Home | History | Annotate | Download | only in Scalar
      1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Jump Threading pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "jump-threading"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/IntrinsicInst.h"
     17 #include "llvm/LLVMContext.h"
     18 #include "llvm/Pass.h"
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/LazyValueInfo.h"
     22 #include "llvm/Analysis/Loads.h"
     23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     24 #include "llvm/Transforms/Utils/Local.h"
     25 #include "llvm/Transforms/Utils/SSAUpdater.h"
     26 #include "llvm/Target/TargetData.h"
     27 #include "llvm/ADT/DenseMap.h"
     28 #include "llvm/ADT/DenseSet.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/SmallSet.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ValueHandle.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 using namespace llvm;
     38 
     39 STATISTIC(NumThreads, "Number of jumps threaded");
     40 STATISTIC(NumFolds,   "Number of terminators folded");
     41 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
     42 
     43 static cl::opt<unsigned>
     44 Threshold("jump-threading-threshold",
     45           cl::desc("Max block size to duplicate for jump threading"),
     46           cl::init(6), cl::Hidden);
     47 
     48 namespace {
     49   // These are at global scope so static functions can use them too.
     50   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
     51   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
     52 
     53   // This is used to keep track of what kind of constant we're currently hoping
     54   // to find.
     55   enum ConstantPreference {
     56     WantInteger,
     57     WantBlockAddress
     58   };
     59 
     60   /// This pass performs 'jump threading', which looks at blocks that have
     61   /// multiple predecessors and multiple successors.  If one or more of the
     62   /// predecessors of the block can be proven to always jump to one of the
     63   /// successors, we forward the edge from the predecessor to the successor by
     64   /// duplicating the contents of this block.
     65   ///
     66   /// An example of when this can occur is code like this:
     67   ///
     68   ///   if () { ...
     69   ///     X = 4;
     70   ///   }
     71   ///   if (X < 3) {
     72   ///
     73   /// In this case, the unconditional branch at the end of the first if can be
     74   /// revectored to the false side of the second if.
     75   ///
     76   class JumpThreading : public FunctionPass {
     77     TargetData *TD;
     78     LazyValueInfo *LVI;
     79 #ifdef NDEBUG
     80     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
     81 #else
     82     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
     83 #endif
     84     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
     85 
     86     // RAII helper for updating the recursion stack.
     87     struct RecursionSetRemover {
     88       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
     89       std::pair<Value*, BasicBlock*> ThePair;
     90 
     91       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
     92                           std::pair<Value*, BasicBlock*> P)
     93         : TheSet(S), ThePair(P) { }
     94 
     95       ~RecursionSetRemover() {
     96         TheSet.erase(ThePair);
     97       }
     98     };
     99   public:
    100     static char ID; // Pass identification
    101     JumpThreading() : FunctionPass(ID) {
    102       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
    103     }
    104 
    105     bool runOnFunction(Function &F);
    106 
    107     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    108       AU.addRequired<LazyValueInfo>();
    109       AU.addPreserved<LazyValueInfo>();
    110     }
    111 
    112     void FindLoopHeaders(Function &F);
    113     bool ProcessBlock(BasicBlock *BB);
    114     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
    115                     BasicBlock *SuccBB);
    116     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
    117                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
    118 
    119     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
    120                                          PredValueInfo &Result,
    121                                          ConstantPreference Preference);
    122     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
    123                                 ConstantPreference Preference);
    124 
    125     bool ProcessBranchOnPHI(PHINode *PN);
    126     bool ProcessBranchOnXOR(BinaryOperator *BO);
    127 
    128     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
    129   };
    130 }
    131 
    132 char JumpThreading::ID = 0;
    133 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
    134                 "Jump Threading", false, false)
    135 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
    136 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
    137                 "Jump Threading", false, false)
    138 
    139 // Public interface to the Jump Threading pass
    140 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
    141 
    142 /// runOnFunction - Top level algorithm.
    143 ///
    144 bool JumpThreading::runOnFunction(Function &F) {
    145   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
    146   TD = getAnalysisIfAvailable<TargetData>();
    147   LVI = &getAnalysis<LazyValueInfo>();
    148 
    149   FindLoopHeaders(F);
    150 
    151   bool Changed, EverChanged = false;
    152   do {
    153     Changed = false;
    154     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
    155       BasicBlock *BB = I;
    156       // Thread all of the branches we can over this block.
    157       while (ProcessBlock(BB))
    158         Changed = true;
    159 
    160       ++I;
    161 
    162       // If the block is trivially dead, zap it.  This eliminates the successor
    163       // edges which simplifies the CFG.
    164       if (pred_begin(BB) == pred_end(BB) &&
    165           BB != &BB->getParent()->getEntryBlock()) {
    166         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
    167               << "' with terminator: " << *BB->getTerminator() << '\n');
    168         LoopHeaders.erase(BB);
    169         LVI->eraseBlock(BB);
    170         DeleteDeadBlock(BB);
    171         Changed = true;
    172         continue;
    173       }
    174 
    175       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    176 
    177       // Can't thread an unconditional jump, but if the block is "almost
    178       // empty", we can replace uses of it with uses of the successor and make
    179       // this dead.
    180       if (BI && BI->isUnconditional() &&
    181           BB != &BB->getParent()->getEntryBlock() &&
    182           // If the terminator is the only non-phi instruction, try to nuke it.
    183           BB->getFirstNonPHIOrDbg()->isTerminator()) {
    184         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
    185         // block, we have to make sure it isn't in the LoopHeaders set.  We
    186         // reinsert afterward if needed.
    187         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
    188         BasicBlock *Succ = BI->getSuccessor(0);
    189 
    190         // FIXME: It is always conservatively correct to drop the info
    191         // for a block even if it doesn't get erased.  This isn't totally
    192         // awesome, but it allows us to use AssertingVH to prevent nasty
    193         // dangling pointer issues within LazyValueInfo.
    194         LVI->eraseBlock(BB);
    195         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
    196           Changed = true;
    197           // If we deleted BB and BB was the header of a loop, then the
    198           // successor is now the header of the loop.
    199           BB = Succ;
    200         }
    201 
    202         if (ErasedFromLoopHeaders)
    203           LoopHeaders.insert(BB);
    204       }
    205     }
    206     EverChanged |= Changed;
    207   } while (Changed);
    208 
    209   LoopHeaders.clear();
    210   return EverChanged;
    211 }
    212 
    213 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
    214 /// thread across it.
    215 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
    216   /// Ignore PHI nodes, these will be flattened when duplication happens.
    217   BasicBlock::const_iterator I = BB->getFirstNonPHI();
    218 
    219   // FIXME: THREADING will delete values that are just used to compute the
    220   // branch, so they shouldn't count against the duplication cost.
    221 
    222 
    223   // Sum up the cost of each instruction until we get to the terminator.  Don't
    224   // include the terminator because the copy won't include it.
    225   unsigned Size = 0;
    226   for (; !isa<TerminatorInst>(I); ++I) {
    227     // Debugger intrinsics don't incur code size.
