Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements C++ template argument deduction.
     10 //
     11 //===----------------------------------------------------------------------===/
     12 
     13 #include "clang/Sema/Sema.h"
     14 #include "clang/Sema/DeclSpec.h"
     15 #include "clang/Sema/Template.h"
     16 #include "clang/Sema/TemplateDeduction.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "llvm/ADT/BitVector.h"
     24 #include "TreeTransform.h"
     25 #include <algorithm>
     26 
     27 namespace clang {
     28   using namespace sema;
     29 
     30   /// \brief Various flags that control template argument deduction.
     31   ///
     32   /// These flags can be bitwise-OR'd together.
     33   enum TemplateDeductionFlags {
     34     /// \brief No template argument deduction flags, which indicates the
     35     /// strictest results for template argument deduction (as used for, e.g.,
     36     /// matching class template partial specializations).
     37     TDF_None = 0,
     38     /// \brief Within template argument deduction from a function call, we are
     39     /// matching with a parameter type for which the original parameter was
     40     /// a reference.
     41     TDF_ParamWithReferenceType = 0x1,
     42     /// \brief Within template argument deduction from a function call, we
     43     /// are matching in a case where we ignore cv-qualifiers.
     44     TDF_IgnoreQualifiers = 0x02,
     45     /// \brief Within template argument deduction from a function call,
     46     /// we are matching in a case where we can perform template argument
     47     /// deduction from a template-id of a derived class of the argument type.
     48     TDF_DerivedClass = 0x04,
     49     /// \brief Allow non-dependent types to differ, e.g., when performing
     50     /// template argument deduction from a function call where conversions
     51     /// may apply.
     52     TDF_SkipNonDependent = 0x08,
     53     /// \brief Whether we are performing template argument deduction for
     54     /// parameters and arguments in a top-level template argument
     55     TDF_TopLevelParameterTypeList = 0x10
     56   };
     57 }
     58 
     59 using namespace clang;
     60 
     61 /// \brief Compare two APSInts, extending and switching the sign as
     62 /// necessary to compare their values regardless of underlying type.
     63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
     64   if (Y.getBitWidth() > X.getBitWidth())
     65     X = X.extend(Y.getBitWidth());
     66   else if (Y.getBitWidth() < X.getBitWidth())
     67     Y = Y.extend(X.getBitWidth());
     68 
     69   // If there is a signedness mismatch, correct it.
     70   if (X.isSigned() != Y.isSigned()) {
     71     // If the signed value is negative, then the values cannot be the same.
     72     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
     73       return false;
     74 
     75     Y.setIsSigned(true);
     76     X.setIsSigned(true);
     77   }
     78 
     79   return X == Y;
     80 }
     81 
     82 static Sema::TemplateDeductionResult
     83 DeduceTemplateArguments(Sema &S,
     84                         TemplateParameterList *TemplateParams,
     85                         const TemplateArgument &Param,
     86                         TemplateArgument Arg,
     87                         TemplateDeductionInfo &Info,
     88                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
     89 
     90 /// \brief Whether template argument deduction for two reference parameters
     91 /// resulted in the argument type, parameter type, or neither type being more
     92 /// qualified than the other.
     93 enum DeductionQualifierComparison {
     94   NeitherMoreQualified = 0,
     95   ParamMoreQualified,
     96   ArgMoreQualified
     97 };
     98 
     99 /// \brief Stores the result of comparing two reference parameters while
    100 /// performing template argument deduction for partial ordering of function
    101 /// templates.
    102 struct RefParamPartialOrderingComparison {
    103   /// \brief Whether the parameter type is an rvalue reference type.
    104   bool ParamIsRvalueRef;
    105   /// \brief Whether the argument type is an rvalue reference type.
    106   bool ArgIsRvalueRef;
    107 
    108   /// \brief Whether the parameter or argument (or neither) is more qualified.
    109   DeductionQualifierComparison Qualifiers;
    110 };
    111 
    112 
    113 
    114 static Sema::TemplateDeductionResult
    115 DeduceTemplateArguments(Sema &S,
    116                         TemplateParameterList *TemplateParams,
    117                         QualType Param,
    118                         QualType Arg,
    119                         TemplateDeductionInfo &Info,
    120                         llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    121                         unsigned TDF,
    122                         bool PartialOrdering = false,
    123                       llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *
    124                                                       RefParamComparisons = 0);
    125 
    126 static Sema::TemplateDeductionResult
    127 DeduceTemplateArguments(Sema &S,
    128                         TemplateParameterList *TemplateParams,
    129                         const TemplateArgument *Params, unsigned NumParams,
    130                         const TemplateArgument *Args, unsigned NumArgs,
    131                         TemplateDeductionInfo &Info,
    132                         llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    133                         bool NumberOfArgumentsMustMatch = true);
    134 
    135 /// \brief If the given expression is of a form that permits the deduction
    136 /// of a non-type template parameter, return the declaration of that
    137 /// non-type template parameter.
    138 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
    139   if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
    140     E = IC->getSubExpr();
    141 
    142   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    143     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
    144 
    145   return 0;
    146 }
    147 
    148 /// \brief Determine whether two declaration pointers refer to the same
    149 /// declaration.
    150 static bool isSameDeclaration(Decl *X, Decl *Y) {
    151   if (!X || !Y)
    152     return !X && !Y;
    153 
    154   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    155     X = NX->getUnderlyingDecl();
    156   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    157     Y = NY->getUnderlyingDecl();
    158 
    159   return X->getCanonicalDecl() == Y->getCanonicalDecl();
    160 }
    161 
    162 /// \brief Verify that the given, deduced template arguments are compatible.
    163 ///
    164 /// \returns The deduced template argument, or a NULL template argument if
    165 /// the deduced template arguments were incompatible.
    166 static DeducedTemplateArgument
    167 checkDeducedTemplateArguments(ASTContext &Context,
    168                               const DeducedTemplateArgument &X,
    169                               const DeducedTemplateArgument &Y) {
    170   // We have no deduction for one or both of the arguments; they're compatible.
    171   if (X.isNull())
    172     return Y;
    173   if (Y.isNull())
    174     return X;
    175 
    176   switch (X.getKind()) {
    177   case TemplateArgument::Null:
    178     llvm_unreachable("Non-deduced template arguments handled above");
    179 
    180   case TemplateArgument::Type:
    181     // If two template type arguments have the same type, they're compatible.
    182     if (Y.getKind() == TemplateArgument::Type &&
    183         Context.hasSameType(X.getAsType(), Y.getAsType()))
    184       return X;
    185 
    186     return DeducedTemplateArgument();
    187 
    188   case TemplateArgument::Integral:
    189     // If we deduced a constant in one case and either a dependent expression or
    190     // declaration in another case, keep the integral constant.
    191     // If both are integral constants with the same value, keep that value.
    192     if (Y.getKind() == TemplateArgument::Expression ||
    193         Y.getKind() == TemplateArgument::Declaration ||
    194         (Y.getKind() == TemplateArgument::Integral &&
    195          hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
    196       return DeducedTemplateArgument(X,
    197                                      X.wasDeducedFromArrayBound() &&
    198                                      Y.wasDeducedFromArrayBound());
    199 
    200     // All other combinations are incompatible.
    201     return DeducedTemplateArgument();
    202 
    203   case TemplateArgument::Template:
    204     if (Y.getKind() == TemplateArgument::Template &&
    205         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
    206       return X;
    207 
    208     // All other combinations are incompatible.
    209     return DeducedTemplateArgument();
    210 
    211   case TemplateArgument::TemplateExpansion:
    212     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
    213         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
    214                                     Y.getAsTemplateOrTemplatePattern()))
    215       return X;
    216 
    217     // All other combinations are incompatible.
    218     return DeducedTemplateArgument();
    219 
    220   case TemplateArgument::Expression:
    221     // If we deduced a dependent expression in one case and either an integral
    222     // constant or a declaration in another case, keep the integral constant
    223     // or declaration.
    224     if (Y.getKind() == TemplateArgument::Integral ||
    225         Y.getKind() == TemplateArgument::Declaration)
    226       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
    227                                      Y.wasDeducedFromArrayBound());
    228 
    229     if (Y.getKind() == TemplateArgument::Expression) {
    230       // Compare the expressions for equality
    231       llvm::FoldingSetNodeID ID1, ID2;
    232       X.getAsExpr()->Profile(ID1, Context, true);
    233       Y.getAsExpr()->Profile(ID2, Context, true);
    234       if (ID1 == ID2)
    235         return X;
    236     }
    237 
    238     // All other combinations are incompatible.
    239     return DeducedTemplateArgument();
    240 
    241   case TemplateArgument::Declaration:
    242     // If we deduced a declaration and a dependent expression, keep the
    243     // declaration.
    244     if (Y.getKind() == TemplateArgument::Expression)
    245       return X;
    246 
    247     // If we deduced a declaration and an integral constant, keep the
    248     // integral constant.
    249     if (Y.getKind() == TemplateArgument::Integral)
    250       return Y;
    251 
    252     // If we deduced two declarations, make sure they they refer to the
    253     // same declaration.
    254     if (Y.getKind() == TemplateArgument::Declaration &&
    255         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
    256       return X;
    257 
    258     // All other combinations are incompatible.
    259     return DeducedTemplateArgument();
    260 
    261   case TemplateArgument::Pack:
    262     if (Y.getKind() != TemplateArgument::Pack ||
    263         X.pack_size() != Y.pack_size())
    264       return DeducedTemplateArgument();
    265 
    266     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
    267                                       XAEnd = X.pack_end(),
    268                                          YA = Y.pack_begin();
    269          XA != XAEnd; ++XA, ++YA) {
    270       if (checkDeducedTemplateArguments(Context,
    271                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
    272                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
    273             .isNull())
    274         return DeducedTemplateArgument();
    275     }
    276 
    277     return X;
    278   }
    279 
    280   return DeducedTemplateArgument();
    281 }
    282 
    283 /// \brief Deduce the value of the given non-type template parameter
    284 /// from the given constant.
    285 static Sema::TemplateDeductionResult
    286 DeduceNonTypeTemplateArgument(Sema &S,
    287                               NonTypeTemplateParmDecl *NTTP,
    288                               llvm::APSInt Value, QualType ValueType,
    289                               bool DeducedFromArrayBound,
    290                               TemplateDeductionInfo &Info,
    291                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    292   assert(NTTP->getDepth() == 0 &&
    293          "Cannot deduce non-type template argument with depth > 0");
    294 
    295   DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
    296   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    297                                                      Deduced[NTTP->getIndex()],
    298                                                                  NewDeduced);
    299   if (Result.isNull()) {
    300     Info.Param = NTTP;
    301     Info.FirstArg = Deduced[NTTP->getIndex()];
    302     Info.SecondArg = NewDeduced;
    303     return Sema::TDK_Inconsistent;
    304   }
    305 
    306   Deduced[NTTP->getIndex()] = Result;
    307   return Sema::TDK_Success;
    308 }
    309 
    310 /// \brief Deduce the value of the given non-type template parameter
    311 /// from the given type- or value-dependent expression.
    312 ///
    313 /// \returns true if deduction succeeded, false otherwise.
    314 static Sema::TemplateDeductionResult
    315 DeduceNonTypeTemplateArgument(Sema &S,
    316                               NonTypeTemplateParmDecl *NTTP,
    317                               Expr *Value,
    318                               TemplateDeductionInfo &Info,
    319                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    320   assert(NTTP->getDepth() == 0 &&
    321          "Cannot deduce non-type template argument with depth > 0");
    322   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
    323          "Expression template argument must be type- or value-dependent.");
    324 
    325   DeducedTemplateArgument NewDeduced(Value);
    326   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    327                                                      Deduced[NTTP->getIndex()],
    328                                                                  NewDeduced);
    329 
    330   if (Result.isNull()) {
    331     Info.Param = NTTP;
    332     Info.FirstArg = Deduced[NTTP->getIndex()];
    333     Info.SecondArg = NewDeduced;
    334     return Sema::TDK_Inconsistent;
    335   }
    336 
    337   Deduced[NTTP->getIndex()] = Result;
    338   return Sema::TDK_Success;
    339 }
    340 
    341 /// \brief Deduce the value of the given non-type template parameter
    342 /// from the given declaration.
    343 ///
    344 /// \returns true if deduction succeeded, false otherwise.
    345 static Sema::TemplateDeductionResult
    346 DeduceNonTypeTemplateArgument(Sema &S,
    347                               NonTypeTemplateParmDecl *NTTP,
    348                               Decl *D,
    349                               TemplateDeductionInfo &Info,
    350                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    351   assert(NTTP->getDepth() == 0 &&
    352          "Cannot deduce non-type template argument with depth > 0");
    353 
    354   DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
    355   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    356                                                      Deduced[NTTP->getIndex()],
    357                                                                  NewDeduced);
    358   if (Result.isNull()) {
    359     Info.Param = NTTP;
    360     Info.FirstArg = Deduced[NTTP->getIndex()];
    361     Info.SecondArg = NewDeduced;
    362     return Sema::TDK_Inconsistent;
    363   }
    364 
    365   Deduced[NTTP->getIndex()] = Result;
    366   return Sema::TDK_Success;
    367 }
    368 
    369 static Sema::TemplateDeductionResult
    370 DeduceTemplateArguments(Sema &S,
    371                         TemplateParameterList *TemplateParams,
    372                         TemplateName Param,
    373                         TemplateName Arg,
    374                         TemplateDeductionInfo &Info,
    375                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    376   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
    377   if (!ParamDecl) {
    378     // The parameter type is dependent and is not a template template parameter,
    379     // so there is nothing that we can deduce.
    380     return Sema::TDK_Success;
    381   }
    382 
    383   if (TemplateTemplateParmDecl *TempParam
    384         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    385     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    386     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    387                                                  Deduced[TempParam->getIndex()],
    388                                                                    NewDeduced);
    389     if (Result.isNull()) {
    390       Info.Param = TempParam;
    391       Info.FirstArg = Deduced[TempParam->getIndex()];
    392       Info.SecondArg = NewDeduced;
    393       return Sema::TDK_Inconsistent;
    394     }
    395 
    396     Deduced[TempParam->getIndex()] = Result;
    397     return Sema::TDK_Success;
    398   }
    399 
    400   // Verify that the two template names are equivalent.
    401   if (S.Context.hasSameTemplateName(Param, Arg))
    402     return Sema::TDK_Success;
    403 
    404   // Mismatch of non-dependent template parameter to argument.
    405   Info.FirstArg = TemplateArgument(Param);
    406   Info.SecondArg = TemplateArgument(Arg);
    407   return Sema::TDK_NonDeducedMismatch;
    408 }
    409 
    410 /// \brief Deduce the template arguments by comparing the template parameter
    411 /// type (which is a template-id) with the template argument type.
    412 ///
    413 /// \param S the Sema
    414 ///
    415 /// \param TemplateParams the template parameters that we are deducing
    416 ///
    417 /// \param Param the parameter type
    418 ///
    419 /// \param Arg the argument type
    420 ///
    421 /// \param Info information about the template argument deduction itself
    422 ///
    423 /// \param Deduced the deduced template arguments
    424 ///
    425 /// \returns the result of template argument deduction so far. Note that a
    426 /// "success" result means that template argument deduction has not yet failed,
    427 /// but it may still fail, later, for other reasons.
    428 static Sema::TemplateDeductionResult
    429 DeduceTemplateArguments(Sema &S,
    430                         TemplateParameterList *TemplateParams,
    431                         const TemplateSpecializationType *Param,
    432                         QualType Arg,
    433                         TemplateDeductionInfo &Info,
    434                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    435   assert(Arg.isCanonical() && "Argument type must be canonical");
    436 
    437   // Check whether the template argument is a dependent template-id.
    438   if (const TemplateSpecializationType *SpecArg
    439         = dyn_cast<TemplateSpecializationType>(Arg)) {
    440     // Perform template argument deduction for the template name.
    441     if (Sema::TemplateDeductionResult Result
    442           = DeduceTemplateArguments(S, TemplateParams,
    443                                     Param->getTemplateName(),
    444                                     SpecArg->getTemplateName(),
    445                                     Info, Deduced))
    446       return Result;
    447 
    448 
    449     // Perform template argument deduction on each template
    450     // argument. Ignore any missing/extra arguments, since they could be
    451     // filled in by default arguments.
    452     return DeduceTemplateArguments(S, TemplateParams,
    453                                    Param->getArgs(), Param->getNumArgs(),
    454                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
    455                                    Info, Deduced,
    456                                    /*NumberOfArgumentsMustMatch=*/false);
    457   }
    458 
    459   // If the argument type is a class template specialization, we
    460   // perform template argument deduction using its template
    461   // arguments.
    462   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
    463   if (!RecordArg)
    464     return Sema::TDK_NonDeducedMismatch;
    465 
    466   ClassTemplateSpecializationDecl *SpecArg
    467     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
    468   if (!SpecArg)
    469     return Sema::TDK_NonDeducedMismatch;
    470 
    471   // Perform template argument deduction for the template name.
    472   if (Sema::TemplateDeductionResult Result
    473         = DeduceTemplateArguments(S,
    474                                   TemplateParams,
    475                                   Param->getTemplateName(),
    476                                TemplateName(SpecArg->getSpecializedTemplate()),
    477                                   Info, Deduced))
    478     return Result;
    479 
    480   // Perform template argument deduction for the template arguments.
    481   return DeduceTemplateArguments(S, TemplateParams,
    482                                  Param->getArgs(), Param->getNumArgs(),
    483                                  SpecArg->getTemplateArgs().data(),
    484                                  SpecArg->getTemplateArgs().size(),
    485                                  Info, Deduced);
    486 }
    487 
    488 /// \brief Determines whether the given type is an opaque type that
    489 /// might be more qualified when instantiated.
    490 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
    491   switch (T->getTypeClass()) {
    492   case Type::TypeOfExpr:
    493   case Type::TypeOf:
    494   case Type::DependentName:
    495   case Type::Decltype:
    496   case Type::UnresolvedUsing:
    497   case Type::TemplateTypeParm:
    498     return true;
    499 
    500   case Type::ConstantArray:
    501   case Type::IncompleteArray:
    502   case Type::VariableArray:
    503   case Type::DependentSizedArray:
    504     return IsPossiblyOpaquelyQualifiedType(
    505                                       cast<ArrayType>(T)->getElementType());
    506 
    507   default:
    508     return false;
    509   }
    510 }
    511 
    512 /// \brief Retrieve the depth and index of a template parameter.
    513 static std::pair<unsigned, unsigned>
    514 getDepthAndIndex(NamedDecl *ND) {
    515   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
    516     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    517 
    518   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
    519     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
    520 
    521   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
    522   return std::make_pair(TTP->getDepth(), TTP->getIndex());
    523 }
    524 
    525 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
    526 static std::pair<unsigned, unsigned>
    527 getDepthAndIndex(UnexpandedParameterPack UPP) {
    528   if (const TemplateTypeParmType *TTP
    529                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
    530     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    531 
    532   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
    533 }
    534 
    535 /// \brief Helper function to build a TemplateParameter when we don't
    536 /// know its type statically.
    537 static TemplateParameter makeTemplateParameter(Decl *D) {
    538   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    539     return TemplateParameter(TTP);
    540   else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    541     return TemplateParameter(NTTP);
    542 
    543   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
    544 }
    545 
    546 /// \brief Prepare to perform template argument deduction for all of the
    547 /// arguments in a set of argument packs.
    548 static void PrepareArgumentPackDeduction(Sema &S,
    549                        llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    550                              const llvm::SmallVectorImpl<unsigned> &PackIndices,
    551                      llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    552          llvm::SmallVectorImpl<
    553            llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
    554   // Save the deduced template arguments for each parameter pack expanded
    555   // by this pack expansion, then clear out the deduction.
    556   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    557     // Save the previously-deduced argument pack, then clear it out so that we
    558     // can deduce a new argument pack.
    559     SavedPacks[I] = Deduced[PackIndices[I]];
    560     Deduced[PackIndices[I]] = TemplateArgument();
    561 
    562     // If the template arugment pack was explicitly specified, add that to
    563     // the set of deduced arguments.
    564     const TemplateArgument *ExplicitArgs;
    565     unsigned NumExplicitArgs;
    566     if (NamedDecl *PartiallySubstitutedPack
    567         = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
    568                                                            &ExplicitArgs,
    569                                                            &NumExplicitArgs)) {
    570       if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
    571         NewlyDeducedPacks[I].append(ExplicitArgs,
    572                                     ExplicitArgs + NumExplicitArgs);
    573     }
    574   }
    575 }
    576 
    577 /// \brief Finish template argument deduction for a set of argument packs,
    578 /// producing the argument packs and checking for consistency with prior
    579 /// deductions.
