1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/ 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 //===----------------------------------------------------------------------===/ 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===/ 12 13 #include "clang/Sema/Sema.h" 14 #include "clang/Sema/DeclSpec.h" 15 #include "clang/Sema/Template.h" 16 #include "clang/Sema/TemplateDeduction.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "TreeTransform.h" 25 #include <algorithm> 26 27 namespace clang { 28 using namespace sema; 29 30 /// \brief Various flags that control template argument deduction. 31 /// 32 /// These flags can be bitwise-OR'd together. 33 enum TemplateDeductionFlags { 34 /// \brief No template argument deduction flags, which indicates the 35 /// strictest results for template argument deduction (as used for, e.g., 36 /// matching class template partial specializations). 37 TDF_None = 0, 38 /// \brief Within template argument deduction from a function call, we are 39 /// matching with a parameter type for which the original parameter was 40 /// a reference. 41 TDF_ParamWithReferenceType = 0x1, 42 /// \brief Within template argument deduction from a function call, we 43 /// are matching in a case where we ignore cv-qualifiers. 44 TDF_IgnoreQualifiers = 0x02, 45 /// \brief Within template argument deduction from a function call, 46 /// we are matching in a case where we can perform template argument 47 /// deduction from a template-id of a derived class of the argument type. 48 TDF_DerivedClass = 0x04, 49 /// \brief Allow non-dependent types to differ, e.g., when performing 50 /// template argument deduction from a function call where conversions 51 /// may apply. 52 TDF_SkipNonDependent = 0x08, 53 /// \brief Whether we are performing template argument deduction for 54 /// parameters and arguments in a top-level template argument 55 TDF_TopLevelParameterTypeList = 0x10 56 }; 57 } 58 59 using namespace clang; 60 61 /// \brief Compare two APSInts, extending and switching the sign as 62 /// necessary to compare their values regardless of underlying type. 63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 64 if (Y.getBitWidth() > X.getBitWidth()) 65 X = X.extend(Y.getBitWidth()); 66 else if (Y.getBitWidth() < X.getBitWidth()) 67 Y = Y.extend(X.getBitWidth()); 68 69 // If there is a signedness mismatch, correct it. 70 if (X.isSigned() != Y.isSigned()) { 71 // If the signed value is negative, then the values cannot be the same. 72 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 73 return false; 74 75 Y.setIsSigned(true); 76 X.setIsSigned(true); 77 } 78 79 return X == Y; 80 } 81 82 static Sema::TemplateDeductionResult 83 DeduceTemplateArguments(Sema &S, 84 TemplateParameterList *TemplateParams, 85 const TemplateArgument &Param, 86 TemplateArgument Arg, 87 TemplateDeductionInfo &Info, 88 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced); 89 90 /// \brief Whether template argument deduction for two reference parameters 91 /// resulted in the argument type, parameter type, or neither type being more 92 /// qualified than the other. 93 enum DeductionQualifierComparison { 94 NeitherMoreQualified = 0, 95 ParamMoreQualified, 96 ArgMoreQualified 97 }; 98 99 /// \brief Stores the result of comparing two reference parameters while 100 /// performing template argument deduction for partial ordering of function 101 /// templates. 102 struct RefParamPartialOrderingComparison { 103 /// \brief Whether the parameter type is an rvalue reference type. 104 bool ParamIsRvalueRef; 105 /// \brief Whether the argument type is an rvalue reference type. 106 bool ArgIsRvalueRef; 107 108 /// \brief Whether the parameter or argument (or neither) is more qualified. 109 DeductionQualifierComparison Qualifiers; 110 }; 111 112 113 114 static Sema::TemplateDeductionResult 115 DeduceTemplateArguments(Sema &S, 116 TemplateParameterList *TemplateParams, 117 QualType Param, 118 QualType Arg, 119 TemplateDeductionInfo &Info, 120 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 121 unsigned TDF, 122 bool PartialOrdering = false, 123 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> * 124 RefParamComparisons = 0); 125 126 static Sema::TemplateDeductionResult 127 DeduceTemplateArguments(Sema &S, 128 TemplateParameterList *TemplateParams, 129 const TemplateArgument *Params, unsigned NumParams, 130 const TemplateArgument *Args, unsigned NumArgs, 131 TemplateDeductionInfo &Info, 132 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 133 bool NumberOfArgumentsMustMatch = true); 134 135 /// \brief If the given expression is of a form that permits the deduction 136 /// of a non-type template parameter, return the declaration of that 137 /// non-type template parameter. 138 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) { 139 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) 140 E = IC->getSubExpr(); 141 142 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 143 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 144 145 return 0; 146 } 147 148 /// \brief Determine whether two declaration pointers refer to the same 149 /// declaration. 150 static bool isSameDeclaration(Decl *X, Decl *Y) { 151 if (!X || !Y) 152 return !X && !Y; 153 154 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 155 X = NX->getUnderlyingDecl(); 156 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 157 Y = NY->getUnderlyingDecl(); 158 159 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 160 } 161 162 /// \brief Verify that the given, deduced template arguments are compatible. 163 /// 164 /// \returns The deduced template argument, or a NULL template argument if 165 /// the deduced template arguments were incompatible. 166 static DeducedTemplateArgument 167 checkDeducedTemplateArguments(ASTContext &Context, 168 const DeducedTemplateArgument &X, 169 const DeducedTemplateArgument &Y) { 170 // We have no deduction for one or both of the arguments; they're compatible. 171 if (X.isNull()) 172 return Y; 173 if (Y.isNull()) 174 return X; 175 176 switch (X.getKind()) { 177 case TemplateArgument::Null: 178 llvm_unreachable("Non-deduced template arguments handled above"); 179 180 case TemplateArgument::Type: 181 // If two template type arguments have the same type, they're compatible. 182 if (Y.getKind() == TemplateArgument::Type && 183 Context.hasSameType(X.getAsType(), Y.getAsType())) 184 return X; 185 186 return DeducedTemplateArgument(); 187 188 case TemplateArgument::Integral: 189 // If we deduced a constant in one case and either a dependent expression or 190 // declaration in another case, keep the integral constant. 191 // If both are integral constants with the same value, keep that value. 192 if (Y.getKind() == TemplateArgument::Expression || 193 Y.getKind() == TemplateArgument::Declaration || 194 (Y.getKind() == TemplateArgument::Integral && 195 hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral()))) 196 return DeducedTemplateArgument(X, 197 X.wasDeducedFromArrayBound() && 198 Y.wasDeducedFromArrayBound()); 199 200 // All other combinations are incompatible. 201 return DeducedTemplateArgument(); 202 203 case TemplateArgument::Template: 204 if (Y.getKind() == TemplateArgument::Template && 205 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 206 return X; 207 208 // All other combinations are incompatible. 209 return DeducedTemplateArgument(); 210 211 case TemplateArgument::TemplateExpansion: 212 if (Y.getKind() == TemplateArgument::TemplateExpansion && 213 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 214 Y.getAsTemplateOrTemplatePattern())) 215 return X; 216 217 // All other combinations are incompatible. 218 return DeducedTemplateArgument(); 219 220 case TemplateArgument::Expression: 221 // If we deduced a dependent expression in one case and either an integral 222 // constant or a declaration in another case, keep the integral constant 223 // or declaration. 224 if (Y.getKind() == TemplateArgument::Integral || 225 Y.getKind() == TemplateArgument::Declaration) 226 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() && 227 Y.wasDeducedFromArrayBound()); 228 229 if (Y.getKind() == TemplateArgument::Expression) { 230 // Compare the expressions for equality 231 llvm::FoldingSetNodeID ID1, ID2; 232 X.getAsExpr()->Profile(ID1, Context, true); 233 Y.getAsExpr()->Profile(ID2, Context, true); 234 if (ID1 == ID2) 235 return X; 236 } 237 238 // All other combinations are incompatible. 239 return DeducedTemplateArgument(); 240 241 case TemplateArgument::Declaration: 242 // If we deduced a declaration and a dependent expression, keep the 243 // declaration. 244 if (Y.getKind() == TemplateArgument::Expression) 245 return X; 246 247 // If we deduced a declaration and an integral constant, keep the 248 // integral constant. 249 if (Y.getKind() == TemplateArgument::Integral) 250 return Y; 251 252 // If we deduced two declarations, make sure they they refer to the 253 // same declaration. 254 if (Y.getKind() == TemplateArgument::Declaration && 255 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 256 return X; 257 258 // All other combinations are incompatible. 259 return DeducedTemplateArgument(); 260 261 case TemplateArgument::Pack: 262 if (Y.getKind() != TemplateArgument::Pack || 263 X.pack_size() != Y.pack_size()) 264 return DeducedTemplateArgument(); 265 266 for (TemplateArgument::pack_iterator XA = X.pack_begin(), 267 XAEnd = X.pack_end(), 268 YA = Y.pack_begin(); 269 XA != XAEnd; ++XA, ++YA) { 270 if (checkDeducedTemplateArguments(Context, 271 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 272 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())) 273 .isNull()) 274 return DeducedTemplateArgument(); 275 } 276 277 return X; 278 } 279 280 return DeducedTemplateArgument(); 281 } 282 283 /// \brief Deduce the value of the given non-type template parameter 284 /// from the given constant. 285 static Sema::TemplateDeductionResult 286 DeduceNonTypeTemplateArgument(Sema &S, 287 NonTypeTemplateParmDecl *NTTP, 288 llvm::APSInt Value, QualType ValueType, 289 bool DeducedFromArrayBound, 290 TemplateDeductionInfo &Info, 291 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 292 assert(NTTP->getDepth() == 0 && 293 "Cannot deduce non-type template argument with depth > 0"); 294 295 DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound); 296 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 297 Deduced[NTTP->getIndex()], 298 NewDeduced); 299 if (Result.isNull()) { 300 Info.Param = NTTP; 301 Info.FirstArg = Deduced[NTTP->getIndex()]; 302 Info.SecondArg = NewDeduced; 303 return Sema::TDK_Inconsistent; 304 } 305 306 Deduced[NTTP->getIndex()] = Result; 307 return Sema::TDK_Success; 308 } 309 310 /// \brief Deduce the value of the given non-type template parameter 311 /// from the given type- or value-dependent expression. 312 /// 313 /// \returns true if deduction succeeded, false otherwise. 314 static Sema::TemplateDeductionResult 315 DeduceNonTypeTemplateArgument(Sema &S, 316 NonTypeTemplateParmDecl *NTTP, 317 Expr *Value, 318 TemplateDeductionInfo &Info, 319 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 320 assert(NTTP->getDepth() == 0 && 321 "Cannot deduce non-type template argument with depth > 0"); 322 assert((Value->isTypeDependent() || Value->isValueDependent()) && 323 "Expression template argument must be type- or value-dependent."); 324 325 DeducedTemplateArgument NewDeduced(Value); 326 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 327 Deduced[NTTP->getIndex()], 328 NewDeduced); 329 330 if (Result.isNull()) { 331 Info.Param = NTTP; 332 Info.FirstArg = Deduced[NTTP->getIndex()]; 333 Info.SecondArg = NewDeduced; 334 return Sema::TDK_Inconsistent; 335 } 336 337 Deduced[NTTP->getIndex()] = Result; 338 return Sema::TDK_Success; 339 } 340 341 /// \brief Deduce the value of the given non-type template parameter 342 /// from the given declaration. 343 /// 344 /// \returns true if deduction succeeded, false otherwise. 345 static Sema::TemplateDeductionResult 346 DeduceNonTypeTemplateArgument(Sema &S, 347 NonTypeTemplateParmDecl *NTTP, 348 Decl *D, 349 TemplateDeductionInfo &Info, 350 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 351 assert(NTTP->getDepth() == 0 && 352 "Cannot deduce non-type template argument with depth > 0"); 353 354 DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0); 355 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 356 Deduced[NTTP->getIndex()], 357 NewDeduced); 358 if (Result.isNull()) { 359 Info.Param = NTTP; 360 Info.FirstArg = Deduced[NTTP->getIndex()]; 361 Info.SecondArg = NewDeduced; 362 return Sema::TDK_Inconsistent; 363 } 364 365 Deduced[NTTP->getIndex()] = Result; 366 return Sema::TDK_Success; 367 } 368 369 static Sema::TemplateDeductionResult 370 DeduceTemplateArguments(Sema &S, 371 TemplateParameterList *TemplateParams, 372 TemplateName Param, 373 TemplateName Arg, 374 TemplateDeductionInfo &Info, 375 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 376 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 377 if (!ParamDecl) { 378 // The parameter type is dependent and is not a template template parameter, 379 // so there is nothing that we can deduce. 380 return Sema::TDK_Success; 381 } 382 383 if (TemplateTemplateParmDecl *TempParam 384 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 385 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 386 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 387 Deduced[TempParam->getIndex()], 388 NewDeduced); 389 if (Result.isNull()) { 390 Info.Param = TempParam; 391 Info.FirstArg = Deduced[TempParam->getIndex()]; 392 Info.SecondArg = NewDeduced; 393 return Sema::TDK_Inconsistent; 394 } 395 396 Deduced[TempParam->getIndex()] = Result; 397 return Sema::TDK_Success; 398 } 399 400 // Verify that the two template names are equivalent. 401 if (S.Context.hasSameTemplateName(Param, Arg)) 402 return Sema::TDK_Success; 403 404 // Mismatch of non-dependent template parameter to argument. 405 Info.FirstArg = TemplateArgument(Param); 406 Info.SecondArg = TemplateArgument(Arg); 407 return Sema::TDK_NonDeducedMismatch; 408 } 409 410 /// \brief Deduce the template arguments by comparing the template parameter 411 /// type (which is a template-id) with the template argument type. 412 /// 413 /// \param S the Sema 414 /// 415 /// \param TemplateParams the template parameters that we are deducing 416 /// 417 /// \param Param the parameter type 418 /// 419 /// \param Arg the argument type 420 /// 421 /// \param Info information about the template argument deduction itself 422 /// 423 /// \param Deduced the deduced template arguments 424 /// 425 /// \returns the result of template argument deduction so far. Note that a 426 /// "success" result means that template argument deduction has not yet failed, 427 /// but it may still fail, later, for other reasons. 428 static Sema::TemplateDeductionResult 429 DeduceTemplateArguments(Sema &S, 430 TemplateParameterList *TemplateParams, 431 const TemplateSpecializationType *Param, 432 QualType Arg, 433 TemplateDeductionInfo &Info, 434 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 435 assert(Arg.isCanonical() && "Argument type must be canonical"); 436 437 // Check whether the template argument is a dependent template-id. 438 if (const TemplateSpecializationType *SpecArg 439 = dyn_cast<TemplateSpecializationType>(Arg)) { 440 // Perform template argument deduction for the template name. 441 if (Sema::TemplateDeductionResult Result 442 = DeduceTemplateArguments(S, TemplateParams, 443 Param->getTemplateName(), 444 SpecArg->getTemplateName(), 445 Info, Deduced)) 446 return Result; 447 448 449 // Perform template argument deduction on each template 450 // argument. Ignore any missing/extra arguments, since they could be 451 // filled in by default arguments. 452 return DeduceTemplateArguments(S, TemplateParams, 453 Param->getArgs(), Param->getNumArgs(), 454 SpecArg->getArgs(), SpecArg->getNumArgs(), 455 Info, Deduced, 456 /*NumberOfArgumentsMustMatch=*/false); 457 } 458 459 // If the argument type is a class template specialization, we 460 // perform template argument deduction using its template 461 // arguments. 462 const RecordType *RecordArg = dyn_cast<RecordType>(Arg); 463 if (!RecordArg) 464 return Sema::TDK_NonDeducedMismatch; 465 466 ClassTemplateSpecializationDecl *SpecArg 467 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); 468 if (!SpecArg) 469 return Sema::TDK_NonDeducedMismatch; 470 471 // Perform template argument deduction for the template name. 472 if (Sema::TemplateDeductionResult Result 473 = DeduceTemplateArguments(S, 474 TemplateParams, 475 Param->getTemplateName(), 476 TemplateName(SpecArg->getSpecializedTemplate()), 477 Info, Deduced)) 478 return Result; 479 480 // Perform template argument deduction for the template arguments. 481 return DeduceTemplateArguments(S, TemplateParams, 482 Param->getArgs(), Param->getNumArgs(), 483 SpecArg->getTemplateArgs().data(), 484 SpecArg->getTemplateArgs().size(), 485 Info, Deduced); 486 } 487 488 /// \brief Determines whether the given type is an opaque type that 489 /// might be more qualified when instantiated. 490 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 491 switch (T->getTypeClass()) { 492 case Type::TypeOfExpr: 493 case Type::TypeOf: 494 case Type::DependentName: 495 case Type::Decltype: 496 case Type::UnresolvedUsing: 497 case Type::TemplateTypeParm: 498 return true; 499 500 case Type::ConstantArray: 501 case Type::IncompleteArray: 502 case Type::VariableArray: 503 case Type::DependentSizedArray: 504 return IsPossiblyOpaquelyQualifiedType( 505 cast<ArrayType>(T)->getElementType()); 506 507 default: 508 return false; 509 } 510 } 511 512 /// \brief Retrieve the depth and index of a template parameter. 513 static std::pair<unsigned, unsigned> 514 getDepthAndIndex(NamedDecl *ND) { 515 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND)) 516 return std::make_pair(TTP->getDepth(), TTP->getIndex()); 517 518 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND)) 519 return std::make_pair(NTTP->getDepth(), NTTP->getIndex()); 520 521 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND); 522 return std::make_pair(TTP->getDepth(), TTP->getIndex()); 523 } 524 525 /// \brief Retrieve the depth and index of an unexpanded parameter pack. 526 static std::pair<unsigned, unsigned> 527 getDepthAndIndex(UnexpandedParameterPack UPP) { 528 if (const TemplateTypeParmType *TTP 529 = UPP.first.dyn_cast<const TemplateTypeParmType *>()) 530 return std::make_pair(TTP->getDepth(), TTP->getIndex()); 531 532 return getDepthAndIndex(UPP.first.get<NamedDecl *>()); 533 } 534 535 /// \brief Helper function to build a TemplateParameter when we don't 536 /// know its type statically. 537 static TemplateParameter makeTemplateParameter(Decl *D) { 538 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 539 return TemplateParameter(TTP); 540 else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 541 return TemplateParameter(NTTP); 542 543 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 544 } 545 546 /// \brief Prepare to perform template argument deduction for all of the 547 /// arguments in a set of argument packs. 548 static void PrepareArgumentPackDeduction(Sema &S, 549 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 550 const llvm::SmallVectorImpl<unsigned> &PackIndices, 551 llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks, 552 llvm::SmallVectorImpl< 553 llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) { 554 // Save the deduced template arguments for each parameter pack expanded 555 // by this pack expansion, then clear out the deduction. 556 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { 557 // Save the previously-deduced argument pack, then clear it out so that we 558 // can deduce a new argument pack. 559 SavedPacks[I] = Deduced[PackIndices[I]]; 560 Deduced[PackIndices[I]] = TemplateArgument(); 561 562 // If the template arugment pack was explicitly specified, add that to 563 // the set of deduced arguments. 