    228     if (isa<DbgInfoIntrinsic>(I)) continue;
    229 
    230     // If this is a pointer->pointer bitcast, it is free.
    231     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
    232       continue;
    233 
    234     // All other instructions count for at least one unit.
    235     ++Size;
    236 
    237     // Calls are more expensive.  If they are non-intrinsic calls, we model them
    238     // as having cost of 4.  If they are a non-vector intrinsic, we model them
    239     // as having cost of 2 total, and if they are a vector intrinsic, we model
    240     // them as having cost 1.
    241     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    242       if (!isa<IntrinsicInst>(CI))
    243         Size += 3;
    244       else if (!CI->getType()->isVectorTy())
    245         Size += 1;
    246     }
    247   }
    248 
    249   // Threading through a switch statement is particularly profitable.  If this
    250   // block ends in a switch, decrease its cost to make it more likely to happen.
    251   if (isa<SwitchInst>(I))
    252     Size = Size > 6 ? Size-6 : 0;
    253 
    254   // The same holds for indirect branches, but slightly more so.
    255   if (isa<IndirectBrInst>(I))
    256     Size = Size > 8 ? Size-8 : 0;
    257 
    258   return Size;
    259 }
    260 
    261 /// FindLoopHeaders - We do not want jump threading to turn proper loop
    262 /// structures into irreducible loops.  Doing this breaks up the loop nesting
    263 /// hierarchy and pessimizes later transformations.  To prevent this from
    264 /// happening, we first have to find the loop headers.  Here we approximate this
    265 /// by finding targets of backedges in the CFG.
    266 ///
    267 /// Note that there definitely are cases when we want to allow threading of
    268 /// edges across a loop header.  For example, threading a jump from outside the
    269 /// loop (the preheader) to an exit block of the loop is definitely profitable.
    270 /// It is also almost always profitable to thread backedges from within the loop
    271 /// to exit blocks, and is often profitable to thread backedges to other blocks
    272 /// within the loop (forming a nested loop).  This simple analysis is not rich
    273 /// enough to track all of these properties and keep it up-to-date as the CFG
    274 /// mutates, so we don't allow any of these transformations.
    275 ///
    276 void JumpThreading::FindLoopHeaders(Function &F) {
    277   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
    278   FindFunctionBackedges(F, Edges);
    279 
    280   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
    281     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
    282 }
    283 
    284 /// getKnownConstant - Helper method to determine if we can thread over a
    285 /// terminator with the given value as its condition, and if so what value to
    286 /// use for that. What kind of value this is depends on whether we want an
    287 /// integer or a block address, but an undef is always accepted.
    288 /// Returns null if Val is null or not an appropriate constant.
    289 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
    290   if (!Val)
    291     return 0;
    292 
    293   // Undef is "known" enough.
    294   if (UndefValue *U = dyn_cast<UndefValue>(Val))
    295     return U;
    296 
    297   if (Preference == WantBlockAddress)
    298     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
    299 
    300   return dyn_cast<ConstantInt>(Val);
    301 }
    302 
    303 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
    304 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
    305 /// in any of our predecessors.  If so, return the known list of value and pred
    306 /// BB in the result vector.
    307 ///
    308 /// This returns true if there were any known values.
    309 ///
    310 bool JumpThreading::
    311 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
    312                                 ConstantPreference Preference) {
    313   // This method walks up use-def chains recursively.  Because of this, we could
    314   // get into an infinite loop going around loops in the use-def chain.  To
    315   // prevent this, keep track of what (value, block) pairs we've already visited
    316   // and terminate the search if we loop back to them
    317   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
    318     return false;
    319 
    320   // An RAII help to remove this pair from the recursion set once the recursion
    321   // stack pops back out again.
    322   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
    323 
    324   // If V is a constant, then it is known in all predecessors.
    325   if (Constant *KC = getKnownConstant(V, Preference)) {
    326     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    327       Result.push_back(std::make_pair(KC, *PI));
    328 
    329     return true;
    330   }
    331 
    332   // If V is a non-instruction value, or an instruction in a different block,
    333   // then it can't be derived from a PHI.
    334   Instruction *I = dyn_cast<Instruction>(V);
    335   if (I == 0 || I->getParent() != BB) {
    336 
    337     // Okay, if this is a live-in value, see if it has a known value at the end
    338     // of any of our predecessors.
    339     //
    340     // FIXME: This should be an edge property, not a block end property.
    341     /// TODO: Per PR2563, we could infer value range information about a
    342     /// predecessor based on its terminator.
    343     //
    344     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
    345     // "I" is a non-local compare-with-a-constant instruction.  This would be
    346     // able to handle value inequalities better, for example if the compare is
    347     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
    348     // Perhaps getConstantOnEdge should be smart enough to do this?
    349 
    350     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    351       BasicBlock *P = *PI;
    352       // If the value is known by LazyValueInfo to be a constant in a
    353       // predecessor, use that information to try to thread this block.
    354       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
    355       if (Constant *KC = getKnownConstant(PredCst, Preference))
    356         Result.push_back(std::make_pair(KC, P));
    357     }
    358 
    359     return !Result.empty();
    360   }
    361 
    362   /// If I is a PHI node, then we know the incoming values for any constants.
    363   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    364     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    365       Value *InVal = PN->getIncomingValue(i);
    366       if (Constant *KC = getKnownConstant(InVal, Preference)) {
    367         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    368       } else {
    369         Constant *CI = LVI->getConstantOnEdge(InVal,
    370                                               PN->getIncomingBlock(i), BB);
    371         if (Constant *KC = getKnownConstant(CI, Preference))
    372           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    373       }
    374     }
    375 
    376     return !Result.empty();
    377   }
    378 
    379   PredValueInfoTy LHSVals, RHSVals;
    380 
    381   // Handle some boolean conditions.
    382   if (I->getType()->getPrimitiveSizeInBits() == 1) {
    383     assert(Preference == WantInteger && "One-bit non-integer type?");
    384     // X | true -> true
    385     // X & false -> false
    386     if (I->getOpcode() == Instruction::Or ||
    387         I->getOpcode() == Instruction::And) {
    388       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    389                                       WantInteger);
    390       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
    391                                       WantInteger);
    392 
    393       if (LHSVals.empty() && RHSVals.empty())
    394         return false;
    395 
    396       ConstantInt *InterestingVal;
    397       if (I->getOpcode() == Instruction::Or)
    398         InterestingVal = ConstantInt::getTrue(I->getContext());
    399       else
    400         InterestingVal = ConstantInt::getFalse(I->getContext());
    401 
    402       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
    403 
    404       // Scan for the sentinel.  If we find an undef, force it to the
    405       // interesting value: x|undef -> true and x&undef -> false.
    406       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
    407         if (LHSVals[i].first == InterestingVal ||
    408             isa<UndefValue>(LHSVals[i].first)) {
    409           Result.push_back(LHSVals[i]);
    410           Result.back().first = InterestingVal;
    411           LHSKnownBBs.insert(LHSVals[i].second);
    412         }
    413       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
    414         if (RHSVals[i].first == InterestingVal ||
    415             isa<UndefValue>(RHSVals[i].first)) {
    416           // If we already inferred a value for this block on the LHS, don't
    417           // re-add it.
