Home | History | Annotate | Download | only in ARM
      1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the pass that transforms the ARM machine instructions into
     11 // relocatable machine code.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "jit"
     16 #include "ARM.h"
     17 #include "ARMAddressingModes.h"
     18 #include "ARMConstantPoolValue.h"
     19 #include "ARMInstrInfo.h"
     20 #include "ARMRelocations.h"
     21 #include "ARMSubtarget.h"
     22 #include "ARMTargetMachine.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Function.h"
     26 #include "llvm/PassManager.h"
     27 #include "llvm/CodeGen/JITCodeEmitter.h"
     28 #include "llvm/CodeGen/MachineConstantPool.h"
     29 #include "llvm/CodeGen/MachineFunctionPass.h"
     30 #include "llvm/CodeGen/MachineInstr.h"
     31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     32 #include "llvm/CodeGen/MachineModuleInfo.h"
     33 #include "llvm/CodeGen/Passes.h"
     34 #include "llvm/ADT/Statistic.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #ifndef NDEBUG
     39 #include <iomanip>
     40 #endif
     41 using namespace llvm;
     42 
     43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
     44 
     45 namespace {
     46 
     47   class ARMCodeEmitter : public MachineFunctionPass {
     48     ARMJITInfo                *JTI;
     49     const ARMInstrInfo        *II;
     50     const TargetData          *TD;
     51     const ARMSubtarget        *Subtarget;
     52     TargetMachine             &TM;
     53     JITCodeEmitter            &MCE;
     54     MachineModuleInfo *MMI;
     55     const std::vector<MachineConstantPoolEntry> *MCPEs;
     56     const std::vector<MachineJumpTableEntry> *MJTEs;
     57     bool IsPIC;
     58     bool IsThumb;
     59 
     60     void getAnalysisUsage(AnalysisUsage &AU) const {
     61       AU.addRequired<MachineModuleInfo>();
     62       MachineFunctionPass::getAnalysisUsage(AU);
     63     }
     64 
     65     static char ID;
     66   public:
     67     ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
     68       : MachineFunctionPass(ID), JTI(0),
     69         II((const ARMInstrInfo *)tm.getInstrInfo()),
     70         TD(tm.getTargetData()), TM(tm),
     71         MCE(mce), MCPEs(0), MJTEs(0),
     72         IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
     73 
     74     /// getBinaryCodeForInstr - This function, generated by the
     75     /// CodeEmitterGenerator using TableGen, produces the binary encoding for
     76     /// machine instructions.
     77     unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
     78 
     79     bool runOnMachineFunction(MachineFunction &MF);
     80 
     81     virtual const char *getPassName() const {
     82       return "ARM Machine Code Emitter";
     83     }
     84 
     85     void emitInstruction(const MachineInstr &MI);
     86 
     87   private:
     88 
     89     void emitWordLE(unsigned Binary);
     90     void emitDWordLE(uint64_t Binary);
     91     void emitConstantToMemory(unsigned CPI, const Constant *CV);
     92     void emitConstPoolInstruction(const MachineInstr &MI);
     93     void emitMOVi32immInstruction(const MachineInstr &MI);
     94     void emitMOVi2piecesInstruction(const MachineInstr &MI);
     95     void emitLEApcrelInstruction(const MachineInstr &MI);
     96     void emitLEApcrelJTInstruction(const MachineInstr &MI);
     97     void emitPseudoMoveInstruction(const MachineInstr &MI);
     98     void addPCLabel(unsigned LabelID);
     99     void emitPseudoInstruction(const MachineInstr &MI);
    100     unsigned getMachineSoRegOpValue(const MachineInstr &MI,
    101                                     const MCInstrDesc &MCID,
    102                                     const MachineOperand &MO,
    103                                     unsigned OpIdx);
    104 
    105     unsigned getMachineSoImmOpValue(unsigned SoImm);
    106     unsigned getAddrModeSBit(const MachineInstr &MI,
    107                              const MCInstrDesc &MCID) const;
    108 
    109     void emitDataProcessingInstruction(const MachineInstr &MI,
    110                                        unsigned ImplicitRd = 0,
    111                                        unsigned ImplicitRn = 0);
    112 
    113     void emitLoadStoreInstruction(const MachineInstr &MI,
    114                                   unsigned ImplicitRd = 0,
    115                                   unsigned ImplicitRn = 0);
    116 
    117     void emitMiscLoadStoreInstruction(const MachineInstr &MI,
    118                                       unsigned ImplicitRn = 0);
    119 
    120     void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
    121 
    122     void emitMulFrmInstruction(const MachineInstr &MI);
    123 
    124     void emitExtendInstruction(const MachineInstr &MI);
    125 
    126     void emitMiscArithInstruction(const MachineInstr &MI);
    127 
    128     void emitSaturateInstruction(const MachineInstr &MI);
    129 
    130     void emitBranchInstruction(const MachineInstr &MI);
    131 
    132     void emitInlineJumpTable(unsigned JTIndex);
    133 
    134     void emitMiscBranchInstruction(const MachineInstr &MI);
    135 
    136     void emitVFPArithInstruction(const MachineInstr &MI);
    137 
    138     void emitVFPConversionInstruction(const MachineInstr &MI);
    139 
    140     void emitVFPLoadStoreInstruction(const MachineInstr &MI);
    141 
    142     void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
    143 
    144     void emitMiscInstruction(const MachineInstr &MI);
    145 
    146     void emitNEONLaneInstruction(const MachineInstr &MI);
    147     void emitNEONDupInstruction(const MachineInstr &MI);
    148     void emitNEON1RegModImmInstruction(const MachineInstr &MI);
    149     void emitNEON2RegInstruction(const MachineInstr &MI);
    150     void emitNEON3RegInstruction(const MachineInstr &MI);
    151 
    152     /// getMachineOpValue - Return binary encoding of operand. If the machine
    153     /// operand requires relocation, record the relocation and return zero.