564 const TemplateArgument *ExplicitArgs; 565 unsigned NumExplicitArgs; 566 if (NamedDecl *PartiallySubstitutedPack 567 = S.CurrentInstantiationScope->getPartiallySubstitutedPack( 568 &ExplicitArgs, 569 &NumExplicitArgs)) { 570 if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I]) 571 NewlyDeducedPacks[I].append(ExplicitArgs, 572 ExplicitArgs + NumExplicitArgs); 573 } 574 } 575 } 576 577 /// \brief Finish template argument deduction for a set of argument packs, 578 /// producing the argument packs and checking for consistency with prior 579 /// deductions. 580 static Sema::TemplateDeductionResult 581 FinishArgumentPackDeduction(Sema &S, 582 TemplateParameterList *TemplateParams, 583 bool HasAnyArguments, 584 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 585 const llvm::SmallVectorImpl<unsigned> &PackIndices, 586 llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks, 587 llvm::SmallVectorImpl< 588 llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks, 589 TemplateDeductionInfo &Info) { 590 // Build argument packs for each of the parameter packs expanded by this 591 // pack expansion. 592 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { 593 if (HasAnyArguments && NewlyDeducedPacks[I].empty()) { 594 // We were not able to deduce anything for this parameter pack, 595 // so just restore the saved argument pack. 596 Deduced[PackIndices[I]] = SavedPacks[I]; 597 continue; 598 } 599 600 DeducedTemplateArgument NewPack; 601 602 if (NewlyDeducedPacks[I].empty()) { 603 // If we deduced an empty argument pack, create it now. 604 NewPack = DeducedTemplateArgument(TemplateArgument(0, 0)); 605 } else { 606 TemplateArgument *ArgumentPack 607 = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()]; 608 std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(), 609 ArgumentPack); 610 NewPack 611 = DeducedTemplateArgument(TemplateArgument(ArgumentPack, 612 NewlyDeducedPacks[I].size()), 613 NewlyDeducedPacks[I][0].wasDeducedFromArrayBound()); 614 } 615 616 DeducedTemplateArgument Result 617 = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack); 618 if (Result.isNull()) { 619 Info.Param 620 = makeTemplateParameter(TemplateParams->getParam(PackIndices[I])); 621 Info.FirstArg = SavedPacks[I]; 622 Info.SecondArg = NewPack; 623 return Sema::TDK_Inconsistent; 624 } 625 626 Deduced[PackIndices[I]] = Result; 627 } 628 629 return Sema::TDK_Success; 630 } 631 632 /// \brief Deduce the template arguments by comparing the list of parameter 633 /// types to the list of argument types, as in the parameter-type-lists of 634 /// function types (C++ [temp.deduct.type]p10). 635 /// 636 /// \param S The semantic analysis object within which we are deducing 637 /// 638 /// \param TemplateParams The template parameters that we are deducing 639 /// 640 /// \param Params The list of parameter types 641 /// 642 /// \param NumParams The number of types in \c Params 643 /// 644 /// \param Args The list of argument types 645 /// 646 /// \param NumArgs The number of types in \c Args 647 /// 648 /// \param Info information about the template argument deduction itself 649 /// 650 /// \param Deduced the deduced template arguments 651 /// 652 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 653 /// how template argument deduction is performed. 654 /// 655 /// \param PartialOrdering If true, we are performing template argument 656 /// deduction for during partial ordering for a call 657 /// (C++0x [temp.deduct.partial]). 658 /// 659 /// \param RefParamComparisons If we're performing template argument deduction 660 /// in the context of partial ordering, the set of qualifier comparisons. 661 /// 662 /// \returns the result of template argument deduction so far. Note that a 663 /// "success" result means that template argument deduction has not yet failed, 664 /// but it may still fail, later, for other reasons. 665 static Sema::TemplateDeductionResult 666 DeduceTemplateArguments(Sema &S, 667 TemplateParameterList *TemplateParams, 668 const QualType *Params, unsigned NumParams, 669 const QualType *Args, unsigned NumArgs, 670 TemplateDeductionInfo &Info, 671 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 672 unsigned TDF, 673 bool PartialOrdering = false, 674 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> * 675 RefParamComparisons = 0) { 676 // Fast-path check to see if we have too many/too few arguments. 677 if (NumParams != NumArgs && 678 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) && 679 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1]))) 680 return Sema::TDK_NonDeducedMismatch; 681 682 // C++0x [temp.deduct.type]p10: 683 // Similarly, if P has a form that contains (T), then each parameter type 684 // Pi of the respective parameter-type- list of P is compared with the 685 // corresponding parameter type Ai of the corresponding parameter-type-list 686 // of A. [...] 687 unsigned ArgIdx = 0, ParamIdx = 0; 688 for (; ParamIdx != NumParams; ++ParamIdx) { 689 // Check argument types. 690 const PackExpansionType *Expansion 691 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 692 if (!Expansion) { 693 // Simple case: compare the parameter and argument types at this point. 694 695 // Make sure we have an argument. 696 if (ArgIdx >= NumArgs) 697 return Sema::TDK_NonDeducedMismatch; 698 699 if (isa<PackExpansionType>(Args[ArgIdx])) { 700 // C++0x [temp.deduct.type]p22: 701 // If the original function parameter associated with A is a function 702 // parameter pack and the function parameter associated with P is not 703 // a function parameter pack, then template argument deduction fails. 704 return Sema::TDK_NonDeducedMismatch; 705 } 706 707 if (Sema::TemplateDeductionResult Result 708 = DeduceTemplateArguments(S, TemplateParams, 709 Params[ParamIdx], 710 Args[ArgIdx], 711 Info, Deduced, TDF, 712 PartialOrdering, 713 RefParamComparisons)) 714 return Result; 715 716 ++ArgIdx; 717 continue; 718 } 719 720 // C++0x [temp.deduct.type]p5: 721 // The non-deduced contexts are: 722 // - A function parameter pack that does not occur at the end of the 723 // parameter-declaration-clause. 724 if (ParamIdx + 1 < NumParams) 725 return Sema::TDK_Success; 726 727 // C++0x [temp.deduct.type]p10: 728 // If the parameter-declaration corresponding to Pi is a function 729 // parameter pack, then the type of its declarator- id is compared with 730 // each remaining parameter type in the parameter-type-list of A. Each 731 // comparison deduces template arguments for subsequent positions in the 732 // template parameter packs expanded by the function parameter pack. 733 734 // Compute the set of template parameter indices that correspond to 735 // parameter packs expanded by the pack expansion. 736 llvm::SmallVector<unsigned, 2> PackIndices; 737 QualType Pattern = Expansion->getPattern(); 738 { 739 llvm::BitVector SawIndices(TemplateParams->size()); 740 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded; 741 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 742 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 743 unsigned Depth, Index; 744 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 745 if (Depth == 0 && !SawIndices[Index]) { 746 SawIndices[Index] = true; 747 PackIndices.push_back(Index); 748 } 749 } 750 } 751 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?"); 752 753 // Keep track of the deduced template arguments for each parameter pack 754 // expanded by this pack expansion (the outer index) and for each 755 // template argument (the inner SmallVectors). 756 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2> 757 NewlyDeducedPacks(PackIndices.size()); 758 llvm::SmallVector<DeducedTemplateArgument, 2> 759 SavedPacks(PackIndices.size()); 760 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks, 761 NewlyDeducedPacks); 762 763 bool HasAnyArguments = false; 764 for (; ArgIdx < NumArgs; ++ArgIdx) { 765 HasAnyArguments = true; 766 767 // Deduce template arguments from the pattern. 768 if (Sema::TemplateDeductionResult Result 769 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], 770 Info, Deduced, TDF, PartialOrdering, 771 RefParamComparisons)) 772 return Result; 773 774 // Capture the deduced template arguments for each parameter pack expanded 775 // by this pack expansion, add them to the list of arguments we've deduced 776 // for that pack, then clear out the deduced argument. 777 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { 778 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]]; 779 if (!DeducedArg.isNull()) { 780 NewlyDeducedPacks[I].push_back(DeducedArg); 781 DeducedArg = DeducedTemplateArgument(); 782 } 783 } 784 } 785 786 // Build argument packs for each of the parameter packs expanded by this 787 // pack expansion. 788 if (Sema::TemplateDeductionResult Result 789 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments, 790 Deduced, PackIndices, SavedPacks, 791 NewlyDeducedPacks, Info)) 792 return Result; 793 } 794 795 // Make sure we don't have any extra arguments. 796 if (ArgIdx < NumArgs) 797 return Sema::TDK_NonDeducedMismatch; 798 799 return Sema::TDK_Success; 800 } 801 802 /// \brief Determine whether the parameter has qualifiers that are either 803 /// inconsistent with or a superset of the argument's qualifiers. 804 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 805 QualType ArgType) { 806 Qualifiers ParamQs = ParamType.getQualifiers(); 807 Qualifiers ArgQs = ArgType.getQualifiers(); 808 809 if (ParamQs == ArgQs) 810 return false; 811 812 // Mismatched (but not missing) Objective-C GC attributes. 813 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 814 ParamQs.hasObjCGCAttr()) 815 return true; 816 817 // Mismatched (but not missing) address spaces. 818 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 819 ParamQs.hasAddressSpace()) 820 return true; 821 822 // Mismatched (but not missing) Objective-C lifetime qualifiers. 823 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 824 ParamQs.hasObjCLifetime()) 825 return true; 826 827 // CVR qualifier superset. 828 return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) && 829 ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers()) 830 == ParamQs.getCVRQualifiers()); 831 } 832 833 /// \brief Deduce the template arguments by comparing the parameter type and 834 /// the argument type (C++ [temp.deduct.type]). 835 /// 836 /// \param S the semantic analysis object within which we are deducing 837 /// 838 /// \param TemplateParams the template parameters that we are deducing 839 /// 840 /// \param ParamIn the parameter type 841 /// 842 /// \param ArgIn the argument type 843 /// 844 /// \param Info information about the template argument deduction itself 845 /// 846 /// \param Deduced the deduced template arguments 847 /// 848 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 849 /// how template argument deduction is performed. 850 /// 851 /// \param PartialOrdering Whether we're performing template argument deduction 852 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 853 /// 854 /// \param RefParamComparisons If we're performing template argument deduction 855 /// in the context of partial ordering, the set of qualifier comparisons. 856 /// 857 /// \returns the result of template argument deduction so far. Note that a 858 /// "success" result means that template argument deduction has not yet failed, 859 /// but it may still fail, later, for other reasons. 860 static Sema::TemplateDeductionResult 861 DeduceTemplateArguments(Sema &S, 862 TemplateParameterList *TemplateParams, 863 QualType ParamIn, QualType ArgIn, 864 TemplateDeductionInfo &Info, 865 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 866 unsigned TDF, 867 bool PartialOrdering, 868 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) { 869 // We only want to look at the canonical types, since typedefs and 870 // sugar are not part of template argument deduction. 871 QualType Param = S.Context.getCanonicalType(ParamIn); 872 QualType Arg = S.Context.getCanonicalType(ArgIn); 873 874 // If the argument type is a pack expansion, look at its pattern. 875 // This isn't explicitly called out 876 if (const PackExpansionType *ArgExpansion 877 = dyn_cast<PackExpansionType>(Arg)) 878 Arg = ArgExpansion->getPattern(); 879 880 if (PartialOrdering) { 881 // C++0x [temp.deduct.partial]p5: 882 // Before the partial ordering is done, certain transformations are 883 // performed on the types used for partial ordering: 884 // - If P is a reference type, P is replaced by the type referred to. 885 const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); 886 if (ParamRef) 887 Param = ParamRef->getPointeeType(); 888 889 // - If A is a reference type, A is replaced by the type referred to. 890 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); 891 if (ArgRef) 892 Arg = ArgRef->getPointeeType(); 893 894 if (RefParamComparisons && ParamRef && ArgRef) { 895 // C++0x [temp.deduct.partial]p6: 896 // If both P and A were reference types (before being replaced with the 897 // type referred to above), determine which of the two types (if any) is 898 // more cv-qualified than the other; otherwise the types are considered 899 // to be equally cv-qualified for partial ordering purposes. The result 900 // of this determination will be used below. 901 // 902 // We save this information for later, using it only when deduction 903 // succeeds in both directions. 904 RefParamPartialOrderingComparison Comparison; 905 Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>(); 906 Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>(); 907 Comparison.Qualifiers = NeitherMoreQualified; 908 909 Qualifiers ParamQuals = Param.getQualifiers(); 910 Qualifiers ArgQuals = Arg.getQualifiers(); 911 if (ParamQuals.isStrictSupersetOf(ArgQuals)) 912 Comparison.Qualifiers = ParamMoreQualified; 913 else if (ArgQuals.isStrictSupersetOf(ParamQuals)) 914 Comparison.Qualifiers = ArgMoreQualified; 915 RefParamComparisons->push_back(Comparison); 916 } 917 918 // C++0x [temp.deduct.partial]p7: 919 // Remove any top-level cv-qualifiers: 920 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 921 // version of P. 922 Param = Param.getUnqualifiedType(); 923 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 924 // version of A. 925 Arg = Arg.getUnqualifiedType(); 926 } else { 927 // C++0x [temp.deduct.call]p4 bullet 1: 928 // - If the original P is a reference type, the deduced A (i.e., the type 929 // referred to by the reference) can be more cv-qualified than the 930 // transformed A. 931 if (TDF & TDF_ParamWithReferenceType) { 932 Qualifiers Quals; 933 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); 934 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & 935 Arg.getCVRQualifiers()); 936 Param = S.Context.getQualifiedType(UnqualParam, Quals); 937 } 938 939 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { 940 // C++0x [temp.deduct.type]p10: 941 // If P and A are function types that originated from deduction when 942 // taking the address of a function template (14.8.2.2) or when deducing 943 // template arguments from a function declaration (14.8.2.6) and Pi and 944 // Ai are parameters of the top-level parameter-type-list of P and A, 945 // respectively, Pi is adjusted if it is an rvalue reference to a 946 // cv-unqualified template parameter and Ai is an lvalue reference, in 947 // which case the type of Pi is changed to be the template parameter 948 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 949 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 950 // deduced as X&. - end note ] 951 TDF &= ~TDF_TopLevelParameterTypeList; 952 953 if (const RValueReferenceType *ParamRef 954 = Param->getAs<RValueReferenceType>()) { 955 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) && 956 !ParamRef->getPointeeType().getQualifiers()) 957 if (Arg->isLValueReferenceType()) 958 Param = ParamRef->getPointeeType(); 959 } 960 } 961 } 962 963 // If the parameter type is not dependent, there is nothing to deduce. 964 if (!Param->isDependentType()) { 965 if (!(TDF & TDF_SkipNonDependent) && Param != Arg) 966 return Sema::TDK_NonDeducedMismatch; 967 968 return Sema::TDK_Success; 969 } 970 971 // C++ [temp.deduct.type]p9: 972 // A template type argument T, a template template argument TT or a 973 // template non-type argument i can be deduced if P and A have one of 974 // the following forms: 975 // 976 // T 977 // cv-list T 978 if (const TemplateTypeParmType *TemplateTypeParm 979 = Param->getAs<TemplateTypeParmType>()) { 980 unsigned Index = TemplateTypeParm->getIndex(); 981 bool RecanonicalizeArg = false; 982 983 // If the argument type is an array type, move the qualifiers up to the 984 // top level, so they can be matched with the qualifiers on the parameter. 985 if (isa<ArrayType>(Arg)) { 986 Qualifiers Quals; 987 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 988 if (Quals) { 989 Arg = S.Context.getQualifiedType(Arg, Quals); 990 RecanonicalizeArg = true; 991 } 992 } 993 994 // The argument type can not be less qualified than the parameter 995 // type. 996 if (!(TDF & TDF_IgnoreQualifiers) && 997 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { 998 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 999 Info.FirstArg = TemplateArgument(Param); 1000 Info.SecondArg = TemplateArgument(Arg); 1001 return Sema::TDK_Underqualified; 1002 } 1003 1004 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0"); 1005 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); 1006 QualType DeducedType = Arg; 1007 1008 // Remove any qualifiers on the parameter from the deduced type. 1009 // We checked the qualifiers for consistency above. 1010 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1011 Qualifiers ParamQs = Param.getQualifiers(); 1012 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1013 if (ParamQs.hasObjCGCAttr()) 1014 DeducedQs.removeObjCGCAttr(); 1015 if (ParamQs.hasAddressSpace()) 1016 DeducedQs.removeAddressSpace(); 1017 if (ParamQs.hasObjCLifetime()) 1018 DeducedQs.removeObjCLifetime(); 1019 1020 // Objective-C ARC: 1021 // If template deduction would produce an argument type with lifetime type 1022 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1023 if (S.getLangOptions().ObjCAutoRefCount && 1024 DeducedType->isObjCLifetimeType() && 1025 !DeducedQs.hasObjCLifetime()) 1026 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1027 1028 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), 1029 DeducedQs); 1030 1031 if (RecanonicalizeArg) 1032 DeducedType = S.Context.getCanonicalType(DeducedType); 1033 1034 DeducedTemplateArgument NewDeduced(DeducedType); 1035 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 1036 Deduced[Index], 1037 NewDeduced); 1038 if (Result.isNull()) { 1039 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1040 Info.FirstArg = Deduced[Index]; 1041 Info.SecondArg = NewDeduced; 1042 return Sema::TDK_Inconsistent; 1043 } 1044 1045 Deduced[Index] = Result; 1046 return Sema::TDK_Success; 1047 } 1048 1049 // Set up the template argument deduction information for a failure. 1050 Info.FirstArg = TemplateArgument(ParamIn); 1051 Info.SecondArg = TemplateArgument(ArgIn); 1052 1053 // If the parameter is an already-substituted template parameter 1054 // pack, do nothing: we don't know which of its arguments to look 1055 // at, so we have to wait until all of the parameter packs in this 1056 // expansion have arguments. 1057 if (isa<SubstTemplateTypeParmPackType>(Param)) 1058 return Sema::TDK_Success; 1059 1060 // Check the cv-qualifiers on the parameter and argument types. 1061 if (!