    418           if (!LHSKnownBBs.count(RHSVals[i].second)) {
    419             Result.push_back(RHSVals[i]);
    420             Result.back().first = InterestingVal;
    421           }
    422         }
    423 
    424       return !Result.empty();
    425     }
    426 
    427     // Handle the NOT form of XOR.
    428     if (I->getOpcode() == Instruction::Xor &&
    429         isa<ConstantInt>(I->getOperand(1)) &&
    430         cast<ConstantInt>(I->getOperand(1))->isOne()) {
    431       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
    432                                       WantInteger);
    433       if (Result.empty())
    434         return false;
    435 
    436       // Invert the known values.
    437       for (unsigned i = 0, e = Result.size(); i != e; ++i)
    438         Result[i].first = ConstantExpr::getNot(Result[i].first);
    439 
    440       return true;
    441     }
    442 
    443   // Try to simplify some other binary operator values.
    444   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    445     assert(Preference != WantBlockAddress
    446             && "A binary operator creating a block address?");
    447     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
    448       PredValueInfoTy LHSVals;
    449       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
    450                                       WantInteger);
    451 
    452       // Try to use constant folding to simplify the binary operator.
    453       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
    454         Constant *V = LHSVals[i].first;
    455         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
    456 
    457         if (Constant *KC = getKnownConstant(Folded, WantInteger))
    458           Result.push_back(std::make_pair(KC, LHSVals[i].second));
    459       }
    460     }
    461 
    462     return !Result.empty();
    463   }
    464 
    465   // Handle compare with phi operand, where the PHI is defined in this block.
    466   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    467     assert(Preference == WantInteger && "Compares only produce integers");
    468     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
    469     if (PN && PN->getParent() == BB) {
    470       // We can do this simplification if any comparisons fold to true or false.
    471       // See if any do.
    472       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    473         BasicBlock *PredBB = PN->getIncomingBlock(i);
    474         Value *LHS = PN->getIncomingValue(i);
    475         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
    476 
    477         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
    478         if (Res == 0) {
    479           if (!isa<Constant>(RHS))
    480             continue;
    481 
    482           LazyValueInfo::Tristate
    483             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
    484                                            cast<Constant>(RHS), PredBB, BB);
    485           if (ResT == LazyValueInfo::Unknown)
    486             continue;
    487           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
    488         }
    489 
    490         if (Constant *KC = getKnownConstant(Res, WantInteger))
    491           Result.push_back(std::make_pair(KC, PredBB));
    492       }
    493 
    494       return !Result.empty();
    495     }
    496 
    497 
    498     // If comparing a live-in value against a constant, see if we know the
    499     // live-in value on any predecessors.
    500     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
    501       if (!isa<Instruction>(Cmp->getOperand(0)) ||
    502           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
    503         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
    504 
    505         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
    506           BasicBlock *P = *PI;
    507           // If the value is known by LazyValueInfo to be a constant in a
    508           // predecessor, use that information to try to thread this block.
    509           LazyValueInfo::Tristate Res =
    510             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
    511                                     RHSCst, P, BB);
    512           if (Res == LazyValueInfo::Unknown)
    513             continue;
    514 
    515           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
    516           Result.push_back(std::make_pair(ResC, P));
    517         }
    518 
    519         return !Result.empty();
    520       }
    521 
    522       // Try to find a constant value for the LHS of a comparison,
    523       // and evaluate it statically if we can.
    524       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
    525         PredValueInfoTy LHSVals;
    526         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    527                                         WantInteger);
    528 
    529         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
    530           Constant *V = LHSVals[i].first;
    531           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
    532                                                       V, CmpConst);
    533           if (Constant *KC = getKnownConstant(Folded, WantInteger))
    534             Result.push_back(std::make_pair(KC, LHSVals[i].second));
    535         }
    536 
    537         return !Result.empty();
    538       }
    539     }
    540   }
    541 
    542   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    543     // Handle select instructions where at least one operand is a known constant
    544     // and we can figure out the condition value for any predecessor block.
    545     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
    546     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
    547     PredValueInfoTy Conds;
    548     if ((TrueVal || FalseVal) &&
    549         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
    550                                         WantInteger)) {
    551       for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
    552         Constant *Cond = Conds[i].first;
    553 
    554         // Figure out what value to use for the condition.
    555         bool KnownCond;
    556         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
    557           // A known boolean.
    558           KnownCond = CI->isOne();
    559         } else {
    560           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
    561           // Either operand will do, so be sure to pick the one that's a known
    562           // constant.
    563           // FIXME: Do this more cleverly if both values are known constants?
    564           KnownCond = (TrueVal != 0);
    565         }
    566 
    567         // See if the select has a known constant value for this predecessor.
    568         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
    569           Result.push_back(std::make_pair(Val, Conds[i].second));
    570       }
    571 
    572       return !Result.empty();
    573     }
    574   }
    575 
    576   // If all else fails, see if LVI can figure out a constant value for us.
    577   Constant *CI = LVI->getConstant(V, BB);
    578   if (Constant *KC = getKnownConstant(CI, Preference)) {
    579     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    580       Result.push_back(std::make_pair(KC, *PI));
    581   }
    582 
    583   return !Result.empty();
    584 }
    585 
    586 
    587 
    588 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
    589 /// in an undefined jump, decide which block is best to revector to.
    590 ///
    591 /// Since we can pick an arbitrary destination, we pick the successor with the
    592 /// fewest predecessors.  This should reduce the in-degree of the others.
    593 ///
    594 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
    595   TerminatorInst *BBTerm = BB->getTerminator();
    596   unsigned MinSucc = 0;
    597   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
    598   // Compute the successor with the minimum number of predecessors.
    599   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    600   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    601     TestBB = BBTerm->getSuccessor(i);
    602     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    603     if (NumPreds < MinNumPreds) {
    604       MinSucc = i;
    605       MinNumPreds = NumPreds;
    606     }
    607   }
    608 
    609   return MinSucc;
    610 }
    611 
    612 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
    613   if (!BB->hasAddressTaken()) return false;
    614 
    615   // If the block has its address taken, it may be a tree of dead constants
    616   // hanging off of it.  These shouldn't keep the block alive.
    617   BlockAddress *BA = BlockAddress::get(BB);
    618   BA->removeDeadConstantUsers();
    619   return !BA->use_empty();
    620 }
    621 
    622 /// ProcessBlock - If there are any predecessors whose control can be threaded
    623 /// through to a successor, transform them now.
    624 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
    625   // If the block is trivially dead, just return and let the caller nuke it.
    626   // This simplifies other transformations.
    627   if (pred_begin(BB) == pred_end(BB) &&
    628       BB != &BB->getParent()->getEntryBlock())
    629     return false;
    630 
    631   // If this block has a single predecessor, and if that pred has a single
    632   // successor, merge the blocks.  This encourages recursive jump threading
    633   // because now the condition in this block can be threaded through
    634   // predecessors of our predecessor block.
