back(XorOpValues[i].second); 1250 } 1251 1252 // If we inferred a value for all of the predecessors, then duplication won't 1253 // help us. However, we can just replace the LHS or RHS with the constant. 1254 if (BlocksToFoldInto.size() == 1255 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1256 if (SplitVal == 0) { 1257 // If all preds provide undef, just nuke the xor, because it is undef too. 1258 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1259 BO->eraseFromParent(); 1260 } else if (SplitVal->isZero()) { 1261 // If all preds provide 0, replace the xor with the other input. 1262 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1263 BO->eraseFromParent(); 1264 } else { 1265 // If all preds provide 1, set the computed value to 1. 1266 BO->setOperand(!isLHS, SplitVal); 1267 } 1268 1269 return true; 1270 } 1271 1272 // Try to duplicate BB into PredBB. 1273 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1274 } 1275 1276 1277 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1278 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1279 /// NewPred using the entries from OldPred (suitably mapped). 1280 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1281 BasicBlock *OldPred, 1282 BasicBlock *NewPred, 1283 DenseMap<Instruction*, Value*> &ValueMap) { 1284 for (BasicBlock::iterator PNI = PHIBB->begin(); 1285 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1286 // Ok, we have a PHI node. Figure out what the incoming value was for the 1287 // DestBlock. 1288 Value *IV = PN->getIncomingValueForBlock(OldPred); 1289 1290 // Remap the value if necessary. 1291 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1292 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1293 if (I != ValueMap.end()) 1294 IV = I->second; 1295 } 1296 1297 PN->addIncoming(IV, NewPred); 1298 } 1299 } 1300 1301 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1302 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1303 /// across BB. Transform the IR to reflect this change. 1304 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1305 const SmallVectorImpl<BasicBlock*> &PredBBs, 1306 BasicBlock *SuccBB) { 1307 // If threading to the same block as we come from, we would infinite loop. 1308 if (SuccBB == BB) { 1309 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1310 << "' - would thread to self!\n"); 1311 return false; 1312 } 1313 1314 // If threading this would thread across a loop header, don't thread the edge. 1315 // See the comments above FindLoopHeaders for justifications and caveats. 1316 if (LoopHeaders.count(BB)) { 1317 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1318 << "' to dest BB '" << SuccBB->getName() 1319 << "' - it might create an irreducible loop!\n"); 1320 return false; 1321 } 1322 1323 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1324 if (JumpThreadCost > Threshold) { 1325 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1326 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1327 return false; 1328 } 1329 1330 // And finally, do it! Start by factoring the predecessors is needed. 1331 BasicBlock *PredBB; 1332 if (PredBBs.size() == 1) 1333 PredBB = PredBBs[0]; 1334 else { 1335 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1336 << " common predecessors.\n"); 1337 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1338 ".thr_comm", this); 1339 } 1340 1341 // And finally, do it! 1342 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1343 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1344 << ", across block:\n " 1345 << *BB << "\n"); 1346 1347 LVI->threadEdge(PredBB, BB, SuccBB); 1348 1349 // We are going to have to map operands from the original BB block to the new 1350 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1351 // account for entry from PredBB. 1352 DenseMap<Instruction*, Value*> ValueMapping; 1353 1354 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1355 BB->getName()+".thread", 1356 BB->getParent(), BB); 1357 NewBB->moveAfter(PredBB); 1358 1359 BasicBlock::iterator BI = BB->begin(); 1360 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1361 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1362 1363 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1364 // mapping and using it to remap operands in the cloned instructions. 1365 for (; !isa<TerminatorInst>(BI); ++BI) { 1366 Instruction *New = BI->clone(); 1367 New->setName(BI->getName()); 1368 NewBB->getInstList().push_back(New); 1369 ValueMapping[BI] = New; 1370 1371 // Remap operands to patch up intra-block references. 1372 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1373 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1374 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1375 if (I != ValueMapping.end()) 1376 New->setOperand(i, I->second); 1377 } 1378 } 1379 1380 // We didn't copy the terminator from BB over to NewBB, because there is now 1381 // an unconditional jump to SuccBB. Insert the unconditional jump. 1382 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1383 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1384 1385 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1386 // PHI nodes for NewBB now. 1387 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1388 1389 // If there were values defined in BB that are used outside the block, then we 1390 // now have to update all uses of the value to use either the original value, 1391 // the cloned value, or some PHI derived value. This can require arbitrary 1392 // PHI insertion, of which we are prepared to do, clean these up now. 1393 SSAUpdater SSAUpdate; 1394 SmallVector<Use*, 16> UsesToRename; 1395 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1396 // Scan all uses of this instruction to see if it is used outside of its 1397 // block, and if so, record them in UsesToRename. 1398 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1399 ++UI) { 1400 Instruction *User = cast<Instruction>(*UI); 1401 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1402 if (UserPN->getIncomingBlock(UI) == BB) 1403 continue; 1404 } else if (User->getParent() == BB) 1405 continue; 1406 1407 UsesToRename.push_back(&UI.getUse()); 1408 } 1409 1410 // If there are no uses outside the block, we're done with this instruction. 