(TDF & TDF_IgnoreQualifiers)) { 1062 if (TDF & TDF_ParamWithReferenceType) { 1063 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) 1064 return Sema::TDK_NonDeducedMismatch; 1065 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { 1066 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) 1067 return Sema::TDK_NonDeducedMismatch; 1068 } 1069 } 1070 1071 switch (Param->getTypeClass()) { 1072 // Non-canonical types cannot appear here. 1073 #define NON_CANONICAL_TYPE(Class, Base) \ 1074 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1075 #define TYPE(Class, Base) 1076 #include "clang/AST/TypeNodes.def" 1077 1078 case Type::TemplateTypeParm: 1079 case Type::SubstTemplateTypeParmPack: 1080 llvm_unreachable("Type nodes handled above"); 1081 1082 // These types cannot be used in templates or cannot be dependent, so 1083 // deduction always fails. 1084 case Type::Builtin: 1085 case Type::VariableArray: 1086 case Type::Vector: 1087 case Type::FunctionNoProto: 1088 case Type::Record: 1089 case Type::Enum: 1090 case Type::ObjCObject: 1091 case Type::ObjCInterface: 1092 case Type::ObjCObjectPointer: 1093 return Sema::TDK_NonDeducedMismatch; 1094 1095 // _Complex T [placeholder extension] 1096 case Type::Complex: 1097 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) 1098 return DeduceTemplateArguments(S, TemplateParams, 1099 cast<ComplexType>(Param)->getElementType(), 1100 ComplexArg->getElementType(), 1101 Info, Deduced, TDF); 1102 1103 return Sema::TDK_NonDeducedMismatch; 1104 1105 // T * 1106 case Type::Pointer: { 1107 QualType PointeeType; 1108 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { 1109 PointeeType = PointerArg->getPointeeType(); 1110 } else if (const ObjCObjectPointerType *PointerArg 1111 = Arg->getAs<ObjCObjectPointerType>()) { 1112 PointeeType = PointerArg->getPointeeType(); 1113 } else { 1114 return Sema::TDK_NonDeducedMismatch; 1115 } 1116 1117 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); 1118 return DeduceTemplateArguments(S, TemplateParams, 1119 cast<PointerType>(Param)->getPointeeType(), 1120 PointeeType, 1121 Info, Deduced, SubTDF); 1122 } 1123 1124 // T & 1125 case Type::LValueReference: { 1126 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>(); 1127 if (!ReferenceArg) 1128 return Sema::TDK_NonDeducedMismatch; 1129 1130 return DeduceTemplateArguments(S, TemplateParams, 1131 cast<LValueReferenceType>(Param)->getPointeeType(), 1132 ReferenceArg->getPointeeType(), 1133 Info, Deduced, 0); 1134 } 1135 1136 // T && [C++0x] 1137 case Type::RValueReference: { 1138 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>(); 1139 if (!ReferenceArg) 1140 return Sema::TDK_NonDeducedMismatch; 1141 1142 return DeduceTemplateArguments(S, TemplateParams, 1143 cast<RValueReferenceType>(Param)->getPointeeType(), 1144 ReferenceArg->getPointeeType(), 1145 Info, Deduced, 0); 1146 } 1147 1148 // T [] (implied, but not stated explicitly) 1149 case Type::IncompleteArray: { 1150 const IncompleteArrayType *IncompleteArrayArg = 1151 S.Context.getAsIncompleteArrayType(Arg); 1152 if (!IncompleteArrayArg) 1153 return Sema::TDK_NonDeducedMismatch; 1154 1155 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1156 return DeduceTemplateArguments(S, TemplateParams, 1157 S.Context.getAsIncompleteArrayType(Param)->getElementType(), 1158 IncompleteArrayArg->getElementType(), 1159 Info, Deduced, SubTDF); 1160 } 1161 1162 // T [integer-constant] 1163 case Type::ConstantArray: { 1164 const ConstantArrayType *ConstantArrayArg = 1165 S.Context.getAsConstantArrayType(Arg); 1166 if (!ConstantArrayArg) 1167 return Sema::TDK_NonDeducedMismatch; 1168 1169 const ConstantArrayType *ConstantArrayParm = 1170 S.Context.getAsConstantArrayType(Param); 1171 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) 1172 return Sema::TDK_NonDeducedMismatch; 1173 1174 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1175 return DeduceTemplateArguments(S, TemplateParams, 1176 ConstantArrayParm->getElementType(), 1177 ConstantArrayArg->getElementType(), 1178 Info, Deduced, SubTDF); 1179 } 1180 1181 // type [i] 1182 case Type::DependentSizedArray: { 1183 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); 1184 if (!ArrayArg) 1185 return Sema::TDK_NonDeducedMismatch; 1186 1187 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1188 1189 // Check the element type of the arrays 1190 const DependentSizedArrayType *DependentArrayParm 1191 = S.Context.getAsDependentSizedArrayType(Param); 1192 if (Sema::TemplateDeductionResult Result 1193 = DeduceTemplateArguments(S, TemplateParams, 1194 DependentArrayParm->getElementType(), 1195 ArrayArg->getElementType(), 1196 Info, Deduced, SubTDF)) 1197 return Result; 1198 1199 // Determine the array bound is something we can deduce. 1200 NonTypeTemplateParmDecl *NTTP 1201 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr()); 1202 if (!NTTP) 1203 return Sema::TDK_Success; 1204 1205 // We can perform template argument deduction for the given non-type 1206 // template parameter. 1207 assert(NTTP->getDepth() == 0 && 1208 "Cannot deduce non-type template argument at depth > 0"); 1209 if (const ConstantArrayType *ConstantArrayArg 1210 = dyn_cast<ConstantArrayType>(ArrayArg)) { 1211 llvm::APSInt Size(ConstantArrayArg->getSize()); 1212 return DeduceNonTypeTemplateArgument(S, NTTP, Size, 1213 S.Context.getSizeType(), 1214 /*ArrayBound=*/true, 1215 Info, Deduced); 1216 } 1217 if (const DependentSizedArrayType *DependentArrayArg 1218 = dyn_cast<DependentSizedArrayType>(ArrayArg)) 1219 if (DependentArrayArg->getSizeExpr()) 1220 return DeduceNonTypeTemplateArgument(S, NTTP, 1221 DependentArrayArg->getSizeExpr(), 1222 Info, Deduced); 1223 1224 // Incomplete type does not match a dependently-sized array type 1225 return Sema::TDK_NonDeducedMismatch; 1226 } 1227 1228 // type(*)(T) 1229 // T(*)() 1230 // T(*)(T) 1231 case Type::FunctionProto: { 1232 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; 1233 const FunctionProtoType *FunctionProtoArg = 1234 dyn_cast<FunctionProtoType>(Arg); 1235 if (!FunctionProtoArg) 1236 return Sema::TDK_NonDeducedMismatch; 1237 1238 const FunctionProtoType *FunctionProtoParam = 1239 cast<FunctionProtoType>(Param); 1240 1241 if (FunctionProtoParam->getTypeQuals() 1242 != FunctionProtoArg->getTypeQuals() || 1243 FunctionProtoParam->getRefQualifier() 1244 != FunctionProtoArg->getRefQualifier() || 1245 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) 1246 return Sema::TDK_NonDeducedMismatch; 1247 1248 // Check return types. 1249 if (Sema::TemplateDeductionResult Result 1250 = DeduceTemplateArguments(S, TemplateParams, 1251 FunctionProtoParam->getResultType(), 1252 FunctionProtoArg->getResultType(), 1253 Info, Deduced, 0)) 1254 return Result; 1255 1256 return DeduceTemplateArguments(S, TemplateParams, 1257 FunctionProtoParam->arg_type_begin(), 1258 FunctionProtoParam->getNumArgs(), 1259 FunctionProtoArg->arg_type_begin(), 1260 FunctionProtoArg->getNumArgs(), 1261 Info, Deduced, SubTDF); 1262 } 1263 1264 case Type::InjectedClassName: { 1265 // Treat a template's injected-class-name as if the template 1266 // specialization type had been used. 1267 Param = cast<InjectedClassNameType>(Param) 1268 ->getInjectedSpecializationType(); 1269 assert(isa<TemplateSpecializationType>(Param) && 1270 "injected class name is not a template specialization type"); 1271 // fall through 1272 } 1273 1274 // template-name<T> (where template-name refers to a class template) 1275 // template-name<i> 1276 // TT<T> 1277 // TT<i> 1278 // TT<> 1279 case Type::TemplateSpecialization: { 1280 const TemplateSpecializationType *SpecParam 1281 = cast<TemplateSpecializationType>(Param); 1282 1283 // Try to deduce template arguments from the template-id. 1284 Sema::TemplateDeductionResult Result 1285 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, 1286 Info, Deduced); 1287 1288 if (Result && (TDF & TDF_DerivedClass)) { 1289 // C++ [temp.deduct.call]p3b3: 1290 // If P is a class, and P has the form template-id, then A can be a 1291 // derived class of the deduced A. Likewise, if P is a pointer to a 1292 // class of the form template-id, A can be a pointer to a derived 1293 // class pointed to by the deduced A. 1294 // 1295 // More importantly: 1296 // These alternatives are considered only if type deduction would 1297 // otherwise fail. 1298 if (const RecordType *RecordT = Arg->getAs<RecordType>()) { 1299 // We cannot inspect base classes as part of deduction when the type 1300 // is incomplete, so either instantiate any templates necessary to 1301 // complete the type, or skip over it if it cannot be completed. 1302 if (S.RequireCompleteType(Info.getLocation(), Arg, 0)) 1303 return Result; 1304 1305 // Use data recursion to crawl through the list of base classes. 1306 // Visited contains the set of nodes we have already visited, while 1307 // ToVisit is our stack of records that we still need to visit. 1308 llvm::SmallPtrSet<const RecordType *, 8> Visited; 1309 llvm::SmallVector<const RecordType *, 8> ToVisit; 1310 ToVisit.push_back(RecordT); 1311 bool Successful = false; 1312 llvm::SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0); 1313 DeducedOrig = Deduced; 1314 while (!ToVisit.empty()) { 1315 // Retrieve the next class in the inheritance hierarchy. 1316 const RecordType *NextT = ToVisit.back(); 1317 ToVisit.pop_back(); 1318 1319 // If we have already seen this type, skip it. 1320 if (!Visited.insert(NextT)) 1321 continue; 1322 1323 // If this is a base class, try to perform template argument 1324 // deduction from it. 1325 if (NextT != RecordT) { 1326 Sema::TemplateDeductionResult BaseResult 1327 = DeduceTemplateArguments(S, TemplateParams, SpecParam, 1328 QualType(NextT, 0), Info, Deduced); 1329 1330 // If template argument deduction for this base was successful, 1331 // note that we had some success. Otherwise, ignore any deductions 1332 // from this base class. 1333 if (BaseResult == Sema::TDK_Success) { 1334 Successful = true; 1335 DeducedOrig = Deduced; 1336 } 1337 else 1338 Deduced = DeducedOrig; 1339 } 1340 1341 // Visit base classes 1342 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); 1343 for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(), 1344 BaseEnd = Next->bases_end(); 1345 Base != BaseEnd; ++Base) { 1346 assert(Base->getType()->isRecordType() && 1347 "Base class that isn't a record?"); 1348 ToVisit.push_back(Base->getType()->getAs<RecordType>()); 1349 } 1350 } 1351 1352 if (Successful) 1353 return Sema::TDK_Success; 1354 } 1355 1356 } 1357 1358 return Result; 1359 } 1360 1361 // T type::* 1362 // T T::* 1363 // T (type::*)() 1364 // type (T::*)() 1365 // type (type::*)(T) 1366 // type (T::*)(T) 1367 // T (type::*)(T) 1368 // T (T::*)() 1369 // T (T::*)(T) 1370 case Type::MemberPointer: { 1371 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); 1372 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); 1373 if (!MemPtrArg) 1374 return Sema::TDK_NonDeducedMismatch; 1375 1376 if (Sema::TemplateDeductionResult Result 1377 = DeduceTemplateArguments(S, TemplateParams, 1378 MemPtrParam->getPointeeType(), 1379 MemPtrArg->getPointeeType(), 1380 Info, Deduced, 1381 TDF & TDF_IgnoreQualifiers)) 1382 return Result; 1383 1384 return DeduceTemplateArguments(S, TemplateParams, 1385 QualType(MemPtrParam->getClass(), 0), 1386 QualType(MemPtrArg->getClass(), 0), 1387 Info, Deduced, 0); 1388 } 1389 1390 // (clang extension) 1391 // 1392 // type(^)(T) 1393 // T(^)() 1394 // T(^)(T) 1395 case Type::BlockPointer: { 1396 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); 1397 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); 1398 1399 if (!BlockPtrArg) 1400 return Sema::TDK_NonDeducedMismatch; 1401 1402 return DeduceTemplateArguments(S, TemplateParams, 1403 BlockPtrParam->getPointeeType(), 1404 BlockPtrArg->getPointeeType(), Info, 1405 Deduced, 0); 1406 } 1407 1408 // (clang extension) 1409 // 1410 // T __attribute__(((ext_vector_type(<integral constant>)))) 1411 case Type::ExtVector: { 1412 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); 1413 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1414 // Make sure that the vectors have the same number of elements. 1415 if (VectorParam->getNumElements() != VectorArg->getNumElements()) 1416 return Sema::TDK_NonDeducedMismatch; 1417 1418 // Perform deduction on the element types. 1419 return DeduceTemplateArguments(S, TemplateParams, 1420 VectorParam->getElementType(), 1421 VectorArg->getElementType(), 1422 Info, Deduced, 1423 TDF); 1424 } 1425 1426 if (const DependentSizedExtVectorType *VectorArg 1427 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1428 // We can't check the number of elements, since the argument has a 1429 // dependent number of elements. This can only occur during partial 1430 // ordering. 1431 1432 // Perform deduction on the element types. 1433 return DeduceTemplateArguments(S, TemplateParams, 1434 VectorParam->getElementType(), 1435 VectorArg->getElementType(), 1436 Info, Deduced, 1437 TDF); 1438 } 1439 1440 return Sema::TDK_NonDeducedMismatch; 1441 } 1442 1443 // (clang extension) 1444 // 1445 // T __attribute__(((ext_vector_type(N)))) 1446 case Type::DependentSizedExtVector: { 1447 const DependentSizedExtVectorType *VectorParam 1448 = cast<DependentSizedExtVectorType>(Param); 1449 1450 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1451 // Perform deduction on the element types. 1452 if (Sema::TemplateDeductionResult Result 1453 = DeduceTemplateArguments(S, TemplateParams, 1454 VectorParam->getElementType(), 1455 VectorArg->getElementType(), 1456 Info, Deduced, 1457 TDF)) 1458 return Result; 1459 1460 // Perform deduction on the vector size, if we can. 1461 NonTypeTemplateParmDecl *NTTP 1462 = getDeducedParameterFromExpr(VectorParam->getSizeExpr()); 1463 if (!NTTP) 1464 return Sema::TDK_Success; 1465 1466 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1467 ArgSize = VectorArg->getNumElements(); 1468 return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy, 1469 false, Info, Deduced); 1470 } 1471 1472 if (const DependentSizedExtVectorType *VectorArg 1473 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1474 // Perform deduction on the element types. 1475 if (Sema::TemplateDeductionResult Result 1476 = DeduceTemplateArguments(S, TemplateParams, 1477 VectorParam->getElementType(), 1478 VectorArg->getElementType(), 1479 Info, Deduced, 1480 TDF)) 1481 return Result; 1482 1483 // Perform deduction on the vector size, if we can. 1484 NonTypeTemplateParmDecl *NTTP 1485 = getDeducedParameterFromExpr(VectorParam->getSizeExpr()); 1486 if (!NTTP) 1487 return Sema::TDK_Success; 1488 1489 return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(), 1490 Info, Deduced); 1491 } 1492 1493 return Sema::TDK_NonDeducedMismatch; 1494 } 1495 1496 case Type::TypeOfExpr: 1497 case Type::TypeOf: 1498 case Type::DependentName: 1499 case Type::UnresolvedUsing: 1500 case Type::Decltype: 1501 case Type::UnaryTransform: 1502 case Type::Auto: 1503 case Type::DependentTemplateSpecialization: 1504 case Type::PackExpansion: 1505 // No template argument deduction for these types 1506 return Sema::TDK_Success; 1507 } 1508 1509 return Sema::TDK_Success; 1510 } 1511 1512 static Sema::TemplateDeductionResult 1513 DeduceTemplateArguments(Sema &S, 1514 TemplateParameterList *TemplateParams, 1515 const TemplateArgument &Param, 1516 TemplateArgument Arg, 1517 TemplateDeductionInfo &Info, 1518 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 1519 // If the template argument is a pack expansion, perform template argument 1520 // deduction against the pattern of that expansion. This only occurs during 1521 // partial ordering. 1522 if (Arg.isPackExpansion()) 1523 Arg = Arg.getPackExpansionPattern(); 1524 1525 switch (Param.getKind()) { 1526 case TemplateArgument::Null: 1527 assert(false && "Null template argument in parameter list"); 1528 break; 1529 1530 case TemplateArgument::Type: 1531 if (Arg.getKind() == TemplateArgument::Type) 1532 return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(), 1533 Arg.getAsType(), Info, Deduced, 0); 1534 Info.FirstArg = Param; 1535 Info.SecondArg = Arg; 1536 return Sema::TDK_NonDeducedMismatch; 1537 1538 case TemplateArgument::Template: 1539 if (Arg.getKind() == TemplateArgument::Template) 1540 return DeduceTemplateArguments(S, TemplateParams, 1541 Param.getAsTemplate(), 1542 Arg.getAsTemplate(), Info, Deduced); 1543 Info.FirstArg = Param; 1544 Info.SecondArg = Arg; 1545 return Sema::TDK_NonDeducedMismatch; 1546 1547 case TemplateArgument::TemplateExpansion: 1548 llvm_unreachable("caller should handle pack expansions"); 1549 break; 1550 1551 case TemplateArgument::Declaration: 1552 if (Arg.getKind() == TemplateArgument::Declaration && 1553 Param.getAsDecl()->getCanonicalDecl() == 1554 Arg.getAsDecl()->getCanonicalDecl()) 1555 return Sema::TDK_Success; 1556 1557 Info.FirstArg = Param; 1558 Info.SecondArg = Arg; 1559 return Sema::TDK_NonDeducedMismatch; 1560 1561 case TemplateArgument::Integral: 1562 if (Arg.getKind() == TemplateArgument::Integral) { 1563 if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral())) 1564 return Sema::TDK_Success; 1565 1566 Info.FirstArg = Param; 1567 Info.SecondArg = Arg; 1568 return Sema::TDK_NonDeducedMismatch; 1569 } 1570 1571 if (Arg.getKind() == TemplateArgument::Expression) { 1572 Info.FirstArg = Param; 1573 Info.SecondArg = Arg; 1574 return Sema::TDK_NonDeducedMismatch; 1575 } 1576 1577 Info.FirstArg = Param; 1578 Info.SecondArg = Arg; 1579 return Sema::TDK_NonDeducedMismatch; 1580 1581 case TemplateArgument::Expression: { 1582 if (NonTypeTemplateParmDecl *NTTP 1583 = getDeducedParameterFromExpr(Param.getAsExpr())) { 1584 if (Arg.getKind() == TemplateArgument::Integral) 1585 return DeduceNonTypeTemplateArgument(S, NTTP, 1586 *Arg.getAsIntegral(), 1587 Arg.getIntegralType(), 1588 /*ArrayBound=*/false, 1589 Info, Deduced); 1590 if (Arg.getKind() == TemplateArgument::Expression) 1591 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(), 1592 Info, Deduced); 1593 if (Arg.getKind() == TemplateArgument::Declaration) 1594 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(), 1595 Info, Deduced); 1596 1597 Info.FirstArg = Param; 1598 Info.SecondArg = Arg; 1599 return Sema::TDK_NonDeducedMismatch; 1600 } 1601 1602 // Can't deduce anything, but that's okay. 1603 return Sema::TDK_Success; 1604 } 1605 case TemplateArgument::Pack: 1606 llvm_unreachable("Argument packs should be expanded by the caller!"); 1607 } 1608 1609 return Sema::TDK_Success; 1610 } 1611 1612 /// \brief Determine whether there is a template argument to be used for 1613 /// deduction. 1614 /// 1615 /// This routine "expands" argument packs in-place, overriding its input 1616 /// parameters so that \c Args[ArgIdx] will be the available template argument. 1617 /// 1618 /// \returns true if there is another template argument (which will be at 1619 /// \c Args[ArgIdx]), false otherwise. 1620 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args, 1621 unsigned &ArgIdx, 1622 unsigned &NumArgs) { 1623 if (ArgIdx == NumArgs) 1624 return false; 1625 1626 const TemplateArgument &Arg = Args[ArgIdx]; 1627 if (Arg.getKind() != TemplateArgument::Pack) 1628 return true; 1629 1630 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?"); 1631 Args = Arg.pack_begin(); 1632 NumArgs = Arg.pack_size(); 1633 ArgIdx = 0; 1634 return ArgIdx < NumArgs; 1635 } 1636 1637 /// \brief Determine whether the given set of template arguments has a pack 1638 /// expansion that is not the last template argument. 1639 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args, 1640 unsigned NumArgs) { 1641 unsigned ArgIdx = 0; 1642 while (ArgIdx < NumArgs) { 1643 const TemplateArgument &Arg = Args[ArgIdx]; 1644 1645 // Unwrap argument packs. 