    635   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
    636     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
    637         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
    638       // If SinglePred was a loop header, BB becomes one.
    639       if (LoopHeaders.erase(SinglePred))
    640         LoopHeaders.insert(BB);
    641 
    642       // Remember if SinglePred was the entry block of the function.  If so, we
    643       // will need to move BB back to the entry position.
    644       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    645       LVI->eraseBlock(SinglePred);
    646       MergeBasicBlockIntoOnlyPred(BB);
    647 
    648       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    649         BB->moveBefore(&BB->getParent()->getEntryBlock());
    650       return true;
    651     }
    652   }
    653 
    654   // What kind of constant we're looking for.
    655   ConstantPreference Preference = WantInteger;
    656 
    657   // Look to see if the terminator is a conditional branch, switch or indirect
    658   // branch, if not we can't thread it.
    659   Value *Condition;
    660   Instruction *Terminator = BB->getTerminator();
    661   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
    662     // Can't thread an unconditional jump.
    663     if (BI->isUnconditional()) return false;
    664     Condition = BI->getCondition();
    665   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
    666     Condition = SI->getCondition();
    667   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
    668     Condition = IB->getAddress()->stripPointerCasts();
    669     Preference = WantBlockAddress;
    670   } else {
    671     return false; // Must be an invoke.
    672   }
    673 
    674   // Run constant folding to see if we can reduce the condition to a simple
    675   // constant.
    676   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
    677     Value *SimpleVal = ConstantFoldInstruction(I, TD);
    678     if (SimpleVal) {
    679       I->replaceAllUsesWith(SimpleVal);
    680       I->eraseFromParent();
    681       Condition = SimpleVal;
    682     }
    683   }
    684 
    685   // If the terminator is branching on an undef, we can pick any of the
    686   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
    687   if (isa<UndefValue>(Condition)) {
    688     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
    689 
    690     // Fold the branch/switch.
    691     TerminatorInst *BBTerm = BB->getTerminator();
    692     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    693       if (i == BestSucc) continue;
    694       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
    695     }
    696 
    697     DEBUG(dbgs() << "  In block '" << BB->getName()
    698           << "' folding undef terminator: " << *BBTerm << '\n');
    699     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
    700     BBTerm->eraseFromParent();
    701     return true;
    702   }
    703 
    704   // If the terminator of this block is branching on a constant, simplify the
    705   // terminator to an unconditional branch.  This can occur due to threading in
    706   // other blocks.
    707   if (getKnownConstant(Condition, Preference)) {
    708     DEBUG(dbgs() << "  In block '" << BB->getName()
    709           << "' folding terminator: " << *BB->getTerminator() << '\n');
    710     ++NumFolds;
    711     ConstantFoldTerminator(BB, true);
    712     return true;
    713   }
    714 
    715   Instruction *CondInst = dyn_cast<Instruction>(Condition);
    716 
    717   // All the rest of our checks depend on the condition being an instruction.
    718   if (CondInst == 0) {
    719     // FIXME: Unify this with code below.
    720     if (ProcessThreadableEdges(Condition, BB, Preference))
    721       return true;
    722     return false;
    723   }
    724 
    725 
    726   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
    727     // For a comparison where the LHS is outside this block, it's possible
    728     // that we've branched on it before.  Used LVI to see if we can simplify
    729     // the branch based on that.
    730     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
    731     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
    732     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    733     if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
    734         (!isa<Instruction>(CondCmp->getOperand(0)) ||
    735          cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
    736       // For predecessor edge, determine if the comparison is true or false
    737       // on that edge.  If they're all true or all false, we can simplify the
    738       // branch.
    739       // FIXME: We could handle mixed true/false by duplicating code.
    740       LazyValueInfo::Tristate Baseline =
    741         LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
    742                                 CondConst, *PI, BB);
    743       if (Baseline != LazyValueInfo::Unknown) {
    744         // Check that all remaining incoming values match the first one.
    745         while (++PI != PE) {
    746           LazyValueInfo::Tristate Ret =
    747             LVI->getPredicateOnEdge(CondCmp->getPredicate(),
    748                                     CondCmp->getOperand(0), CondConst, *PI, BB);
    749           if (Ret != Baseline) break;
    750         }
    751 
    752         // If we terminated early, then one of the values didn't match.
    753         if (PI == PE) {
    754           unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
    755           unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
    756           CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
    757           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
    758           CondBr->eraseFromParent();
    759           return true;
    760         }
    761       }
    762     }
    763   }
    764 
    765   // Check for some cases that are worth simplifying.  Right now we want to look
    766   // for loads that are used by a switch or by the condition for the branch.  If
    767   // we see one, check to see if it's partially redundant.  If so, insert a PHI
    768   // which can then be used to thread the values.
    769   //
    770   Value *SimplifyValue = CondInst;
    771   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
    772     if (isa<Constant>(CondCmp->getOperand(1)))
    773       SimplifyValue = CondCmp->getOperand(0);
    774 
    775   // TODO: There are other places where load PRE would be profitable, such as
    776   // more complex comparisons.
    777   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
    778     if (SimplifyPartiallyRedundantLoad(LI))
    779       return true;
    780 
    781 
    782   // Handle a variety of cases where we are branching on something derived from
    783   // a PHI node in the current block.  If we can prove that any predecessors
    784   // compute a predictable value based on a PHI node, thread those predecessors.
    785   //
    786   if (ProcessThreadableEdges(CondInst, BB, Preference))
    787     return true;
    788 
    789   // If this is an otherwise-unfoldable branch on a phi node in the current
    790   // block, see if we can simplify.
    791   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    792     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    793       return ProcessBranchOnPHI(PN);
    794 
    795 
    796   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
    797   if (CondInst->getOpcode() == Instruction::Xor &&
    798       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    799     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
    800 
    801 
    802   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
    803   // "(X == 4)", thread through this block.
    804 
    805   return false;
    806 }
    807 
    808 
    809 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
    810 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
    811 /// important optimization that encourages jump threading, and needs to be run
    812 /// interlaced with other jump threading tasks.
    813 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
    814   // Don't hack volatile loads.
    815   if (LI->isVolatile()) return false;
    816 
    817   // If the load is defined in a block with exactly one predecessor, it can't be
    818   // partially redundant.
    819   BasicBlock *LoadBB = LI->getParent();
    820   if (LoadBB->getSinglePredecessor())
    821     return false;
    822 
    823   Value *LoadedPtr = LI->getOperand(0);
    824 
    825   // If the loaded operand is defined in the LoadBB, it can't be available.
    826   // TODO: Could do simple PHI translation, that would be fun :)
    827   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
    828     if (PtrOp->getParent() == LoadBB)
    829       return false;
    830 
    831   // Scan a few instructions up from the load, to see if it is obviously live at
    832   // the entry to its block.
    833   BasicBlock::iterator BBIt = LI;
    834 
    835   if (Value *AvailableVal =
    836         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
    837     // If the value if the load is locally available within the block, just use
    838     // it.  This frequently occurs for reg2mem'd allocas.