    580 static Sema::TemplateDeductionResult
    581 FinishArgumentPackDeduction(Sema &S,
    582                             TemplateParameterList *TemplateParams,
    583                             bool HasAnyArguments,
    584                         llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    585                             const llvm::SmallVectorImpl<unsigned> &PackIndices,
    586                     llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    587         llvm::SmallVectorImpl<
    588           llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
    589                             TemplateDeductionInfo &Info) {
    590   // Build argument packs for each of the parameter packs expanded by this
    591   // pack expansion.
    592   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    593     if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
    594       // We were not able to deduce anything for this parameter pack,
    595       // so just restore the saved argument pack.
    596       Deduced[PackIndices[I]] = SavedPacks[I];
    597       continue;
    598     }
    599 
    600     DeducedTemplateArgument NewPack;
    601 
    602     if (NewlyDeducedPacks[I].empty()) {
    603       // If we deduced an empty argument pack, create it now.
    604       NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
    605     } else {
    606       TemplateArgument *ArgumentPack
    607         = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
    608       std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
    609                 ArgumentPack);
    610       NewPack
    611         = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
    612                                                    NewlyDeducedPacks[I].size()),
    613                             NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
    614     }
    615 
    616     DeducedTemplateArgument Result
    617       = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
    618     if (Result.isNull()) {
    619       Info.Param
    620         = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
    621       Info.FirstArg = SavedPacks[I];
    622       Info.SecondArg = NewPack;
    623       return Sema::TDK_Inconsistent;
    624     }
    625 
    626     Deduced[PackIndices[I]] = Result;
    627   }
    628 
    629   return Sema::TDK_Success;
    630 }
    631 
    632 /// \brief Deduce the template arguments by comparing the list of parameter
    633 /// types to the list of argument types, as in the parameter-type-lists of
    634 /// function types (C++ [temp.deduct.type]p10).
    635 ///
    636 /// \param S The semantic analysis object within which we are deducing
    637 ///
    638 /// \param TemplateParams The template parameters that we are deducing
    639 ///
    640 /// \param Params The list of parameter types
    641 ///
    642 /// \param NumParams The number of types in \c Params
    643 ///
    644 /// \param Args The list of argument types
    645 ///
    646 /// \param NumArgs The number of types in \c Args
    647 ///
    648 /// \param Info information about the template argument deduction itself
    649 ///
    650 /// \param Deduced the deduced template arguments
    651 ///
    652 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    653 /// how template argument deduction is performed.
    654 ///
    655 /// \param PartialOrdering If true, we are performing template argument
    656 /// deduction for during partial ordering for a call
    657 /// (C++0x [temp.deduct.partial]).
    658 ///
    659 /// \param RefParamComparisons If we're performing template argument deduction
    660 /// in the context of partial ordering, the set of qualifier comparisons.
    661 ///
    662 /// \returns the result of template argument deduction so far. Note that a
    663 /// "success" result means that template argument deduction has not yet failed,
    664 /// but it may still fail, later, for other reasons.
    665 static Sema::TemplateDeductionResult
    666 DeduceTemplateArguments(Sema &S,
    667                         TemplateParameterList *TemplateParams,
    668                         const QualType *Params, unsigned NumParams,
    669                         const QualType *Args, unsigned NumArgs,
    670                         TemplateDeductionInfo &Info,
    671                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    672                         unsigned TDF,
    673                         bool PartialOrdering = false,
    674                         llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *
    675                                                      RefParamComparisons = 0) {
    676   // Fast-path check to see if we have too many/too few arguments.
    677   if (NumParams != NumArgs &&
    678       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
    679       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
    680     return Sema::TDK_NonDeducedMismatch;
    681 
    682   // C++0x [temp.deduct.type]p10:
    683   //   Similarly, if P has a form that contains (T), then each parameter type
    684   //   Pi of the respective parameter-type- list of P is compared with the
    685   //   corresponding parameter type Ai of the corresponding parameter-type-list
    686   //   of A. [...]
    687   unsigned ArgIdx = 0, ParamIdx = 0;
    688   for (; ParamIdx != NumParams; ++ParamIdx) {
    689     // Check argument types.
    690     const PackExpansionType *Expansion
    691                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    692     if (!Expansion) {
    693       // Simple case: compare the parameter and argument types at this point.
    694 
    695       // Make sure we have an argument.
    696       if (ArgIdx >= NumArgs)
    697         return Sema::TDK_NonDeducedMismatch;
    698 
    699       if (isa<PackExpansionType>(Args[ArgIdx])) {
    700         // C++0x [temp.deduct.type]p22:
    701         //   If the original function parameter associated with A is a function
    702         //   parameter pack and the function parameter associated with P is not
    703         //   a function parameter pack, then template argument deduction fails.
    704         return Sema::TDK_NonDeducedMismatch;
    705       }
    706 
    707       if (Sema::TemplateDeductionResult Result
    708             = DeduceTemplateArguments(S, TemplateParams,
    709                                       Params[ParamIdx],
    710                                       Args[ArgIdx],
    711                                       Info, Deduced, TDF,
    712                                       PartialOrdering,
    713                                       RefParamComparisons))
    714         return Result;
    715 
    716       ++ArgIdx;
    717       continue;
    718     }
    719 
    720     // C++0x [temp.deduct.type]p5:
    721     //   The non-deduced contexts are:
    722     //     - A function parameter pack that does not occur at the end of the
    723     //       parameter-declaration-clause.
    724     if (ParamIdx + 1 < NumParams)
    725       return Sema::TDK_Success;
    726 
    727     // C++0x [temp.deduct.type]p10:
    728     //   If the parameter-declaration corresponding to Pi is a function
    729     //   parameter pack, then the type of its declarator- id is compared with
    730     //   each remaining parameter type in the parameter-type-list of A. Each
    731     //   comparison deduces template arguments for subsequent positions in the
    732     //   template parameter packs expanded by the function parameter pack.
    733 
    734     // Compute the set of template parameter indices that correspond to
    735     // parameter packs expanded by the pack expansion.
    736     llvm::SmallVector<unsigned, 2> PackIndices;
    737     QualType Pattern = Expansion->getPattern();
    738     {
    739       llvm::BitVector SawIndices(TemplateParams->size());
    740       llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
    741       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
    742       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
    743         unsigned Depth, Index;
    744         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
    745         if (Depth == 0 && !SawIndices[Index]) {
    746           SawIndices[Index] = true;
    747           PackIndices.push_back(Index);
    748         }
    749       }
    750     }
    751     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
    752 
    753     // Keep track of the deduced template arguments for each parameter pack
    754     // expanded by this pack expansion (the outer index) and for each
    755     // template argument (the inner SmallVectors).
    756     llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
    757       NewlyDeducedPacks(PackIndices.size());
    758     llvm::SmallVector<DeducedTemplateArgument, 2>
    759       SavedPacks(PackIndices.size());
    760     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
    761                                  NewlyDeducedPacks);
    762 
    763     bool HasAnyArguments = false;
    764     for (; ArgIdx < NumArgs; ++ArgIdx) {
    765       HasAnyArguments = true;
    766 
    767       // Deduce template arguments from the pattern.
    768       if (Sema::TemplateDeductionResult Result
    769             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
    770                                       Info, Deduced, TDF, PartialOrdering,
    771                                       RefParamComparisons))
    772         return Result;
    773 
    774       // Capture the deduced template arguments for each parameter pack expanded
    775       // by this pack expansion, add them to the list of arguments we've deduced
    776       // for that pack, then clear out the deduced argument.
    777       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    778         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
    779         if (!DeducedArg.isNull()) {
    780           NewlyDeducedPacks[I].push_back(DeducedArg);
    781           DeducedArg = DeducedTemplateArgument();
    782         }
    783       }
    784     }
    785 
    786     // Build argument packs for each of the parameter packs expanded by this
    787     // pack expansion.
    788     if (Sema::TemplateDeductionResult Result
    789           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
    790                                         Deduced, PackIndices, SavedPacks,
    791                                         NewlyDeducedPacks, Info))
    792       return Result;
    793   }
    794 
    795   // Make sure we don't have any extra arguments.
    796   if (ArgIdx < NumArgs)
    797     return Sema::TDK_NonDeducedMismatch;
    798 
    799   return Sema::TDK_Success;
    800 }
    801 
    802 /// \brief Determine whether the parameter has qualifiers that are either
    803 /// inconsistent with or a superset of the argument's qualifiers.
    804 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
    805                                                   QualType ArgType) {
    806   Qualifiers ParamQs = ParamType.getQualifiers();
    807   Qualifiers ArgQs = ArgType.getQualifiers();
    808 
    809   if (ParamQs == ArgQs)
    810     return false;
    811 
    812   // Mismatched (but not missing) Objective-C GC attributes.
    813   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
    814       ParamQs.hasObjCGCAttr())
    815     return true;
    816 
    817   // Mismatched (but not missing) address spaces.
    818   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
    819       ParamQs.hasAddressSpace())
    820     return true;
    821 
    822   // Mismatched (but not missing) Objective-C lifetime qualifiers.
    823   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
    824       ParamQs.hasObjCLifetime())
    825     return true;
    826 
    827   // CVR qualifier superset.
    828   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
    829       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
    830                                                 == ParamQs.getCVRQualifiers());
    831 }
    832 
    833 /// \brief Deduce the template arguments by comparing the parameter type and
    834 /// the argument type (C++ [temp.deduct.type]).
    835 ///
    836 /// \param S the semantic analysis object within which we are deducing
    837 ///
    838 /// \param TemplateParams the template parameters that we are deducing
    839 ///
    840 /// \param ParamIn the parameter type
    841 ///
    842 /// \param ArgIn the argument type
    843 ///
    844 /// \param Info information about the template argument deduction itself
    845 ///
    846 /// \param Deduced the deduced template arguments
    847 ///
    848 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    849 /// how template argument deduction is performed.
    850 ///
    851 /// \param PartialOrdering Whether we're performing template argument deduction
    852 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
    853 ///
    854 /// \param RefParamComparisons If we're performing template argument deduction
    855 /// in the context of partial ordering, the set of qualifier comparisons.
    856 ///
    857 /// \returns the result of template argument deduction so far. Note that a
    858 /// "success" result means that template argument deduction has not yet failed,
    859 /// but it may still fail, later, for other reasons.
    860 static Sema::TemplateDeductionResult
    861 DeduceTemplateArguments(Sema &S,
    862                         TemplateParameterList *TemplateParams,
    863                         QualType ParamIn, QualType ArgIn,
    864                         TemplateDeductionInfo &Info,
    865                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    866                         unsigned TDF,
    867                         bool PartialOrdering,
    868     llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
    869   // We only want to look at the canonical types, since typedefs and
    870   // sugar are not part of template argument deduction.
    871   QualType Param = S.Context.getCanonicalType(ParamIn);
    872   QualType Arg = S.Context.getCanonicalType(ArgIn);
    873 
    874   // If the argument type is a pack expansion, look at its pattern.
    875   // This isn't explicitly called out
    876   if (const PackExpansionType *ArgExpansion
    877                                             = dyn_cast<PackExpansionType>(Arg))
    878     Arg = ArgExpansion->getPattern();
    879 
    880   if (PartialOrdering) {
    881     // C++0x [temp.deduct.partial]p5:
    882     //   Before the partial ordering is done, certain transformations are
    883     //   performed on the types used for partial ordering:
    884     //     - If P is a reference type, P is replaced by the type referred to.
    885     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
    886     if (ParamRef)
    887       Param = ParamRef->getPointeeType();
    888 
    889     //     - If A is a reference type, A is replaced by the type referred to.
    890     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
    891     if (ArgRef)
    892       Arg = ArgRef->getPointeeType();
    893 
    894     if (RefParamComparisons && ParamRef && ArgRef) {
    895       // C++0x [temp.deduct.partial]p6:
    896       //   If both P and A were reference types (before being replaced with the
    897       //   type referred to above), determine which of the two types (if any) is
    898       //   more cv-qualified than the other; otherwise the types are considered
    899       //   to be equally cv-qualified for partial ordering purposes. The result
    900       //   of this determination will be used below.
    901       //
    902       // We save this information for later, using it only when deduction
    903       // succeeds in both directions.
    904       RefParamPartialOrderingComparison Comparison;
    905       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
    906       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
    907       Comparison.Qualifiers = NeitherMoreQualified;
    908 
    909       Qualifiers ParamQuals = Param.getQualifiers();
    910       Qualifiers ArgQuals = Arg.getQualifiers();
    911       if (ParamQuals.isStrictSupersetOf(ArgQuals))
    912         Comparison.Qualifiers = ParamMoreQualified;
    913       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
    914         Comparison.Qualifiers = ArgMoreQualified;
    915       RefParamComparisons->push_back(Comparison);
    916     }
    917 
    918     // C++0x [temp.deduct.partial]p7:
    919     //   Remove any top-level cv-qualifiers:
    920     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
    921     //       version of P.
    922     Param = Param.getUnqualifiedType();
    923     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
    924     //       version of A.
    925     Arg = Arg.getUnqualifiedType();
    926   } else {
    927     // C++0x [temp.deduct.call]p4 bullet 1:
    928     //   - If the original P is a reference type, the deduced A (i.e., the type
    929     //     referred to by the reference) can be more cv-qualified than the
    930     //     transformed A.
    931     if (TDF & TDF_ParamWithReferenceType) {
    932       Qualifiers Quals;
    933       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
    934       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
    935                              Arg.getCVRQualifiers());
    936       Param = S.Context.getQualifiedType(UnqualParam, Quals);
    937     }
    938 
    939     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
    940       // C++0x [temp.deduct.type]p10:
    941       //   If P and A are function types that originated from deduction when
    942       //   taking the address of a function template (14.8.2.2) or when deducing
    943       //   template arguments from a function declaration (14.8.2.6) and Pi and
    944       //   Ai are parameters of the top-level parameter-type-list of P and A,
    945       //   respectively, Pi is adjusted if it is an rvalue reference to a
    946       //   cv-unqualified template parameter and Ai is an lvalue reference, in
    947       //   which case the type of Pi is changed to be the template parameter
    948       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
    949       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
    950       //   deduced as X&. - end note ]
    951       TDF &= ~TDF_TopLevelParameterTypeList;
    952 
    953       if (const RValueReferenceType *ParamRef
    954                                         = Param->getAs<RValueReferenceType>()) {
    955         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
    956             !ParamRef->getPointeeType().getQualifiers())
    957           if (Arg->isLValueReferenceType())
    958             Param = ParamRef->getPointeeType();
    959       }
    960     }
    961   }
    962 
    963   // If the parameter type is not dependent, there is nothing to deduce.
    964   if (!Param->isDependentType()) {
    965     if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
    966       return Sema::TDK_NonDeducedMismatch;
    967 
    968     return Sema::TDK_Success;
    969   }
    970 
    971   // C++ [temp.deduct.type]p9:
    972   //   A template type argument T, a template template argument TT or a
    973   //   template non-type argument i can be deduced if P and A have one of
    974   //   the following forms:
    975   //
    976   //     T
    977   //     cv-list T
    978   if (const TemplateTypeParmType *TemplateTypeParm
    979         = Param->getAs<TemplateTypeParmType>()) {
    980     unsigned Index = TemplateTypeParm->getIndex();
    981     bool RecanonicalizeArg = false;
    982 
    983     // If the argument type is an array type, move the qualifiers up to the
    984     // top level, so they can be matched with the qualifiers on the parameter.
    985     if (isa<ArrayType>(Arg)) {
    986       Qualifiers Quals;
    987       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
    988       if (Quals) {
    989         Arg = S.Context.getQualifiedType(Arg, Quals);
    990         RecanonicalizeArg = true;
    991       }
    992     }
    993 
    994     // The argument type can not be less qualified than the parameter
    995     // type.
    996     if (!(TDF & TDF_IgnoreQualifiers) &&
    997         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
    998       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
    999       Info.FirstArg = TemplateArgument(Param);
   1000       Info.SecondArg = TemplateArgument(Arg);
   1001       return Sema::TDK_Underqualified;
   1002     }
   1003 
   1004     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
   1005     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
   1006     QualType DeducedType = Arg;
   1007 
   1008     // Remove any qualifiers on the parameter from the deduced type.
   1009     // We checked the qualifiers for consistency above.
   1010     Qualifiers DeducedQs = DeducedType.getQualifiers();
   1011     Qualifiers ParamQs = Param.getQualifiers();
   1012     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
   1013     if (ParamQs.hasObjCGCAttr())
   1014       DeducedQs.removeObjCGCAttr();
   1015     if (ParamQs.hasAddressSpace())
   1016       DeducedQs.removeAddressSpace();
   1017     if (ParamQs.hasObjCLifetime())
   1018       DeducedQs.removeObjCLifetime();
   1019 
   1020     // Objective-C ARC:
   1021     //   If template deduction would produce an argument type with lifetime type
   1022     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
   1023     if (S.getLangOptions().ObjCAutoRefCount &&
   1024         DeducedType->isObjCLifetimeType() &&
   1025         !DeducedQs.hasObjCLifetime())
   1026       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
   1027 
   1028     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
   1029                                              DeducedQs);
   1030 
   1031     if (RecanonicalizeArg)
   1032       DeducedType = S.Context.getCanonicalType(DeducedType);
   1033 
   1034     DeducedTemplateArgument NewDeduced(DeducedType);
   1035     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
   1036                                                                  Deduced[Index],
   1037                                                                    NewDeduced);
   1038     if (Result.isNull()) {
   1039       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1040       Info.FirstArg = Deduced[Index];
   1041       Info.SecondArg = NewDeduced;
   1042       return Sema::TDK_Inconsistent;
   1043     }
   1044 
   1045     Deduced[Index] = Result;
   1046     return Sema::TDK_Success;
   1047   }
   1048 
   1049   // Set up the template argument deduction information for a failure.
   1050   Info.FirstArg = TemplateArgument(ParamIn);
   1051   Info.SecondArg = TemplateArgument(ArgIn);
   1052 
   1053   // If the parameter is an already-substituted template parameter
   1054   // pack, do nothing: we don't know which of its arguments to look
   1055   // at, so we have to wait until all of the parameter packs in this
   1056   // expansion have arguments.
   1057   if (isa<SubstTemplateTypeParmPackType>(Param))
   1058     return Sema::TDK_Success;
   1059 
   1060   // Check the cv-qualifiers on the parameter and argument types.
   1061   if (!(TDF & TDF_IgnoreQualifiers)) {
   1062     if (TDF & TDF_ParamWithReferenceType) {
   1063       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
   1064         return Sema::TDK_NonDeducedMismatch;
   1065     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
   1066       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
   1067         return Sema::TDK_NonDeducedMismatch;
   1068     }
   1069   }
   1070 
   1071   switch (Param->getTypeClass()) {
   1072     // Non-canonical types cannot appear here.
   1073 #define NON_CANONICAL_TYPE(Class, Base) \
   1074   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
   1075 #define TYPE(Class, Base)
   1076 #include "clang/AST/TypeNodes.def"
   1077 
   1078     case Type::TemplateTypeParm:
   1079     case Type::SubstTemplateTypeParmPack:
   1080       llvm_unreachable("Type nodes handled above");
   1081 
   1082     // These types cannot be used in templates or cannot be dependent, so
   1083     // deduction always fails.