1646 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) { 1647 Args = Arg.pack_begin(); 1648 NumArgs = Arg.pack_size(); 1649 ArgIdx = 0; 1650 continue; 1651 } 1652 1653 ++ArgIdx; 1654 if (ArgIdx == NumArgs) 1655 return false; 1656 1657 if (Arg.isPackExpansion()) 1658 return true; 1659 } 1660 1661 return false; 1662 } 1663 1664 static Sema::TemplateDeductionResult 1665 DeduceTemplateArguments(Sema &S, 1666 TemplateParameterList *TemplateParams, 1667 const TemplateArgument *Params, unsigned NumParams, 1668 const TemplateArgument *Args, unsigned NumArgs, 1669 TemplateDeductionInfo &Info, 1670 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1671 bool NumberOfArgumentsMustMatch) { 1672 // C++0x [temp.deduct.type]p9: 1673 // If the template argument list of P contains a pack expansion that is not 1674 // the last template argument, the entire template argument list is a 1675 // non-deduced context. 1676 if (hasPackExpansionBeforeEnd(Params, NumParams)) 1677 return Sema::TDK_Success; 1678 1679 // C++0x [temp.deduct.type]p9: 1680 // If P has a form that contains <T> or <i>, then each argument Pi of the 1681 // respective template argument list P is compared with the corresponding 1682 // argument Ai of the corresponding template argument list of A. 1683 unsigned ArgIdx = 0, ParamIdx = 0; 1684 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams); 1685 ++ParamIdx) { 1686 if (!Params[ParamIdx].isPackExpansion()) { 1687 // The simple case: deduce template arguments by matching Pi and Ai. 1688 1689 // Check whether we have enough arguments. 1690 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) 1691 return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch 1692 : Sema::TDK_Success; 1693 1694 if (Args[ArgIdx].isPackExpansion()) { 1695 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here, 1696 // but applied to pack expansions that are template arguments. 1697 return Sema::TDK_NonDeducedMismatch; 1698 } 1699 1700 // Perform deduction for this Pi/Ai pair. 1701 if (Sema::TemplateDeductionResult Result 1702 = DeduceTemplateArguments(S, TemplateParams, 1703 Params[ParamIdx], Args[ArgIdx], 1704 Info, Deduced)) 1705 return Result; 1706 1707 // Move to the next argument. 1708 ++ArgIdx; 1709 continue; 1710 } 1711 1712 // The parameter is a pack expansion. 1713 1714 // C++0x [temp.deduct.type]p9: 1715 // If Pi is a pack expansion, then the pattern of Pi is compared with 1716 // each remaining argument in the template argument list of A. Each 1717 // comparison deduces template arguments for subsequent positions in the 1718 // template parameter packs expanded by Pi. 1719 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); 1720 1721 // Compute the set of template parameter indices that correspond to 1722 // parameter packs expanded by the pack expansion. 1723 llvm::SmallVector<unsigned, 2> PackIndices; 1724 { 1725 llvm::BitVector SawIndices(TemplateParams->size()); 1726 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded; 1727 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 1728 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 1729 unsigned Depth, Index; 1730 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 1731 if (Depth == 0 && !SawIndices[Index]) { 1732 SawIndices[Index] = true; 1733 PackIndices.push_back(Index); 1734 } 1735 } 1736 } 1737 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?"); 1738 1739 // FIXME: If there are no remaining arguments, we can bail out early 1740 // and set any deduced parameter packs to an empty argument pack. 1741 // The latter part of this is a (minor) correctness issue. 1742 1743 // Save the deduced template arguments for each parameter pack expanded 1744 // by this pack expansion, then clear out the deduction. 1745 llvm::SmallVector<DeducedTemplateArgument, 2> 1746 SavedPacks(PackIndices.size()); 1747 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2> 1748 NewlyDeducedPacks(PackIndices.size()); 1749 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks, 1750 NewlyDeducedPacks); 1751 1752 // Keep track of the deduced template arguments for each parameter pack 1753 // expanded by this pack expansion (the outer index) and for each 1754 // template argument (the inner SmallVectors). 1755 bool HasAnyArguments = false; 1756 while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) { 1757 HasAnyArguments = true; 1758 1759 // Deduce template arguments from the pattern. 1760 if (Sema::TemplateDeductionResult Result 1761 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], 1762 Info, Deduced)) 1763 return Result; 1764 1765 // Capture the deduced template arguments for each parameter pack expanded 1766 // by this pack expansion, add them to the list of arguments we've deduced 1767 // for that pack, then clear out the deduced argument. 1768 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { 1769 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]]; 1770 if (!DeducedArg.isNull()) { 1771 NewlyDeducedPacks[I].push_back(DeducedArg); 1772 DeducedArg = DeducedTemplateArgument(); 1773 } 1774 } 1775 1776 ++ArgIdx; 1777 } 1778 1779 // Build argument packs for each of the parameter packs expanded by this 1780 // pack expansion. 1781 if (Sema::TemplateDeductionResult Result 1782 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments, 1783 Deduced, PackIndices, SavedPacks, 1784 NewlyDeducedPacks, Info)) 1785 return Result; 1786 } 1787 1788 // If there is an argument remaining, then we had too many arguments. 1789 if (NumberOfArgumentsMustMatch && 1790 hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) 1791 return Sema::TDK_NonDeducedMismatch; 1792 1793 return Sema::TDK_Success; 1794 } 1795 1796 static Sema::TemplateDeductionResult 1797 DeduceTemplateArguments(Sema &S, 1798 TemplateParameterList *TemplateParams, 1799 const TemplateArgumentList &ParamList, 1800 const TemplateArgumentList &ArgList, 1801 TemplateDeductionInfo &Info, 1802 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 1803 return DeduceTemplateArguments(S, TemplateParams, 1804 ParamList.data(), ParamList.size(), 1805 ArgList.data(), ArgList.size(), 1806 Info, Deduced); 1807 } 1808 1809 /// \brief Determine whether two template arguments are the same. 1810 static bool isSameTemplateArg(ASTContext &Context, 1811 const TemplateArgument &X, 1812 const TemplateArgument &Y) { 1813 if (X.getKind() != Y.getKind()) 1814 return false; 1815 1816 switch (X.getKind()) { 1817 case TemplateArgument::Null: 1818 assert(false && "Comparing NULL template argument"); 1819 break; 1820 1821 case TemplateArgument::Type: 1822 return Context.getCanonicalType(X.getAsType()) == 1823 Context.getCanonicalType(Y.getAsType()); 1824 1825 case TemplateArgument::Declaration: 1826 return X.getAsDecl()->getCanonicalDecl() == 1827 Y.getAsDecl()->getCanonicalDecl(); 1828 1829 case TemplateArgument::Template: 1830 case TemplateArgument::TemplateExpansion: 1831 return Context.getCanonicalTemplateName( 1832 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 1833 Context.getCanonicalTemplateName( 1834 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 1835 1836 case TemplateArgument::Integral: 1837 return *X.getAsIntegral() == *Y.getAsIntegral(); 1838 1839 case TemplateArgument::Expression: { 1840 llvm::FoldingSetNodeID XID, YID; 1841 X.getAsExpr()->Profile(XID, Context, true); 1842 Y.getAsExpr()->Profile(YID, Context, true); 1843 return XID == YID; 1844 } 1845 1846 case TemplateArgument::Pack: 1847 if (X.pack_size() != Y.pack_size()) 1848 return false; 1849 1850 for (TemplateArgument::pack_iterator XP = X.pack_begin(), 1851 XPEnd = X.pack_end(), 1852 YP = Y.pack_begin(); 1853 XP != XPEnd; ++XP, ++YP) 1854 if (!isSameTemplateArg(Context, *XP, *YP)) 1855 return false; 1856 1857 return true; 1858 } 1859 1860 return false; 1861 } 1862 1863 /// \brief Allocate a TemplateArgumentLoc where all locations have 1864 /// been initialized to the given location. 1865 /// 1866 /// \param S The semantic analysis object. 1867 /// 1868 /// \param The template argument we are producing template argument 1869 /// location information for. 1870 /// 1871 /// \param NTTPType For a declaration template argument, the type of 1872 /// the non-type template parameter that corresponds to this template 1873 /// argument. 1874 /// 1875 /// \param Loc The source location to use for the resulting template 1876 /// argument. 1877 static TemplateArgumentLoc 1878 getTrivialTemplateArgumentLoc(Sema &S, 1879 const TemplateArgument &Arg, 1880 QualType NTTPType, 1881 SourceLocation Loc) { 1882 switch (Arg.getKind()) { 1883 case TemplateArgument::Null: 1884 llvm_unreachable("Can't get a NULL template argument here"); 1885 break; 1886 1887 case TemplateArgument::Type: 1888 return TemplateArgumentLoc(Arg, 1889 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 1890 1891 case TemplateArgument::Declaration: { 1892 Expr *E 1893 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 1894 .takeAs<Expr>(); 1895 return TemplateArgumentLoc(TemplateArgument(E), E); 1896 } 1897 1898 case TemplateArgument::Integral: { 1899 Expr *E 1900 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>(); 1901 return TemplateArgumentLoc(TemplateArgument(E), E); 1902 } 1903 1904 case TemplateArgument::Template: 1905 case TemplateArgument::TemplateExpansion: { 1906 NestedNameSpecifierLocBuilder Builder; 1907 TemplateName Template = Arg.getAsTemplate(); 1908 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 1909 Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc); 1910 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 1911 Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc); 1912 1913 if (Arg.getKind() == TemplateArgument::Template) 1914 return TemplateArgumentLoc(Arg, 1915 Builder.getWithLocInContext(S.Context), 1916 Loc); 1917 1918 1919 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context), 1920 Loc, Loc); 1921 } 1922 1923 case TemplateArgument::Expression: 1924 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 1925 1926 case TemplateArgument::Pack: 1927 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 1928 } 1929 1930 return TemplateArgumentLoc(); 1931 } 1932 1933 1934 /// \brief Convert the given deduced template argument and add it to the set of 1935 /// fully-converted template arguments. 1936 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, 1937 DeducedTemplateArgument Arg, 1938 NamedDecl *Template, 1939 QualType NTTPType, 1940 unsigned ArgumentPackIndex, 1941 TemplateDeductionInfo &Info, 1942 bool InFunctionTemplate, 1943 llvm::SmallVectorImpl<TemplateArgument> &Output) { 1944 if (Arg.getKind() == TemplateArgument::Pack) { 1945 // This is a template argument pack, so check each of its arguments against 1946 // the template parameter. 1947 llvm::SmallVector<TemplateArgument, 2> PackedArgsBuilder; 1948 for (TemplateArgument::pack_iterator PA = Arg.pack_begin(), 1949 PAEnd = Arg.pack_end(); 1950 PA != PAEnd; ++PA) { 1951 // When converting the deduced template argument, append it to the 1952 // general output list. We need to do this so that the template argument 1953 // checking logic has all of the prior template arguments available. 1954 DeducedTemplateArgument InnerArg(*PA); 1955 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 1956 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template, 1957 NTTPType, PackedArgsBuilder.size(), 1958 Info, InFunctionTemplate, Output)) 1959 return true; 1960 1961 // Move the converted template argument into our argument pack. 1962 PackedArgsBuilder.push_back(Output.back()); 1963 Output.pop_back(); 1964 } 1965 1966 // Create the resulting argument pack. 1967 Output.push_back(TemplateArgument::CreatePackCopy(S.Context, 1968 PackedArgsBuilder.data(), 1969 PackedArgsBuilder.size())); 1970 return false; 1971 } 1972 1973 // Convert the deduced template argument into a template 1974 // argument that we can check, almost as if the user had written 1975 // the template argument explicitly. 1976 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType, 1977 Info.getLocation()); 1978 1979 // Check the template argument, converting it as necessary. 1980 return S.CheckTemplateArgument(Param, ArgLoc, 1981 Template, 1982 Template->getLocation(), 1983 Template->getSourceRange().getEnd(), 1984 ArgumentPackIndex, 1985 Output, 1986 InFunctionTemplate 1987 ? (Arg.wasDeducedFromArrayBound() 1988 ? Sema::CTAK_DeducedFromArrayBound 1989 : Sema::CTAK_Deduced) 1990 : Sema::CTAK_Specified); 1991 } 1992 1993 /// Complete template argument deduction for a class template partial 1994 /// specialization. 1995 static Sema::TemplateDeductionResult 1996 FinishTemplateArgumentDeduction(Sema &S, 1997 ClassTemplatePartialSpecializationDecl *Partial, 1998 const TemplateArgumentList &TemplateArgs, 1999 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2000 TemplateDeductionInfo &Info) { 2001 // Trap errors. 2002 Sema::SFINAETrap Trap(S); 2003 2004 Sema::ContextRAII SavedContext(S, Partial); 2005 2006 // C++ [temp.deduct.type]p2: 2007 // [...] or if any template argument remains neither deduced nor 2008 // explicitly specified, template argument deduction fails. 2009 llvm::SmallVector<TemplateArgument, 4> Builder; 2010 TemplateParameterList *PartialParams = Partial->getTemplateParameters(); 2011 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) { 2012 NamedDecl *Param = PartialParams->getParam(I); 2013 if (Deduced[I].isNull()) { 2014 Info.Param = makeTemplateParameter(Param); 2015 return Sema::TDK_Incomplete; 2016 } 2017 2018 // We have deduced this argument, so it still needs to be 2019 // checked and converted. 2020 2021 // First, for a non-type template parameter type that is 2022 // initialized by a declaration, we need the type of the 2023 // corresponding non-type template parameter. 2024 QualType NTTPType; 2025 if (NonTypeTemplateParmDecl *NTTP 2026 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2027 NTTPType = NTTP->getType(); 2028 if (NTTPType->isDependentType()) { 2029 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2030 Builder.data(), Builder.size()); 2031 NTTPType = S.SubstType(NTTPType, 2032 MultiLevelTemplateArgumentList(TemplateArgs), 2033 NTTP->getLocation(), 2034 NTTP->getDeclName()); 2035 if (NTTPType.isNull()) { 2036 Info.Param = makeTemplateParameter(Param); 2037 // FIXME: These template arguments are temporary. Free them! 2038 Info.reset(TemplateArgumentList::CreateCopy(S.Context, 2039 Builder.data(), 2040 Builder.size())); 2041 return Sema::TDK_SubstitutionFailure; 2042 } 2043 } 2044 } 2045 2046 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], 2047 Partial, NTTPType, 0, Info, false, 2048 Builder)) { 2049 Info.Param = makeTemplateParameter(Param); 2050 // FIXME: These template arguments are temporary. Free them! 2051 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(), 2052 Builder.size())); 2053 return Sema::TDK_SubstitutionFailure; 2054 } 2055 } 2056 2057 // Form the template argument list from the deduced template arguments. 2058 TemplateArgumentList *DeducedArgumentList 2059 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(), 2060 Builder.size()); 2061 2062 Info.reset(DeducedArgumentList); 2063 2064 // Substitute the deduced template arguments into the template 2065 // arguments of the class template partial specialization, and 2066 // verify that the instantiated template arguments are both valid 2067 // and are equivalent to the template arguments originally provided 2068 // to the class template. 2069 LocalInstantiationScope InstScope(S); 2070 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate(); 2071 const TemplateArgumentLoc *PartialTemplateArgs 2072 = Partial->getTemplateArgsAsWritten(); 2073 2074 // Note that we don't provide the langle and rangle locations. 2075 TemplateArgumentListInfo InstArgs; 2076 2077 if (S.Subst(PartialTemplateArgs, 2078 Partial->getNumTemplateArgsAsWritten(), 2079 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { 2080 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2081 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2082 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2083 2084 Decl *Param 2085 = const_cast<NamedDecl *>( 2086 Partial->getTemplateParameters()->getParam(ParamIdx)); 2087 Info.Param = makeTemplateParameter(Param); 2088 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); 2089 return Sema::TDK_SubstitutionFailure; 2090 } 2091 2092 llvm::SmallVector<TemplateArgument, 4> ConvertedInstArgs; 2093 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(), 2094 InstArgs, false, ConvertedInstArgs)) 2095 return Sema::TDK_SubstitutionFailure; 2096 2097 TemplateParameterList *TemplateParams 2098 = ClassTemplate->getTemplateParameters(); 2099 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2100 TemplateArgument InstArg = ConvertedInstArgs.data()[I]; 2101 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { 2102 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2103 Info.FirstArg = TemplateArgs[I]; 2104 Info.SecondArg = InstArg; 2105 return Sema::TDK_NonDeducedMismatch; 2106 } 2107 } 2108 2109 if (Trap.hasErrorOccurred()) 2110 return Sema::TDK_SubstitutionFailure; 2111 2112 return Sema::TDK_Success; 2113 } 2114 2115 /// \brief Perform template argument deduction to determine whether 2116 /// the given template arguments match the given class template 2117 /// partial specialization per C++ [temp.class.spec.match]. 2118 Sema::TemplateDeductionResult 2119 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 2120 const TemplateArgumentList &TemplateArgs, 2121 TemplateDeductionInfo &Info) { 2122 // C++ [temp.class.spec.match]p2: 2123 // A partial specialization matches a given actual template 2124 // argument list if the template arguments of the partial 2125 // specialization can be deduced from the actual template argument 2126 // list (14.8.2). 2127 SFINAETrap Trap(*this); 2128 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced; 2129 Deduced.resize(Partial->getTemplateParameters()->size()); 2130 if (TemplateDeductionResult Result 2131 = ::DeduceTemplateArguments(*this, 2132 Partial->getTemplateParameters(), 2133 Partial->getTemplateArgs(), 2134 TemplateArgs, Info, Deduced)) 2135 return Result; 2136 2137 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial, 2138 Deduced.data(), Deduced.size(), Info); 2139 if (Inst) 2140 return TDK_InstantiationDepth; 2141 2142 if (Trap.hasErrorOccurred()) 2143 return Sema::TDK_SubstitutionFailure; 2144 2145 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs, 2146 Deduced, Info); 2147 } 2148 2149 /// \brief Determine whether the given type T is a simple-template-id type. 2150 static bool isSimpleTemplateIdType(QualType T) { 2151 if (const TemplateSpecializationType *Spec 2152 = T->getAs<TemplateSpecializationType>()) 2153 return Spec->getTemplateName().getAsTemplateDecl() != 0; 2154 2155 return false; 2156 } 2157 2158 /// \brief Substitute the explicitly-provided template arguments into the 2159 /// given function template according to C++ [temp.arg.explicit]. 2160 /// 2161 /// \param FunctionTemplate the function template into which the explicit 2162 /// template arguments will be substituted. 2163 /// 2164 /// \param ExplicitTemplateArguments the explicitly-specified template 2165 /// arguments. 2166 /// 2167 /// \param Deduced the deduced template arguments, which will be populated 2168 /// with the converted and checked explicit template arguments. 2169 /// 2170 /// \param ParamTypes will be populated with the instantiated function 2171 /// parameters. 2172 /// 2173 /// \param FunctionType if non-NULL, the result type of the function template 2174 /// will also be instantiated and the pointed-to value will be updated with 2175 /// the instantiated function type. 2176 /// 2177 /// \param Info if substitution fails for any reason, this object will be 2178 /// populated with more information about the failure. 2179 /// 2180 /// \returns TDK_Success if substitution was successful, or some failure 2181 /// condition. 