    839     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
    840 
    841     // If the returned value is the load itself, replace with an undef. This can
    842     // only happen in dead loops.
    843     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
    844     LI->replaceAllUsesWith(AvailableVal);
    845     LI->eraseFromParent();
    846     return true;
    847   }
    848 
    849   // Otherwise, if we scanned the whole block and got to the top of the block,
    850   // we know the block is locally transparent to the load.  If not, something
    851   // might clobber its value.
    852   if (BBIt != LoadBB->begin())
    853     return false;
    854 
    855 
    856   SmallPtrSet<BasicBlock*, 8> PredsScanned;
    857   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
    858   AvailablePredsTy AvailablePreds;
    859   BasicBlock *OneUnavailablePred = 0;
    860 
    861   // If we got here, the loaded value is transparent through to the start of the
    862   // block.  Check to see if it is available in any of the predecessor blocks.
    863   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
    864        PI != PE; ++PI) {
    865     BasicBlock *PredBB = *PI;
    866 
    867     // If we already scanned this predecessor, skip it.
    868     if (!PredsScanned.insert(PredBB))
    869       continue;
    870 
    871     // Scan the predecessor to see if the value is available in the pred.
    872     BBIt = PredBB->end();
    873     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
    874     if (!PredAvailable) {
    875       OneUnavailablePred = PredBB;
    876       continue;
    877     }
    878 
    879     // If so, this load is partially redundant.  Remember this info so that we
    880     // can create a PHI node.
    881     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
    882   }
    883 
    884   // If the loaded value isn't available in any predecessor, it isn't partially
    885   // redundant.
    886   if (AvailablePreds.empty()) return false;
    887 
    888   // Okay, the loaded value is available in at least one (and maybe all!)
    889   // predecessors.  If the value is unavailable in more than one unique
    890   // predecessor, we want to insert a merge block for those common predecessors.
    891   // This ensures that we only have to insert one reload, thus not increasing
    892   // code size.
    893   BasicBlock *UnavailablePred = 0;
    894 
    895   // If there is exactly one predecessor where the value is unavailable, the
    896   // already computed 'OneUnavailablePred' block is it.  If it ends in an
    897   // unconditional branch, we know that it isn't a critical edge.
    898   if (PredsScanned.size() == AvailablePreds.size()+1 &&
    899       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
    900     UnavailablePred = OneUnavailablePred;
    901   } else if (PredsScanned.size() != AvailablePreds.size()) {
    902     // Otherwise, we had multiple unavailable predecessors or we had a critical
    903     // edge from the one.
    904     SmallVector<BasicBlock*, 8> PredsToSplit;
    905     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
    906 
    907     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
    908       AvailablePredSet.insert(AvailablePreds[i].first);
    909 
    910     // Add all the unavailable predecessors to the PredsToSplit list.
    911     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
    912          PI != PE; ++PI) {
    913       BasicBlock *P = *PI;
    914       // If the predecessor is an indirect goto, we can't split the edge.
    915       if (isa<IndirectBrInst>(P->getTerminator()))
    916         return false;
    917 
    918       if (!AvailablePredSet.count(P))
    919         PredsToSplit.push_back(P);
    920     }
    921 
    922     // Split them out to their own block.
    923     UnavailablePred =
    924       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
    925                              "thread-pre-split", this);
    926   }
    927 
    928   // If the value isn't available in all predecessors, then there will be
    929   // exactly one where it isn't available.  Insert a load on that edge and add
    930   // it to the AvailablePreds list.
    931   if (UnavailablePred) {
    932     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
    933            "Can't handle critical edge here!");
    934     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
    935                                  LI->getAlignment(),
    936                                  UnavailablePred->getTerminator());
    937     NewVal->setDebugLoc(LI->getDebugLoc());
    938     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
    939   }
    940 
    941   // Now we know that each predecessor of this block has a value in
    942   // AvailablePreds, sort them for efficient access as we're walking the preds.
    943   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
    944 
    945   // Create a PHI node at the start of the block for the PRE'd load value.
    946   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
    947   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
    948                                 LoadBB->begin());
    949   PN->takeName(LI);
    950   PN->setDebugLoc(LI->getDebugLoc());
    951 
    952   // Insert new entries into the PHI for each predecessor.  A single block may
    953   // have multiple entries here.
    954   for (pred_iterator PI = PB; PI != PE; ++PI) {
    955     BasicBlock *P = *PI;
    956     AvailablePredsTy::iterator I =
    957       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
    958                        std::make_pair(P, (Value*)0));
    959 
    960     assert(I != AvailablePreds.end() && I->first == P &&
    961            "Didn't find entry for predecessor!");
    962 
    963     PN->addIncoming(I->second, I->first);
    964   }
    965 
    966   //cerr << "PRE: " << *LI << *PN << "\n";
    967 
    968   LI->replaceAllUsesWith(PN);
    969   LI->eraseFromParent();
    970 
    971   return true;
    972 }
    973 
    974 /// FindMostPopularDest - The specified list contains multiple possible
    975 /// threadable destinations.  Pick the one that occurs the most frequently in
    976 /// the list.
    977 static BasicBlock *
    978 FindMostPopularDest(BasicBlock *BB,
    979                     const SmallVectorImpl<std::pair<BasicBlock*,
    980                                   BasicBlock*> > &PredToDestList) {
    981   assert(!PredToDestList.empty());
    982 
    983   // Determine popularity.  If there are multiple possible destinations, we
    984   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
    985   // blocks with known and real destinations to threading undef.  We'll handle
    986   // them later if interesting.
    987   DenseMap<BasicBlock*, unsigned> DestPopularity;
    988   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
    989     if (PredToDestList[i].second)
    990       DestPopularity[PredToDestList[i].second]++;
    991 
    992   // Find the most popular dest.
    993   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
    994   BasicBlock *MostPopularDest = DPI->first;
    995   unsigned Popularity = DPI->second;
    996   SmallVector<BasicBlock*, 4> SamePopularity;
    997 
    998   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
    999     // If the popularity of this entry isn't higher than the popularity we've
   1000     // seen so far, ignore it.
   1001     if (DPI->second < Popularity)
   1002       ; // ignore.
   1003     else if (DPI->second == Popularity) {
   1004       // If it is the same as what we've seen so far, keep track of it.
   1005       SamePopularity.push_back(DPI->first);
   1006     } else {
   1007       // If it is more popular, remember it.
   1008       SamePopularity.clear();
   1009       MostPopularDest = DPI->first;
   1010       Popularity = DPI->second;
   1011     }
   1012   }
   1013 
   1014   // Okay, now we know the most popular destination.  If there is more than one
   1015   // destination, we need to determine one.  This is arbitrary, but we need
   1016   // to make a deterministic decision.  Pick the first one that appears in the
   1017   // successor list.