   1084     case Type::Builtin:
   1085     case Type::VariableArray:
   1086     case Type::Vector:
   1087     case Type::FunctionNoProto:
   1088     case Type::Record:
   1089     case Type::Enum:
   1090     case Type::ObjCObject:
   1091     case Type::ObjCInterface:
   1092     case Type::ObjCObjectPointer:
   1093       return Sema::TDK_NonDeducedMismatch;
   1094 
   1095     //     _Complex T   [placeholder extension]
   1096     case Type::Complex:
   1097       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
   1098         return DeduceTemplateArguments(S, TemplateParams,
   1099                                     cast<ComplexType>(Param)->getElementType(),
   1100                                        ComplexArg->getElementType(),
   1101                                        Info, Deduced, TDF);
   1102 
   1103       return Sema::TDK_NonDeducedMismatch;
   1104 
   1105     //     T *
   1106     case Type::Pointer: {
   1107       QualType PointeeType;
   1108       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
   1109         PointeeType = PointerArg->getPointeeType();
   1110       } else if (const ObjCObjectPointerType *PointerArg
   1111                    = Arg->getAs<ObjCObjectPointerType>()) {
   1112         PointeeType = PointerArg->getPointeeType();
   1113       } else {
   1114         return Sema::TDK_NonDeducedMismatch;
   1115       }
   1116 
   1117       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
   1118       return DeduceTemplateArguments(S, TemplateParams,
   1119                                    cast<PointerType>(Param)->getPointeeType(),
   1120                                      PointeeType,
   1121                                      Info, Deduced, SubTDF);
   1122     }
   1123 
   1124     //     T &
   1125     case Type::LValueReference: {
   1126       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
   1127       if (!ReferenceArg)
   1128         return Sema::TDK_NonDeducedMismatch;
   1129 
   1130       return DeduceTemplateArguments(S, TemplateParams,
   1131                            cast<LValueReferenceType>(Param)->getPointeeType(),
   1132                                      ReferenceArg->getPointeeType(),
   1133                                      Info, Deduced, 0);
   1134     }
   1135 
   1136     //     T && [C++0x]
   1137     case Type::RValueReference: {
   1138       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
   1139       if (!ReferenceArg)
   1140         return Sema::TDK_NonDeducedMismatch;
   1141 
   1142       return DeduceTemplateArguments(S, TemplateParams,
   1143                            cast<RValueReferenceType>(Param)->getPointeeType(),
   1144                                      ReferenceArg->getPointeeType(),
   1145                                      Info, Deduced, 0);
   1146     }
   1147 
   1148     //     T [] (implied, but not stated explicitly)
   1149     case Type::IncompleteArray: {
   1150       const IncompleteArrayType *IncompleteArrayArg =
   1151         S.Context.getAsIncompleteArrayType(Arg);
   1152       if (!IncompleteArrayArg)
   1153         return Sema::TDK_NonDeducedMismatch;
   1154 
   1155       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1156       return DeduceTemplateArguments(S, TemplateParams,
   1157                      S.Context.getAsIncompleteArrayType(Param)->getElementType(),
   1158                                      IncompleteArrayArg->getElementType(),
   1159                                      Info, Deduced, SubTDF);
   1160     }
   1161 
   1162     //     T [integer-constant]
   1163     case Type::ConstantArray: {
   1164       const ConstantArrayType *ConstantArrayArg =
   1165         S.Context.getAsConstantArrayType(Arg);
   1166       if (!ConstantArrayArg)
   1167         return Sema::TDK_NonDeducedMismatch;
   1168 
   1169       const ConstantArrayType *ConstantArrayParm =
   1170         S.Context.getAsConstantArrayType(Param);
   1171       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
   1172         return Sema::TDK_NonDeducedMismatch;
   1173 
   1174       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1175       return DeduceTemplateArguments(S, TemplateParams,
   1176                                      ConstantArrayParm->getElementType(),
   1177                                      ConstantArrayArg->getElementType(),
   1178                                      Info, Deduced, SubTDF);
   1179     }
   1180 
   1181     //     type [i]
   1182     case Type::DependentSizedArray: {
   1183       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
   1184       if (!ArrayArg)
   1185         return Sema::TDK_NonDeducedMismatch;
   1186 
   1187       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1188 
   1189       // Check the element type of the arrays
   1190       const DependentSizedArrayType *DependentArrayParm
   1191         = S.Context.getAsDependentSizedArrayType(Param);
   1192       if (Sema::TemplateDeductionResult Result
   1193             = DeduceTemplateArguments(S, TemplateParams,
   1194                                       DependentArrayParm->getElementType(),
   1195                                       ArrayArg->getElementType(),
   1196                                       Info, Deduced, SubTDF))
   1197         return Result;
   1198 
   1199       // Determine the array bound is something we can deduce.
   1200       NonTypeTemplateParmDecl *NTTP
   1201         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
   1202       if (!NTTP)
   1203         return Sema::TDK_Success;
   1204 
   1205       // We can perform template argument deduction for the given non-type
   1206       // template parameter.
   1207       assert(NTTP->getDepth() == 0 &&
   1208              "Cannot deduce non-type template argument at depth > 0");
   1209       if (const ConstantArrayType *ConstantArrayArg
   1210             = dyn_cast<ConstantArrayType>(ArrayArg)) {
   1211         llvm::APSInt Size(ConstantArrayArg->getSize());
   1212         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
   1213                                              S.Context.getSizeType(),
   1214                                              /*ArrayBound=*/true,
   1215                                              Info, Deduced);
   1216       }
   1217       if (const DependentSizedArrayType *DependentArrayArg
   1218             = dyn_cast<DependentSizedArrayType>(ArrayArg))
   1219         if (DependentArrayArg->getSizeExpr())
   1220           return DeduceNonTypeTemplateArgument(S, NTTP,
   1221                                                DependentArrayArg->getSizeExpr(),
   1222                                                Info, Deduced);
   1223 
   1224       // Incomplete type does not match a dependently-sized array type
   1225       return Sema::TDK_NonDeducedMismatch;
   1226     }
   1227 
   1228     //     type(*)(T)
   1229     //     T(*)()
   1230     //     T(*)(T)
   1231     case Type::FunctionProto: {
   1232       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
   1233       const FunctionProtoType *FunctionProtoArg =
   1234         dyn_cast<FunctionProtoType>(Arg);
   1235       if (!FunctionProtoArg)
   1236         return Sema::TDK_NonDeducedMismatch;
   1237 
   1238       const FunctionProtoType *FunctionProtoParam =
   1239         cast<FunctionProtoType>(Param);
   1240 
   1241       if (FunctionProtoParam->getTypeQuals()
   1242             != FunctionProtoArg->getTypeQuals() ||
   1243           FunctionProtoParam->getRefQualifier()
   1244             != FunctionProtoArg->getRefQualifier() ||
   1245           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
   1246         return Sema::TDK_NonDeducedMismatch;
   1247 
   1248       // Check return types.
   1249       if (Sema::TemplateDeductionResult Result
   1250             = DeduceTemplateArguments(S, TemplateParams,
   1251                                       FunctionProtoParam->getResultType(),
   1252                                       FunctionProtoArg->getResultType(),
   1253                                       Info, Deduced, 0))
   1254         return Result;
   1255 
   1256       return DeduceTemplateArguments(S, TemplateParams,
   1257                                      FunctionProtoParam->arg_type_begin(),
   1258                                      FunctionProtoParam->getNumArgs(),
   1259                                      FunctionProtoArg->arg_type_begin(),
   1260                                      FunctionProtoArg->getNumArgs(),
   1261                                      Info, Deduced, SubTDF);
   1262     }
   1263 
   1264     case Type::InjectedClassName: {
   1265       // Treat a template's injected-class-name as if the template
   1266       // specialization type had been used.
   1267       Param = cast<InjectedClassNameType>(Param)
   1268         ->getInjectedSpecializationType();
   1269       assert(isa<TemplateSpecializationType>(Param) &&
   1270              "injected class name is not a template specialization type");
   1271       // fall through
   1272     }
   1273 
   1274     //     template-name<T> (where template-name refers to a class template)
   1275     //     template-name<i>
   1276     //     TT<T>
   1277     //     TT<i>
   1278     //     TT<>
   1279     case Type::TemplateSpecialization: {
   1280       const TemplateSpecializationType *SpecParam
   1281         = cast<TemplateSpecializationType>(Param);
   1282 
   1283       // Try to deduce template arguments from the template-id.
   1284       Sema::TemplateDeductionResult Result
   1285         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
   1286                                   Info, Deduced);
   1287 
   1288       if (Result && (TDF & TDF_DerivedClass)) {
   1289         // C++ [temp.deduct.call]p3b3:
   1290         //   If P is a class, and P has the form template-id, then A can be a
   1291         //   derived class of the deduced A. Likewise, if P is a pointer to a
   1292         //   class of the form template-id, A can be a pointer to a derived
   1293         //   class pointed to by the deduced A.
   1294         //
   1295         // More importantly:
   1296         //   These alternatives are considered only if type deduction would
   1297         //   otherwise fail.
   1298         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
   1299           // We cannot inspect base classes as part of deduction when the type
   1300           // is incomplete, so either instantiate any templates necessary to
   1301           // complete the type, or skip over it if it cannot be completed.
   1302           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
   1303             return Result;
   1304 
   1305           // Use data recursion to crawl through the list of base classes.
   1306           // Visited contains the set of nodes we have already visited, while
   1307           // ToVisit is our stack of records that we still need to visit.
   1308           llvm::SmallPtrSet<const RecordType *, 8> Visited;
   1309           llvm::SmallVector<const RecordType *, 8> ToVisit;
   1310           ToVisit.push_back(RecordT);
   1311           bool Successful = false;
   1312           llvm::SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0);
   1313           DeducedOrig = Deduced;
   1314           while (!ToVisit.empty()) {
   1315             // Retrieve the next class in the inheritance hierarchy.
   1316             const RecordType *NextT = ToVisit.back();
   1317             ToVisit.pop_back();
   1318 
   1319             // If we have already seen this type, skip it.
   1320             if (!Visited.insert(NextT))
   1321               continue;
   1322 
   1323             // If this is a base class, try to perform template argument
   1324             // deduction from it.
   1325             if (NextT != RecordT) {
   1326               Sema::TemplateDeductionResult BaseResult
   1327                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
   1328                                           QualType(NextT, 0), Info, Deduced);
   1329 
   1330               // If template argument deduction for this base was successful,
   1331               // note that we had some success. Otherwise, ignore any deductions
   1332               // from this base class.
   1333               if (BaseResult == Sema::TDK_Success) {
   1334                 Successful = true;
   1335                 DeducedOrig = Deduced;
   1336               }
   1337               else
   1338                 Deduced = DeducedOrig;
   1339             }
   1340 
   1341             // Visit base classes
   1342             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
   1343             for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
   1344                                                  BaseEnd = Next->bases_end();
   1345                  Base != BaseEnd; ++Base) {
   1346               assert(Base->getType()->isRecordType() &&
   1347                      "Base class that isn't a record?");
   1348               ToVisit.push_back(Base->getType()->getAs<RecordType>());
   1349             }
   1350           }
   1351 
   1352           if (Successful)
   1353             return Sema::TDK_Success;
   1354         }
   1355 
   1356       }
   1357 
   1358       return Result;
   1359     }
   1360 
   1361     //     T type::*
   1362     //     T T::*
   1363     //     T (type::*)()
   1364     //     type (T::*)()
   1365     //     type (type::*)(T)
   1366     //     type (T::*)(T)
   1367     //     T (type::*)(T)
   1368     //     T (T::*)()
   1369     //     T (T::*)(T)
   1370     case Type::MemberPointer: {
   1371       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
   1372       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
   1373       if (!MemPtrArg)
   1374         return Sema::TDK_NonDeducedMismatch;
   1375 
   1376       if (Sema::TemplateDeductionResult Result
   1377             = DeduceTemplateArguments(S, TemplateParams,
   1378                                       MemPtrParam->getPointeeType(),
   1379                                       MemPtrArg->getPointeeType(),
   1380                                       Info, Deduced,
   1381                                       TDF & TDF_IgnoreQualifiers))
   1382         return Result;
   1383 
   1384       return DeduceTemplateArguments(S, TemplateParams,
   1385                                      QualType(MemPtrParam->getClass(), 0),
   1386                                      QualType(MemPtrArg->getClass(), 0),
   1387                                      Info, Deduced, 0);
   1388     }
   1389 
   1390     //     (clang extension)
   1391     //
   1392     //     type(^)(T)
   1393     //     T(^)()
   1394     //     T(^)(T)
   1395     case Type::BlockPointer: {
   1396       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
   1397       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
   1398 
   1399       if (!BlockPtrArg)
   1400         return Sema::TDK_NonDeducedMismatch;
   1401 
   1402       return DeduceTemplateArguments(S, TemplateParams,
   1403                                      BlockPtrParam->getPointeeType(),
   1404                                      BlockPtrArg->getPointeeType(), Info,
   1405                                      Deduced, 0);
   1406     }
   1407 
   1408     //     (clang extension)
   1409     //
   1410     //     T __attribute__(((ext_vector_type(<integral constant>))))
   1411     case Type::ExtVector: {
   1412       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
   1413       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1414         // Make sure that the vectors have the same number of elements.
   1415         if (VectorParam->getNumElements() != VectorArg->getNumElements())
   1416           return Sema::TDK_NonDeducedMismatch;
   1417 
   1418         // Perform deduction on the element types.
   1419         return DeduceTemplateArguments(S, TemplateParams,
   1420                                        VectorParam->getElementType(),
   1421                                        VectorArg->getElementType(),
   1422                                        Info, Deduced,
   1423                                        TDF);
   1424       }
   1425 
   1426       if (const DependentSizedExtVectorType *VectorArg
   1427                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1428         // We can't check the number of elements, since the argument has a
   1429         // dependent number of elements. This can only occur during partial
   1430         // ordering.
   1431 
   1432         // Perform deduction on the element types.
   1433         return DeduceTemplateArguments(S, TemplateParams,
   1434                                        VectorParam->getElementType(),
   1435                                        VectorArg->getElementType(),
   1436                                        Info, Deduced,
   1437                                        TDF);
   1438       }
   1439 
   1440       return Sema::TDK_NonDeducedMismatch;
   1441     }
   1442 
   1443     //     (clang extension)
   1444     //
   1445     //     T __attribute__(((ext_vector_type(N))))
   1446     case Type::DependentSizedExtVector: {
   1447       const DependentSizedExtVectorType *VectorParam
   1448         = cast<DependentSizedExtVectorType>(Param);
   1449 
   1450       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1451         // Perform deduction on the element types.
   1452         if (Sema::TemplateDeductionResult Result
   1453               = DeduceTemplateArguments(S, TemplateParams,
   1454                                         VectorParam->getElementType(),
   1455                                         VectorArg->getElementType(),
   1456                                         Info, Deduced,
   1457                                         TDF))
   1458           return Result;
   1459 
   1460         // Perform deduction on the vector size, if we can.
   1461         NonTypeTemplateParmDecl *NTTP
   1462           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1463         if (!NTTP)
   1464           return Sema::TDK_Success;
   1465 
   1466         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
   1467         ArgSize = VectorArg->getNumElements();
   1468         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
   1469                                              false, Info, Deduced);
   1470       }
   1471 
   1472       if (const DependentSizedExtVectorType *VectorArg
   1473                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1474         // Perform deduction on the element types.
   1475         if (Sema::TemplateDeductionResult Result
   1476             = DeduceTemplateArguments(S, TemplateParams,
   1477                                       VectorParam->getElementType(),
   1478                                       VectorArg->getElementType(),
   1479                                       Info, Deduced,
   1480                                       TDF))
   1481           return Result;
   1482 
   1483         // Perform deduction on the vector size, if we can.
   1484         NonTypeTemplateParmDecl *NTTP
   1485           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1486         if (!NTTP)
   1487           return Sema::TDK_Success;
   1488 
   1489         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
   1490                                              Info, Deduced);
   1491       }
   1492 
   1493       return Sema::TDK_NonDeducedMismatch;
   1494     }
   1495 
   1496     case Type::TypeOfExpr:
   1497     case Type::TypeOf:
   1498     case Type::DependentName:
   1499     case Type::UnresolvedUsing:
   1500     case Type::Decltype:
   1501     case Type::UnaryTransform:
   1502     case Type::Auto:
   1503     case Type::DependentTemplateSpecialization:
   1504     case Type::PackExpansion:
   1505       // No template argument deduction for these types
   1506       return Sema::TDK_Success;
   1507   }
   1508 
   1509   return Sema::TDK_Success;
   1510 }
   1511 
   1512 static Sema::TemplateDeductionResult
   1513 DeduceTemplateArguments(Sema &S,
   1514                         TemplateParameterList *TemplateParams,
   1515                         const TemplateArgument &Param,
   1516                         TemplateArgument Arg,
   1517                         TemplateDeductionInfo &Info,
   1518                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1519   // If the template argument is a pack expansion, perform template argument
   1520   // deduction against the pattern of that expansion. This only occurs during
   1521   // partial ordering.
   1522   if (Arg.isPackExpansion())
   1523     Arg = Arg.getPackExpansionPattern();
   1524 
   1525   switch (Param.getKind()) {
   1526   case TemplateArgument::Null:
   1527     assert(false && "Null template argument in parameter list");
   1528     break;
   1529 
   1530   case TemplateArgument::Type:
   1531     if (Arg.getKind() == TemplateArgument::Type)
   1532       return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
   1533                                      Arg.getAsType(), Info, Deduced, 0);
   1534     Info.FirstArg = Param;
   1535     Info.SecondArg = Arg;
   1536     return Sema::TDK_NonDeducedMismatch;
   1537 
   1538   case TemplateArgument::Template:
   1539     if (Arg.getKind() == TemplateArgument::Template)
   1540       return DeduceTemplateArguments(S, TemplateParams,
   1541                                      Param.getAsTemplate(),
   1542                                      Arg.getAsTemplate(), Info, Deduced);
   1543     Info.FirstArg = Param;
   1544     Info.SecondArg = Arg;
   1545     return Sema::TDK_NonDeducedMismatch;
   1546 
   1547   case TemplateArgument::TemplateExpansion:
   1548     llvm_unreachable("caller should handle pack expansions");
   1549     break;
   1550 
   1551   case TemplateArgument::Declaration:
   1552     if (Arg.getKind() == TemplateArgument::Declaration &&
   1553         Param.getAsDecl()->getCanonicalDecl() ==
   1554           Arg.getAsDecl()->getCanonicalDecl())
   1555       return Sema::TDK_Success;
   1556 
   1557     Info.FirstArg = Param;
   1558     Info.SecondArg = Arg;
   1559     return Sema::TDK_NonDeducedMismatch;
   1560 
   1561   case TemplateArgument::Integral:
   1562     if (Arg.getKind() == TemplateArgument::Integral) {
   1563       if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
   1564         return Sema::TDK_Success;
   1565 
   1566       Info.FirstArg = Param;
   1567       Info.SecondArg = Arg;
   1568       return Sema::TDK_NonDeducedMismatch;
   1569     }
   1570 
   1571     if (Arg.getKind() == TemplateArgument::Expression) {
   1572       Info.FirstArg = Param;
   1573       Info.SecondArg = Arg;
   1574       return Sema::TDK_NonDeducedMismatch;
   1575     }
   1576 
   1577     Info.FirstArg = Param;
   1578     Info.SecondArg = Arg;
   1579     return Sema::TDK_NonDeducedMismatch;
   1580 
   1581   case TemplateArgument::Expression: {
   1582     if (NonTypeTemplateParmDecl *NTTP
   1583           = getDeducedParameterFromExpr(Param.getAsExpr())) {
   1584       if (Arg.getKind() == TemplateArgument::Integral)
   1585         return DeduceNonTypeTemplateArgument(S, NTTP,
   1586                                              *Arg.getAsIntegral(),
   1587                                              Arg.getIntegralType(),
   1588                                              /*ArrayBound=*/false,
   1589                                              Info, Deduced);
   1590       if (Arg.getKind() == TemplateArgument::Expression)
   1591         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
   1592                                              Info, Deduced);
   1593       if (Arg.getKind() == TemplateArgument::Declaration)
   1594         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
   1595                                              Info, Deduced);
   1596 
   1597       Info.FirstArg = Param;
   1598       Info.SecondArg = Arg;
   1599       return Sema::TDK_NonDeducedMismatch;
   1600     }
   1601 
   1602     // Can't deduce anything, but that's okay.
   1603     return Sema::TDK_Success;
   1604   }
   1605   case TemplateArgument::Pack:
   1606     llvm_unreachable("Argument packs should be expanded by the caller!");
   1607   }
   1608 
   1609   return Sema::TDK_Success;
   1610 }
   1611 
   1612 /// \brief Determine whether there is a template argument to be used for
   1613 /// deduction.
   1614 ///
   1615 /// This routine "expands" argument packs in-place, overriding its input
   1616 /// parameters so that \c Args[ArgIdx] will be the available template argument.
   1617 ///
   1618 /// \returns true if there is another template argument (which will be at
   1619 /// \c Args[ArgIdx]), false otherwise.
   1620 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
   1621                                             unsigned &ArgIdx,
   1622                                             unsigned &NumArgs) {
   1623   if (ArgIdx == NumArgs)
   1624     return false;
   1625 
   1626   const TemplateArgument &Arg = Args[ArgIdx];
   1627   if (Arg.getKind() != TemplateArgument::Pack)
   1628     return true;
   1629 
   1630   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
   1631   Args = Arg.pack_begin();
   1632   NumArgs = Arg.pack_size();
   1633   ArgIdx = 0;
   1634   return ArgIdx < NumArgs;
   1635 }
   1636 
   1637 /// \brief Determine whether the given set of template arguments has a pack
   1638 /// expansion that is not the last template argument.