2182 Sema::TemplateDeductionResult 2183 Sema::SubstituteExplicitTemplateArguments( 2184 FunctionTemplateDecl *FunctionTemplate, 2185 TemplateArgumentListInfo &ExplicitTemplateArgs, 2186 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2187 llvm::SmallVectorImpl<QualType> &ParamTypes, 2188 QualType *FunctionType, 2189 TemplateDeductionInfo &Info) { 2190 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 2191 TemplateParameterList *TemplateParams 2192 = FunctionTemplate->getTemplateParameters(); 2193 2194 if (ExplicitTemplateArgs.size() == 0) { 2195 // No arguments to substitute; just copy over the parameter types and 2196 // fill in the function type. 2197 for (FunctionDecl::param_iterator P = Function->param_begin(), 2198 PEnd = Function->param_end(); 2199 P != PEnd; 2200 ++P) 2201 ParamTypes.push_back((*P)->getType()); 2202 2203 if (FunctionType) 2204 *FunctionType = Function->getType(); 2205 return TDK_Success; 2206 } 2207 2208 // Substitution of the explicit template arguments into a function template 2209 /// is a SFINAE context. Trap any errors that might occur. 2210 SFINAETrap Trap(*this); 2211 2212 // C++ [temp.arg.explicit]p3: 2213 // Template arguments that are present shall be specified in the 2214 // declaration order of their corresponding template-parameters. The 2215 // template argument list shall not specify more template-arguments than 2216 // there are corresponding template-parameters. 2217 llvm::SmallVector<TemplateArgument, 4> Builder; 2218 2219 // Enter a new template instantiation context where we check the 2220 // explicitly-specified template arguments against this function template, 2221 // and then substitute them into the function parameter types. 2222 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(), 2223 FunctionTemplate, Deduced.data(), Deduced.size(), 2224 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution, 2225 Info); 2226 if (Inst) 2227 return TDK_InstantiationDepth; 2228 2229 if (CheckTemplateArgumentList(FunctionTemplate, 2230 SourceLocation(), 2231 ExplicitTemplateArgs, 2232 true, 2233 Builder) || Trap.hasErrorOccurred()) { 2234 unsigned Index = Builder.size(); 2235 if (Index >= TemplateParams->size()) 2236 Index = TemplateParams->size() - 1; 2237 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 2238 return TDK_InvalidExplicitArguments; 2239 } 2240 2241 // Form the template argument list from the explicitly-specified 2242 // template arguments. 2243 TemplateArgumentList *ExplicitArgumentList 2244 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size()); 2245 Info.reset(ExplicitArgumentList); 2246 2247 // Template argument deduction and the final substitution should be 2248 // done in the context of the templated declaration. Explicit 2249 // argument substitution, on the other hand, needs to happen in the 2250 // calling context. 2251 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 2252 2253 // If we deduced template arguments for a template parameter pack, 2254 // note that the template argument pack is partially substituted and record 2255 // the explicit template arguments. They'll be used as part of deduction 2256 // for this template parameter pack. 2257 for (unsigned I = 0, N = Builder.size(); I != N; ++I) { 2258 const TemplateArgument &Arg = Builder[I]; 2259 if (Arg.getKind() == TemplateArgument::Pack) { 2260 CurrentInstantiationScope->SetPartiallySubstitutedPack( 2261 TemplateParams->getParam(I), 2262 Arg.pack_begin(), 2263 Arg.pack_size()); 2264 break; 2265 } 2266 } 2267 2268 // Instantiate the types of each of the function parameters given the 2269 // explicitly-specified template arguments. 2270 if (SubstParmTypes(Function->getLocation(), 2271 Function->param_begin(), Function->getNumParams(), 2272 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 2273 ParamTypes)) 2274 return TDK_SubstitutionFailure; 2275 2276 // If the caller wants a full function type back, instantiate the return 2277 // type and form that function type. 2278 if (FunctionType) { 2279 // FIXME: exception-specifications? 2280 const FunctionProtoType *Proto 2281 = Function->getType()->getAs<FunctionProtoType>(); 2282 assert(Proto && "Function template does not have a prototype?"); 2283 2284 QualType ResultType 2285 = SubstType(Proto->getResultType(), 2286 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 2287 Function->getTypeSpecStartLoc(), 2288 Function->getDeclName()); 2289 if (ResultType.isNull() || Trap.hasErrorOccurred()) 2290 return TDK_SubstitutionFailure; 2291 2292 *FunctionType = BuildFunctionType(ResultType, 2293 ParamTypes.data(), ParamTypes.size(), 2294 Proto->isVariadic(), 2295 Proto->getTypeQuals(), 2296 Proto->getRefQualifier(), 2297 Function->getLocation(), 2298 Function->getDeclName(), 2299 Proto->getExtInfo()); 2300 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 2301 return TDK_SubstitutionFailure; 2302 } 2303 2304 // C++ [temp.arg.explicit]p2: 2305 // Trailing template arguments that can be deduced (14.8.2) may be 2306 // omitted from the list of explicit template-arguments. If all of the 2307 // template arguments can be deduced, they may all be omitted; in this 2308 // case, the empty template argument list <> itself may also be omitted. 2309 // 2310 // Take all of the explicitly-specified arguments and put them into 2311 // the set of deduced template arguments. Explicitly-specified 2312 // parameter packs, however, will be set to NULL since the deduction 2313 // mechanisms handle explicitly-specified argument packs directly. 2314 Deduced.reserve(TemplateParams->size()); 2315 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { 2316 const TemplateArgument &Arg = ExplicitArgumentList->get(I); 2317 if (Arg.getKind() == TemplateArgument::Pack) 2318 Deduced.push_back(DeducedTemplateArgument()); 2319 else 2320 Deduced.push_back(Arg); 2321 } 2322 2323 return TDK_Success; 2324 } 2325 2326 /// \brief Check whether the deduced argument type for a call to a function 2327 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 2328 static bool 2329 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg, 2330 QualType DeducedA) { 2331 ASTContext &Context = S.Context; 2332 2333 QualType A = OriginalArg.OriginalArgType; 2334 QualType OriginalParamType = OriginalArg.OriginalParamType; 2335 2336 // Check for type equality (top-level cv-qualifiers are ignored). 2337 if (Context.hasSameUnqualifiedType(A, DeducedA)) 2338 return false; 2339 2340 // Strip off references on the argument types; they aren't needed for 2341 // the following checks. 2342 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 2343 DeducedA = DeducedARef->getPointeeType(); 2344 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 2345 A = ARef->getPointeeType(); 2346 2347 // C++ [temp.deduct.call]p4: 2348 // [...] However, there are three cases that allow a difference: 2349 // - If the original P is a reference type, the deduced A (i.e., the 2350 // type referred to by the reference) can be more cv-qualified than 2351 // the transformed A. 2352 if (const ReferenceType *OriginalParamRef 2353 = OriginalParamType->getAs<ReferenceType>()) { 2354 // We don't want to keep the reference around any more. 2355 OriginalParamType = OriginalParamRef->getPointeeType(); 2356 2357 Qualifiers AQuals = A.getQualifiers(); 2358 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 2359 if (AQuals == DeducedAQuals) { 2360 // Qualifiers match; there's nothing to do. 2361 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 2362 return true; 2363 } else { 2364 // Qualifiers are compatible, so have the argument type adopt the 2365 // deduced argument type's qualifiers as if we had performed the 2366 // qualification conversion. 2367 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 2368 } 2369 } 2370 2371 // - The transformed A can be another pointer or pointer to member 2372 // type that can be converted to the deduced A via a qualification 2373 // conversion. 2374 // 2375 // Also allow conversions which merely strip [[noreturn]] from function types 2376 // (recursively) as an extension. 2377 // FIXME: Currently, this doesn't place nicely with qualfication conversions. 2378 bool ObjCLifetimeConversion = false; 2379 QualType ResultTy; 2380 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 2381 (S.IsQualificationConversion(A, DeducedA, false, 2382 ObjCLifetimeConversion) || 2383 S.IsNoReturnConversion(A, DeducedA, ResultTy))) 2384 return false; 2385 2386 2387 // - If P is a class and P has the form simple-template-id, then the 2388 // transformed A can be a derived class of the deduced A. [...] 2389 // [...] Likewise, if P is a pointer to a class of the form 2390 // simple-template-id, the transformed A can be a pointer to a 2391 // derived class pointed to by the deduced A. 2392 if (const PointerType *OriginalParamPtr 2393 = OriginalParamType->getAs<PointerType>()) { 2394 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 2395 if (const PointerType *APtr = A->getAs<PointerType>()) { 2396 if (A->getPointeeType()->isRecordType()) { 2397 OriginalParamType = OriginalParamPtr->getPointeeType(); 2398 DeducedA = DeducedAPtr->getPointeeType(); 2399 A = APtr->getPointeeType(); 2400 } 2401 } 2402 } 2403 } 2404 2405 if (Context.hasSameUnqualifiedType(A, DeducedA)) 2406 return false; 2407 2408 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 2409 S.IsDerivedFrom(A, DeducedA)) 2410 return false; 2411 2412 return true; 2413 } 2414 2415 /// \brief Finish template argument deduction for a function template, 2416 /// checking the deduced template arguments for completeness and forming 2417 /// the function template specialization. 2418 /// 2419 /// \param OriginalCallArgs If non-NULL, the original call arguments against 2420 /// which the deduced argument types should be compared. 2421 Sema::TemplateDeductionResult 2422 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate, 2423 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2424 unsigned NumExplicitlySpecified, 2425 FunctionDecl *&Specialization, 2426 TemplateDeductionInfo &Info, 2427 llvm::SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) { 2428 TemplateParameterList *TemplateParams 2429 = FunctionTemplate->getTemplateParameters(); 2430 2431 // Template argument deduction for function templates in a SFINAE context. 2432 // Trap any errors that might occur. 2433 SFINAETrap Trap(*this); 2434 2435 // Enter a new template instantiation context while we instantiate the 2436 // actual function declaration. 2437 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(), 2438 FunctionTemplate, Deduced.data(), Deduced.size(), 2439 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution, 2440 Info); 2441 if (Inst) 2442 return TDK_InstantiationDepth; 2443 2444 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 2445 2446 // C++ [temp.deduct.type]p2: 2447 // [...] or if any template argument remains neither deduced nor 2448 // explicitly specified, template argument deduction fails. 2449 llvm::SmallVector<TemplateArgument, 4> Builder; 2450 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2451 NamedDecl *Param = TemplateParams->getParam(I); 2452 2453 if (!Deduced[I].isNull()) { 2454 if (I < NumExplicitlySpecified) { 2455 // We have already fully type-checked and converted this 2456 // argument, because it was explicitly-specified. Just record the 2457 // presence of this argument. 2458 Builder.push_back(Deduced[I]); 2459 continue; 2460 } 2461 2462 // We have deduced this argument, so it still needs to be 2463 // checked and converted. 2464 2465 // First, for a non-type template parameter type that is 2466 // initialized by a declaration, we need the type of the 2467 // corresponding non-type template parameter. 2468 QualType NTTPType; 2469 if (NonTypeTemplateParmDecl *NTTP 2470 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2471 NTTPType = NTTP->getType(); 2472 if (NTTPType->isDependentType()) { 2473 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2474 Builder.data(), Builder.size()); 2475 NTTPType = SubstType(NTTPType, 2476 MultiLevelTemplateArgumentList(TemplateArgs), 2477 NTTP->getLocation(), 2478 NTTP->getDeclName()); 2479 if (NTTPType.isNull()) { 2480 Info.Param = makeTemplateParameter(Param); 2481 // FIXME: These template arguments are temporary. Free them! 2482 Info.reset(TemplateArgumentList::CreateCopy(Context, 2483 Builder.data(), 2484 Builder.size())); 2485 return TDK_SubstitutionFailure; 2486 } 2487 } 2488 } 2489 2490 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I], 2491 FunctionTemplate, NTTPType, 0, Info, 2492 true, Builder)) { 2493 Info.Param = makeTemplateParameter(Param); 2494 // FIXME: These template arguments are temporary. Free them! 2495 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(), 2496 Builder.size())); 2497 return TDK_SubstitutionFailure; 2498 } 2499 2500 continue; 2501 } 2502 2503 // C++0x [temp.arg.explicit]p3: 2504 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2505 // be deduced to an empty sequence of template arguments. 2506 // FIXME: Where did the word "trailing" come from? 2507 if (Param->isTemplateParameterPack()) { 2508 // We may have had explicitly-specified template arguments for this 2509 // template parameter pack. If so, our empty deduction extends the 2510 // explicitly-specified set (C++0x [temp.arg.explicit]p9). 2511 const TemplateArgument *ExplicitArgs; 2512 unsigned NumExplicitArgs; 2513 if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs, 2514 &NumExplicitArgs) 2515 == Param) 2516 Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs)); 2517 else 2518 Builder.push_back(TemplateArgument(0, 0)); 2519 2520 continue; 2521 } 2522 2523 // Substitute into the default template argument, if available. 2524 TemplateArgumentLoc DefArg 2525 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate, 2526 FunctionTemplate->getLocation(), 2527 FunctionTemplate->getSourceRange().getEnd(), 2528 Param, 2529 Builder); 2530 2531 // If there was no default argument, deduction is incomplete. 2532 if (DefArg.getArgument().isNull()) { 2533 Info.Param = makeTemplateParameter( 2534 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2535 return TDK_Incomplete; 2536 } 2537 2538 // Check whether we can actually use the default argument. 2539 if (CheckTemplateArgument(Param, DefArg, 2540 FunctionTemplate, 2541 FunctionTemplate->getLocation(), 2542 FunctionTemplate->getSourceRange().getEnd(), 2543 0, Builder, 2544 CTAK_Specified)) { 2545 Info.Param = makeTemplateParameter( 2546 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2547 // FIXME: These template arguments are temporary. Free them! 2548 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(), 2549 Builder.size())); 2550 return TDK_SubstitutionFailure; 2551 } 2552 2553 // If we get here, we successfully used the default template argument. 2554 } 2555 2556 // Form the template argument list from the deduced template arguments. 2557 TemplateArgumentList *DeducedArgumentList 2558 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size()); 2559 Info.reset(DeducedArgumentList); 2560 2561 // Substitute the deduced template arguments into the function template 2562 // declaration to produce the function template specialization. 2563 DeclContext *Owner = FunctionTemplate->getDeclContext(); 2564 if (FunctionTemplate->getFriendObjectKind()) 2565 Owner = FunctionTemplate->getLexicalDeclContext(); 2566 Specialization = cast_or_null<FunctionDecl>( 2567 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, 2568 MultiLevelTemplateArgumentList(*DeducedArgumentList))); 2569 if (!Specialization) 2570 return TDK_SubstitutionFailure; 2571 2572 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 2573 FunctionTemplate->getCanonicalDecl()); 2574 2575 // If the template argument list is owned by the function template 2576 // specialization, release it. 2577 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && 2578 !Trap.hasErrorOccurred()) 2579 Info.take(); 2580 2581 if (OriginalCallArgs) { 2582 // C++ [temp.deduct.call]p4: 2583 // In general, the deduction process attempts to find template argument 2584 // values that will make the deduced A identical to A (after the type A 2585 // is transformed as described above). [...] 2586 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 2587 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 2588 unsigned ParamIdx = OriginalArg.ArgIdx; 2589 2590 if (ParamIdx >= Specialization->getNumParams()) 2591 continue; 2592 2593 QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); 2594 if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA)) 2595 return Sema::TDK_SubstitutionFailure; 2596 } 2597 } 2598 2599 // There may have been an error that did not prevent us from constructing a 2600 // declaration. Mark the declaration invalid and return with a substitution 2601 // failure. 2602 if (Trap.hasErrorOccurred()) { 2603 Specialization->setInvalidDecl(true); 2604 return TDK_SubstitutionFailure; 2605 } 2606 2607 // If we suppressed any diagnostics while performing template argument 2608 // deduction, and if we haven't already instantiated this declaration, 2609 // keep track of these diagnostics. They'll be emitted if this specialization 2610 // is actually used. 2611 if (Info.diag_begin() != Info.diag_end()) { 2612 llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator 2613 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 2614 if (Pos == SuppressedDiagnostics.end()) 2615 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 2616 .append(Info.diag_begin(), Info.diag_end()); 2617 } 2618 2619 return TDK_Success; 2620 } 2621 2622 /// Gets the type of a function for template-argument-deducton 2623 /// purposes when it's considered as part of an overload set. 2624 static QualType GetTypeOfFunction(ASTContext &Context, 2625 const OverloadExpr::FindResult &R, 2626 FunctionDecl *Fn) { 2627 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 2628 if (Method->isInstance()) { 2629 // An instance method that's referenced in a form that doesn't 2630 // look like a member pointer is just invalid. 2631 if (!R.HasFormOfMemberPointer) return QualType(); 2632 2633 return Context.getMemberPointerType(Fn->getType(), 2634 Context.getTypeDeclType(Method->getParent()).getTypePtr()); 2635 } 2636 2637 if (!R.IsAddressOfOperand) return Fn->getType(); 2638 return Context.getPointerType(Fn->getType()); 2639 } 2640 2641 /// Apply the deduction rules for overload sets. 2642 /// 2643 /// \return the null type if this argument should be treated as an 2644 /// undeduced context 2645 static QualType 2646 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 2647 Expr *Arg, QualType ParamType, 2648 bool ParamWasReference) { 2649 2650 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 2651 2652 OverloadExpr *Ovl = R.Expression; 2653 2654 // C++0x [temp.deduct.call]p4 2655 unsigned TDF = 0; 2656 if (ParamWasReference) 2657 TDF |= TDF_ParamWithReferenceType; 2658 if (R.IsAddressOfOperand) 2659 TDF |= TDF_IgnoreQualifiers; 2660 2661 // If there were explicit template arguments, we can only find 2662 // something via C++ [temp.arg.explicit]p3, i.e. if the arguments 2663 // unambiguously name a full specialization. 2664 if (Ovl->hasExplicitTemplateArgs()) { 2665 // But we can still look for an explicit specialization. 2666 if (FunctionDecl *ExplicitSpec 2667 = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) 2668 return GetTypeOfFunction(S.Context, R, ExplicitSpec); 2669 return QualType(); 2670 } 2671 2672 // C++0x [temp.deduct.call]p6: 2673 // When P is a function type, pointer to function type, or pointer 2674 // to member function type: 2675 2676 if (!ParamType->isFunctionType() && 2677 !ParamType->isFunctionPointerType() && 2678 !ParamType->isMemberFunctionPointerType()) 2679 return QualType(); 2680 2681 QualType Match; 2682 for (UnresolvedSetIterator I = Ovl->decls_begin(), 2683 E = Ovl->decls_end(); I != E; ++I) { 2684 NamedDecl *D = (*I)->getUnderlyingDecl(); 2685 2686 // - If the argument is an overload set containing one or more 2687 // function templates, the parameter is treated as a 2688 // non-deduced context. 2689 if (isa<FunctionTemplateDecl>(D)) 2690 return QualType(); 2691 2692 FunctionDecl *Fn = cast<FunctionDecl>(D); 2693 QualType ArgType = GetTypeOfFunction(S.Context, R, Fn); 2694 if (ArgType.isNull()) continue; 2695 2696 // Function-to-pointer conversion. 