   1018   if (!SamePopularity.empty()) {
   1019     SamePopularity.push_back(MostPopularDest);
   1020     TerminatorInst *TI = BB->getTerminator();
   1021     for (unsigned i = 0; ; ++i) {
   1022       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
   1023 
   1024       if (std::find(SamePopularity.begin(), SamePopularity.end(),
   1025                     TI->getSuccessor(i)) == SamePopularity.end())
   1026         continue;
   1027 
   1028       MostPopularDest = TI->getSuccessor(i);
   1029       break;
   1030     }
   1031   }
   1032 
   1033   // Okay, we have finally picked the most popular destination.
   1034   return MostPopularDest;
   1035 }
   1036 
   1037 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
   1038                                            ConstantPreference Preference) {
   1039   // If threading this would thread across a loop header, don't even try to
   1040   // thread the edge.
   1041   if (LoopHeaders.count(BB))
   1042     return false;
   1043 
   1044   PredValueInfoTy PredValues;
   1045   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
   1046     return false;
   1047 
   1048   assert(!PredValues.empty() &&
   1049          "ComputeValueKnownInPredecessors returned true with no values");
   1050 
   1051   DEBUG(dbgs() << "IN BB: " << *BB;
   1052         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
   1053           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
   1054             << *PredValues[i].first
   1055             << " for pred '" << PredValues[i].second->getName() << "'.\n";
   1056         });
   1057 
   1058   // Decide what we want to thread through.  Convert our list of known values to
   1059   // a list of known destinations for each pred.  This also discards duplicate
   1060   // predecessors and keeps track of the undefined inputs (which are represented
   1061   // as a null dest in the PredToDestList).
   1062   SmallPtrSet<BasicBlock*, 16> SeenPreds;
   1063   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
   1064 
   1065   BasicBlock *OnlyDest = 0;
   1066   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
   1067 
   1068   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
   1069     BasicBlock *Pred = PredValues[i].second;
   1070     if (!SeenPreds.insert(Pred))
   1071       continue;  // Duplicate predecessor entry.
   1072 
   1073     // If the predecessor ends with an indirect goto, we can't change its
   1074     // destination.
   1075     if (isa<IndirectBrInst>(Pred->getTerminator()))
   1076       continue;
   1077 
   1078     Constant *Val = PredValues[i].first;
   1079 
   1080     BasicBlock *DestBB;
   1081     if (isa<UndefValue>(Val))
   1082       DestBB = 0;
   1083     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
   1084       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
   1085     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
   1086       DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
   1087     else {
   1088       assert(isa<IndirectBrInst>(BB->getTerminator())
   1089               && "Unexpected terminator");
   1090       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
   1091     }
   1092 
   1093     // If we have exactly one destination, remember it for efficiency below.
   1094     if (PredToDestList.empty())
   1095       OnlyDest = DestBB;
   1096     else if (OnlyDest != DestBB)
   1097       OnlyDest = MultipleDestSentinel;
   1098 
   1099     PredToDestList.push_back(std::make_pair(Pred, DestBB));
   1100   }
   1101 
   1102   // If all edges were unthreadable, we fail.
   1103   if (PredToDestList.empty())
   1104     return false;
   1105 
   1106   // Determine which is the most common successor.  If we have many inputs and
   1107   // this block is a switch, we want to start by threading the batch that goes
   1108   // to the most popular destination first.  If we only know about one
   1109   // threadable destination (the common case) we can avoid this.
   1110   BasicBlock *MostPopularDest = OnlyDest;
   1111 
   1112   if (MostPopularDest == MultipleDestSentinel)
   1113     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
   1114 
   1115   // Now that we know what the most popular destination is, factor all
   1116   // predecessors that will jump to it into a single predecessor.
   1117   SmallVector<BasicBlock*, 16> PredsToFactor;
   1118   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
   1119     if (PredToDestList[i].second == MostPopularDest) {
   1120       BasicBlock *Pred = PredToDestList[i].first;
   1121 
   1122       // This predecessor may be a switch or something else that has multiple
   1123       // edges to the block.  Factor each of these edges by listing them
   1124       // according to # occurrences in PredsToFactor.
   1125       TerminatorInst *PredTI = Pred->getTerminator();
   1126       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
   1127         if (PredTI->getSuccessor(i) == BB)
   1128           PredsToFactor.push_back(Pred);
   1129     }
   1130 
   1131   // If the threadable edges are branching on an undefined value, we get to pick
   1132   // the destination that these predecessors should get to.
   1133   if (MostPopularDest == 0)
   1134     MostPopularDest = BB->getTerminator()->
   1135                             getSuccessor(GetBestDestForJumpOnUndef(BB));
   1136 
   1137   // Ok, try to thread it!
   1138   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
   1139 }
   1140 
   1141 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
   1142 /// a PHI node in the current block.  See if there are any simplifications we
   1143 /// can do based on inputs to the phi node.
   1144 ///
   1145 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
   1146   BasicBlock *BB = PN->getParent();
   1147 
   1148   // TODO: We could make use of this to do it once for blocks with common PHI
   1149   // values.
   1150   SmallVector<BasicBlock*, 1> PredBBs;
   1151   PredBBs.resize(1);
   1152 
   1153   // If any of the predecessor blocks end in an unconditional branch, we can
   1154   // *duplicate* the conditional branch into that block in order to further
   1155   // encourage jump threading and to eliminate cases where we have branch on a
   1156   // phi of an icmp (branch on icmp is much better).
   1157   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1158     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1159     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
   1160       if (PredBr->isUnconditional()) {
   1161         PredBBs[0] = PredBB;
   1162         // Try to duplicate BB into PredBB.
   1163         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
   1164           return true;
   1165       }
   1166   }
   1167 
   1168   return false;
   1169 }
   1170 
   1171 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
   1172 /// a xor instruction in the current block.  See if there are any
   1173 /// simplifications we can do based on inputs to the xor.
   1174 ///
   1175 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   1176   BasicBlock *BB = BO->getParent();
   1177 
   1178   // If either the LHS or RHS of the xor is a constant, don't do this
   1179   // optimization.
   1180   if (isa<ConstantInt>(BO->getOperand(0)) ||
   1181       isa<ConstantInt>(BO->getOperand(1)))
   1182     return false;
   1183 
   1184   // If the first instruction in BB isn't a phi, we won't be able to infer
   1185   // anything special about any particular predecessor.
   1186   if (!isa<PHINode>(BB->front()))
   1187     return false;
   1188 
   1189   // If we have a xor as the branch input to this block, and we know that the
   1190   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
   1191   // the condition into the predecessor and fix that value to true, saving some
   1192   // logical ops on that path and encouraging other paths to simplify.
   1193   //
   1194   // This copies something like this:
   1195   //
   1196   //  BB:
   1197   //    %X = phi i1 [1],  [%X']
   1198   //    %Y = icmp eq i32 %A, %B
   1199   //    %Z = xor i1 %X, %Y
   1200   //    br i1 %Z, ...
   1201   //
   1202   // Into:
   1203   //  BB':
   1204   //    %Y = icmp ne i32 %A, %B
   1205   //    br i1 %Z, ...