   1639 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
   1640                                       unsigned NumArgs) {
   1641   unsigned ArgIdx = 0;
   1642   while (ArgIdx < NumArgs) {
   1643     const TemplateArgument &Arg = Args[ArgIdx];
   1644 
   1645     // Unwrap argument packs.
   1646     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
   1647       Args = Arg.pack_begin();
   1648       NumArgs = Arg.pack_size();
   1649       ArgIdx = 0;
   1650       continue;
   1651     }
   1652 
   1653     ++ArgIdx;
   1654     if (ArgIdx == NumArgs)
   1655       return false;
   1656 
   1657     if (Arg.isPackExpansion())
   1658       return true;
   1659   }
   1660 
   1661   return false;
   1662 }
   1663 
   1664 static Sema::TemplateDeductionResult
   1665 DeduceTemplateArguments(Sema &S,
   1666                         TemplateParameterList *TemplateParams,
   1667                         const TemplateArgument *Params, unsigned NumParams,
   1668                         const TemplateArgument *Args, unsigned NumArgs,
   1669                         TemplateDeductionInfo &Info,
   1670                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   1671                         bool NumberOfArgumentsMustMatch) {
   1672   // C++0x [temp.deduct.type]p9:
   1673   //   If the template argument list of P contains a pack expansion that is not
   1674   //   the last template argument, the entire template argument list is a
   1675   //   non-deduced context.
   1676   if (hasPackExpansionBeforeEnd(Params, NumParams))
   1677     return Sema::TDK_Success;
   1678 
   1679   // C++0x [temp.deduct.type]p9:
   1680   //   If P has a form that contains <T> or <i>, then each argument Pi of the
   1681   //   respective template argument list P is compared with the corresponding
   1682   //   argument Ai of the corresponding template argument list of A.
   1683   unsigned ArgIdx = 0, ParamIdx = 0;
   1684   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
   1685        ++ParamIdx) {
   1686     if (!Params[ParamIdx].isPackExpansion()) {
   1687       // The simple case: deduce template arguments by matching Pi and Ai.
   1688 
   1689       // Check whether we have enough arguments.
   1690       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1691         return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
   1692                                          : Sema::TDK_Success;
   1693 
   1694       if (Args[ArgIdx].isPackExpansion()) {
   1695         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
   1696         // but applied to pack expansions that are template arguments.
   1697         return Sema::TDK_NonDeducedMismatch;
   1698       }
   1699 
   1700       // Perform deduction for this Pi/Ai pair.
   1701       if (Sema::TemplateDeductionResult Result
   1702             = DeduceTemplateArguments(S, TemplateParams,
   1703                                       Params[ParamIdx], Args[ArgIdx],
   1704                                       Info, Deduced))
   1705         return Result;
   1706 
   1707       // Move to the next argument.
   1708       ++ArgIdx;
   1709       continue;
   1710     }
   1711 
   1712     // The parameter is a pack expansion.
   1713 
   1714     // C++0x [temp.deduct.type]p9:
   1715     //   If Pi is a pack expansion, then the pattern of Pi is compared with
   1716     //   each remaining argument in the template argument list of A. Each
   1717     //   comparison deduces template arguments for subsequent positions in the
   1718     //   template parameter packs expanded by Pi.
   1719     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
   1720 
   1721     // Compute the set of template parameter indices that correspond to
   1722     // parameter packs expanded by the pack expansion.
   1723     llvm::SmallVector<unsigned, 2> PackIndices;
   1724     {
   1725       llvm::BitVector SawIndices(TemplateParams->size());
   1726       llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   1727       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
   1728       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   1729         unsigned Depth, Index;
   1730         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   1731         if (Depth == 0 && !SawIndices[Index]) {
   1732           SawIndices[Index] = true;
   1733           PackIndices.push_back(Index);
   1734         }
   1735       }
   1736     }
   1737     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   1738 
   1739     // FIXME: If there are no remaining arguments, we can bail out early
   1740     // and set any deduced parameter packs to an empty argument pack.
   1741     // The latter part of this is a (minor) correctness issue.
   1742 
   1743     // Save the deduced template arguments for each parameter pack expanded
   1744     // by this pack expansion, then clear out the deduction.
   1745     llvm::SmallVector<DeducedTemplateArgument, 2>
   1746       SavedPacks(PackIndices.size());
   1747     llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
   1748       NewlyDeducedPacks(PackIndices.size());
   1749     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
   1750                                  NewlyDeducedPacks);
   1751 
   1752     // Keep track of the deduced template arguments for each parameter pack
   1753     // expanded by this pack expansion (the outer index) and for each
   1754     // template argument (the inner SmallVectors).
   1755     bool HasAnyArguments = false;
   1756     while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
   1757       HasAnyArguments = true;
   1758 
   1759       // Deduce template arguments from the pattern.
   1760       if (Sema::TemplateDeductionResult Result
   1761             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
   1762                                       Info, Deduced))
   1763         return Result;
   1764 
   1765       // Capture the deduced template arguments for each parameter pack expanded
   1766       // by this pack expansion, add them to the list of arguments we've deduced
   1767       // for that pack, then clear out the deduced argument.
   1768       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   1769         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   1770         if (!DeducedArg.isNull()) {
   1771           NewlyDeducedPacks[I].push_back(DeducedArg);
   1772           DeducedArg = DeducedTemplateArgument();
   1773         }
   1774       }
   1775 
   1776       ++ArgIdx;
   1777     }
   1778 
   1779     // Build argument packs for each of the parameter packs expanded by this
   1780     // pack expansion.
   1781     if (Sema::TemplateDeductionResult Result
   1782           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
   1783                                         Deduced, PackIndices, SavedPacks,
   1784                                         NewlyDeducedPacks, Info))
   1785       return Result;
   1786   }
   1787 
   1788   // If there is an argument remaining, then we had too many arguments.
   1789   if (NumberOfArgumentsMustMatch &&
   1790       hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1791     return Sema::TDK_NonDeducedMismatch;
   1792 
   1793   return Sema::TDK_Success;
   1794 }
   1795 
   1796 static Sema::TemplateDeductionResult
   1797 DeduceTemplateArguments(Sema &S,
   1798                         TemplateParameterList *TemplateParams,
   1799                         const TemplateArgumentList &ParamList,
   1800                         const TemplateArgumentList &ArgList,
   1801                         TemplateDeductionInfo &Info,
   1802                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1803   return DeduceTemplateArguments(S, TemplateParams,
   1804                                  ParamList.data(), ParamList.size(),
   1805                                  ArgList.data(), ArgList.size(),
   1806                                  Info, Deduced);
   1807 }
   1808 
   1809 /// \brief Determine whether two template arguments are the same.
   1810 static bool isSameTemplateArg(ASTContext &Context,
   1811                               const TemplateArgument &X,
   1812                               const TemplateArgument &Y) {
   1813   if (X.getKind() != Y.getKind())
   1814     return false;
   1815 
   1816   switch (X.getKind()) {
   1817     case TemplateArgument::Null:
   1818       assert(false && "Comparing NULL template argument");
   1819       break;
   1820 
   1821     case TemplateArgument::Type:
   1822       return Context.getCanonicalType(X.getAsType()) ==
   1823              Context.getCanonicalType(Y.getAsType());
   1824 
   1825     case TemplateArgument::Declaration:
   1826       return X.getAsDecl()->getCanonicalDecl() ==
   1827              Y.getAsDecl()->getCanonicalDecl();
   1828 
   1829     case TemplateArgument::Template:
   1830     case TemplateArgument::TemplateExpansion:
   1831       return Context.getCanonicalTemplateName(
   1832                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
   1833              Context.getCanonicalTemplateName(
   1834                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
   1835 
   1836     case TemplateArgument::Integral:
   1837       return *X.getAsIntegral() == *Y.getAsIntegral();
   1838 
   1839     case TemplateArgument::Expression: {
   1840       llvm::FoldingSetNodeID XID, YID;
   1841       X.getAsExpr()->Profile(XID, Context, true);
   1842       Y.getAsExpr()->Profile(YID, Context, true);
   1843       return XID == YID;
   1844     }
   1845 
   1846     case TemplateArgument::Pack:
   1847       if (X.pack_size() != Y.pack_size())
   1848         return false;
   1849 
   1850       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
   1851                                         XPEnd = X.pack_end(),
   1852                                            YP = Y.pack_begin();
   1853            XP != XPEnd; ++XP, ++YP)
   1854         if (!isSameTemplateArg(Context, *XP, *YP))
   1855           return false;
   1856 
   1857       return true;
   1858   }
   1859 
   1860   return false;
   1861 }
   1862 
   1863 /// \brief Allocate a TemplateArgumentLoc where all locations have
   1864 /// been initialized to the given location.
   1865 ///
   1866 /// \param S The semantic analysis object.
   1867 ///
   1868 /// \param The template argument we are producing template argument
   1869 /// location information for.
   1870 ///
   1871 /// \param NTTPType For a declaration template argument, the type of
   1872 /// the non-type template parameter that corresponds to this template
   1873 /// argument.
   1874 ///
   1875 /// \param Loc The source location to use for the resulting template
   1876 /// argument.
   1877 static TemplateArgumentLoc
   1878 getTrivialTemplateArgumentLoc(Sema &S,
   1879                               const TemplateArgument &Arg,
   1880                               QualType NTTPType,
   1881                               SourceLocation Loc) {
   1882   switch (Arg.getKind()) {
   1883   case TemplateArgument::Null:
   1884     llvm_unreachable("Can't get a NULL template argument here");
   1885     break;
   1886 
   1887   case TemplateArgument::Type:
   1888     return TemplateArgumentLoc(Arg,
   1889                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
   1890 
   1891   case TemplateArgument::Declaration: {
   1892     Expr *E
   1893       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   1894     .takeAs<Expr>();
   1895     return TemplateArgumentLoc(TemplateArgument(E), E);
   1896   }
   1897 
   1898   case TemplateArgument::Integral: {
   1899     Expr *E
   1900       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
   1901     return TemplateArgumentLoc(TemplateArgument(E), E);
   1902   }
   1903 
   1904     case TemplateArgument::Template:
   1905     case TemplateArgument::TemplateExpansion: {
   1906       NestedNameSpecifierLocBuilder Builder;
   1907       TemplateName Template = Arg.getAsTemplate();
   1908       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
   1909         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
   1910       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   1911         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
   1912 
   1913       if (Arg.getKind() == TemplateArgument::Template)
   1914         return TemplateArgumentLoc(Arg,
   1915                                    Builder.getWithLocInContext(S.Context),
   1916                                    Loc);
   1917 
   1918 
   1919       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
   1920                                  Loc, Loc);
   1921     }
   1922 
   1923   case TemplateArgument::Expression:
   1924     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
   1925 
   1926   case TemplateArgument::Pack:
   1927     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
   1928   }
   1929 
   1930   return TemplateArgumentLoc();
   1931 }
   1932 
   1933 
   1934 /// \brief Convert the given deduced template argument and add it to the set of
   1935 /// fully-converted template arguments.
   1936 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
   1937                                            DeducedTemplateArgument Arg,
   1938                                            NamedDecl *Template,
   1939                                            QualType NTTPType,
   1940                                            unsigned ArgumentPackIndex,
   1941                                            TemplateDeductionInfo &Info,
   1942                                            bool InFunctionTemplate,
   1943                              llvm::SmallVectorImpl<TemplateArgument> &Output) {
   1944   if (Arg.getKind() == TemplateArgument::Pack) {
   1945     // This is a template argument pack, so check each of its arguments against
   1946     // the template parameter.
   1947     llvm::SmallVector<TemplateArgument, 2> PackedArgsBuilder;
   1948     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
   1949                                       PAEnd = Arg.pack_end();
   1950          PA != PAEnd; ++PA) {
   1951       // When converting the deduced template argument, append it to the
   1952       // general output list. We need to do this so that the template argument
   1953       // checking logic has all of the prior template arguments available.
   1954       DeducedTemplateArgument InnerArg(*PA);
   1955       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
   1956       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
   1957                                          NTTPType, PackedArgsBuilder.size(),
   1958                                          Info, InFunctionTemplate, Output))
   1959         return true;
   1960 
   1961       // Move the converted template argument into our argument pack.
   1962       PackedArgsBuilder.push_back(Output.back());
   1963       Output.pop_back();
   1964     }
   1965 
   1966     // Create the resulting argument pack.
   1967     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
   1968                                                       PackedArgsBuilder.data(),
   1969                                                      PackedArgsBuilder.size()));
   1970     return false;
   1971   }
   1972 
   1973   // Convert the deduced template argument into a template
   1974   // argument that we can check, almost as if the user had written
   1975   // the template argument explicitly.
   1976   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
   1977                                                              Info.getLocation());
   1978 
   1979   // Check the template argument, converting it as necessary.
   1980   return S.CheckTemplateArgument(Param, ArgLoc,
   1981                                  Template,
   1982                                  Template->getLocation(),
   1983                                  Template->getSourceRange().getEnd(),
   1984                                  ArgumentPackIndex,
   1985                                  Output,
   1986                                  InFunctionTemplate
   1987                                   ? (Arg.wasDeducedFromArrayBound()
   1988                                        ? Sema::CTAK_DeducedFromArrayBound
   1989                                        : Sema::CTAK_Deduced)
   1990                                  : Sema::CTAK_Specified);
   1991 }
   1992 
   1993 /// Complete template argument deduction for a class template partial
   1994 /// specialization.
   1995 static Sema::TemplateDeductionResult
   1996 FinishTemplateArgumentDeduction(Sema &S,
   1997                                 ClassTemplatePartialSpecializationDecl *Partial,
   1998                                 const TemplateArgumentList &TemplateArgs,
   1999                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2000                                 TemplateDeductionInfo &Info) {
   2001   // Trap errors.
   2002   Sema::SFINAETrap Trap(S);
   2003 
   2004   Sema::ContextRAII SavedContext(S, Partial);
   2005 
   2006   // C++ [temp.deduct.type]p2:
   2007   //   [...] or if any template argument remains neither deduced nor
   2008   //   explicitly specified, template argument deduction fails.
   2009   llvm::SmallVector<TemplateArgument, 4> Builder;
   2010   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2011   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2012     NamedDecl *Param = PartialParams->getParam(I);
   2013     if (Deduced[I].isNull()) {
   2014       Info.Param = makeTemplateParameter(Param);
   2015       return Sema::TDK_Incomplete;
   2016     }
   2017 
   2018     // We have deduced this argument, so it still needs to be
   2019     // checked and converted.
   2020 
   2021     // First, for a non-type template parameter type that is
   2022     // initialized by a declaration, we need the type of the
   2023     // corresponding non-type template parameter.
   2024     QualType NTTPType;
   2025     if (NonTypeTemplateParmDecl *NTTP
   2026                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2027       NTTPType = NTTP->getType();
   2028       if (NTTPType->isDependentType()) {
   2029         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2030                                           Builder.data(), Builder.size());
   2031         NTTPType = S.SubstType(NTTPType,
   2032                                MultiLevelTemplateArgumentList(TemplateArgs),
   2033                                NTTP->getLocation(),
   2034                                NTTP->getDeclName());
   2035         if (NTTPType.isNull()) {
   2036           Info.Param = makeTemplateParameter(Param);
   2037           // FIXME: These template arguments are temporary. Free them!
   2038           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
   2039                                                       Builder.data(),
   2040                                                       Builder.size()));
   2041           return Sema::TDK_SubstitutionFailure;
   2042         }
   2043       }
   2044     }
   2045 
   2046     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
   2047                                        Partial, NTTPType, 0, Info, false,
   2048                                        Builder)) {
   2049       Info.Param = makeTemplateParameter(Param);
   2050       // FIXME: These template arguments are temporary. Free them!
   2051       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2052                                                   Builder.size()));
   2053       return Sema::TDK_SubstitutionFailure;
   2054     }
   2055   }
   2056 
   2057   // Form the template argument list from the deduced template arguments.
   2058   TemplateArgumentList *DeducedArgumentList
   2059     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2060                                        Builder.size());
   2061 
   2062   Info.reset(DeducedArgumentList);
   2063 
   2064   // Substitute the deduced template arguments into the template
   2065   // arguments of the class template partial specialization, and
   2066   // verify that the instantiated template arguments are both valid
   2067   // and are equivalent to the template arguments originally provided
   2068   // to the class template.
   2069   LocalInstantiationScope InstScope(S);
   2070   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
   2071   const TemplateArgumentLoc *PartialTemplateArgs
   2072     = Partial->getTemplateArgsAsWritten();
   2073 
   2074   // Note that we don't provide the langle and rangle locations.
   2075   TemplateArgumentListInfo InstArgs;
   2076 
   2077   if (S.Subst(PartialTemplateArgs,
   2078               Partial->getNumTemplateArgsAsWritten(),
   2079               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2080     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2081     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2082       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2083 
   2084     Decl *Param
   2085       = const_cast<NamedDecl *>(
   2086                           Partial->getTemplateParameters()->getParam(ParamIdx));
   2087     Info.Param = makeTemplateParameter(Param);
   2088     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2089     return Sema::TDK_SubstitutionFailure;
   2090   }
   2091 
   2092   llvm::SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2093   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
   2094                                   InstArgs, false, ConvertedInstArgs))
   2095     return Sema::TDK_SubstitutionFailure;
   2096 
   2097   TemplateParameterList *TemplateParams
   2098     = ClassTemplate->getTemplateParameters();
   2099   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2100     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2101     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2102       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2103       Info.FirstArg = TemplateArgs[I];
   2104       Info.SecondArg = InstArg;
   2105       return Sema::TDK_NonDeducedMismatch;
   2106     }
   2107   }
   2108 
   2109   if (Trap.hasErrorOccurred())
   2110     return Sema::TDK_SubstitutionFailure;
   2111 
   2112   return Sema::TDK_Success;
   2113 }
   2114 
   2115 /// \brief Perform template argument deduction to determine whether
   2116 /// the given template arguments match the given class template
   2117 /// partial specialization per C++ [temp.class.spec.match].
   2118 Sema::TemplateDeductionResult
   2119 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
   2120                               const TemplateArgumentList &TemplateArgs,
   2121                               TemplateDeductionInfo &Info) {
   2122   // C++ [temp.class.spec.match]p2:
   2123   //   A partial specialization matches a given actual template
   2124   //   argument list if the template arguments of the partial
   2125   //   specialization can be deduced from the actual template argument
   2126   //   list (14.8.2).
   2127   SFINAETrap Trap(*this);
   2128   llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
   2129   Deduced.resize(Partial->getTemplateParameters()->size());
   2130   if (TemplateDeductionResult Result
   2131         = ::DeduceTemplateArguments(*this,
   2132                                     Partial->getTemplateParameters(),
   2133                                     Partial->getTemplateArgs(),
   2134                                     TemplateArgs, Info, Deduced))
   2135     return Result;
   2136 
   2137   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
   2138                              Deduced.data(), Deduced.size(), Info);
   2139   if (Inst)
   2140     return TDK_InstantiationDepth;
   2141 
   2142   if (Trap.hasErrorOccurred())
   2143     return Sema::TDK_SubstitutionFailure;
   2144 
   2145   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2146                                            Deduced, Info);
   2147 }
   2148 
   2149 /// \brief Determine whether the given type T is a simple-template-id type.
   2150 static bool isSimpleTemplateIdType(QualType T) {
   2151   if (const TemplateSpecializationType *Spec
   2152         = T->getAs<TemplateSpecializationType>())
   2153     return Spec->getTemplateName().getAsTemplateDecl() != 0;
   2154 
   2155   return false;
   2156 }
   2157 
   2158 /// \brief Substitute the explicitly-provided template arguments into the
   2159 /// given function template according to C++ [temp.arg.explicit].
   2160 ///
   2161 /// \param FunctionTemplate the function template into which the explicit
   2162 /// template arguments will be substituted.
   2163 ///
   2164 /// \param ExplicitTemplateArguments the explicitly-specified template
   2165 /// arguments.
   2166 ///
   2167 /// \param Deduced the deduced template arguments, which will be populated
   2168 /// with the converted and checked explicit template arguments.
   2169 ///
   2170 /// \param ParamTypes will be populated with the instantiated function
   2171 /// parameters.
   2172 ///
   2173 /// \param FunctionType if non-NULL, the result type of the function template
   2174 /// will also be instantiated and the pointed-to value will be updated with
   2175 /// the instantiated function type.