2697 if (!ParamWasReference && ParamType->isPointerType() && 2698 ArgType->isFunctionType()) 2699 ArgType = S.Context.getPointerType(ArgType); 2700 2701 // - If the argument is an overload set (not containing function 2702 // templates), trial argument deduction is attempted using each 2703 // of the members of the set. If deduction succeeds for only one 2704 // of the overload set members, that member is used as the 2705 // argument value for the deduction. If deduction succeeds for 2706 // more than one member of the overload set the parameter is 2707 // treated as a non-deduced context. 2708 2709 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 2710 // Type deduction is done independently for each P/A pair, and 2711 // the deduced template argument values are then combined. 2712 // So we do not reject deductions which were made elsewhere. 2713 llvm::SmallVector<DeducedTemplateArgument, 8> 2714 Deduced(TemplateParams->size()); 2715 TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc()); 2716 Sema::TemplateDeductionResult Result 2717 = DeduceTemplateArguments(S, TemplateParams, 2718 ParamType, ArgType, 2719 Info, Deduced, TDF); 2720 if (Result) continue; 2721 if (!Match.isNull()) return QualType(); 2722 Match = ArgType; 2723 } 2724 2725 return Match; 2726 } 2727 2728 /// \brief Perform the adjustments to the parameter and argument types 2729 /// described in C++ [temp.deduct.call]. 2730 /// 2731 /// \returns true if the caller should not attempt to perform any template 2732 /// argument deduction based on this P/A pair. 2733 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S, 2734 TemplateParameterList *TemplateParams, 2735 QualType &ParamType, 2736 QualType &ArgType, 2737 Expr *Arg, 2738 unsigned &TDF) { 2739 // C++0x [temp.deduct.call]p3: 2740 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 2741 // are ignored for type deduction. 2742 if (ParamType.hasQualifiers()) 2743 ParamType = ParamType.getUnqualifiedType(); 2744 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 2745 if (ParamRefType) { 2746 QualType PointeeType = ParamRefType->getPointeeType(); 2747 2748 // If the argument has incomplete array type, try to complete it's type. 2749 if (ArgType->isIncompleteArrayType() && 2750 !S.RequireCompleteExprType(Arg, S.PDiag(), 2751 std::make_pair(SourceLocation(), S.PDiag()))) 2752 ArgType = Arg->getType(); 2753 2754 // [C++0x] If P is an rvalue reference to a cv-unqualified 2755 // template parameter and the argument is an lvalue, the type 2756 // "lvalue reference to A" is used in place of A for type 2757 // deduction. 2758 if (isa<RValueReferenceType>(ParamType)) { 2759 if (!PointeeType.getQualifiers() && 2760 isa<TemplateTypeParmType>(PointeeType) && 2761 Arg->Classify(S.Context).isLValue() && 2762 Arg->getType() != S.Context.OverloadTy && 2763 Arg->getType() != S.Context.BoundMemberTy) 2764 ArgType = S.Context.getLValueReferenceType(ArgType); 2765 } 2766 2767 // [...] If P is a reference type, the type referred to by P is used 2768 // for type deduction. 2769 ParamType = PointeeType; 2770 } 2771 2772 // Overload sets usually make this parameter an undeduced 2773 // context, but there are sometimes special circumstances. 2774 if (ArgType == S.Context.OverloadTy) { 2775 ArgType = ResolveOverloadForDeduction(S, TemplateParams, 2776 Arg, ParamType, 2777 ParamRefType != 0); 2778 if (ArgType.isNull()) 2779 return true; 2780 } 2781 2782 if (ParamRefType) { 2783 // C++0x [temp.deduct.call]p3: 2784 // [...] If P is of the form T&&, where T is a template parameter, and 2785 // the argument is an lvalue, the type A& is used in place of A for 2786 // type deduction. 2787 if (ParamRefType->isRValueReferenceType() && 2788 ParamRefType->getAs<TemplateTypeParmType>() && 2789 Arg->isLValue()) 2790 ArgType = S.Context.getLValueReferenceType(ArgType); 2791 } else { 2792 // C++ [temp.deduct.call]p2: 2793 // If P is not a reference type: 2794 // - If A is an array type, the pointer type produced by the 2795 // array-to-pointer standard conversion (4.2) is used in place of 2796 // A for type deduction; otherwise, 2797 if (ArgType->isArrayType()) 2798 ArgType = S.Context.getArrayDecayedType(ArgType); 2799 // - If A is a function type, the pointer type produced by the 2800 // function-to-pointer standard conversion (4.3) is used in place 2801 // of A for type deduction; otherwise, 2802 else if (ArgType->isFunctionType()) 2803 ArgType = S.Context.getPointerType(ArgType); 2804 else { 2805 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 2806 // type are ignored for type deduction. 2807 ArgType = ArgType.getUnqualifiedType(); 2808 } 2809 } 2810 2811 // C++0x [temp.deduct.call]p4: 2812 // In general, the deduction process attempts to find template argument 2813 // values that will make the deduced A identical to A (after the type A 2814 // is transformed as described above). [...] 2815 TDF = TDF_SkipNonDependent; 2816 2817 // - If the original P is a reference type, the deduced A (i.e., the 2818 // type referred to by the reference) can be more cv-qualified than 2819 // the transformed A. 2820 if (ParamRefType) 2821 TDF |= TDF_ParamWithReferenceType; 2822 // - The transformed A can be another pointer or pointer to member 2823 // type that can be converted to the deduced A via a qualification 2824 // conversion (4.4). 2825 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 2826 ArgType->isObjCObjectPointerType()) 2827 TDF |= TDF_IgnoreQualifiers; 2828 // - If P is a class and P has the form simple-template-id, then the 2829 // transformed A can be a derived class of the deduced A. Likewise, 2830 // if P is a pointer to a class of the form simple-template-id, the 2831 // transformed A can be a pointer to a derived class pointed to by 2832 // the deduced A. 2833 if (isSimpleTemplateIdType(ParamType) || 2834 (isa<PointerType>(ParamType) && 2835 isSimpleTemplateIdType( 2836 ParamType->getAs<PointerType>()->getPointeeType()))) 2837 TDF |= TDF_DerivedClass; 2838 2839 return false; 2840 } 2841 2842 static bool hasDeducibleTemplateParameters(Sema &S, 2843 FunctionTemplateDecl *FunctionTemplate, 2844 QualType T); 2845 2846 /// \brief Perform template argument deduction from a function call 2847 /// (C++ [temp.deduct.call]). 2848 /// 2849 /// \param FunctionTemplate the function template for which we are performing 2850 /// template argument deduction. 2851 /// 2852 /// \param ExplicitTemplateArguments the explicit template arguments provided 2853 /// for this call. 2854 /// 2855 /// \param Args the function call arguments 2856 /// 2857 /// \param NumArgs the number of arguments in Args 2858 /// 2859 /// \param Name the name of the function being called. This is only significant 2860 /// when the function template is a conversion function template, in which 2861 /// case this routine will also perform template argument deduction based on 2862 /// the function to which 2863 /// 2864 /// \param Specialization if template argument deduction was successful, 2865 /// this will be set to the function template specialization produced by 2866 /// template argument deduction. 2867 /// 2868 /// \param Info the argument will be updated to provide additional information 2869 /// about template argument deduction. 2870 /// 2871 /// \returns the result of template argument deduction. 2872 Sema::TemplateDeductionResult 2873 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, 2874 TemplateArgumentListInfo *ExplicitTemplateArgs, 2875 Expr **Args, unsigned NumArgs, 2876 FunctionDecl *&Specialization, 2877 TemplateDeductionInfo &Info) { 2878 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 2879 2880 // C++ [temp.deduct.call]p1: 2881 // Template argument deduction is done by comparing each function template 2882 // parameter type (call it P) with the type of the corresponding argument 2883 // of the call (call it A) as described below. 2884 unsigned CheckArgs = NumArgs; 2885 if (NumArgs < Function->getMinRequiredArguments()) 2886 return TDK_TooFewArguments; 2887 else if (NumArgs > Function->getNumParams()) { 2888 const FunctionProtoType *Proto 2889 = Function->getType()->getAs<FunctionProtoType>(); 2890 if (Proto->isTemplateVariadic()) 2891 /* Do nothing */; 2892 else if (Proto->isVariadic()) 2893 CheckArgs = Function->getNumParams(); 2894 else 2895 return TDK_TooManyArguments; 2896 } 2897 2898 // The types of the parameters from which we will perform template argument 2899 // deduction. 2900 LocalInstantiationScope InstScope(*this); 2901 TemplateParameterList *TemplateParams 2902 = FunctionTemplate->getTemplateParameters(); 2903 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced; 2904 llvm::SmallVector<QualType, 4> ParamTypes; 2905 unsigned NumExplicitlySpecified = 0; 2906 if (ExplicitTemplateArgs) { 2907 TemplateDeductionResult Result = 2908 SubstituteExplicitTemplateArguments(FunctionTemplate, 2909 *ExplicitTemplateArgs, 2910 Deduced, 2911 ParamTypes, 2912 0, 2913 Info); 2914 if (Result) 2915 return Result; 2916 2917 NumExplicitlySpecified = Deduced.size(); 2918 } else { 2919 // Just fill in the parameter types from the function declaration. 2920 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 2921 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 2922 } 2923 2924 // Deduce template arguments from the function parameters. 2925 Deduced.resize(TemplateParams->size()); 2926 unsigned ArgIdx = 0; 2927 llvm::SmallVector<OriginalCallArg, 4> OriginalCallArgs; 2928 for (unsigned ParamIdx = 0, NumParams = ParamTypes.size(); 2929 ParamIdx != NumParams; ++ParamIdx) { 2930 QualType OrigParamType = ParamTypes[ParamIdx]; 2931 QualType ParamType = OrigParamType; 2932 2933 const PackExpansionType *ParamExpansion 2934 = dyn_cast<PackExpansionType>(ParamType); 2935 if (!ParamExpansion) { 2936 // Simple case: matching a function parameter to a function argument. 2937 if (ArgIdx >= CheckArgs) 2938 break; 2939 2940 Expr *Arg = Args[ArgIdx++]; 2941 QualType ArgType = Arg->getType(); 2942 2943 unsigned TDF = 0; 2944 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams, 2945 ParamType, ArgType, Arg, 2946 TDF)) 2947 continue; 2948 2949 // Keep track of the argument type and corresponding parameter index, 2950 // so we can check for compatibility between the deduced A and A. 2951 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 2952 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1, 2953 ArgType)); 2954 2955 if (TemplateDeductionResult Result 2956 = ::DeduceTemplateArguments(*this, TemplateParams, 2957 ParamType, ArgType, Info, Deduced, 2958 TDF)) 2959 return Result; 2960 2961 continue; 2962 } 2963 2964 // C++0x [temp.deduct.call]p1: 2965 // For a function parameter pack that occurs at the end of the 2966 // parameter-declaration-list, the type A of each remaining argument of 2967 // the call is compared with the type P of the declarator-id of the 2968 // function parameter pack. Each comparison deduces template arguments 2969 // for subsequent positions in the template parameter packs expanded by 2970 // the function parameter pack. For a function parameter pack that does 2971 // not occur at the end of the parameter-declaration-list, the type of 2972 // the parameter pack is a non-deduced context. 2973 if (ParamIdx + 1 < NumParams) 2974 break; 2975 2976 QualType ParamPattern = ParamExpansion->getPattern(); 2977 llvm::SmallVector<unsigned, 2> PackIndices; 2978 { 2979 llvm::BitVector SawIndices(TemplateParams->size()); 2980 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2981 collectUnexpandedParameterPacks(ParamPattern, Unexpanded); 2982 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 2983 unsigned Depth, Index; 2984 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 2985 if (Depth == 0 && !SawIndices[Index]) { 2986 SawIndices[Index] = true; 2987 PackIndices.push_back(Index); 2988 } 2989 } 2990 } 2991 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?"); 2992 2993 // Keep track of the deduced template arguments for each parameter pack 2994 // expanded by this pack expansion (the outer index) and for each 2995 // template argument (the inner SmallVectors). 2996 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2> 2997 NewlyDeducedPacks(PackIndices.size()); 2998 llvm::SmallVector<DeducedTemplateArgument, 2> 2999 SavedPacks(PackIndices.size()); 3000 PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks, 3001 NewlyDeducedPacks); 3002 bool HasAnyArguments = false; 3003 for (; ArgIdx < NumArgs; ++ArgIdx) { 3004 HasAnyArguments = true; 3005 3006 QualType OrigParamType = ParamPattern; 3007 ParamType = OrigParamType; 3008 Expr *Arg = Args[ArgIdx]; 3009 QualType ArgType = Arg->getType(); 3010 3011 unsigned TDF = 0; 3012 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams, 3013 ParamType, ArgType, Arg, 3014 TDF)) { 3015 // We can't actually perform any deduction for this argument, so stop 3016 // deduction at this point. 3017 ++ArgIdx; 3018 break; 3019 } 3020 3021 // Keep track of the argument type and corresponding argument index, 3022 // so we can check for compatibility between the deduced A and A. 3023 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 3024 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx, 3025 ArgType)); 3026 3027 if (TemplateDeductionResult Result 3028 = ::DeduceTemplateArguments(*this, TemplateParams, 3029 ParamType, ArgType, Info, Deduced, 3030 TDF)) 3031 return Result; 3032 3033 // Capture the deduced template arguments for each parameter pack expanded 3034 // by this pack expansion, add them to the list of arguments we've deduced 3035 // for that pack, then clear out the deduced argument. 3036 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) { 3037 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]]; 3038 if (!DeducedArg.isNull()) { 3039 NewlyDeducedPacks[I].push_back(DeducedArg); 3040 DeducedArg = DeducedTemplateArgument(); 3041 } 3042 } 3043 } 3044 3045 // Build argument packs for each of the parameter packs expanded by this 3046 // pack expansion. 3047 if (Sema::TemplateDeductionResult Result 3048 = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments, 3049 Deduced, PackIndices, SavedPacks, 3050 NewlyDeducedPacks, Info)) 3051 return Result; 3052 3053 // After we've matching against a parameter pack, we're done. 3054 break; 3055 } 3056 3057 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 3058 NumExplicitlySpecified, 3059 Specialization, Info, &OriginalCallArgs); 3060 } 3061 3062 /// \brief Deduce template arguments when taking the address of a function 3063 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 3064 /// a template. 3065 /// 3066 /// \param FunctionTemplate the function template for which we are performing 3067 /// template argument deduction. 3068 /// 3069 /// \param ExplicitTemplateArguments the explicitly-specified template 3070 /// arguments. 3071 /// 3072 /// \param ArgFunctionType the function type that will be used as the 3073 /// "argument" type (A) when performing template argument deduction from the 3074 /// function template's function type. This type may be NULL, if there is no 3075 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 3076 /// 3077 /// \param Specialization if template argument deduction was successful, 3078 /// this will be set to the function template specialization produced by 3079 /// template argument deduction. 3080 /// 3081 /// \param Info the argument will be updated to provide additional information 3082 /// about template argument deduction. 3083 /// 3084 /// \returns the result of template argument deduction. 3085 Sema::TemplateDeductionResult 3086 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, 3087 TemplateArgumentListInfo *ExplicitTemplateArgs, 3088 QualType ArgFunctionType, 3089 FunctionDecl *&Specialization, 3090 TemplateDeductionInfo &Info) { 3091 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3092 TemplateParameterList *TemplateParams 3093 = FunctionTemplate->getTemplateParameters(); 3094 QualType FunctionType = Function->getType(); 3095 3096 // Substitute any explicit template arguments. 3097 LocalInstantiationScope InstScope(*this); 3098 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced; 3099 unsigned NumExplicitlySpecified = 0; 3100 llvm::SmallVector<QualType, 4> ParamTypes; 3101 if (ExplicitTemplateArgs) { 3102 if (TemplateDeductionResult Result 3103 = SubstituteExplicitTemplateArguments(FunctionTemplate, 3104 *ExplicitTemplateArgs, 3105 Deduced, ParamTypes, 3106 &FunctionType, Info)) 3107 return Result; 3108 3109 NumExplicitlySpecified = Deduced.size(); 3110 } 3111 3112 // Template argument deduction for function templates in a SFINAE context. 3113 // Trap any errors that might occur. 3114 SFINAETrap Trap(*this); 3115 3116 Deduced.resize(TemplateParams->size()); 3117 3118 if (!ArgFunctionType.isNull()) { 3119 // Deduce template arguments from the function type. 3120 if (TemplateDeductionResult Result 3121 = ::DeduceTemplateArguments(*this, TemplateParams, 3122 FunctionType, ArgFunctionType, Info, 3123 Deduced, TDF_TopLevelParameterTypeList)) 3124 return Result; 3125 } 3126 3127 if (TemplateDeductionResult Result 3128 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 3129 NumExplicitlySpecified, 3130 Specialization, Info)) 3131 return Result; 3132 3133 // If the requested function type does not match the actual type of the 3134 // specialization, template argument deduction fails. 3135 if (!ArgFunctionType.isNull() && 3136 !Context.hasSameType(ArgFunctionType, Specialization->getType())) 3137 return TDK_NonDeducedMismatch; 3138 3139 return TDK_Success; 3140 } 3141 3142 /// \brief Deduce template arguments for a templated conversion 3143 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 3144 /// conversion function template specialization. 3145 Sema::TemplateDeductionResult 3146 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, 3147 QualType ToType, 3148 CXXConversionDecl *&Specialization, 3149 TemplateDeductionInfo &Info) { 3150 CXXConversionDecl *Conv 3151 = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()); 3152 QualType FromType = Conv->getConversionType(); 3153 3154 // Canonicalize the types for deduction. 3155 QualType P = Context.getCanonicalType(FromType); 3156 QualType A = Context.getCanonicalType(ToType); 3157 3158 // C++0x [temp.deduct.conv]p2: 3159 // If P is a reference type, the type referred to by P is used for 3160 // type deduction. 3161 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 3162 P = PRef->getPointeeType(); 3163 3164 // C++0x [temp.deduct.conv]p4: 3165 // [...] If A is a reference type, the type referred to by A is used 3166 // for type deduction. 3167 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3168 A = ARef->getPointeeType().getUnqualifiedType(); 3169 // C++ [temp.deduct.conv]p3: 3170 // 3171 // If A is not a reference type: 3172 else { 3173 assert(!A->isReferenceType() && "Reference types were handled above"); 3174 3175 // - If P is an array type, the pointer type produced by the 3176 // array-to-pointer standard conversion (4.2) is used in place 3177 // of P for type deduction; otherwise, 3178 if (P->isArrayType()) 3179 P = Context.getArrayDecayedType(P); 3180 // - If P is a function type, the pointer type produced by the 3181 // function-to-pointer standard conversion (4.3) is used in 3182 // place of P for type deduction; otherwise, 3183 else if (P->isFunctionType()) 3184 P = Context.getPointerType(P); 3185 // - If P is a cv-qualified type, the top level cv-qualifiers of 3186 // P's type are ignored for type deduction. 3187 else 3188 P = P.getUnqualifiedType(); 3189 3190 // C++0x [temp.deduct.conv]p4: 3191 // If A is a cv-qualified type, the top level cv-qualifiers of A's 3192 // type are ignored for type deduction. If A is a reference type, the type 3193 // referred to by A is used for type deduction. 3194 A = A.getUnqualifiedType(); 3195 } 3196 3197 // Template argument deduction for function templates in a SFINAE context. 