1411 if (UsesToRename.empty()) 1412 continue; 1413 1414 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1415 1416 // We found a use of I outside of BB. Rename all uses of I that are outside 1417 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1418 // with the two values we know. 1419 SSAUpdate.Initialize(I->getType(), I->getName()); 1420 SSAUpdate.AddAvailableValue(BB, I); 1421 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1422 1423 while (!UsesToRename.empty()) 1424 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1425 DEBUG(dbgs() << "\n"); 1426 } 1427 1428 1429 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1430 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1431 // us to simplify any PHI nodes in BB. 1432 TerminatorInst *PredTerm = PredBB->getTerminator(); 1433 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1434 if (PredTerm->getSuccessor(i) == BB) { 1435 BB->removePredecessor(PredBB, true); 1436 PredTerm->setSuccessor(i, NewBB); 1437 } 1438 1439 // At this point, the IR is fully up to date and consistent. Do a quick scan 1440 // over the new instructions and zap any that are constants or dead. This 1441 // frequently happens because of phi translation. 1442 SimplifyInstructionsInBlock(NewBB, TD); 1443 1444 // Threaded an edge! 1445 ++NumThreads; 1446 return true; 1447 } 1448 1449 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1450 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1451 /// If we can duplicate the contents of BB up into PredBB do so now, this 1452 /// improves the odds that the branch will be on an analyzable instruction like 1453 /// a compare. 1454 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1455 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1456 assert(!PredBBs.empty() && "Can't handle an empty set"); 1457 1458 // If BB is a loop header, then duplicating this block outside the loop would 1459 // cause us to transform this into an irreducible loop, don't do this. 1460 // See the comments above FindLoopHeaders for justifications and caveats. 1461 if (LoopHeaders.count(BB)) { 1462 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1463 << "' into predecessor block '" << PredBBs[0]->getName() 1464 << "' - it might create an irreducible loop!\n"); 1465 return false; 1466 } 1467 1468 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1469 if (DuplicationCost > Threshold) { 1470 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1471 << "' - Cost is too high: " << DuplicationCost << "\n"); 1472 return false; 1473 } 1474 1475 // And finally, do it! Start by factoring the predecessors is needed. 1476 BasicBlock *PredBB; 1477 if (PredBBs.size() == 1) 1478 PredBB = PredBBs[0]; 1479 else { 1480 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1481 << " common predecessors.\n"); 1482 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1483 ".thr_comm", this); 1484 } 1485 1486 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1487 // of PredBB. 1488 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1489 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1490 << DuplicationCost << " block is:" << *BB << "\n"); 1491 1492 // Unless PredBB ends with an unconditional branch, split the edge so that we 1493 // can just clone the bits from BB into the end of the new PredBB. 1494 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1495 1496 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1497 PredBB = SplitEdge(PredBB, BB, this); 1498 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1499 } 1500 1501 // We are going to have to map operands from the original BB block into the 1502 // PredBB block. Evaluate PHI nodes in BB. 1503 DenseMap<Instruction*, Value*> ValueMapping; 1504 1505 BasicBlock::iterator BI = BB->begin(); 1506 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1507 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1508 1509 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1510 // mapping and using it to remap operands in the cloned instructions. 1511 for (; BI != BB->end(); ++BI) { 1512 Instruction *New = BI->clone(); 1513 1514 // Remap operands to patch up intra-block references. 1515 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1516 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1517 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1518 if (I != ValueMapping.end()) 1519 New->setOperand(i, I->second); 1520 } 1521 1522 // If this instruction can be simplified after the operands are updated, 1523 // just use the simplified value instead. This frequently happens due to 1524 // phi translation. 1525 if (Value *IV = SimplifyInstruction(New, TD)) { 1526 delete New; 1527 ValueMapping[BI] = IV; 1528 } else { 1529 // Otherwise, insert the new instruction into the block. 1530 New->setName(BI->getName()); 1531 PredBB->getInstList().insert(OldPredBranch, New); 1532 ValueMapping[BI] = New; 1533 } 1534 } 1535 1536 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1537 // add entries to the PHI nodes for branch from PredBB now. 1538 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1539 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1540 ValueMapping); 1541 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1542 ValueMapping); 1543 1544 // If there were values defined in BB that are used outside the block, then we 1545 // now have to update all uses of the value to use either the original value, 1546 // the cloned value, or some PHI derived value. This can require arbitrary 1547 // PHI insertion, of which we are prepared to do, clean these up now. 1548 SSAUpdater SSAUpdate; 1549 SmallVector<Use*, 16> UsesToRename; 1550 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1551 // Scan all uses of this instruction to see if it is used outside of its 1552 // block, and if so, record them in UsesToRename. 1553 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1554 ++UI) { 1555 Instruction *User = cast<Instruction>(*UI); 1556 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1557 if (UserPN->getIncomingBlock(UI) == BB) 1558 continue; 1559 } else if (User->getParent() == BB) 1560 continue; 1561 1562 UsesToRename.push_back(&UI.getUse()); 1563 } 1564 1565 // If there are no uses outside the block, we're done with this instruction. 1566 if (UsesToRename.empty()) 1567 continue; 1568 1569 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1570 1571 // We found a use of I outside of BB. Rename all uses of I that are outside 1572 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1573 // with the two values we know. 1574 SSAUpdate.Initialize(I->getType(), I->getName()); 1575 SSAUpdate.AddAvailableValue(BB, I); 1576 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1577 1578 while (!UsesToRename.empty()) 1579 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1580 DEBUG(dbgs() << "\n"); 1581 } 1582 1583 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1584 // that we nuked. 1585 BB->removePredecessor(PredBB, true); 1586 1587 // Remove the unconditional branch at the end of the PredBB block. 1588 OldPredBranch->eraseFromParent(); 1589 1590 ++NumDupes; 1591 return true; 1592 } 1593 1594 1595