   2176 ///
   2177 /// \param Info if substitution fails for any reason, this object will be
   2178 /// populated with more information about the failure.
   2179 ///
   2180 /// \returns TDK_Success if substitution was successful, or some failure
   2181 /// condition.
   2182 Sema::TemplateDeductionResult
   2183 Sema::SubstituteExplicitTemplateArguments(
   2184                                       FunctionTemplateDecl *FunctionTemplate,
   2185                                TemplateArgumentListInfo &ExplicitTemplateArgs,
   2186                        llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2187                                  llvm::SmallVectorImpl<QualType> &ParamTypes,
   2188                                           QualType *FunctionType,
   2189                                           TemplateDeductionInfo &Info) {
   2190   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2191   TemplateParameterList *TemplateParams
   2192     = FunctionTemplate->getTemplateParameters();
   2193 
   2194   if (ExplicitTemplateArgs.size() == 0) {
   2195     // No arguments to substitute; just copy over the parameter types and
   2196     // fill in the function type.
   2197     for (FunctionDecl::param_iterator P = Function->param_begin(),
   2198                                    PEnd = Function->param_end();
   2199          P != PEnd;
   2200          ++P)
   2201       ParamTypes.push_back((*P)->getType());
   2202 
   2203     if (FunctionType)
   2204       *FunctionType = Function->getType();
   2205     return TDK_Success;
   2206   }
   2207 
   2208   // Substitution of the explicit template arguments into a function template
   2209   /// is a SFINAE context. Trap any errors that might occur.
   2210   SFINAETrap Trap(*this);
   2211 
   2212   // C++ [temp.arg.explicit]p3:
   2213   //   Template arguments that are present shall be specified in the
   2214   //   declaration order of their corresponding template-parameters. The
   2215   //   template argument list shall not specify more template-arguments than
   2216   //   there are corresponding template-parameters.
   2217   llvm::SmallVector<TemplateArgument, 4> Builder;
   2218 
   2219   // Enter a new template instantiation context where we check the
   2220   // explicitly-specified template arguments against this function template,
   2221   // and then substitute them into the function parameter types.
   2222   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2223                              FunctionTemplate, Deduced.data(), Deduced.size(),
   2224            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
   2225                              Info);
   2226   if (Inst)
   2227     return TDK_InstantiationDepth;
   2228 
   2229   if (CheckTemplateArgumentList(FunctionTemplate,
   2230                                 SourceLocation(),
   2231                                 ExplicitTemplateArgs,
   2232                                 true,
   2233                                 Builder) || Trap.hasErrorOccurred()) {
   2234     unsigned Index = Builder.size();
   2235     if (Index >= TemplateParams->size())
   2236       Index = TemplateParams->size() - 1;
   2237     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
   2238     return TDK_InvalidExplicitArguments;
   2239   }
   2240 
   2241   // Form the template argument list from the explicitly-specified
   2242   // template arguments.
   2243   TemplateArgumentList *ExplicitArgumentList
   2244     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2245   Info.reset(ExplicitArgumentList);
   2246 
   2247   // Template argument deduction and the final substitution should be
   2248   // done in the context of the templated declaration.  Explicit
   2249   // argument substitution, on the other hand, needs to happen in the
   2250   // calling context.
   2251   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2252 
   2253   // If we deduced template arguments for a template parameter pack,
   2254   // note that the template argument pack is partially substituted and record
   2255   // the explicit template arguments. They'll be used as part of deduction
   2256   // for this template parameter pack.
   2257   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
   2258     const TemplateArgument &Arg = Builder[I];
   2259     if (Arg.getKind() == TemplateArgument::Pack) {
   2260       CurrentInstantiationScope->SetPartiallySubstitutedPack(
   2261                                                  TemplateParams->getParam(I),
   2262                                                              Arg.pack_begin(),
   2263                                                              Arg.pack_size());
   2264       break;
   2265     }
   2266   }
   2267 
   2268   // Instantiate the types of each of the function parameters given the
   2269   // explicitly-specified template arguments.
   2270   if (SubstParmTypes(Function->getLocation(),
   2271                      Function->param_begin(), Function->getNumParams(),
   2272                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2273                      ParamTypes))
   2274     return TDK_SubstitutionFailure;
   2275 
   2276   // If the caller wants a full function type back, instantiate the return
   2277   // type and form that function type.
   2278   if (FunctionType) {
   2279     // FIXME: exception-specifications?
   2280     const FunctionProtoType *Proto
   2281       = Function->getType()->getAs<FunctionProtoType>();
   2282     assert(Proto && "Function template does not have a prototype?");
   2283 
   2284     QualType ResultType
   2285       = SubstType(Proto->getResultType(),
   2286                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2287                   Function->getTypeSpecStartLoc(),
   2288                   Function->getDeclName());
   2289     if (ResultType.isNull() || Trap.hasErrorOccurred())
   2290       return TDK_SubstitutionFailure;
   2291 
   2292     *FunctionType = BuildFunctionType(ResultType,
   2293                                       ParamTypes.data(), ParamTypes.size(),
   2294                                       Proto->isVariadic(),
   2295                                       Proto->getTypeQuals(),
   2296                                       Proto->getRefQualifier(),
   2297                                       Function->getLocation(),
   2298                                       Function->getDeclName(),
   2299                                       Proto->getExtInfo());
   2300     if (FunctionType->isNull() || Trap.hasErrorOccurred())
   2301       return TDK_SubstitutionFailure;
   2302   }
   2303 
   2304   // C++ [temp.arg.explicit]p2:
   2305   //   Trailing template arguments that can be deduced (14.8.2) may be
   2306   //   omitted from the list of explicit template-arguments. If all of the
   2307   //   template arguments can be deduced, they may all be omitted; in this
   2308   //   case, the empty template argument list <> itself may also be omitted.
   2309   //
   2310   // Take all of the explicitly-specified arguments and put them into
   2311   // the set of deduced template arguments. Explicitly-specified
   2312   // parameter packs, however, will be set to NULL since the deduction
   2313   // mechanisms handle explicitly-specified argument packs directly.
   2314   Deduced.reserve(TemplateParams->size());
   2315   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
   2316     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
   2317     if (Arg.getKind() == TemplateArgument::Pack)
   2318       Deduced.push_back(DeducedTemplateArgument());
   2319     else
   2320       Deduced.push_back(Arg);
   2321   }
   2322 
   2323   return TDK_Success;
   2324 }
   2325 
   2326 /// \brief Check whether the deduced argument type for a call to a function
   2327 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
   2328 static bool
   2329 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
   2330                               QualType DeducedA) {
   2331   ASTContext &Context = S.Context;
   2332 
   2333   QualType A = OriginalArg.OriginalArgType;
   2334   QualType OriginalParamType = OriginalArg.OriginalParamType;
   2335 
   2336   // Check for type equality (top-level cv-qualifiers are ignored).
   2337   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2338     return false;
   2339 
   2340   // Strip off references on the argument types; they aren't needed for
   2341   // the following checks.
   2342   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
   2343     DeducedA = DeducedARef->getPointeeType();
   2344   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   2345     A = ARef->getPointeeType();
   2346 
   2347   // C++ [temp.deduct.call]p4:
   2348   //   [...] However, there are three cases that allow a difference:
   2349   //     - If the original P is a reference type, the deduced A (i.e., the
   2350   //       type referred to by the reference) can be more cv-qualified than
   2351   //       the transformed A.
   2352   if (const ReferenceType *OriginalParamRef
   2353       = OriginalParamType->getAs<ReferenceType>()) {
   2354     // We don't want to keep the reference around any more.
   2355     OriginalParamType = OriginalParamRef->getPointeeType();
   2356 
   2357     Qualifiers AQuals = A.getQualifiers();
   2358     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
   2359     if (AQuals == DeducedAQuals) {
   2360       // Qualifiers match; there's nothing to do.
   2361     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
   2362       return true;
   2363     } else {
   2364       // Qualifiers are compatible, so have the argument type adopt the
   2365       // deduced argument type's qualifiers as if we had performed the
   2366       // qualification conversion.
   2367       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
   2368     }
   2369   }
   2370 
   2371   //    - The transformed A can be another pointer or pointer to member
   2372   //      type that can be converted to the deduced A via a qualification
   2373   //      conversion.
   2374   //
   2375   // Also allow conversions which merely strip [[noreturn]] from function types
   2376   // (recursively) as an extension.
   2377   // FIXME: Currently, this doesn't place nicely with qualfication conversions.
   2378   bool ObjCLifetimeConversion = false;
   2379   QualType ResultTy;
   2380   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
   2381       (S.IsQualificationConversion(A, DeducedA, false,
   2382                                    ObjCLifetimeConversion) ||
   2383        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
   2384     return false;
   2385 
   2386 
   2387   //    - If P is a class and P has the form simple-template-id, then the
   2388   //      transformed A can be a derived class of the deduced A. [...]
   2389   //     [...] Likewise, if P is a pointer to a class of the form
   2390   //      simple-template-id, the transformed A can be a pointer to a
   2391   //      derived class pointed to by the deduced A.
   2392   if (const PointerType *OriginalParamPtr
   2393       = OriginalParamType->getAs<PointerType>()) {
   2394     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
   2395       if (const PointerType *APtr = A->getAs<PointerType>()) {
   2396         if (A->getPointeeType()->isRecordType()) {
   2397           OriginalParamType = OriginalParamPtr->getPointeeType();
   2398           DeducedA = DeducedAPtr->getPointeeType();
   2399           A = APtr->getPointeeType();
   2400         }
   2401       }
   2402     }
   2403   }
   2404 
   2405   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2406     return false;
   2407 
   2408   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
   2409       S.IsDerivedFrom(A, DeducedA))
   2410     return false;
   2411 
   2412   return true;
   2413 }
   2414 
   2415 /// \brief Finish template argument deduction for a function template,
   2416 /// checking the deduced template arguments for completeness and forming
   2417 /// the function template specialization.
   2418 ///
   2419 /// \param OriginalCallArgs If non-NULL, the original call arguments against
   2420 /// which the deduced argument types should be compared.
   2421 Sema::TemplateDeductionResult
   2422 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
   2423                        llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2424                                       unsigned NumExplicitlySpecified,
   2425                                       FunctionDecl *&Specialization,
   2426                                       TemplateDeductionInfo &Info,
   2427         llvm::SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
   2428   TemplateParameterList *TemplateParams
   2429     = FunctionTemplate->getTemplateParameters();
   2430 
   2431   // Template argument deduction for function templates in a SFINAE context.
   2432   // Trap any errors that might occur.
   2433   SFINAETrap Trap(*this);
   2434 
   2435   // Enter a new template instantiation context while we instantiate the
   2436   // actual function declaration.
   2437   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2438                              FunctionTemplate, Deduced.data(), Deduced.size(),
   2439               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
   2440                              Info);
   2441   if (Inst)
   2442     return TDK_InstantiationDepth;
   2443 
   2444   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2445 
   2446   // C++ [temp.deduct.type]p2:
   2447   //   [...] or if any template argument remains neither deduced nor
   2448   //   explicitly specified, template argument deduction fails.
   2449   llvm::SmallVector<TemplateArgument, 4> Builder;
   2450   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   2451     NamedDecl *Param = TemplateParams->getParam(I);
   2452 
   2453     if (!Deduced[I].isNull()) {
   2454       if (I < NumExplicitlySpecified) {
   2455         // We have already fully type-checked and converted this
   2456         // argument, because it was explicitly-specified. Just record the
   2457         // presence of this argument.
   2458         Builder.push_back(Deduced[I]);
   2459         continue;
   2460       }
   2461 
   2462       // We have deduced this argument, so it still needs to be
   2463       // checked and converted.
   2464 
   2465       // First, for a non-type template parameter type that is
   2466       // initialized by a declaration, we need the type of the
   2467       // corresponding non-type template parameter.
   2468       QualType NTTPType;
   2469       if (NonTypeTemplateParmDecl *NTTP
   2470                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2471         NTTPType = NTTP->getType();
   2472         if (NTTPType->isDependentType()) {
   2473           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2474                                             Builder.data(), Builder.size());
   2475           NTTPType = SubstType(NTTPType,
   2476                                MultiLevelTemplateArgumentList(TemplateArgs),
   2477                                NTTP->getLocation(),
   2478                                NTTP->getDeclName());
   2479           if (NTTPType.isNull()) {
   2480             Info.Param = makeTemplateParameter(Param);
   2481             // FIXME: These template arguments are temporary. Free them!
   2482             Info.reset(TemplateArgumentList::CreateCopy(Context,
   2483                                                         Builder.data(),
   2484                                                         Builder.size()));
   2485             return TDK_SubstitutionFailure;
   2486           }
   2487         }
   2488       }
   2489 
   2490       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
   2491                                          FunctionTemplate, NTTPType, 0, Info,
   2492                                          true, Builder)) {
   2493         Info.Param = makeTemplateParameter(Param);
   2494         // FIXME: These template arguments are temporary. Free them!
   2495         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2496                                                     Builder.size()));
   2497         return TDK_SubstitutionFailure;
   2498       }
   2499 
   2500       continue;
   2501     }
   2502 
   2503     // C++0x [temp.arg.explicit]p3:
   2504     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
   2505     //    be deduced to an empty sequence of template arguments.
   2506     // FIXME: Where did the word "trailing" come from?
   2507     if (Param->isTemplateParameterPack()) {
   2508       // We may have had explicitly-specified template arguments for this
   2509       // template parameter pack. If so, our empty deduction extends the
   2510       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
   2511       const TemplateArgument *ExplicitArgs;
   2512       unsigned NumExplicitArgs;
   2513       if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
   2514                                                              &NumExplicitArgs)
   2515           == Param)
   2516         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
   2517       else
   2518         Builder.push_back(TemplateArgument(0, 0));
   2519 
   2520       continue;
   2521     }
   2522 
   2523     // Substitute into the default template argument, if available.
   2524     TemplateArgumentLoc DefArg
   2525       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
   2526                                               FunctionTemplate->getLocation(),
   2527                                   FunctionTemplate->getSourceRange().getEnd(),
   2528                                                 Param,
   2529                                                 Builder);
   2530 
   2531     // If there was no default argument, deduction is incomplete.
   2532     if (DefArg.getArgument().isNull()) {
   2533       Info.Param = makeTemplateParameter(
   2534                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2535       return TDK_Incomplete;
   2536     }
   2537 
   2538     // Check whether we can actually use the default argument.
   2539     if (CheckTemplateArgument(Param, DefArg,
   2540                               FunctionTemplate,
   2541                               FunctionTemplate->getLocation(),
   2542                               FunctionTemplate->getSourceRange().getEnd(),
   2543                               0, Builder,
   2544                               CTAK_Specified)) {
   2545       Info.Param = makeTemplateParameter(
   2546                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2547       // FIXME: These template arguments are temporary. Free them!
   2548       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2549                                                   Builder.size()));
   2550       return TDK_SubstitutionFailure;
   2551     }
   2552 
   2553     // If we get here, we successfully used the default template argument.
   2554   }
   2555 
   2556   // Form the template argument list from the deduced template arguments.
   2557   TemplateArgumentList *DeducedArgumentList
   2558     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2559   Info.reset(DeducedArgumentList);
   2560 
   2561   // Substitute the deduced template arguments into the function template
   2562   // declaration to produce the function template specialization.
   2563   DeclContext *Owner = FunctionTemplate->getDeclContext();
   2564   if (FunctionTemplate->getFriendObjectKind())
   2565     Owner = FunctionTemplate->getLexicalDeclContext();
   2566   Specialization = cast_or_null<FunctionDecl>(
   2567                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
   2568                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
   2569   if (!Specialization)
   2570     return TDK_SubstitutionFailure;
   2571 
   2572   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
   2573          FunctionTemplate->getCanonicalDecl());
   2574 
   2575   // If the template argument list is owned by the function template
   2576   // specialization, release it.
   2577   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
   2578       !Trap.hasErrorOccurred())
   2579     Info.take();
   2580 
   2581   if (OriginalCallArgs) {
   2582     // C++ [temp.deduct.call]p4:
   2583     //   In general, the deduction process attempts to find template argument
   2584     //   values that will make the deduced A identical to A (after the type A
   2585     //   is transformed as described above). [...]
   2586     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
   2587       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
   2588       unsigned ParamIdx = OriginalArg.ArgIdx;
   2589 
   2590       if (ParamIdx >= Specialization->getNumParams())
   2591         continue;
   2592 
   2593       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
   2594       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
   2595         return Sema::TDK_SubstitutionFailure;
   2596     }
   2597   }
   2598 
   2599   // There may have been an error that did not prevent us from constructing a
   2600   // declaration. Mark the declaration invalid and return with a substitution
   2601   // failure.
   2602   if (Trap.hasErrorOccurred()) {
   2603     Specialization->setInvalidDecl(true);
   2604     return TDK_SubstitutionFailure;
   2605   }
   2606 
   2607   // If we suppressed any diagnostics while performing template argument
   2608   // deduction, and if we haven't already instantiated this declaration,
   2609   // keep track of these diagnostics. They'll be emitted if this specialization
   2610   // is actually used.
   2611   if (Info.diag_begin() != Info.diag_end()) {
   2612     llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
   2613       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
   2614     if (Pos == SuppressedDiagnostics.end())
   2615         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
   2616           .append(Info.diag_begin(), Info.diag_end());
   2617   }
   2618 
   2619   return TDK_Success;
   2620 }
   2621 
   2622 /// Gets the type of a function for template-argument-deducton
   2623 /// purposes when it's considered as part of an overload set.
   2624 static QualType GetTypeOfFunction(ASTContext &Context,
   2625                                   const OverloadExpr::FindResult &R,
   2626                                   FunctionDecl *Fn) {
   2627   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   2628     if (Method->isInstance()) {
   2629       // An instance method that's referenced in a form that doesn't
   2630       // look like a member pointer is just invalid.
   2631       if (!R.HasFormOfMemberPointer) return QualType();
   2632 
   2633       return Context.getMemberPointerType(Fn->getType(),
   2634                Context.getTypeDeclType(Method->getParent()).getTypePtr());
   2635     }
   2636 
   2637   if (!R.IsAddressOfOperand) return Fn->getType();
   2638   return Context.getPointerType(Fn->getType());
   2639 }
   2640 
   2641 /// Apply the deduction rules for overload sets.
   2642 ///
   2643 /// \return the null type if this argument should be treated as an
   2644 /// undeduced context
   2645 static QualType
   2646 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
   2647                             Expr *Arg, QualType ParamType,
   2648                             bool ParamWasReference) {
   2649 
   2650   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
   2651 
   2652   OverloadExpr *Ovl = R.Expression;
   2653 
   2654   // C++0x [temp.deduct.call]p4
   2655   unsigned TDF = 0;
   2656   if (ParamWasReference)
   2657     TDF |= TDF_ParamWithReferenceType;
   2658   if (R.IsAddressOfOperand)
   2659     TDF |= TDF_IgnoreQualifiers;
   2660 
   2661   // If there were explicit template arguments, we can only find
   2662   // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
   2663   // unambiguously name a full specialization.
   2664   if (Ovl->hasExplicitTemplateArgs()) {
   2665     // But we can still look for an explicit specialization.
   2666     if (FunctionDecl *ExplicitSpec
   2667           = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
   2668       return GetTypeOfFunction(S.Context, R, ExplicitSpec);
   2669     return QualType();
   2670   }
   2671 
   2672   // C++0x [temp.deduct.call]p6:
   2673   //   When P is a function type, pointer to function type, or pointer
   2674   //   to member function type:
   2675 
   2676   if (!ParamType->isFunctionType() &&
   2677       !ParamType->isFunctionPointerType() &&
   2678       !ParamType->isMemberFunctionPointerType())
   2679     return QualType();
   2680 
   2681   QualType Match;
   2682   for (UnresolvedSetIterator I = Ovl->decls_begin(),
   2683          E = Ovl->decls_end(); I != E; ++I) {
   2684     NamedDecl *D = (*I)->getUnderlyingDecl();
   2685 
   2686     //   - If the argument is an overload set containing one or more
   2687     //     function templates, the parameter is treated as a
   2688     //     non-deduced context.
   2689     if (isa<FunctionTemplateDecl>(D))
   2690       return QualType();
   2691 
   2692     FunctionDecl *Fn = cast<FunctionDecl>(D);
   2693     QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
   2694     if (ArgType.isNull()) continue;
   2695 
   2696     // Function-to-pointer conversion.