3198 // Trap any errors that might occur. 3199 SFINAETrap Trap(*this); 3200 3201 // C++ [temp.deduct.conv]p1: 3202 // Template argument deduction is done by comparing the return 3203 // type of the template conversion function (call it P) with the 3204 // type that is required as the result of the conversion (call it 3205 // A) as described in 14.8.2.4. 3206 TemplateParameterList *TemplateParams 3207 = FunctionTemplate->getTemplateParameters(); 3208 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced; 3209 Deduced.resize(TemplateParams->size()); 3210 3211 // C++0x [temp.deduct.conv]p4: 3212 // In general, the deduction process attempts to find template 3213 // argument values that will make the deduced A identical to 3214 // A. However, there are two cases that allow a difference: 3215 unsigned TDF = 0; 3216 // - If the original A is a reference type, A can be more 3217 // cv-qualified than the deduced A (i.e., the type referred to 3218 // by the reference) 3219 if (ToType->isReferenceType()) 3220 TDF |= TDF_ParamWithReferenceType; 3221 // - The deduced A can be another pointer or pointer to member 3222 // type that can be converted to A via a qualification 3223 // conversion. 3224 // 3225 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 3226 // both P and A are pointers or member pointers. In this case, we 3227 // just ignore cv-qualifiers completely). 3228 if ((P->isPointerType() && A->isPointerType()) || 3229 (P->isMemberPointerType() && P->isMemberPointerType())) 3230 TDF |= TDF_IgnoreQualifiers; 3231 if (TemplateDeductionResult Result 3232 = ::DeduceTemplateArguments(*this, TemplateParams, 3233 P, A, Info, Deduced, TDF)) 3234 return Result; 3235 3236 // Finish template argument deduction. 3237 LocalInstantiationScope InstScope(*this); 3238 FunctionDecl *Spec = 0; 3239 TemplateDeductionResult Result 3240 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec, 3241 Info); 3242 Specialization = cast_or_null<CXXConversionDecl>(Spec); 3243 return Result; 3244 } 3245 3246 /// \brief Deduce template arguments for a function template when there is 3247 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 3248 /// 3249 /// \param FunctionTemplate the function template for which we are performing 3250 /// template argument deduction. 3251 /// 3252 /// \param ExplicitTemplateArguments the explicitly-specified template 3253 /// arguments. 3254 /// 3255 /// \param Specialization if template argument deduction was successful, 3256 /// this will be set to the function template specialization produced by 3257 /// template argument deduction. 3258 /// 3259 /// \param Info the argument will be updated to provide additional information 3260 /// about template argument deduction. 3261 /// 3262 /// \returns the result of template argument deduction. 3263 Sema::TemplateDeductionResult 3264 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, 3265 TemplateArgumentListInfo *ExplicitTemplateArgs, 3266 FunctionDecl *&Specialization, 3267 TemplateDeductionInfo &Info) { 3268 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3269 QualType(), Specialization, Info); 3270 } 3271 3272 namespace { 3273 /// Substitute the 'auto' type specifier within a type for a given replacement 3274 /// type. 3275 class SubstituteAutoTransform : 3276 public TreeTransform<SubstituteAutoTransform> { 3277 QualType Replacement; 3278 public: 3279 SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) : 3280 TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) { 3281 } 3282 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 3283 // If we're building the type pattern to deduce against, don't wrap the 3284 // substituted type in an AutoType. Certain template deduction rules 3285 // apply only when a template type parameter appears directly (and not if 3286 // the parameter is found through desugaring). For instance: 3287 // auto &&lref = lvalue; 3288 // must transform into "rvalue reference to T" not "rvalue reference to 3289 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 3290 if (isa<TemplateTypeParmType>(Replacement)) { 3291 QualType Result = Replacement; 3292 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 3293 NewTL.setNameLoc(TL.getNameLoc()); 3294 return Result; 3295 } else { 3296 QualType Result = RebuildAutoType(Replacement); 3297 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result); 3298 NewTL.setNameLoc(TL.getNameLoc()); 3299 return Result; 3300 } 3301 } 3302 }; 3303 } 3304 3305 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6) 3306 /// 3307 /// \param Type the type pattern using the auto type-specifier. 3308 /// 3309 /// \param Init the initializer for the variable whose type is to be deduced. 3310 /// 3311 /// \param Result if type deduction was successful, this will be set to the 3312 /// deduced type. This may still contain undeduced autos if the type is 3313 /// dependent. This will be set to null if deduction succeeded, but auto 3314 /// substitution failed; the appropriate diagnostic will already have been 3315 /// produced in that case. 3316 /// 3317 /// \returns true if deduction succeeded, false if it failed. 3318 bool 3319 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *Init, 3320 TypeSourceInfo *&Result) { 3321 if (Init->isTypeDependent()) { 3322 Result = Type; 3323 return true; 3324 } 3325 3326 SourceLocation Loc = Init->getExprLoc(); 3327 3328 LocalInstantiationScope InstScope(*this); 3329 3330 // Build template<class TemplParam> void Func(FuncParam); 3331 TemplateTypeParmDecl *TemplParam = 3332 TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0, 3333 false, false); 3334 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 3335 NamedDecl *TemplParamPtr = TemplParam; 3336 FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr, 3337 Loc); 3338 3339 TypeSourceInfo *FuncParamInfo = 3340 SubstituteAutoTransform(*this, TemplArg).TransformType(Type); 3341 assert(FuncParamInfo && "substituting template parameter for 'auto' failed"); 3342 QualType FuncParam = FuncParamInfo->getType(); 3343 3344 // Deduce type of TemplParam in Func(Init) 3345 llvm::SmallVector<DeducedTemplateArgument, 1> Deduced; 3346 Deduced.resize(1); 3347 QualType InitType = Init->getType(); 3348 unsigned TDF = 0; 3349 if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams, 3350 FuncParam, InitType, Init, 3351 TDF)) 3352 return false; 3353 3354 TemplateDeductionInfo Info(Context, Loc); 3355 if (::DeduceTemplateArguments(*this, &TemplateParams, 3356 FuncParam, InitType, Info, Deduced, 3357 TDF)) 3358 return false; 3359 3360 QualType DeducedType = Deduced[0].getAsType(); 3361 if (DeducedType.isNull()) 3362 return false; 3363 3364 Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type); 3365 3366 // Check that the deduced argument type is compatible with the original 3367 // argument type per C++ [temp.deduct.call]p4. 3368 if (Result && 3369 CheckOriginalCallArgDeduction(*this, 3370 Sema::OriginalCallArg(FuncParam,0,InitType), 3371 Result->getType())) { 3372 Result = 0; 3373 return false; 3374 } 3375 3376 return true; 3377 } 3378 3379 static void 3380 MarkUsedTemplateParameters(Sema &SemaRef, QualType T, 3381 bool OnlyDeduced, 3382 unsigned Level, 3383 llvm::SmallVectorImpl<bool> &Deduced); 3384 3385 /// \brief If this is a non-static member function, 3386 static void MaybeAddImplicitObjectParameterType(ASTContext &Context, 3387 CXXMethodDecl *Method, 3388 llvm::SmallVectorImpl<QualType> &ArgTypes) { 3389 if (Method->isStatic()) 3390 return; 3391 3392 // C++ [over.match.funcs]p4: 3393 // 3394 // For non-static member functions, the type of the implicit 3395 // object parameter is 3396 // - "lvalue reference to cv X" for functions declared without a 3397 // ref-qualifier or with the & ref-qualifier 3398 // - "rvalue reference to cv X" for functions declared with the 3399 // && ref-qualifier 3400 // 3401 // FIXME: We don't have ref-qualifiers yet, so we don't do that part. 3402 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 3403 ArgTy = Context.getQualifiedType(ArgTy, 3404 Qualifiers::fromCVRMask(Method->getTypeQualifiers())); 3405 ArgTy = Context.getLValueReferenceType(ArgTy); 3406 ArgTypes.push_back(ArgTy); 3407 } 3408 3409 /// \brief Determine whether the function template \p FT1 is at least as 3410 /// specialized as \p FT2. 3411 static bool isAtLeastAsSpecializedAs(Sema &S, 3412 SourceLocation Loc, 3413 FunctionTemplateDecl *FT1, 3414 FunctionTemplateDecl *FT2, 3415 TemplatePartialOrderingContext TPOC, 3416 unsigned NumCallArguments, 3417 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) { 3418 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 3419 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 3420 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 3421 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 3422 3423 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 3424 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 3425 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced; 3426 Deduced.resize(TemplateParams->size()); 3427 3428 // C++0x [temp.deduct.partial]p3: 3429 // The types used to determine the ordering depend on the context in which 3430 // the partial ordering is done: 3431 TemplateDeductionInfo Info(S.Context, Loc); 3432 CXXMethodDecl *Method1 = 0; 3433 CXXMethodDecl *Method2 = 0; 3434 bool IsNonStatic2 = false; 3435 bool IsNonStatic1 = false; 3436 unsigned Skip2 = 0; 3437 switch (TPOC) { 3438 case TPOC_Call: { 3439 // - In the context of a function call, the function parameter types are 3440 // used. 3441 Method1 = dyn_cast<CXXMethodDecl>(FD1); 3442 Method2 = dyn_cast<CXXMethodDecl>(FD2); 3443 IsNonStatic1 = Method1 && !Method1->isStatic(); 3444 IsNonStatic2 = Method2 && !Method2->isStatic(); 3445 3446 // C++0x [temp.func.order]p3: 3447 // [...] If only one of the function templates is a non-static 3448 // member, that function template is considered to have a new 3449 // first parameter inserted in its function parameter list. The 3450 // new parameter is of type "reference to cv A," where cv are 3451 // the cv-qualifiers of the function template (if any) and A is 3452 // the class of which the function template is a member. 3453 // 3454 // C++98/03 doesn't have this provision, so instead we drop the 3455 // first argument of the free function or static member, which 3456 // seems to match existing practice. 3457 llvm::SmallVector<QualType, 4> Args1; 3458 unsigned Skip1 = !S.getLangOptions().CPlusPlus0x && 3459 IsNonStatic2 && !IsNonStatic1; 3460 if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2) 3461 MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1); 3462 Args1.insert(Args1.end(), 3463 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end()); 3464 3465 llvm::SmallVector<QualType, 4> Args2; 3466 Skip2 = !S.getLangOptions().CPlusPlus0x && 3467 IsNonStatic1 && !IsNonStatic2; 3468 if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1) 3469 MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2); 3470 Args2.insert(Args2.end(), 3471 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end()); 3472 3473 // C++ [temp.func.order]p5: 3474 // The presence of unused ellipsis and default arguments has no effect on 3475 // the partial ordering of function templates. 3476 if (Args1.size() > NumCallArguments) 3477 Args1.resize(NumCallArguments); 3478 if (Args2.size() > NumCallArguments) 3479 Args2.resize(NumCallArguments); 3480 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 3481 Args1.data(), Args1.size(), Info, Deduced, 3482 TDF_None, /*PartialOrdering=*/true, 3483 RefParamComparisons)) 3484 return false; 3485 3486 break; 3487 } 3488 3489 case TPOC_Conversion: 3490 // - In the context of a call to a conversion operator, the return types 3491 // of the conversion function templates are used. 3492 if (DeduceTemplateArguments(S, TemplateParams, Proto2->getResultType(), 3493 Proto1->getResultType(), Info, Deduced, 3494 TDF_None, /*PartialOrdering=*/true, 3495 RefParamComparisons)) 3496 return false; 3497 break; 3498 3499 case TPOC_Other: 3500 // - In other contexts (14.6.6.2) the function template's function type 3501 // is used. 3502 if (DeduceTemplateArguments(S, TemplateParams, FD2->getType(), 3503 FD1->getType(), Info, Deduced, TDF_None, 3504 /*PartialOrdering=*/true, RefParamComparisons)) 3505 return false; 3506 break; 3507 } 3508 3509 // C++0x [temp.deduct.partial]p11: 3510 // In most cases, all template parameters must have values in order for 3511 // deduction to succeed, but for partial ordering purposes a template 3512 // parameter may remain without a value provided it is not used in the 3513 // types being used for partial ordering. [ Note: a template parameter used 3514 // in a non-deduced context is considered used. -end note] 3515 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 3516 for (; ArgIdx != NumArgs; ++ArgIdx) 3517 if (Deduced[ArgIdx].isNull()) 3518 break; 3519 3520 if (ArgIdx == NumArgs) { 3521 // All template arguments were deduced. FT1 is at least as specialized 3522 // as FT2. 3523 return true; 3524 } 3525 3526 // Figure out which template parameters were used. 3527 llvm::SmallVector<bool, 4> UsedParameters; 3528 UsedParameters.resize(TemplateParams->size()); 3529 switch (TPOC) { 3530 case TPOC_Call: { 3531 unsigned NumParams = std::min(NumCallArguments, 3532 std::min(Proto1->getNumArgs(), 3533 Proto2->getNumArgs())); 3534 if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1) 3535 ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false, 3536 TemplateParams->getDepth(), UsedParameters); 3537 for (unsigned I = Skip2; I < NumParams; ++I) 3538 ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false, 3539 TemplateParams->getDepth(), 3540 UsedParameters); 3541 break; 3542 } 3543 3544 case TPOC_Conversion: 3545 ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false, 3546 TemplateParams->getDepth(), 3547 UsedParameters); 3548 break; 3549 3550 case TPOC_Other: 3551 ::MarkUsedTemplateParameters(S, FD2->getType(), false, 3552 TemplateParams->getDepth(), 3553 UsedParameters); 3554 break; 3555 } 3556 3557 for (; ArgIdx != NumArgs; ++ArgIdx) 3558 // If this argument had no value deduced but was used in one of the types 3559 // used for partial ordering, then deduction fails. 3560 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 3561 return false; 3562 3563 return true; 3564 } 3565 3566 /// \brief Determine whether this a function template whose parameter-type-list 3567 /// ends with a function parameter pack. 3568 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { 3569 FunctionDecl *Function = FunTmpl->getTemplatedDecl(); 3570 unsigned NumParams = Function->getNumParams(); 3571 if (NumParams == 0) 3572 return false; 3573 3574 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); 3575 if (!Last->isParameterPack()) 3576 return false; 3577 3578 // Make sure that no previous parameter is a parameter pack. 3579 while (--NumParams > 0) { 3580 if (Function->getParamDecl(NumParams - 1)->isParameterPack()) 3581 return false; 3582 } 3583 3584 return true; 3585 } 3586 3587 /// \brief Returns the more specialized function template according 3588 /// to the rules of function template partial ordering (C++ [temp.func.order]). 3589 /// 3590 /// \param FT1 the first function template 3591 /// 3592 /// \param FT2 the second function template 3593 /// 3594 /// \param TPOC the context in which we are performing partial ordering of 3595 /// function templates. 3596 /// 3597 /// \param NumCallArguments The number of arguments in a call, used only 3598 /// when \c TPOC is \c TPOC_Call. 3599 /// 3600 /// \returns the more specialized function template. If neither 3601 /// template is more specialized, returns NULL. 3602 FunctionTemplateDecl * 3603 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, 3604 FunctionTemplateDecl *FT2, 3605 SourceLocation Loc, 3606 TemplatePartialOrderingContext TPOC, 3607 unsigned NumCallArguments) { 3608 llvm::SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons; 3609 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 3610 NumCallArguments, 0); 3611 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 3612 NumCallArguments, 3613 &RefParamComparisons); 3614 3615 if (Better1 != Better2) // We have a clear winner 3616 return Better1? FT1 : FT2; 3617 3618 if (!Better1 && !Better2) // Neither is better than the other 3619 return 0; 3620 3621 // C++0x [temp.deduct.partial]p10: 3622 // If for each type being considered a given template is at least as 3623 // specialized for all types and more specialized for some set of types and 3624 // the other template is not more specialized for any types or is not at 3625 // least as specialized for any types, then the given template is more 3626 // specialized than the other template. Otherwise, neither template is more 3627 // specialized than the other. 3628 Better1 = false; 3629 Better2 = false; 3630 for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) { 3631 // C++0x [temp.deduct.partial]p9: 3632 // If, for a given type, deduction succeeds in both directions (i.e., the 3633 // types are identical after the transformations above) and both P and A 3634 // were reference types (before being replaced with the type referred to 3635 // above): 3636 3637 // -- if the type from the argument template was an lvalue reference 3638 // and the type from the parameter template was not, the argument 3639 // type is considered to be more specialized than the other; 3640 // otherwise, 3641 if (!RefParamComparisons[I].ArgIsRvalueRef && 3642 RefParamComparisons[I].ParamIsRvalueRef) { 3643 Better2 = true; 3644 if (Better1) 3645 return 0; 3646 continue; 3647 } else if (!RefParamComparisons[I].ParamIsRvalueRef && 3648 RefParamComparisons[I].ArgIsRvalueRef) { 3649 Better1 = true; 3650 if (Better2) 3651 return 0; 3652 continue; 3653 } 3654 3655 // -- if the type from the argument template is more cv-qualified than 3656 // the type from the parameter template (as described above), the 3657 // argument type is considered to be more specialized than the 3658 // other; otherwise, 3659 switch (RefParamComparisons[I].Qualifiers) { 3660 case NeitherMoreQualified: 3661 break; 3662 3663 case ParamMoreQualified: 3664 Better1 = true; 3665 if (Better2) 3666 return 0; 3667 continue; 3668 3669 case ArgMoreQualified: 3670 Better2 = true; 3671 if (Better1) 3672 return 0; 3673 continue; 3674 } 3675 3676 // -- neither type is more specialized than the other. 3677 } 3678 3679 assert(!(Better1 && Better2) && "Should have broken out in the loop above"); 3680 if (Better1) 3681 return FT1; 3682 else if (Better2) 3683 return FT2; 3684 3685 // FIXME: This mimics what GCC implements, but doesn't match up with the 3686 // proposed resolution for core issue 692. This area needs to be sorted out, 3687 // but for now we attempt to maintain compatibility. 3688 bool Variadic1 = isVariadicFunctionTemplate(FT1); 3689 bool Variadic2 = isVariadicFunctionTemplate(FT2); 3690 if (Variadic1 != Variadic2) 3691 return Variadic1? FT2 : FT1; 3692 3693 return 0; 3694 } 3695 3696 /// \brief Determine if the two templates are equivalent. 3697 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 3698 if (T1 == T2) 3699 return true; 3700 3701 if (!T1 || !T2) 3702 return false; 3703 3704 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 3705 } 3706 3707 /// \brief Retrieve the most specialized of the given function template 3708 /// specializations. 3709 /// 3710 /// \param SpecBegin the start iterator of the function template 3711 /// specializations that we will be comparing. 3712 /// 3713 /// \param SpecEnd the end iterator of the function template 3714 /// specializations, paired with \p SpecBegin. 3715 /// 3716 /// \param TPOC the partial ordering context to use to compare the function 3717 /// template specializations. 