   1206 
   1207   PredValueInfoTy XorOpValues;
   1208   bool isLHS = true;
   1209   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
   1210                                        WantInteger)) {
   1211     assert(XorOpValues.empty());
   1212     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
   1213                                          WantInteger))
   1214       return false;
   1215     isLHS = false;
   1216   }
   1217 
   1218   assert(!XorOpValues.empty() &&
   1219          "ComputeValueKnownInPredecessors returned true with no values");
   1220 
   1221   // Scan the information to see which is most popular: true or false.  The
   1222   // predecessors can be of the set true, false, or undef.
   1223   unsigned NumTrue = 0, NumFalse = 0;
   1224   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
   1225     if (isa<UndefValue>(XorOpValues[i].first))
   1226       // Ignore undefs for the count.
   1227       continue;
   1228     if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
   1229       ++NumFalse;
   1230     else
   1231       ++NumTrue;
   1232   }
   1233 
   1234   // Determine which value to split on, true, false, or undef if neither.
   1235   ConstantInt *SplitVal = 0;
   1236   if (NumTrue > NumFalse)
   1237     SplitVal = ConstantInt::getTrue(BB->getContext());
   1238   else if (NumTrue != 0 || NumFalse != 0)
   1239     SplitVal = ConstantInt::getFalse(BB->getContext());
   1240 
   1241   // Collect all of the blocks that this can be folded into so that we can
   1242   // factor this once and clone it once.
   1243   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
   1244   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
   1245     if (XorOpValues[i].first != SplitVal &&
   1246         !isa<UndefValue>(XorOpValues[i].first))
   1247       continue;
   1248 
   1249     BlocksToFoldInto.push_back(XorOpValues[i].second);
   1250   }
   1251 
   1252   // If we inferred a value for all of the predecessors, then duplication won't
   1253   // help us.  However, we can just replace the LHS or RHS with the constant.
   1254   if (BlocksToFoldInto.size() ==
   1255       cast<PHINode>(BB->front()).getNumIncomingValues()) {
   1256     if (SplitVal == 0) {
   1257       // If all preds provide undef, just nuke the xor, because it is undef too.
   1258       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
   1259       BO->eraseFromParent();
   1260     } else if (SplitVal->isZero()) {
   1261       // If all preds provide 0, replace the xor with the other input.
   1262       BO->replaceAllUsesWith(BO->getOperand(isLHS));
   1263       BO->eraseFromParent();
   1264     } else {
   1265       // If all preds provide 1, set the computed value to 1.
   1266       BO->setOperand(!isLHS, SplitVal);
   1267     }
   1268 
   1269     return true;
   1270   }
   1271 
   1272   // Try to duplicate BB into PredBB.
   1273   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
   1274 }
   1275 
   1276 
   1277 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
   1278 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
   1279 /// NewPred using the entries from OldPred (suitably mapped).
   1280 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
   1281                                             BasicBlock *OldPred,
   1282                                             BasicBlock *NewPred,
   1283                                      DenseMap<Instruction*, Value*> &ValueMap) {
   1284   for (BasicBlock::iterator PNI = PHIBB->begin();
   1285        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
   1286     // Ok, we have a PHI node.  Figure out what the incoming value was for the
   1287     // DestBlock.
   1288     Value *IV = PN->getIncomingValueForBlock(OldPred);
   1289 
   1290     // Remap the value if necessary.
   1291     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
   1292       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
   1293       if (I != ValueMap.end())
   1294         IV = I->second;
   1295     }
   1296 
   1297     PN->addIncoming(IV, NewPred);
   1298   }
   1299 }
   1300 
   1301 /// ThreadEdge - We have decided that it is safe and profitable to factor the
   1302 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
   1303 /// across BB.  Transform the IR to reflect this change.
   1304 bool JumpThreading::ThreadEdge(BasicBlock *BB,
   1305                                const SmallVectorImpl<BasicBlock*> &PredBBs,
   1306                                BasicBlock *SuccBB) {
   1307   // If threading to the same block as we come from, we would infinite loop.
   1308   if (SuccBB == BB) {
   1309     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
   1310           << "' - would thread to self!\n");
   1311     return false;
   1312   }
   1313 
   1314   // If threading this would thread across a loop header, don't thread the edge.
   1315   // See the comments above FindLoopHeaders for justifications and caveats.
   1316   if (LoopHeaders.count(BB)) {
   1317     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
   1318           << "' to dest BB '" << SuccBB->getName()
   1319           << "' - it might create an irreducible loop!\n");
   1320     return false;
   1321   }
   1322 
   1323   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
   1324   if (JumpThreadCost > Threshold) {
   1325     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
   1326           << "' - Cost is too high: " << JumpThreadCost << "\n");
   1327     return false;
   1328   }
   1329 
   1330   // And finally, do it!  Start by factoring the predecessors is needed.
   1331   BasicBlock *PredBB;
   1332   if (PredBBs.size() == 1)
   1333     PredBB = PredBBs[0];
   1334   else {
   1335     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1336           << " common predecessors.\n");
   1337     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
   1338                                     ".thr_comm", this);
   1339   }
   1340 
   1341   // And finally, do it!
   1342   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
   1343         << SuccBB->getName() << "' with cost: " << JumpThreadCost
   1344         << ", across block:\n    "
   1345         << *BB << "\n");
   1346 
   1347   LVI->threadEdge(PredBB, BB, SuccBB);
   1348 
   1349   // We are going to have to map operands from the original BB block to the new
   1350   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
   1351   // account for entry from PredBB.
   1352   DenseMap<Instruction*, Value*> ValueMapping;
   1353 
   1354   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
   1355                                          BB->getName()+".thread",
   1356                                          BB->getParent(), BB);
   1357   NewBB->moveAfter(PredBB);
   1358 
   1359   BasicBlock::iterator BI = BB->begin();
   1360   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1361     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1362 
   1363   // Clone the non-phi instructions of BB into NewBB, keeping track of the
   1364   // mapping and using it to remap operands in the cloned instructions.
   1365   for (; !isa<TerminatorInst>(BI); ++BI) {
   1366     Instruction *New = BI->clone();
   1367     New->setName(BI->getName());
   1368     NewBB->getInstList().push_back(New);
   1369     ValueMapping[BI] = New;
   1370 
   1371     // Remap operands to patch up intra-block references.
   1372     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1373       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1374         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1375         if (I != ValueMapping.end())
   1376           New->setOperand(i, I->second);
   1377       }
   1378   }
   1379 
   1380   // We didn't copy the terminator from BB over to NewBB, because there is now
   1381   // an unconditional jump to SuccBB.  Insert the unconditional jump.
   1382   BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
   1383   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
   1384 
   1385   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   1386   // PHI nodes for NewBB now.
   1387   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
   1388 
   1389   // If there were values defined in BB that are used outside the block, then we
   1390   // now have to update all uses of the value to use either the original value,
   1391   // the cloned value, or some PHI derived value.  This can require arbitrary
   1392   // PHI insertion, of which we are prepared to do, clean these up now.