   2697     if (!ParamWasReference && ParamType->isPointerType() &&
   2698         ArgType->isFunctionType())
   2699       ArgType = S.Context.getPointerType(ArgType);
   2700 
   2701     //   - If the argument is an overload set (not containing function
   2702     //     templates), trial argument deduction is attempted using each
   2703     //     of the members of the set. If deduction succeeds for only one
   2704     //     of the overload set members, that member is used as the
   2705     //     argument value for the deduction. If deduction succeeds for
   2706     //     more than one member of the overload set the parameter is
   2707     //     treated as a non-deduced context.
   2708 
   2709     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
   2710     //   Type deduction is done independently for each P/A pair, and
   2711     //   the deduced template argument values are then combined.
   2712     // So we do not reject deductions which were made elsewhere.
   2713     llvm::SmallVector<DeducedTemplateArgument, 8>
   2714       Deduced(TemplateParams->size());
   2715     TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
   2716     Sema::TemplateDeductionResult Result
   2717       = DeduceTemplateArguments(S, TemplateParams,
   2718                                 ParamType, ArgType,
   2719                                 Info, Deduced, TDF);
   2720     if (Result) continue;
   2721     if (!Match.isNull()) return QualType();
   2722     Match = ArgType;
   2723   }
   2724 
   2725   return Match;
   2726 }
   2727 
   2728 /// \brief Perform the adjustments to the parameter and argument types
   2729 /// described in C++ [temp.deduct.call].
   2730 ///
   2731 /// \returns true if the caller should not attempt to perform any template
   2732 /// argument deduction based on this P/A pair.
   2733 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
   2734                                           TemplateParameterList *TemplateParams,
   2735                                                       QualType &ParamType,
   2736                                                       QualType &ArgType,
   2737                                                       Expr *Arg,
   2738                                                       unsigned &TDF) {
   2739   // C++0x [temp.deduct.call]p3:
   2740   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
   2741   //   are ignored for type deduction.
   2742   if (ParamType.hasQualifiers())
   2743     ParamType = ParamType.getUnqualifiedType();
   2744   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
   2745   if (ParamRefType) {
   2746     QualType PointeeType = ParamRefType->getPointeeType();
   2747 
   2748     // If the argument has incomplete array type, try to complete it's type.
   2749     if (ArgType->isIncompleteArrayType() &&
   2750         !S.RequireCompleteExprType(Arg, S.PDiag(),
   2751                                    std::make_pair(SourceLocation(), S.PDiag())))
   2752       ArgType = Arg->getType();
   2753 
   2754     //   [C++0x] If P is an rvalue reference to a cv-unqualified
   2755     //   template parameter and the argument is an lvalue, the type
   2756     //   "lvalue reference to A" is used in place of A for type
   2757     //   deduction.
   2758     if (isa<RValueReferenceType>(ParamType)) {
   2759       if (!PointeeType.getQualifiers() &&
   2760           isa<TemplateTypeParmType>(PointeeType) &&
   2761           Arg->Classify(S.Context).isLValue() &&
   2762           Arg->getType() != S.Context.OverloadTy &&
   2763           Arg->getType() != S.Context.BoundMemberTy)
   2764         ArgType = S.Context.getLValueReferenceType(ArgType);
   2765     }
   2766 
   2767     //   [...] If P is a reference type, the type referred to by P is used
   2768     //   for type deduction.
   2769     ParamType = PointeeType;
   2770   }
   2771 
   2772   // Overload sets usually make this parameter an undeduced
   2773   // context, but there are sometimes special circumstances.
   2774   if (ArgType == S.Context.OverloadTy) {
   2775     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
   2776                                           Arg, ParamType,
   2777                                           ParamRefType != 0);
   2778     if (ArgType.isNull())
   2779       return true;
   2780   }
   2781 
   2782   if (ParamRefType) {
   2783     // C++0x [temp.deduct.call]p3:
   2784     //   [...] If P is of the form T&&, where T is a template parameter, and
   2785     //   the argument is an lvalue, the type A& is used in place of A for
   2786     //   type deduction.
   2787     if (ParamRefType->isRValueReferenceType() &&
   2788         ParamRefType->getAs<TemplateTypeParmType>() &&
   2789         Arg->isLValue())
   2790       ArgType = S.Context.getLValueReferenceType(ArgType);
   2791   } else {
   2792     // C++ [temp.deduct.call]p2:
   2793     //   If P is not a reference type:
   2794     //   - If A is an array type, the pointer type produced by the
   2795     //     array-to-pointer standard conversion (4.2) is used in place of
   2796     //     A for type deduction; otherwise,
   2797     if (ArgType->isArrayType())
   2798       ArgType = S.Context.getArrayDecayedType(ArgType);
   2799     //   - If A is a function type, the pointer type produced by the
   2800     //     function-to-pointer standard conversion (4.3) is used in place
   2801     //     of A for type deduction; otherwise,
   2802     else if (ArgType->isFunctionType())
   2803       ArgType = S.Context.getPointerType(ArgType);
   2804     else {
   2805       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
   2806       //   type are ignored for type deduction.
   2807       ArgType = ArgType.getUnqualifiedType();
   2808     }
   2809   }
   2810 
   2811   // C++0x [temp.deduct.call]p4:
   2812   //   In general, the deduction process attempts to find template argument
   2813   //   values that will make the deduced A identical to A (after the type A
   2814   //   is transformed as described above). [...]
   2815   TDF = TDF_SkipNonDependent;
   2816 
   2817   //     - If the original P is a reference type, the deduced A (i.e., the
   2818   //       type referred to by the reference) can be more cv-qualified than
   2819   //       the transformed A.
   2820   if (ParamRefType)
   2821     TDF |= TDF_ParamWithReferenceType;
   2822   //     - The transformed A can be another pointer or pointer to member
   2823   //       type that can be converted to the deduced A via a qualification
   2824   //       conversion (4.4).
   2825   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
   2826       ArgType->isObjCObjectPointerType())
   2827     TDF |= TDF_IgnoreQualifiers;
   2828   //     - If P is a class and P has the form simple-template-id, then the
   2829   //       transformed A can be a derived class of the deduced A. Likewise,
   2830   //       if P is a pointer to a class of the form simple-template-id, the
   2831   //       transformed A can be a pointer to a derived class pointed to by
   2832   //       the deduced A.
   2833   if (isSimpleTemplateIdType(ParamType) ||
   2834       (isa<PointerType>(ParamType) &&
   2835        isSimpleTemplateIdType(
   2836                               ParamType->getAs<PointerType>()->getPointeeType())))
   2837     TDF |= TDF_DerivedClass;
   2838 
   2839   return false;
   2840 }
   2841 
   2842 static bool hasDeducibleTemplateParameters(Sema &S,
   2843                                            FunctionTemplateDecl *FunctionTemplate,
   2844                                            QualType T);
   2845 
   2846 /// \brief Perform template argument deduction from a function call
   2847 /// (C++ [temp.deduct.call]).
   2848 ///
   2849 /// \param FunctionTemplate the function template for which we are performing
   2850 /// template argument deduction.
   2851 ///
   2852 /// \param ExplicitTemplateArguments the explicit template arguments provided
   2853 /// for this call.
   2854 ///
   2855 /// \param Args the function call arguments
   2856 ///
   2857 /// \param NumArgs the number of arguments in Args
   2858 ///
   2859 /// \param Name the name of the function being called. This is only significant
   2860 /// when the function template is a conversion function template, in which
   2861 /// case this routine will also perform template argument deduction based on
   2862 /// the function to which
   2863 ///
   2864 /// \param Specialization if template argument deduction was successful,
   2865 /// this will be set to the function template specialization produced by
   2866 /// template argument deduction.
   2867 ///
   2868 /// \param Info the argument will be updated to provide additional information
   2869 /// about template argument deduction.
   2870 ///
   2871 /// \returns the result of template argument deduction.
   2872 Sema::TemplateDeductionResult
   2873 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   2874                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   2875                               Expr **Args, unsigned NumArgs,
   2876                               FunctionDecl *&Specialization,
   2877                               TemplateDeductionInfo &Info) {
   2878   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2879 
   2880   // C++ [temp.deduct.call]p1:
   2881   //   Template argument deduction is done by comparing each function template
   2882   //   parameter type (call it P) with the type of the corresponding argument
   2883   //   of the call (call it A) as described below.
   2884   unsigned CheckArgs = NumArgs;
   2885   if (NumArgs < Function->getMinRequiredArguments())
   2886     return TDK_TooFewArguments;
   2887   else if (NumArgs > Function->getNumParams()) {
   2888     const FunctionProtoType *Proto
   2889       = Function->getType()->getAs<FunctionProtoType>();
   2890     if (Proto->isTemplateVariadic())
   2891       /* Do nothing */;
   2892     else if (Proto->isVariadic())
   2893       CheckArgs = Function->getNumParams();
   2894     else
   2895       return TDK_TooManyArguments;
   2896   }
   2897 
   2898   // The types of the parameters from which we will perform template argument
   2899   // deduction.
   2900   LocalInstantiationScope InstScope(*this);
   2901   TemplateParameterList *TemplateParams
   2902     = FunctionTemplate->getTemplateParameters();
   2903   llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
   2904   llvm::SmallVector<QualType, 4> ParamTypes;
   2905   unsigned NumExplicitlySpecified = 0;
   2906   if (ExplicitTemplateArgs) {
   2907     TemplateDeductionResult Result =
   2908       SubstituteExplicitTemplateArguments(FunctionTemplate,
   2909                                           *ExplicitTemplateArgs,
   2910                                           Deduced,
   2911                                           ParamTypes,
   2912                                           0,
   2913                                           Info);
   2914     if (Result)
   2915       return Result;
   2916 
   2917     NumExplicitlySpecified = Deduced.size();
   2918   } else {
   2919     // Just fill in the parameter types from the function declaration.
   2920     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   2921       ParamTypes.push_back(Function->getParamDecl(I)->getType());
   2922   }
   2923 
   2924   // Deduce template arguments from the function parameters.
   2925   Deduced.resize(TemplateParams->size());
   2926   unsigned ArgIdx = 0;
   2927   llvm::SmallVector<OriginalCallArg, 4> OriginalCallArgs;
   2928   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
   2929        ParamIdx != NumParams; ++ParamIdx) {
   2930     QualType OrigParamType = ParamTypes[ParamIdx];
   2931     QualType ParamType = OrigParamType;
   2932 
   2933     const PackExpansionType *ParamExpansion
   2934       = dyn_cast<PackExpansionType>(ParamType);
   2935     if (!ParamExpansion) {
   2936       // Simple case: matching a function parameter to a function argument.
   2937       if (ArgIdx >= CheckArgs)
   2938         break;
   2939 
   2940       Expr *Arg = Args[ArgIdx++];
   2941       QualType ArgType = Arg->getType();
   2942 
   2943       unsigned TDF = 0;
   2944       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   2945                                                     ParamType, ArgType, Arg,
   2946                                                     TDF))
   2947         continue;
   2948 
   2949       // Keep track of the argument type and corresponding parameter index,
   2950       // so we can check for compatibility between the deduced A and A.
   2951       if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   2952         OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
   2953                                                    ArgType));
   2954 
   2955       if (TemplateDeductionResult Result
   2956           = ::DeduceTemplateArguments(*this, TemplateParams,
   2957                                       ParamType, ArgType, Info, Deduced,
   2958                                       TDF))
   2959         return Result;
   2960 
   2961       continue;
   2962     }
   2963 
   2964     // C++0x [temp.deduct.call]p1:
   2965     //   For a function parameter pack that occurs at the end of the
   2966     //   parameter-declaration-list, the type A of each remaining argument of
   2967     //   the call is compared with the type P of the declarator-id of the
   2968     //   function parameter pack. Each comparison deduces template arguments
   2969     //   for subsequent positions in the template parameter packs expanded by
   2970     //   the function parameter pack. For a function parameter pack that does
   2971     //   not occur at the end of the parameter-declaration-list, the type of
   2972     //   the parameter pack is a non-deduced context.
   2973     if (ParamIdx + 1 < NumParams)
   2974       break;
   2975 
   2976     QualType ParamPattern = ParamExpansion->getPattern();
   2977     llvm::SmallVector<unsigned, 2> PackIndices;
   2978     {
   2979       llvm::BitVector SawIndices(TemplateParams->size());
   2980       llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   2981       collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
   2982       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   2983         unsigned Depth, Index;
   2984         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   2985         if (Depth == 0 && !SawIndices[Index]) {
   2986           SawIndices[Index] = true;
   2987           PackIndices.push_back(Index);
   2988         }
   2989       }
   2990     }
   2991     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   2992 
   2993     // Keep track of the deduced template arguments for each parameter pack
   2994     // expanded by this pack expansion (the outer index) and for each
   2995     // template argument (the inner SmallVectors).
   2996     llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
   2997       NewlyDeducedPacks(PackIndices.size());
   2998     llvm::SmallVector<DeducedTemplateArgument, 2>
   2999       SavedPacks(PackIndices.size());
   3000     PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
   3001                                  NewlyDeducedPacks);
   3002     bool HasAnyArguments = false;
   3003     for (; ArgIdx < NumArgs; ++ArgIdx) {
   3004       HasAnyArguments = true;
   3005 
   3006       QualType OrigParamType = ParamPattern;
   3007       ParamType = OrigParamType;
   3008       Expr *Arg = Args[ArgIdx];
   3009       QualType ArgType = Arg->getType();
   3010 
   3011       unsigned TDF = 0;
   3012       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3013                                                     ParamType, ArgType, Arg,
   3014                                                     TDF)) {
   3015         // We can't actually perform any deduction for this argument, so stop
   3016         // deduction at this point.
   3017         ++ArgIdx;
   3018         break;
   3019       }
   3020 
   3021       // Keep track of the argument type and corresponding argument index,
   3022       // so we can check for compatibility between the deduced A and A.
   3023       if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3024         OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
   3025                                                    ArgType));
   3026 
   3027       if (TemplateDeductionResult Result
   3028           = ::DeduceTemplateArguments(*this, TemplateParams,
   3029                                       ParamType, ArgType, Info, Deduced,
   3030                                       TDF))
   3031         return Result;
   3032 
   3033       // Capture the deduced template arguments for each parameter pack expanded
   3034       // by this pack expansion, add them to the list of arguments we've deduced
   3035       // for that pack, then clear out the deduced argument.
   3036       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   3037         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   3038         if (!DeducedArg.isNull()) {
   3039           NewlyDeducedPacks[I].push_back(DeducedArg);
   3040           DeducedArg = DeducedTemplateArgument();
   3041         }
   3042       }
   3043     }
   3044 
   3045     // Build argument packs for each of the parameter packs expanded by this
   3046     // pack expansion.
   3047     if (Sema::TemplateDeductionResult Result
   3048           = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
   3049                                         Deduced, PackIndices, SavedPacks,
   3050                                         NewlyDeducedPacks, Info))
   3051       return Result;
   3052 
   3053     // After we've matching against a parameter pack, we're done.
   3054     break;
   3055   }
   3056 
   3057   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3058                                          NumExplicitlySpecified,
   3059                                          Specialization, Info, &OriginalCallArgs);
   3060 }
   3061 
   3062 /// \brief Deduce template arguments when taking the address of a function
   3063 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
   3064 /// a template.
   3065 ///
   3066 /// \param FunctionTemplate the function template for which we are performing
   3067 /// template argument deduction.
   3068 ///
   3069 /// \param ExplicitTemplateArguments the explicitly-specified template
   3070 /// arguments.
   3071 ///
   3072 /// \param ArgFunctionType the function type that will be used as the
   3073 /// "argument" type (A) when performing template argument deduction from the
   3074 /// function template's function type. This type may be NULL, if there is no
   3075 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
   3076 ///
   3077 /// \param Specialization if template argument deduction was successful,
   3078 /// this will be set to the function template specialization produced by
   3079 /// template argument deduction.
   3080 ///
   3081 /// \param Info the argument will be updated to provide additional information
   3082 /// about template argument deduction.
   3083 ///
   3084 /// \returns the result of template argument deduction.
   3085 Sema::TemplateDeductionResult
   3086 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3087                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3088                               QualType ArgFunctionType,
   3089                               FunctionDecl *&Specialization,
   3090                               TemplateDeductionInfo &Info) {
   3091   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3092   TemplateParameterList *TemplateParams
   3093     = FunctionTemplate->getTemplateParameters();
   3094   QualType FunctionType = Function->getType();
   3095 
   3096   // Substitute any explicit template arguments.
   3097   LocalInstantiationScope InstScope(*this);
   3098   llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
   3099   unsigned NumExplicitlySpecified = 0;
   3100   llvm::SmallVector<QualType, 4> ParamTypes;
   3101   if (ExplicitTemplateArgs) {
   3102     if (TemplateDeductionResult Result
   3103           = SubstituteExplicitTemplateArguments(FunctionTemplate,
   3104                                                 *ExplicitTemplateArgs,
   3105                                                 Deduced, ParamTypes,
   3106                                                 &FunctionType, Info))
   3107       return Result;
   3108 
   3109     NumExplicitlySpecified = Deduced.size();
   3110   }
   3111 
   3112   // Template argument deduction for function templates in a SFINAE context.
   3113   // Trap any errors that might occur.
   3114   SFINAETrap Trap(*this);
   3115 
   3116   Deduced.resize(TemplateParams->size());
   3117 
   3118   if (!ArgFunctionType.isNull()) {
   3119     // Deduce template arguments from the function type.
   3120     if (TemplateDeductionResult Result
   3121           = ::DeduceTemplateArguments(*this, TemplateParams,
   3122                                       FunctionType, ArgFunctionType, Info,
   3123                                       Deduced, TDF_TopLevelParameterTypeList))
   3124       return Result;
   3125   }
   3126 
   3127   if (TemplateDeductionResult Result
   3128         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3129                                           NumExplicitlySpecified,
   3130                                           Specialization, Info))
   3131     return Result;
   3132 
   3133   // If the requested function type does not match the actual type of the
   3134   // specialization, template argument deduction fails.
   3135   if (!ArgFunctionType.isNull() &&
   3136       !Context.hasSameType(ArgFunctionType, Specialization->getType()))
   3137     return TDK_NonDeducedMismatch;
   3138 
   3139   return TDK_Success;
   3140 }
   3141 
   3142 /// \brief Deduce template arguments for a templated conversion
   3143 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
   3144 /// conversion function template specialization.
   3145 Sema::TemplateDeductionResult
   3146 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3147                               QualType ToType,
   3148                               CXXConversionDecl *&Specialization,
   3149                               TemplateDeductionInfo &Info) {
   3150   CXXConversionDecl *Conv
   3151     = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
   3152   QualType FromType = Conv->getConversionType();
   3153 
   3154   // Canonicalize the types for deduction.
   3155   QualType P = Context.getCanonicalType(FromType);
   3156   QualType A = Context.getCanonicalType(ToType);
   3157 
   3158   // C++0x [temp.deduct.conv]p2:
   3159   //   If P is a reference type, the type referred to by P is used for
   3160   //   type deduction.
   3161   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
   3162     P = PRef->getPointeeType();
   3163 
   3164   // C++0x [temp.deduct.conv]p4:
   3165   //   [...] If A is a reference type, the type referred to by A is used
   3166   //   for type deduction.
   3167   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   3168     A = ARef->getPointeeType().getUnqualifiedType();
   3169   // C++ [temp.deduct.conv]p3:
   3170   //
   3171   //   If A is not a reference type:
   3172   else {
   3173     assert(!A->isReferenceType() && "Reference types were handled above");
   3174 
   3175     //   - If P is an array type, the pointer type produced by the
   3176     //     array-to-pointer standard conversion (4.2) is used in place
   3177     //     of P for type deduction; otherwise,
   3178     if (P->isArrayType())
   3179       P = Context.getArrayDecayedType(P);
   3180     //   - If P is a function type, the pointer type produced by the
   3181     //     function-to-pointer standard conversion (4.3) is used in
   3182     //     place of P for type deduction; otherwise,
   3183     else if (P->isFunctionType())
   3184       P = Context.getPointerType(P);
   3185     //   - If P is a cv-qualified type, the top level cv-qualifiers of
   3186     //     P's type are ignored for type deduction.
   3187     else
   3188       P = P.getUnqualifiedType();
   3189 
   3190     // C++0x [temp.deduct.conv]p4:
   3191     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
   3192     //   type are ignored for type deduction. If A is a reference type, the type
   3193     //   referred to by A is used for type deduction.
   3194     A = A.getUnqualifiedType();
   3195   }
   3196 
   3197   // Template argument deduction for function templates in a SFINAE context.
   3198   // Trap any errors that might occur.