3718 /// 3719 /// \param NumCallArguments The number of arguments in a call, used only 3720 /// when \c TPOC is \c TPOC_Call. 3721 /// 3722 /// \param Loc the location where the ambiguity or no-specializations 3723 /// diagnostic should occur. 3724 /// 3725 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 3726 /// no matching candidates. 3727 /// 3728 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 3729 /// occurs. 3730 /// 3731 /// \param CandidateDiag partial diagnostic used for each function template 3732 /// specialization that is a candidate in the ambiguous ordering. One parameter 3733 /// in this diagnostic should be unbound, which will correspond to the string 3734 /// describing the template arguments for the function template specialization. 3735 /// 3736 /// \param Index if non-NULL and the result of this function is non-nULL, 3737 /// receives the index corresponding to the resulting function template 3738 /// specialization. 3739 /// 3740 /// \returns the most specialized function template specialization, if 3741 /// found. Otherwise, returns SpecEnd. 3742 /// 3743 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed 3744 /// template argument deduction. 3745 UnresolvedSetIterator 3746 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin, 3747 UnresolvedSetIterator SpecEnd, 3748 TemplatePartialOrderingContext TPOC, 3749 unsigned NumCallArguments, 3750 SourceLocation Loc, 3751 const PartialDiagnostic &NoneDiag, 3752 const PartialDiagnostic &AmbigDiag, 3753 const PartialDiagnostic &CandidateDiag, 3754 bool Complain) { 3755 if (SpecBegin == SpecEnd) { 3756 if (Complain) 3757 Diag(Loc, NoneDiag); 3758 return SpecEnd; 3759 } 3760 3761 if (SpecBegin + 1 == SpecEnd) 3762 return SpecBegin; 3763 3764 // Find the function template that is better than all of the templates it 3765 // has been compared to. 3766 UnresolvedSetIterator Best = SpecBegin; 3767 FunctionTemplateDecl *BestTemplate 3768 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 3769 assert(BestTemplate && "Not a function template specialization?"); 3770 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 3771 FunctionTemplateDecl *Challenger 3772 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 3773 assert(Challenger && "Not a function template specialization?"); 3774 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 3775 Loc, TPOC, NumCallArguments), 3776 Challenger)) { 3777 Best = I; 3778 BestTemplate = Challenger; 3779 } 3780 } 3781 3782 // Make sure that the "best" function template is more specialized than all 3783 // of the others. 3784 bool Ambiguous = false; 3785 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 3786 FunctionTemplateDecl *Challenger 3787 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 3788 if (I != Best && 3789 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 3790 Loc, TPOC, NumCallArguments), 3791 BestTemplate)) { 3792 Ambiguous = true; 3793 break; 3794 } 3795 } 3796 3797 if (!Ambiguous) { 3798 // We found an answer. Return it. 3799 return Best; 3800 } 3801 3802 // Diagnose the ambiguity. 3803 if (Complain) 3804 Diag(Loc, AmbigDiag); 3805 3806 if (Complain) 3807 // FIXME: Can we order the candidates in some sane way? 3808 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) 3809 Diag((*I)->getLocation(), CandidateDiag) 3810 << getTemplateArgumentBindingsText( 3811 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(), 3812 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs()); 3813 3814 return SpecEnd; 3815 } 3816 3817 /// \brief Returns the more specialized class template partial specialization 3818 /// according to the rules of partial ordering of class template partial 3819 /// specializations (C++ [temp.class.order]). 3820 /// 3821 /// \param PS1 the first class template partial specialization 3822 /// 3823 /// \param PS2 the second class template partial specialization 3824 /// 3825 /// \returns the more specialized class template partial specialization. If 3826 /// neither partial specialization is more specialized, returns NULL. 3827 ClassTemplatePartialSpecializationDecl * 3828 Sema::getMoreSpecializedPartialSpecialization( 3829 ClassTemplatePartialSpecializationDecl *PS1, 3830 ClassTemplatePartialSpecializationDecl *PS2, 3831 SourceLocation Loc) { 3832 // C++ [temp.class.order]p1: 3833 // For two class template partial specializations, the first is at least as 3834 // specialized as the second if, given the following rewrite to two 3835 // function templates, the first function template is at least as 3836 // specialized as the second according to the ordering rules for function 3837 // templates (14.6.6.2): 3838 // - the first function template has the same template parameters as the 3839 // first partial specialization and has a single function parameter 3840 // whose type is a class template specialization with the template 3841 // arguments of the first partial specialization, and 3842 // - the second function template has the same template parameters as the 3843 // second partial specialization and has a single function parameter 3844 // whose type is a class template specialization with the template 3845 // arguments of the second partial specialization. 3846 // 3847 // Rather than synthesize function templates, we merely perform the 3848 // equivalent partial ordering by performing deduction directly on 3849 // the template arguments of the class template partial 3850 // specializations. This computation is slightly simpler than the 3851 // general problem of function template partial ordering, because 3852 // class template partial specializations are more constrained. We 3853 // know that every template parameter is deducible from the class 3854 // template partial specialization's template arguments, for 3855 // example. 3856 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced; 3857 TemplateDeductionInfo Info(Context, Loc); 3858 3859 QualType PT1 = PS1->getInjectedSpecializationType(); 3860 QualType PT2 = PS2->getInjectedSpecializationType(); 3861 3862 // Determine whether PS1 is at least as specialized as PS2 3863 Deduced.resize(PS2->getTemplateParameters()->size()); 3864 bool Better1 = !::DeduceTemplateArguments(*this, PS2->getTemplateParameters(), 3865 PT2, PT1, Info, Deduced, TDF_None, 3866 /*PartialOrdering=*/true, 3867 /*RefParamComparisons=*/0); 3868 if (Better1) { 3869 InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2, 3870 Deduced.data(), Deduced.size(), Info); 3871 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2, 3872 PS1->getTemplateArgs(), 3873 Deduced, Info); 3874 } 3875 3876 // Determine whether PS2 is at least as specialized as PS1 3877 Deduced.clear(); 3878 Deduced.resize(PS1->getTemplateParameters()->size()); 3879 bool Better2 = !::DeduceTemplateArguments(*this, PS1->getTemplateParameters(), 3880 PT1, PT2, Info, Deduced, TDF_None, 3881 /*PartialOrdering=*/true, 3882 /*RefParamComparisons=*/0); 3883 if (Better2) { 3884 InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1, 3885 Deduced.data(), Deduced.size(), Info); 3886 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1, 3887 PS2->getTemplateArgs(), 3888 Deduced, Info); 3889 } 3890 3891 if (Better1 == Better2) 3892 return 0; 3893 3894 return Better1? PS1 : PS2; 3895 } 3896 3897 static void 3898 MarkUsedTemplateParameters(Sema &SemaRef, 3899 const TemplateArgument &TemplateArg, 3900 bool OnlyDeduced, 3901 unsigned Depth, 3902 llvm::SmallVectorImpl<bool> &Used); 3903 3904 /// \brief Mark the template parameters that are used by the given 3905 /// expression. 3906 static void 3907 MarkUsedTemplateParameters(Sema &SemaRef, 3908 const Expr *E, 3909 bool OnlyDeduced, 3910 unsigned Depth, 3911 llvm::SmallVectorImpl<bool> &Used) { 3912 // We can deduce from a pack expansion. 3913 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 3914 E = Expansion->getPattern(); 3915 3916 // Skip through any implicit casts we added while type-checking. 3917 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3918 E = ICE->getSubExpr(); 3919 3920 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to 3921 // find other occurrences of template parameters. 3922 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3923 if (!DRE) 3924 return; 3925 3926 const NonTypeTemplateParmDecl *NTTP 3927 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 3928 if (!NTTP) 3929 return; 3930 3931 if (NTTP->getDepth() == Depth) 3932 Used[NTTP->getIndex()] = true; 3933 } 3934 3935 /// \brief Mark the template parameters that are used by the given 3936 /// nested name specifier. 3937 static void 3938 MarkUsedTemplateParameters(Sema &SemaRef, 3939 NestedNameSpecifier *NNS, 3940 bool OnlyDeduced, 3941 unsigned Depth, 3942 llvm::SmallVectorImpl<bool> &Used) { 3943 if (!NNS) 3944 return; 3945 3946 MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth, 3947 Used); 3948 MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0), 3949 OnlyDeduced, Depth, Used); 3950 } 3951 3952 /// \brief Mark the template parameters that are used by the given 3953 /// template name. 3954 static void 3955 MarkUsedTemplateParameters(Sema &SemaRef, 3956 TemplateName Name, 3957 bool OnlyDeduced, 3958 unsigned Depth, 3959 llvm::SmallVectorImpl<bool> &Used) { 3960 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3961 if (TemplateTemplateParmDecl *TTP 3962 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 3963 if (TTP->getDepth() == Depth) 3964 Used[TTP->getIndex()] = true; 3965 } 3966 return; 3967 } 3968 3969 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 3970 MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced, 3971 Depth, Used); 3972 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 3973 MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced, 3974 Depth, Used); 3975 } 3976 3977 /// \brief Mark the template parameters that are used by the given 3978 /// type. 3979 static void 3980 MarkUsedTemplateParameters(Sema &SemaRef, QualType T, 3981 bool OnlyDeduced, 3982 unsigned Depth, 3983 llvm::SmallVectorImpl<bool> &Used) { 3984 if (T.isNull()) 3985 return; 3986 3987 // Non-dependent types have nothing deducible 3988 if (!T->isDependentType()) 3989 return; 3990 3991 T = SemaRef.Context.getCanonicalType(T); 3992 switch (T->getTypeClass()) { 3993 case Type::Pointer: 3994 MarkUsedTemplateParameters(SemaRef, 3995 cast<PointerType>(T)->getPointeeType(), 3996 OnlyDeduced, 3997 Depth, 3998 Used); 3999 break; 4000 4001 case Type::BlockPointer: 4002 MarkUsedTemplateParameters(SemaRef, 4003 cast<BlockPointerType>(T)->getPointeeType(), 4004 OnlyDeduced, 4005 Depth, 4006 Used); 4007 break; 4008 4009 case Type::LValueReference: 4010 case Type::RValueReference: 4011 MarkUsedTemplateParameters(SemaRef, 4012 cast<ReferenceType>(T)->getPointeeType(), 4013 OnlyDeduced, 4014 Depth, 4015 Used); 4016 break; 4017 4018 case Type::MemberPointer: { 4019 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 4020 MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced, 4021 Depth, Used); 4022 MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0), 4023 OnlyDeduced, Depth, Used); 4024 break; 4025 } 4026 4027 case Type::DependentSizedArray: 4028 MarkUsedTemplateParameters(SemaRef, 4029 cast<DependentSizedArrayType>(T)->getSizeExpr(), 4030 OnlyDeduced, Depth, Used); 4031 // Fall through to check the element type 4032 4033 case Type::ConstantArray: 4034 case Type::IncompleteArray: 4035 MarkUsedTemplateParameters(SemaRef, 4036 cast<ArrayType>(T)->getElementType(), 4037 OnlyDeduced, Depth, Used); 4038 break; 4039 4040 case Type::Vector: 4041 case Type::ExtVector: 4042 MarkUsedTemplateParameters(SemaRef, 4043 cast<VectorType>(T)->getElementType(), 4044 OnlyDeduced, Depth, Used); 4045 break; 4046 4047 case Type::DependentSizedExtVector: { 4048 const DependentSizedExtVectorType *VecType 4049 = cast<DependentSizedExtVectorType>(T); 4050 MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced, 4051 Depth, Used); 4052 MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced, 4053 Depth, Used); 4054 break; 4055 } 4056 4057 case Type::FunctionProto: { 4058 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 4059 MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced, 4060 Depth, Used); 4061 for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I) 4062 MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced, 4063 Depth, Used); 4064 break; 4065 } 4066 4067 case Type::TemplateTypeParm: { 4068 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 4069 if (TTP->getDepth() == Depth) 4070 Used[TTP->getIndex()] = true; 4071 break; 4072 } 4073 4074 case Type::SubstTemplateTypeParmPack: { 4075 const SubstTemplateTypeParmPackType *Subst 4076 = cast<SubstTemplateTypeParmPackType>(T); 4077 MarkUsedTemplateParameters(SemaRef, 4078 QualType(Subst->getReplacedParameter(), 0), 4079 OnlyDeduced, Depth, Used); 4080 MarkUsedTemplateParameters(SemaRef, Subst->getArgumentPack(), 4081 OnlyDeduced, Depth, Used); 4082 break; 4083 } 4084 4085 case Type::InjectedClassName: 4086 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 4087 // fall through 4088 4089 case Type::TemplateSpecialization: { 4090 const TemplateSpecializationType *Spec 4091 = cast<TemplateSpecializationType>(T); 4092 MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced, 4093 Depth, Used); 4094 4095 // C++0x [temp.deduct.type]p9: 4096 // If the template argument list of P contains a pack expansion that is not 4097 // the last template argument, the entire template argument list is a 4098 // non-deduced context. 4099 if (OnlyDeduced && 4100 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs())) 4101 break; 4102 4103 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 4104 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth, 4105 Used); 4106 break; 4107 } 4108 4109 case Type::Complex: 4110 if (!OnlyDeduced) 4111 MarkUsedTemplateParameters(SemaRef, 4112 cast<ComplexType>(T)->getElementType(), 4113 OnlyDeduced, Depth, Used); 4114 break; 4115 4116 case Type::DependentName: 4117 if (!OnlyDeduced) 4118 MarkUsedTemplateParameters(SemaRef, 4119 cast<DependentNameType>(T)->getQualifier(), 4120 OnlyDeduced, Depth, Used); 4121 break; 4122 4123 case Type::DependentTemplateSpecialization: { 4124 const DependentTemplateSpecializationType *Spec 4125 = cast<DependentTemplateSpecializationType>(T); 4126 if (!OnlyDeduced) 4127 MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(), 4128 OnlyDeduced, Depth, Used); 4129 4130 // C++0x [temp.deduct.type]p9: 4131 // If the template argument list of P contains a pack expansion that is not 4132 // the last template argument, the entire template argument list is a 4133 // non-deduced context. 4134 if (OnlyDeduced && 4135 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs())) 4136 break; 4137 4138 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 4139 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth, 4140 Used); 4141 break; 4142 } 4143 4144 case Type::TypeOf: 4145 if (!OnlyDeduced) 4146 MarkUsedTemplateParameters(SemaRef, 4147 cast<TypeOfType>(T)->getUnderlyingType(), 4148 OnlyDeduced, Depth, Used); 4149 break; 4150 4151 case Type::TypeOfExpr: 4152 if (!OnlyDeduced) 4153 MarkUsedTemplateParameters(SemaRef, 4154 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 4155 OnlyDeduced, Depth, Used); 4156 break; 4157 4158 case Type::Decltype: 4159 if (!OnlyDeduced) 4160 MarkUsedTemplateParameters(SemaRef, 4161 cast<DecltypeType>(T)->getUnderlyingExpr(), 4162 OnlyDeduced, Depth, Used); 4163 break; 4164 4165 case Type::UnaryTransform: 4166 if (!OnlyDeduced) 4167 MarkUsedTemplateParameters(SemaRef, 4168 cast<UnaryTransformType>(T)->getUnderlyingType(), 4169 OnlyDeduced, Depth, Used); 4170 break; 4171 4172 case Type::PackExpansion: 4173 MarkUsedTemplateParameters(SemaRef, 4174 cast<PackExpansionType>(T)->getPattern(), 4175 OnlyDeduced, Depth, Used); 4176 break; 4177 4178 case Type::Auto: 4179 MarkUsedTemplateParameters(SemaRef, 4180 cast<AutoType>(T)->getDeducedType(), 4181 OnlyDeduced, Depth, Used); 4182 4183 // None of these types have any template parameters in them. 4184 case Type::Builtin: 4185 case Type::VariableArray: 4186 case Type::FunctionNoProto: 4187 case Type::Record: 4188 case Type::Enum: 4189 case Type::ObjCInterface: 4190 case Type::ObjCObject: 4191 case Type::ObjCObjectPointer: 4192 case Type::UnresolvedUsing: 4193 #define TYPE(Class, Base) 4194 #define ABSTRACT_TYPE(Class, Base) 4195 #define DEPENDENT_TYPE(Class, Base) 4196 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 4197 #include "clang/AST/TypeNodes.def" 4198 break; 4199 } 4200 } 4201 4202 /// \brief Mark the template parameters that are used by this 4203 /// template argument. 4204 static void 4205 MarkUsedTemplateParameters(Sema &SemaRef, 4206 const TemplateArgument &TemplateArg, 4207 bool OnlyDeduced, 4208 unsigned Depth, 4209 llvm::SmallVectorImpl<bool> &Used) { 4210 switch (TemplateArg.getKind()) { 4211 case TemplateArgument::Null: 4212 case TemplateArgument::Integral: 4213 case TemplateArgument::Declaration: 4214 break; 4215 4216 case TemplateArgument::Type: 4217 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced, 4218 Depth, Used); 4219 break; 4220 4221 case TemplateArgument::Template: 4222 case TemplateArgument::TemplateExpansion: 4223 MarkUsedTemplateParameters(SemaRef, 4224 TemplateArg.getAsTemplateOrTemplatePattern(), 4225 OnlyDeduced, Depth, Used); 4226 break; 4227 4228 case TemplateArgument::Expression: 4229 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced, 4230 Depth, Used); 4231 break; 4232 4233 case TemplateArgument::Pack: 4234 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(), 4235 PEnd = TemplateArg.pack_end(); 4236 P != PEnd; ++P) 4237 MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used); 4238 break; 4239 } 4240 } 4241 4242 /// \brief Mark the template parameters can be deduced by the given 4243 /// template argument list. 4244 /// 4245 /// \param TemplateArgs the template argument list from which template 4246 /// parameters will be deduced. 4247 /// 4248 /// \param Deduced a bit vector whose elements will be set to \c true 4249 /// to indicate when the corresponding template parameter will be 4250 /// deduced. 4251 void 4252 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 4253 bool OnlyDeduced, unsigned Depth, 4254 llvm::SmallVectorImpl<bool> &Used) { 4255 // C++0x [temp.deduct.type]p9: 4256 // If the template argument list of P contains a pack expansion that is not 4257 // the last template argument, the entire template argument list is a 4258 // non-deduced context. 4259 if (OnlyDeduced && 4260 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size())) 4261 return; 4262 4263 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4264 ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced, 4265 Depth, Used); 4266 } 4267 4268 /// \brief Marks all of the template parameters that will be deduced by a 4269 /// call to the given function template. 4270 void 4271 Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate, 4272 llvm::SmallVectorImpl<bool> &Deduced) { 4273 TemplateParameterList *TemplateParams 4274 = FunctionTemplate->getTemplateParameters(); 4275 Deduced.clear(); 4276 Deduced.resize(TemplateParams->size()); 4277 4278 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4279 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 4280 ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(), 4281 true, TemplateParams->getDepth(), Deduced); 4282 } 4283 4284 bool hasDeducibleTemplateParameters(Sema &S, 4285 FunctionTemplateDecl *FunctionTemplate, 4286 QualType T) { 4287 if (!T->isDependentType()) 4288 return false; 4289 4290 TemplateParameterList *TemplateParams 4291 = FunctionTemplate->getTemplateParameters(); 4292 llvm::SmallVector<bool, 4> Deduced; 4293 Deduced.resize(TemplateParams->size()); 4294 ::MarkUsedTemplateParameters(S, T, true, TemplateParams->getDepth(), 4295 Deduced); 4296 4297 for (unsigned I = 0, N = Deduced.size(); I != N; ++I) 4298 if (Deduced[I]) 4299 return true; 4300 4301 return false; 4302 } 4303