   1393   SSAUpdater SSAUpdate;
   1394   SmallVector<Use*, 16> UsesToRename;
   1395   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
   1396     // Scan all uses of this instruction to see if it is used outside of its
   1397     // block, and if so, record them in UsesToRename.
   1398     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
   1399          ++UI) {
   1400       Instruction *User = cast<Instruction>(*UI);
   1401       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   1402         if (UserPN->getIncomingBlock(UI) == BB)
   1403           continue;
   1404       } else if (User->getParent() == BB)
   1405         continue;
   1406 
   1407       UsesToRename.push_back(&UI.getUse());
   1408     }
   1409 
   1410     // If there are no uses outside the block, we're done with this instruction.
   1411     if (UsesToRename.empty())
   1412       continue;
   1413 
   1414     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
   1415 
   1416     // We found a use of I outside of BB.  Rename all uses of I that are outside
   1417     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   1418     // with the two values we know.
   1419     SSAUpdate.Initialize(I->getType(), I->getName());
   1420     SSAUpdate.AddAvailableValue(BB, I);
   1421     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
   1422 
   1423     while (!UsesToRename.empty())
   1424       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   1425     DEBUG(dbgs() << "\n");
   1426   }
   1427 
   1428 
   1429   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
   1430   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
   1431   // us to simplify any PHI nodes in BB.
   1432   TerminatorInst *PredTerm = PredBB->getTerminator();
   1433   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
   1434     if (PredTerm->getSuccessor(i) == BB) {
   1435       BB->removePredecessor(PredBB, true);
   1436       PredTerm->setSuccessor(i, NewBB);
   1437     }
   1438 
   1439   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   1440   // over the new instructions and zap any that are constants or dead.  This
   1441   // frequently happens because of phi translation.
   1442   SimplifyInstructionsInBlock(NewBB, TD);
   1443 
   1444   // Threaded an edge!
   1445   ++NumThreads;
   1446   return true;
   1447 }
   1448 
   1449 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
   1450 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
   1451 /// If we can duplicate the contents of BB up into PredBB do so now, this
   1452 /// improves the odds that the branch will be on an analyzable instruction like
   1453 /// a compare.
   1454 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   1455                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
   1456   assert(!PredBBs.empty() && "Can't handle an empty set");
   1457 
   1458   // If BB is a loop header, then duplicating this block outside the loop would
   1459   // cause us to transform this into an irreducible loop, don't do this.
   1460   // See the comments above FindLoopHeaders for justifications and caveats.
   1461   if (LoopHeaders.count(BB)) {
   1462     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
   1463           << "' into predecessor block '" << PredBBs[0]->getName()
   1464           << "' - it might create an irreducible loop!\n");
   1465     return false;
   1466   }
   1467 
   1468   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
   1469   if (DuplicationCost > Threshold) {
   1470     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
   1471           << "' - Cost is too high: " << DuplicationCost << "\n");
   1472     return false;
   1473   }
   1474 
   1475   // And finally, do it!  Start by factoring the predecessors is needed.
   1476   BasicBlock *PredBB;
   1477   if (PredBBs.size() == 1)
   1478     PredBB = PredBBs[0];
   1479   else {
   1480     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1481           << " common predecessors.\n");
   1482     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
   1483                                     ".thr_comm", this);
   1484   }
   1485 
   1486   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
   1487   // of PredBB.
   1488   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
   1489         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
   1490         << DuplicationCost << " block is:" << *BB << "\n");
   1491 
   1492   // Unless PredBB ends with an unconditional branch, split the edge so that we
   1493   // can just clone the bits from BB into the end of the new PredBB.
   1494   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
   1495 
   1496   if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
   1497     PredBB = SplitEdge(PredBB, BB, this);
   1498     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   1499   }
   1500 
   1501   // We are going to have to map operands from the original BB block into the
   1502   // PredBB block.  Evaluate PHI nodes in BB.
   1503   DenseMap<Instruction*, Value*> ValueMapping;
   1504 
   1505   BasicBlock::iterator BI = BB->begin();
   1506   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1507     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1508 
   1509   // Clone the non-phi instructions of BB into PredBB, keeping track of the
   1510   // mapping and using it to remap operands in the cloned instructions.
   1511   for (; BI != BB->end(); ++BI) {
   1512     Instruction *New = BI->clone();
   1513 
   1514     // Remap operands to patch up intra-block references.
   1515     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1516       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1517         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1518         if (I != ValueMapping.end())
   1519           New->setOperand(i, I->second);
   1520       }
   1521 
   1522     // If this instruction can be simplified after the operands are updated,
   1523     // just use the simplified value instead.  This frequently happens due to
   1524     // phi translation.
   1525     if (Value *IV = SimplifyInstruction(New, TD)) {
   1526       delete New;
   1527       ValueMapping[BI] = IV;
   1528     } else {
   1529       // Otherwise, insert the new instruction into the block.
   1530       New->setName(BI->getName());
   1531       PredBB->getInstList().insert(OldPredBranch, New);
   1532       ValueMapping[BI] = New;
   1533     }
   1534   }
   1535 
   1536   // Check to see if the targets of the branch had PHI nodes. If so, we need to
   1537   // add entries to the PHI nodes for branch from PredBB now.
   1538   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
   1539   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
   1540                                   ValueMapping);
   1541   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
   1542                                   ValueMapping);
   1543 
   1544   // If there were values defined in BB that are used outside the block, then we
   1545   // now have to update all uses of the value to use either the original value,
   1546   // the cloned value, or some PHI derived value.  This can require arbitrary
   1547   // PHI insertion, of which we are prepared to do, clean these up now.
   1548   SSAUpdater SSAUpdate;
   1549   SmallVector<Use*, 16> UsesToRename;
   1550   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
   1551     // Scan all uses of this instruction to see if it is used outside of its
   1552     // block, and if so, record them in UsesToRename.
   1553     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
   1554          ++UI) {
   1555       Instruction *User = cast<Instruction>(*UI);
   1556       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   1557         if (UserPN->getIncomingBlock(UI) == BB)
   1558           continue;
   1559       } else if (User->getParent() == BB)
   1560         continue;
   1561 
   1562       UsesToRename.push_back(&UI.getUse());
   1563     }
   1564 
   1565     // If there are no uses outside the block, we're done with this instruction.
   1566     if (UsesToRename.empty())
   1567       continue;
   1568 
   1569     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
   1570 
   1571     // We found a use of I outside of BB.  Rename all uses of I that are outside
   1572     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   1573     // with the two values we know.
   1574     SSAUpdate.Initialize(I->getType(), I->getName());
   1575     SSAUpdate.AddAvailableValue(BB, I);
   1576     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
   1577 
   1578     while (!UsesToRename.empty())
   1579       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   1580     DEBUG(dbgs() << "\n");
   1581   }
   1582 
   1583   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
   1584   // that we nuked.
   1585   BB->removePredecessor(PredBB, true);
   1586 
   1587   // Remove the unconditional branch at the end of the PredBB block.
   1588   OldPredBranch->eraseFromParent();
   1589 
   1590   ++NumDupes;
   1591   return true;
   1592 }
   1593 
   1594 
   1595