   3199   SFINAETrap Trap(*this);
   3200 
   3201   // C++ [temp.deduct.conv]p1:
   3202   //   Template argument deduction is done by comparing the return
   3203   //   type of the template conversion function (call it P) with the
   3204   //   type that is required as the result of the conversion (call it
   3205   //   A) as described in 14.8.2.4.
   3206   TemplateParameterList *TemplateParams
   3207     = FunctionTemplate->getTemplateParameters();
   3208   llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
   3209   Deduced.resize(TemplateParams->size());
   3210 
   3211   // C++0x [temp.deduct.conv]p4:
   3212   //   In general, the deduction process attempts to find template
   3213   //   argument values that will make the deduced A identical to
   3214   //   A. However, there are two cases that allow a difference:
   3215   unsigned TDF = 0;
   3216   //     - If the original A is a reference type, A can be more
   3217   //       cv-qualified than the deduced A (i.e., the type referred to
   3218   //       by the reference)
   3219   if (ToType->isReferenceType())
   3220     TDF |= TDF_ParamWithReferenceType;
   3221   //     - The deduced A can be another pointer or pointer to member
   3222   //       type that can be converted to A via a qualification
   3223   //       conversion.
   3224   //
   3225   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
   3226   // both P and A are pointers or member pointers. In this case, we
   3227   // just ignore cv-qualifiers completely).
   3228   if ((P->isPointerType() && A->isPointerType()) ||
   3229       (P->isMemberPointerType() && P->isMemberPointerType()))
   3230     TDF |= TDF_IgnoreQualifiers;
   3231   if (TemplateDeductionResult Result
   3232         = ::DeduceTemplateArguments(*this, TemplateParams,
   3233                                     P, A, Info, Deduced, TDF))
   3234     return Result;
   3235 
   3236   // Finish template argument deduction.
   3237   LocalInstantiationScope InstScope(*this);
   3238   FunctionDecl *Spec = 0;
   3239   TemplateDeductionResult Result
   3240     = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
   3241                                       Info);
   3242   Specialization = cast_or_null<CXXConversionDecl>(Spec);
   3243   return Result;
   3244 }
   3245 
   3246 /// \brief Deduce template arguments for a function template when there is
   3247 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
   3248 ///
   3249 /// \param FunctionTemplate the function template for which we are performing
   3250 /// template argument deduction.
   3251 ///
   3252 /// \param ExplicitTemplateArguments the explicitly-specified template
   3253 /// arguments.
   3254 ///
   3255 /// \param Specialization if template argument deduction was successful,
   3256 /// this will be set to the function template specialization produced by
   3257 /// template argument deduction.
   3258 ///
   3259 /// \param Info the argument will be updated to provide additional information
   3260 /// about template argument deduction.
   3261 ///
   3262 /// \returns the result of template argument deduction.
   3263 Sema::TemplateDeductionResult
   3264 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3265                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3266                               FunctionDecl *&Specialization,
   3267                               TemplateDeductionInfo &Info) {
   3268   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
   3269                                  QualType(), Specialization, Info);
   3270 }
   3271 
   3272 namespace {
   3273   /// Substitute the 'auto' type specifier within a type for a given replacement
   3274   /// type.
   3275   class SubstituteAutoTransform :
   3276     public TreeTransform<SubstituteAutoTransform> {
   3277     QualType Replacement;
   3278   public:
   3279     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
   3280       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
   3281     }
   3282     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
   3283       // If we're building the type pattern to deduce against, don't wrap the
   3284       // substituted type in an AutoType. Certain template deduction rules
   3285       // apply only when a template type parameter appears directly (and not if
   3286       // the parameter is found through desugaring). For instance:
   3287       //   auto &&lref = lvalue;
   3288       // must transform into "rvalue reference to T" not "rvalue reference to
   3289       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
   3290       if (isa<TemplateTypeParmType>(Replacement)) {
   3291         QualType Result = Replacement;
   3292         TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
   3293         NewTL.setNameLoc(TL.getNameLoc());
   3294         return Result;
   3295       } else {
   3296         QualType Result = RebuildAutoType(Replacement);
   3297         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
   3298         NewTL.setNameLoc(TL.getNameLoc());
   3299         return Result;
   3300       }
   3301     }
   3302   };
   3303 }
   3304 
   3305 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
   3306 ///
   3307 /// \param Type the type pattern using the auto type-specifier.
   3308 ///
   3309 /// \param Init the initializer for the variable whose type is to be deduced.
   3310 ///
   3311 /// \param Result if type deduction was successful, this will be set to the
   3312 /// deduced type. This may still contain undeduced autos if the type is
   3313 /// dependent. This will be set to null if deduction succeeded, but auto
   3314 /// substitution failed; the appropriate diagnostic will already have been
   3315 /// produced in that case.
   3316 ///
   3317 /// \returns true if deduction succeeded, false if it failed.
   3318 bool
   3319 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *Init,
   3320                      TypeSourceInfo *&Result) {
   3321   if (Init->isTypeDependent()) {
   3322     Result = Type;
   3323     return true;
   3324   }
   3325 
   3326   SourceLocation Loc = Init->getExprLoc();
   3327 
   3328   LocalInstantiationScope InstScope(*this);
   3329 
   3330   // Build template<class TemplParam> void Func(FuncParam);
   3331   TemplateTypeParmDecl *TemplParam =
   3332     TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
   3333                                  false, false);
   3334   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
   3335   NamedDecl *TemplParamPtr = TemplParam;
   3336   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
   3337                                                    Loc);
   3338 
   3339   TypeSourceInfo *FuncParamInfo =
   3340     SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
   3341   assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
   3342   QualType FuncParam = FuncParamInfo->getType();
   3343 
   3344   // Deduce type of TemplParam in Func(Init)
   3345   llvm::SmallVector<DeducedTemplateArgument, 1> Deduced;
   3346   Deduced.resize(1);
   3347   QualType InitType = Init->getType();
   3348   unsigned TDF = 0;
   3349   if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
   3350                                                 FuncParam, InitType, Init,
   3351                                                 TDF))
   3352     return false;
   3353 
   3354   TemplateDeductionInfo Info(Context, Loc);
   3355   if (::DeduceTemplateArguments(*this, &TemplateParams,
   3356                                 FuncParam, InitType, Info, Deduced,
   3357                                 TDF))
   3358     return false;
   3359 
   3360   QualType DeducedType = Deduced[0].getAsType();
   3361   if (DeducedType.isNull())
   3362     return false;
   3363 
   3364   Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
   3365 
   3366   // Check that the deduced argument type is compatible with the original
   3367   // argument type per C++ [temp.deduct.call]p4.
   3368   if (Result &&
   3369       CheckOriginalCallArgDeduction(*this,
   3370                                     Sema::OriginalCallArg(FuncParam,0,InitType),
   3371                                     Result->getType())) {
   3372     Result = 0;
   3373     return false;
   3374   }
   3375 
   3376   return true;
   3377 }
   3378 
   3379 static void
   3380 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
   3381                            bool OnlyDeduced,
   3382                            unsigned Level,
   3383                            llvm::SmallVectorImpl<bool> &Deduced);
   3384 
   3385 /// \brief If this is a non-static member function,
   3386 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
   3387                                                 CXXMethodDecl *Method,
   3388                                  llvm::SmallVectorImpl<QualType> &ArgTypes) {
   3389   if (Method->isStatic())
   3390     return;
   3391 
   3392   // C++ [over.match.funcs]p4:
   3393   //
   3394   //   For non-static member functions, the type of the implicit
   3395   //   object parameter is
   3396   //     - "lvalue reference to cv X" for functions declared without a
   3397   //       ref-qualifier or with the & ref-qualifier
   3398   //     - "rvalue reference to cv X" for functions declared with the
   3399   //       && ref-qualifier
   3400   //
   3401   // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
   3402   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
   3403   ArgTy = Context.getQualifiedType(ArgTy,
   3404                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   3405   ArgTy = Context.getLValueReferenceType(ArgTy);
   3406   ArgTypes.push_back(ArgTy);
   3407 }
   3408 
   3409 /// \brief Determine whether the function template \p FT1 is at least as
   3410 /// specialized as \p FT2.
   3411 static bool isAtLeastAsSpecializedAs(Sema &S,
   3412                                      SourceLocation Loc,
   3413                                      FunctionTemplateDecl *FT1,
   3414                                      FunctionTemplateDecl *FT2,
   3415                                      TemplatePartialOrderingContext TPOC,
   3416                                      unsigned NumCallArguments,
   3417     llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
   3418   FunctionDecl *FD1 = FT1->getTemplatedDecl();
   3419   FunctionDecl *FD2 = FT2->getTemplatedDecl();
   3420   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
   3421   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
   3422 
   3423   assert(Proto1 && Proto2 && "Function templates must have prototypes");
   3424   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
   3425   llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
   3426   Deduced.resize(TemplateParams->size());
   3427 
   3428   // C++0x [temp.deduct.partial]p3:
   3429   //   The types used to determine the ordering depend on the context in which
   3430   //   the partial ordering is done:
   3431   TemplateDeductionInfo Info(S.Context, Loc);
   3432   CXXMethodDecl *Method1 = 0;
   3433   CXXMethodDecl *Method2 = 0;
   3434   bool IsNonStatic2 = false;
   3435   bool IsNonStatic1 = false;
   3436   unsigned Skip2 = 0;
   3437   switch (TPOC) {
   3438   case TPOC_Call: {
   3439     //   - In the context of a function call, the function parameter types are
   3440     //     used.
   3441     Method1 = dyn_cast<CXXMethodDecl>(FD1);
   3442     Method2 = dyn_cast<CXXMethodDecl>(FD2);
   3443     IsNonStatic1 = Method1 && !Method1->isStatic();
   3444     IsNonStatic2 = Method2 && !Method2->isStatic();
   3445 
   3446     // C++0x [temp.func.order]p3:
   3447     //   [...] If only one of the function templates is a non-static
   3448     //   member, that function template is considered to have a new
   3449     //   first parameter inserted in its function parameter list. The
   3450     //   new parameter is of type "reference to cv A," where cv are
   3451     //   the cv-qualifiers of the function template (if any) and A is
   3452     //   the class of which the function template is a member.
   3453     //
   3454     // C++98/03 doesn't have this provision, so instead we drop the
   3455     // first argument of the free function or static member, which
   3456     // seems to match existing practice.
   3457     llvm::SmallVector<QualType, 4> Args1;
   3458     unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
   3459       IsNonStatic2 && !IsNonStatic1;
   3460     if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
   3461       MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
   3462     Args1.insert(Args1.end(),
   3463                  Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
   3464 
   3465     llvm::SmallVector<QualType, 4> Args2;
   3466     Skip2 = !S.getLangOptions().CPlusPlus0x &&
   3467       IsNonStatic1 && !IsNonStatic2;
   3468     if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
   3469       MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
   3470     Args2.insert(Args2.end(),
   3471                  Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
   3472 
   3473     // C++ [temp.func.order]p5:
   3474     //   The presence of unused ellipsis and default arguments has no effect on
   3475     //   the partial ordering of function templates.
   3476     if (Args1.size() > NumCallArguments)
   3477       Args1.resize(NumCallArguments);
   3478     if (Args2.size() > NumCallArguments)
   3479       Args2.resize(NumCallArguments);
   3480     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
   3481                                 Args1.data(), Args1.size(), Info, Deduced,
   3482                                 TDF_None, /*PartialOrdering=*/true,
   3483                                 RefParamComparisons))
   3484         return false;
   3485 
   3486     break;
   3487   }
   3488 
   3489   case TPOC_Conversion:
   3490     //   - In the context of a call to a conversion operator, the return types
   3491     //     of the conversion function templates are used.
   3492     if (DeduceTemplateArguments(S, TemplateParams, Proto2->getResultType(),
   3493                                 Proto1->getResultType(), Info, Deduced,
   3494                                 TDF_None, /*PartialOrdering=*/true,
   3495                                 RefParamComparisons))
   3496       return false;
   3497     break;
   3498 
   3499   case TPOC_Other:
   3500     //   - In other contexts (14.6.6.2) the function template's function type
   3501     //     is used.
   3502     if (DeduceTemplateArguments(S, TemplateParams, FD2->getType(),
   3503                                 FD1->getType(), Info, Deduced, TDF_None,
   3504                                 /*PartialOrdering=*/true, RefParamComparisons))
   3505       return false;
   3506     break;
   3507   }
   3508 
   3509   // C++0x [temp.deduct.partial]p11:
   3510   //   In most cases, all template parameters must have values in order for
   3511   //   deduction to succeed, but for partial ordering purposes a template
   3512   //   parameter may remain without a value provided it is not used in the
   3513   //   types being used for partial ordering. [ Note: a template parameter used
   3514   //   in a non-deduced context is considered used. -end note]
   3515   unsigned ArgIdx = 0, NumArgs = Deduced.size();
   3516   for (; ArgIdx != NumArgs; ++ArgIdx)
   3517     if (Deduced[ArgIdx].isNull())
   3518       break;
   3519 
   3520   if (ArgIdx == NumArgs) {
   3521     // All template arguments were deduced. FT1 is at least as specialized
   3522     // as FT2.
   3523     return true;
   3524   }
   3525 
   3526   // Figure out which template parameters were used.
   3527   llvm::SmallVector<bool, 4> UsedParameters;
   3528   UsedParameters.resize(TemplateParams->size());
   3529   switch (TPOC) {
   3530   case TPOC_Call: {
   3531     unsigned NumParams = std::min(NumCallArguments,
   3532                                   std::min(Proto1->getNumArgs(),
   3533                                            Proto2->getNumArgs()));
   3534     if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
   3535       ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false,
   3536                                    TemplateParams->getDepth(), UsedParameters);
   3537     for (unsigned I = Skip2; I < NumParams; ++I)
   3538       ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
   3539                                    TemplateParams->getDepth(),
   3540                                    UsedParameters);
   3541     break;
   3542   }
   3543 
   3544   case TPOC_Conversion:
   3545     ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
   3546                                  TemplateParams->getDepth(),
   3547                                  UsedParameters);
   3548     break;
   3549 
   3550   case TPOC_Other:
   3551     ::MarkUsedTemplateParameters(S, FD2->getType(), false,
   3552                                  TemplateParams->getDepth(),
   3553                                  UsedParameters);
   3554     break;
   3555   }
   3556 
   3557   for (; ArgIdx != NumArgs; ++ArgIdx)
   3558     // If this argument had no value deduced but was used in one of the types
   3559     // used for partial ordering, then deduction fails.
   3560     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
   3561       return false;
   3562 
   3563   return true;
   3564 }
   3565 
   3566 /// \brief Determine whether this a function template whose parameter-type-list
   3567 /// ends with a function parameter pack.
   3568 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
   3569   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
   3570   unsigned NumParams = Function->getNumParams();
   3571   if (NumParams == 0)
   3572     return false;
   3573 
   3574   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
   3575   if (!Last->isParameterPack())
   3576     return false;
   3577 
   3578   // Make sure that no previous parameter is a parameter pack.
   3579   while (--NumParams > 0) {
   3580     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
   3581       return false;
   3582   }
   3583 
   3584   return true;
   3585 }
   3586 
   3587 /// \brief Returns the more specialized function template according
   3588 /// to the rules of function template partial ordering (C++ [temp.func.order]).
   3589 ///
   3590 /// \param FT1 the first function template
   3591 ///
   3592 /// \param FT2 the second function template
   3593 ///
   3594 /// \param TPOC the context in which we are performing partial ordering of
   3595 /// function templates.
   3596 ///
   3597 /// \param NumCallArguments The number of arguments in a call, used only
   3598 /// when \c TPOC is \c TPOC_Call.
   3599 ///
   3600 /// \returns the more specialized function template. If neither
   3601 /// template is more specialized, returns NULL.
   3602 FunctionTemplateDecl *
   3603 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
   3604                                  FunctionTemplateDecl *FT2,
   3605                                  SourceLocation Loc,
   3606                                  TemplatePartialOrderingContext TPOC,
   3607                                  unsigned NumCallArguments) {
   3608   llvm::SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
   3609   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
   3610                                           NumCallArguments, 0);
   3611   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
   3612                                           NumCallArguments,
   3613                                           &RefParamComparisons);
   3614 
   3615   if (Better1 != Better2) // We have a clear winner
   3616     return Better1? FT1 : FT2;
   3617 
   3618   if (!Better1 && !Better2) // Neither is better than the other
   3619     return 0;
   3620 
   3621   // C++0x [temp.deduct.partial]p10:
   3622   //   If for each type being considered a given template is at least as
   3623   //   specialized for all types and more specialized for some set of types and
   3624   //   the other template is not more specialized for any types or is not at
   3625   //   least as specialized for any types, then the given template is more
   3626   //   specialized than the other template. Otherwise, neither template is more
   3627   //   specialized than the other.
   3628   Better1 = false;
   3629   Better2 = false;
   3630   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
   3631     // C++0x [temp.deduct.partial]p9:
   3632     //   If, for a given type, deduction succeeds in both directions (i.e., the
   3633     //   types are identical after the transformations above) and both P and A
   3634     //   were reference types (before being replaced with the type referred to
   3635     //   above):
   3636 
   3637     //     -- if the type from the argument template was an lvalue reference
   3638     //        and the type from the parameter template was not, the argument
   3639     //        type is considered to be more specialized than the other;
   3640     //        otherwise,
   3641     if (!RefParamComparisons[I].ArgIsRvalueRef &&
   3642         RefParamComparisons[I].ParamIsRvalueRef) {
   3643       Better2 = true;
   3644       if (Better1)
   3645         return 0;
   3646       continue;
   3647     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
   3648                RefParamComparisons[I].ArgIsRvalueRef) {
   3649       Better1 = true;
   3650       if (Better2)
   3651         return 0;
   3652       continue;
   3653     }
   3654 
   3655     //     -- if the type from the argument template is more cv-qualified than
   3656     //        the type from the parameter template (as described above), the
   3657     //        argument type is considered to be more specialized than the
   3658     //        other; otherwise,
   3659     switch (RefParamComparisons[I].Qualifiers) {
   3660     case NeitherMoreQualified:
   3661       break;
   3662 
   3663     case ParamMoreQualified:
   3664       Better1 = true;
   3665       if (Better2)
   3666         return 0;
   3667       continue;
   3668 
   3669     case ArgMoreQualified:
   3670       Better2 = true;
   3671       if (Better1)
   3672         return 0;
   3673       continue;
   3674     }
   3675 
   3676     //     -- neither type is more specialized than the other.
   3677   }
   3678 
   3679   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
   3680   if (Better1)
   3681     return FT1;
   3682   else if (Better2)
   3683     return FT2;
   3684 
   3685   // FIXME: This mimics what GCC implements, but doesn't match up with the
   3686   // proposed resolution for core issue 692. This area needs to be sorted out,
   3687   // but for now we attempt to maintain compatibility.
   3688   bool Variadic1 = isVariadicFunctionTemplate(FT1);
   3689   bool Variadic2 = isVariadicFunctionTemplate(FT2);
   3690   if (Variadic1 != Variadic2)
   3691     return Variadic1? FT2 : FT1;
   3692 
   3693   return 0;
   3694 }
   3695 
   3696 /// \brief Determine if the two templates are equivalent.
   3697 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
   3698   if (T1 == T2)
   3699     return true;
   3700 
   3701   if (!T1 || !T2)
   3702     return false;
   3703 
   3704   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
   3705 }
   3706 
   3707 /// \brief Retrieve the most specialized of the given function template
   3708 /// specializations.
   3709 ///
   3710 /// \param SpecBegin the start iterator of the function template
   3711 /// specializations that we will be comparing.
   3712 ///
   3713 /// \param SpecEnd the end iterator of the function template
   3714 /// specializations, paired with \p SpecBegin.
   3715 ///
   3716 /// \param TPOC the partial ordering context to use to compare the function
   3717 /// template specializations.
   3718 ///
   3719 /// \param NumCallArguments The number of arguments in a call, used only
   3720 /// when \c TPOC is \c TPOC_Call.
   3721 ///
   3722 /// \param Loc the location where the ambiguity or no-specializations
   3723 /// diagnostic should occur.
   3724 ///
   3725 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
   3726 /// no matching candidates.
   3727 ///
   3728 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
   3729 /// occurs.
   3730 ///
   3731 /// \param CandidateDiag partial diagnostic used for each function template
   3732 /// specialization that is a candidate in the ambiguous ordering. One parameter
   3733 /// in this diagnostic should be unbound, which will correspond to the string
   3734 /// describing the template arguments for the function template specialization.
   3735 ///
   3736 /// \param Index if non-NULL and the result of this function is non-nULL,
   3737 /// receives the index corresponding to the resulting function template
   3738 /// specialization.
   3739 ///
   3740 /// \returns the most specialized function template specialization, if
   3741 /// found. Otherwise, returns SpecEnd.
   3742 ///
   3743 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
   3744 /// template argument deduction.
   3745 UnresolvedSetIterator
   3746 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
   3747                         UnresolvedSetIterator SpecEnd,
   3748                          TemplatePartialOrderingContext TPOC,
   3749                          unsigned NumCallArguments,
   3750                          SourceLocation Loc,
   3751                          const PartialDiagnostic &NoneDiag,
   3752                          const PartialDiagnostic &AmbigDiag,
   3753                          const PartialDiagnostic &CandidateDiag,
   3754                          bool Complain) {
   3755   if (SpecBegin == SpecEnd) {
   3756     if (Complain)
   3757       Diag(Loc, NoneDiag);
   3758     return SpecEnd;
   3759   }
   3760 
   3761   if (SpecBegin + 1 == SpecEnd)
   3762     return SpecBegin;
   3763 
   3764   // Find the function template that is better than all of the templates it
   3765   // has been compared to.
   3766   UnresolvedSetIterator Best = SpecBegin;
   3767   FunctionTemplateDecl *BestTemplate
   3768     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
   3769   assert(BestTemplate && "Not a function template specialization?");
   3770   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
   3771     FunctionTemplateDecl *Challenger
   3772       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   3773     assert(Challenger && "Not a function template specialization?");
   3774     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   3775                                                   Loc, TPOC, NumCallArguments),
   3776                        Challenger)) {
   3777       Best = I;
   3778       BestTemplate = Challenger;
   3779     }
   3780   }
   3781 
   3782   // Make sure that the "best" function template is more specialized than all
   3783   // of the others.
   3784   bool Ambiguous = false;
   3785   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   3786     FunctionTemplateDecl *Challenger
   3787       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   3788     if (I != Best &&
   3789         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   3790                                                    Loc, TPOC, NumCallArguments),
   3791                         BestTemplate)) {
   3792       Ambiguous = true;
   3793       break;
   3794     }
   3795   }
   3796 
   3797   if (!Ambiguous) {
   3798     // We found an answer. Return it.
   3799     return Best;
   3800   }
   3801 
   3802   // Diagnose the ambiguity.
   3803   if (Complain)
   3804     Diag(Loc, AmbigDiag);
   3805 
   3806   if (Complain)
   3807   // FIXME: Can we order the candidates in some sane way?
   3808     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
   3809       Diag((*I)->getLocation(), CandidateDiag)
   3810         << getTemplateArgumentBindingsText(
   3811           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
   3812                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
   3813 
   3814   return SpecEnd;
   3815 }
   3816 
   3817 /// \brief Returns the more specialized class template partial specialization
   3818 /// according to the rules of partial ordering of class template partial
   3819 /// specializations (C++ [temp.class.order]).
   3820 ///
   3821 /// \param PS1 the first class template partial specialization
   3822 ///
   3823 /// \param PS2 the second class template partial specialization
   3824 ///
   3825 /// \returns the more specialized class template partial specialization. If
   3826 /// neither partial specialization is more specialized, returns NULL.
   3827 ClassTemplatePartialSpecializationDecl *
   3828 Sema::getMoreSpecializedPartialSpecialization(
   3829                                   ClassTemplatePartialSpecializationDecl *PS1,
   3830                                   ClassTemplatePartialSpecializationDecl *PS2,
   3831                                               SourceLocation Loc) {
   3832   // C++ [temp.class.order]p1:
   3833   //   For two class template partial specializations, the first is at least as
   3834   //   specialized as the second if, given the following rewrite to two
   3835   //   function templates, the first function template is at least as
   3836   //   specialized as the second according to the ordering rules for function
   3837   //   templates (14.6.6.2):
   3838   //     - the first function template has the same template parameters as the
   3839   //       first partial specialization and has a single function parameter
   3840   //       whose type is a class template specialization with the template
   3841   //       arguments of the first partial specialization, and
   3842   //     - the second function template has the same template parameters as the
   3843   //       second partial specialization and has a single function parameter
   3844   //       whose type is a class template specialization with the template
   3845   //       arguments of the second partial specialization.
   3846   //
   3847   // Rather than synthesize function templates, we merely perform the
   3848   // equivalent partial ordering by performing deduction directly on
   3849   // the template arguments of the class template partial
   3850   // specializations. This computation is slightly simpler than the
   3851   // general problem of function template partial ordering, because
   3852   // class template partial specializations are more constrained. We
   3853   // know that every template parameter is deducible from the class
   3854   // template partial specialization's template arguments, for
   3855   // example.
   3856   llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
   3857   TemplateDeductionInfo Info(Context, Loc);
   3858 
   3859   QualType PT1 = PS1->getInjectedSpecializationType();
   3860   QualType PT2 = PS2->getInjectedSpecializationType();
   3861 
   3862   // Determine whether PS1 is at least as specialized as PS2
   3863   Deduced.resize(PS2->getTemplateParameters()->size());
   3864   bool Better1 = !::DeduceTemplateArguments(*this, PS2->getTemplateParameters(),
   3865                                             PT2, PT1, Info, Deduced, TDF_None,
   3866                                             /*PartialOrdering=*/true,
   3867                                             /*RefParamComparisons=*/0);
   3868   if (Better1) {
   3869     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
   3870                                Deduced.data(), Deduced.size(), Info);
   3871     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
   3872                                                  PS1->getTemplateArgs(),
   3873                                                  Deduced, Info);
   3874   }
   3875 
   3876   // Determine whether PS2 is at least as specialized as PS1
   3877   Deduced.clear();
   3878   Deduced.resize(PS1->getTemplateParameters()->size());
   3879   bool Better2 = !::DeduceTemplateArguments(*this, PS1->getTemplateParameters(),
   3880                                             PT1, PT2, Info, Deduced, TDF_None,
   3881                                             /*PartialOrdering=*/true,
   3882                                             /*RefParamComparisons=*/0);
   3883   if (Better2) {
   3884     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
   3885                                Deduced.data(), Deduced.size(), Info);
   3886     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
   3887                                                  PS2->getTemplateArgs(),
   3888                                                  Deduced, Info);
   3889   }
   3890 
   3891   if (Better1 == Better2)
   3892     return 0;
   3893 
   3894   return Better1? PS1 : PS2;
   3895 }
   3896 
   3897 static void
   3898 MarkUsedTemplateParameters(Sema &SemaRef,
   3899                            const TemplateArgument &TemplateArg,
   3900                            bool OnlyDeduced,
   3901                            unsigned Depth,
   3902                            llvm::SmallVectorImpl<bool> &Used);
   3903 
   3904 /// \brief Mark the template parameters that are used by the given
   3905 /// expression.
   3906 static void
   3907 MarkUsedTemplateParameters(Sema &SemaRef,
   3908                            const Expr *E,
   3909                            bool OnlyDeduced,
   3910                            unsigned Depth,
   3911                            llvm::SmallVectorImpl<bool> &Used) {
   3912   // We can deduce from a pack expansion.
   3913   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
   3914     E = Expansion->getPattern();
   3915 
   3916   // Skip through any implicit casts we added while type-checking.
   3917   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   3918     E = ICE->getSubExpr();
   3919 
   3920   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
   3921   // find other occurrences of template parameters.
   3922   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   3923   if (!DRE)
   3924     return;
   3925 
   3926   const NonTypeTemplateParmDecl *NTTP
   3927     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   3928   if (!NTTP)
   3929     return;
   3930 
   3931   if (NTTP->getDepth() == Depth)
   3932     Used[NTTP->getIndex()] = true;
   3933 }
   3934 
   3935 /// \brief Mark the template parameters that are used by the given
   3936 /// nested name specifier.
   3937 static void
   3938 MarkUsedTemplateParameters(Sema &SemaRef,
   3939                            NestedNameSpecifier *NNS,
   3940                            bool OnlyDeduced,
   3941                            unsigned Depth,
   3942                            llvm::SmallVectorImpl<bool> &Used) {
   3943   if (!NNS)
   3944     return;
   3945 
   3946   MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
   3947                              Used);
   3948   MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
   3949                              OnlyDeduced, Depth, Used);
   3950 }
   3951 
   3952 /// \brief Mark the template parameters that are used by the given
   3953 /// template name.
   3954 static void
   3955 MarkUsedTemplateParameters(Sema &SemaRef,
   3956                            TemplateName Name,
   3957                            bool OnlyDeduced,
   3958                            unsigned Depth,
   3959                            llvm::SmallVectorImpl<bool> &Used) {
   3960   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   3961     if (TemplateTemplateParmDecl *TTP
   3962           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
   3963       if (TTP->getDepth() == Depth)
   3964         Used[TTP->getIndex()] = true;
   3965     }
   3966     return;
   3967   }
   3968 
   3969   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
   3970     MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
   3971                                Depth, Used);
   3972   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
   3973     MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
   3974                                Depth, Used);
   3975 }
   3976 
   3977 /// \brief Mark the template parameters that are used by the given
   3978 /// type.
   3979 static void
   3980 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
   3981                            bool OnlyDeduced,
   3982                            unsigned Depth,
   3983                            llvm::SmallVectorImpl<bool> &Used) {
   3984   if (T.isNull())
   3985     return;
   3986 
   3987   // Non-dependent types have nothing deducible
   3988   if (!T->isDependentType())
   3989     return;
   3990 
   3991   T = SemaRef.Context.getCanonicalType(T);
   3992   switch (T->getTypeClass()) {
   3993   case Type::Pointer:
   3994     MarkUsedTemplateParameters(SemaRef,
   3995                                cast<PointerType>(T)->getPointeeType(),
   3996                                OnlyDeduced,
   3997                                Depth,
   3998                                Used);
   3999     break;
   4000 
   4001   case Type::BlockPointer:
   4002     MarkUsedTemplateParameters(SemaRef,
   4003                                cast<BlockPointerType>(T)->getPointeeType(),
   4004                                OnlyDeduced,
   4005                                Depth,
   4006                                Used);
   4007     break;
   4008 
   4009   case Type::LValueReference:
   4010   case Type::RValueReference:
   4011     MarkUsedTemplateParameters(SemaRef,
   4012                                cast<ReferenceType>(T)->getPointeeType(),
   4013                                OnlyDeduced,
   4014                                Depth,
   4015                                Used);
   4016     break;
   4017 
   4018   case Type::MemberPointer: {
   4019     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
   4020     MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
   4021                                Depth, Used);
   4022     MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
   4023                                OnlyDeduced, Depth, Used);
   4024     break;
   4025   }
   4026 
   4027   case Type::DependentSizedArray:
   4028     MarkUsedTemplateParameters(SemaRef,
   4029                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
   4030                                OnlyDeduced, Depth, Used);
   4031     // Fall through to check the element type
   4032 
   4033   case Type::ConstantArray:
   4034   case Type::IncompleteArray:
   4035     MarkUsedTemplateParameters(SemaRef,
   4036                                cast<ArrayType>(T)->getElementType(),
   4037                                OnlyDeduced, Depth, Used);
   4038     break;
   4039 
   4040   case Type::Vector:
   4041   case Type::ExtVector:
   4042     MarkUsedTemplateParameters(SemaRef,
   4043                                cast<VectorType>(T)->getElementType(),
   4044                                OnlyDeduced, Depth, Used);
   4045     break;
   4046 
   4047   case Type::DependentSizedExtVector: {
   4048     const DependentSizedExtVectorType *VecType
   4049       = cast<DependentSizedExtVectorType>(T);
   4050     MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
   4051                                Depth, Used);
   4052     MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
   4053                                Depth, Used);
   4054     break;
   4055   }
   4056 
   4057   case Type::FunctionProto: {
   4058     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   4059     MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
   4060                                Depth, Used);
   4061     for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
   4062       MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
   4063                                  Depth, Used);
   4064     break;
   4065   }
   4066 
   4067   case Type::TemplateTypeParm: {
   4068     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
   4069     if (TTP->getDepth() == Depth)
   4070       Used[TTP->getIndex()] = true;
   4071     break;
   4072   }
   4073 
   4074   case Type::SubstTemplateTypeParmPack: {
   4075     const SubstTemplateTypeParmPackType *Subst
   4076       = cast<SubstTemplateTypeParmPackType>(T);
   4077     MarkUsedTemplateParameters(SemaRef,
   4078                                QualType(Subst->getReplacedParameter(), 0),
   4079                                OnlyDeduced, Depth, Used);
   4080     MarkUsedTemplateParameters(SemaRef, Subst->getArgumentPack(),
   4081                                OnlyDeduced, Depth, Used);
   4082     break;
   4083   }
   4084 
   4085   case Type::InjectedClassName:
   4086     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
   4087     // fall through
   4088 
   4089   case Type::TemplateSpecialization: {
   4090     const TemplateSpecializationType *Spec
   4091       = cast<TemplateSpecializationType>(T);
   4092     MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
   4093                                Depth, Used);
   4094 
   4095     // C++0x [temp.deduct.type]p9:
   4096     //   If the template argument list of P contains a pack expansion that is not
   4097     //   the last template argument, the entire template argument list is a
   4098     //   non-deduced context.
   4099     if (OnlyDeduced &&
   4100         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4101       break;
   4102 
   4103     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4104       MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
   4105                                  Used);
   4106     break;
   4107   }
   4108 
   4109   case Type::Complex:
   4110     if (!OnlyDeduced)
   4111       MarkUsedTemplateParameters(SemaRef,
   4112                                  cast<ComplexType>(T)->getElementType(),
   4113                                  OnlyDeduced, Depth, Used);
   4114     break;
   4115 
   4116   case Type::DependentName:
   4117     if (!OnlyDeduced)
   4118       MarkUsedTemplateParameters(SemaRef,
   4119                                  cast<DependentNameType>(T)->getQualifier(),
   4120                                  OnlyDeduced, Depth, Used);
   4121     break;
   4122 
   4123   case Type::DependentTemplateSpecialization: {
   4124     const DependentTemplateSpecializationType *Spec
   4125       = cast<DependentTemplateSpecializationType>(T);
   4126     if (!OnlyDeduced)
   4127       MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
   4128                                  OnlyDeduced, Depth, Used);
   4129 
   4130     // C++0x [temp.deduct.type]p9:
   4131     //   If the template argument list of P contains a pack expansion that is not
   4132     //   the last template argument, the entire template argument list is a
   4133     //   non-deduced context.
   4134     if (OnlyDeduced &&
   4135         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4136       break;
   4137 
   4138     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4139       MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
   4140                                  Used);
   4141     break;
   4142   }
   4143 
   4144   case Type::TypeOf:
   4145     if (!OnlyDeduced)
   4146       MarkUsedTemplateParameters(SemaRef,
   4147                                  cast<TypeOfType>(T)->getUnderlyingType(),
   4148                                  OnlyDeduced, Depth, Used);
   4149     break;
   4150 
   4151   case Type::TypeOfExpr:
   4152     if (!OnlyDeduced)
   4153       MarkUsedTemplateParameters(SemaRef,
   4154                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
   4155                                  OnlyDeduced, Depth, Used);
   4156     break;
   4157 
   4158   case Type::Decltype:
   4159     if (!OnlyDeduced)
   4160       MarkUsedTemplateParameters(SemaRef,
   4161                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
   4162                                  OnlyDeduced, Depth, Used);
   4163     break;
   4164 
   4165   case Type::UnaryTransform:
   4166     if (!OnlyDeduced)
   4167       MarkUsedTemplateParameters(SemaRef,
   4168                                cast<UnaryTransformType>(T)->getUnderlyingType(),
   4169                                  OnlyDeduced, Depth, Used);
   4170     break;
   4171 
   4172   case Type::PackExpansion:
   4173     MarkUsedTemplateParameters(SemaRef,
   4174                                cast<PackExpansionType>(T)->getPattern(),
   4175                                OnlyDeduced, Depth, Used);
   4176     break;
   4177 
   4178   case Type::Auto:
   4179     MarkUsedTemplateParameters(SemaRef,
   4180                                cast<AutoType>(T)->getDeducedType(),
   4181                                OnlyDeduced, Depth, Used);
   4182 
   4183   // None of these types have any template parameters in them.
   4184   case Type::Builtin:
   4185   case Type::VariableArray:
   4186   case Type::FunctionNoProto:
   4187   case Type::Record:
   4188   case Type::Enum:
   4189   case Type::ObjCInterface:
   4190   case Type::ObjCObject:
   4191   case Type::ObjCObjectPointer:
   4192   case Type::UnresolvedUsing:
   4193 #define TYPE(Class, Base)
   4194 #define ABSTRACT_TYPE(Class, Base)
   4195 #define DEPENDENT_TYPE(Class, Base)
   4196 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   4197 #include "clang/AST/TypeNodes.def"
   4198     break;
   4199   }
   4200 }
   4201 
   4202 /// \brief Mark the template parameters that are used by this
   4203 /// template argument.
   4204 static void
   4205 MarkUsedTemplateParameters(Sema &SemaRef,
   4206                            const TemplateArgument &TemplateArg,
   4207                            bool OnlyDeduced,
   4208                            unsigned Depth,
   4209                            llvm::SmallVectorImpl<bool> &Used) {
   4210   switch (TemplateArg.getKind()) {
   4211   case TemplateArgument::Null:
   4212   case TemplateArgument::Integral:
   4213     case TemplateArgument::Declaration:
   4214     break;
   4215 
   4216   case TemplateArgument::Type:
   4217     MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
   4218                                Depth, Used);
   4219     break;
   4220 
   4221   case TemplateArgument::Template:
   4222   case TemplateArgument::TemplateExpansion:
   4223     MarkUsedTemplateParameters(SemaRef,
   4224                                TemplateArg.getAsTemplateOrTemplatePattern(),
   4225                                OnlyDeduced, Depth, Used);
   4226     break;
   4227 
   4228   case TemplateArgument::Expression:
   4229     MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
   4230                                Depth, Used);
   4231     break;
   4232 
   4233   case TemplateArgument::Pack:
   4234     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
   4235                                       PEnd = TemplateArg.pack_end();
   4236          P != PEnd; ++P)
   4237       MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
   4238     break;
   4239   }
   4240 }
   4241 
   4242 /// \brief Mark the template parameters can be deduced by the given
   4243 /// template argument list.
   4244 ///
   4245 /// \param TemplateArgs the template argument list from which template
   4246 /// parameters will be deduced.
   4247 ///
   4248 /// \param Deduced a bit vector whose elements will be set to \c true
   4249 /// to indicate when the corresponding template parameter will be
   4250 /// deduced.
   4251 void
   4252 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
   4253                                  bool OnlyDeduced, unsigned Depth,
   4254                                  llvm::SmallVectorImpl<bool> &Used) {
   4255   // C++0x [temp.deduct.type]p9:
   4256   //   If the template argument list of P contains a pack expansion that is not
   4257   //   the last template argument, the entire template argument list is a
   4258   //   non-deduced context.
   4259   if (OnlyDeduced &&
   4260       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
   4261     return;
   4262 
   4263   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   4264     ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
   4265                                  Depth, Used);
   4266 }
   4267 
   4268 /// \brief Marks all of the template parameters that will be deduced by a
   4269 /// call to the given function template.
   4270 void
   4271 Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
   4272                                     llvm::SmallVectorImpl<bool> &Deduced) {
   4273   TemplateParameterList *TemplateParams
   4274     = FunctionTemplate->getTemplateParameters();
   4275   Deduced.clear();
   4276   Deduced.resize(TemplateParams->size());
   4277 
   4278   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   4279   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   4280     ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
   4281                                  true, TemplateParams->getDepth(), Deduced);
   4282 }
   4283 
   4284 bool hasDeducibleTemplateParameters(Sema &S,
   4285                                     FunctionTemplateDecl *FunctionTemplate,
   4286                                     QualType T) {
   4287   if (!T->isDependentType())
   4288     return false;
   4289 
   4290   TemplateParameterList *TemplateParams
   4291     = FunctionTemplate->getTemplateParameters();
   4292   llvm::SmallVector<bool, 4> Deduced;
   4293   Deduced.resize(TemplateParams->size());
   4294   ::MarkUsedTemplateParameters(S, T, true, TemplateParams->getDepth(),
   4295                                Deduced);
   4296 
   4297   for (unsigned I = 0, N = Deduced.size(); I != N; ++I)
   4298     if (Deduced[I])
   4299       return true;
   4300 
   4301   return false;
   4302 }
   4303