    154     unsigned getMachineOpValue(const MachineInstr &MI,
    155                                const MachineOperand &MO) const;
    156     unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
    157       return getMachineOpValue(MI, MI.getOperand(OpIdx));
    158     }
    159 
    160     // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
    161     //  TableGen'erated getBinaryCodeForInstr() function to encode any
    162     //  operand values, instead querying getMachineOpValue() directly for
    163     //  each operand it needs to encode. Thus, any of the new encoder
    164     //  helper functions can simply return 0 as the values the return
    165     //  are already handled elsewhere. They are placeholders to allow this
    166     //  encoder to continue to function until the MC encoder is sufficiently
    167     //  far along that this one can be eliminated entirely.
    168     unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
    169       const { return 0; }
    170     unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
    171       const { return 0; }
    172     unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
    173       const { return 0; }
    174     unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
    175       const {
    176       if (IsThumb) {
    177         Val &= 0x0FFFFFFF;
    178         Val |= 0xE0000000;
    179       }
    180       return Val;
    181     }
    182     unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    183       const { return 0; }
    184     unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    185       const { return 0; }
    186     unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
    187       const { return 0; }
    188     unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
    189       const { return 0; }
    190     unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
    191       const { return 0; }
    192     unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
    193       const { return 0; }
    194     unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
    195       const { return 0; }
    196     unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
    197       const { return 0; }
    198     unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
    199       unsigned Op) const { return 0; }
    200     unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
    201       const { return 0; }
    202     unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
    203       const { return 0; }
    204     unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
    205       const { return 0; }
    206     unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
    207       const { return 0; }
    208     unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
    209       const { return 0; }
    210     unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
    211       const { return 0; }
    212     unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
    213       const { return 0; }
    214     unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
    215       const { return 0; }
    216     unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
    217       const { return 0; }
    218     unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
    219       const { return 0; }
    220     unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
    221       const { return 0; }
    222     unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
    223       const { return 0; }
    224     unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
    225       const { return 0; }
    226     unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
    227       const { return 0; }
    228     unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
    229       const { return 0; }
    230     unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    231       const { return 0; }
    232     unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
    233       const { return 0; }
    234     unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
    235                                                  unsigned Op)
    236       const { return 0; }
    237     unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
    238       const { return 0; }
    239     unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
    240       const { return 0; }
    241     unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
    242                                             unsigned Op) const { return 0; }
    243     unsigned getMsbOpValue(const MachineInstr &MI,
    244                            unsigned Op) const { return 0; }
    245     unsigned getSsatBitPosValue(const MachineInstr &MI,
    246                                 unsigned Op) const { return 0; }
    247     uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
    248       const {return 0; }
    249     uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
    250       const { return 0; }
    251 
    252     unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
    253       const {
    254       // {17-13} = reg
    255       // {12}    = (U)nsigned (add == '1', sub == '0')
    256       // {11-0}  = imm12
    257       const MachineOperand &MO  = MI.getOperand(Op);
    258       const MachineOperand &MO1 = MI.getOperand(Op + 1);
    259       if (!MO.isReg()) {
    260         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
    261         return 0;
    262       }
    263       unsigned Reg = getARMRegisterNumbering(MO.getReg());
    264       int32_t Imm12 = MO1.getImm();
    265       uint32_t Binary;
    266       Binary = Imm12 & 0xfff;
    267       if (Imm12 >= 0)
    268         Binary |= (1 << 12);
    269       Binary |= (Reg << 13);
    270       return Binary;
    271     }
    272 
    273     unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
    274       const {
    275       const MCInstrDesc &MCID = MI.getDesc();
    276       const MachineOperand &MO = MI.getOperand(Op);
    277 
    278       unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
    279                        ARM::reloc_arm_movw : ARM::reloc_arm_movt);
    280 
    281       if (!MO.isImm()) {
    282         emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
    283         return 0;
    284       }
    285       unsigned Imm16 = static_cast<unsigned>(MO.getImm());
    286       return Imm16;
    287     }
    288 
    289     uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
    290       const { return 0;}
    291     uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
    292       const { return 0;}
    293     uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
    294       const { return 0;}
    295     uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
    296       const { return 0; }
    297     uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
    298       const { return 0; }
    299     uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
    300       const { return 0; }
    301     uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
    302       const { return 0; }
    303     uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
    304       const { return 0; }
    305     uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
    306       // {12-9}  = reg
    307       // {8}     = (U)nsigned (add == '1', sub == '0')
    308       // {7-0}   = imm8
    309       uint32_t Binary = 0;
    310       const MachineOperand &MO  = MI.getOperand(Op);
    311       uint32_t Reg = getMachineOpValue(MI, MO);
    312       Binary |= (Reg << 9);
    313 
    314       // If there is a non-zero immediate offset, encode it.
    315       if (MO.isReg()) {
    316           const MachineOperand &MO1 = MI.getOperand(Op + 1);
    317         if (uint32_t ImmOffs = ARM_AM::getAM5Offset(MO1.getImm())) {
    318           if (ARM_AM::getAM5Op(MO1.getImm()) == ARM_AM::add)
    319             Binary |= 1 << 8;
    320           Binary |= ImmOffs & 0xff;
    321           return Binary;
    322         }
    323       }
    324 
    325       // If immediate offset is omitted, default to +0.
    326       Binary |= 1 << 8;
    327       return Binary;
    328     }
    329     unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
    330       const { return 0; }
    331 
    332     unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
    333       const { return 0; }
    334 
    335     unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
    336       const { return 0; }
    337     unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
    338       const { return 0; }
    339     unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
    340       const { return 0; }
    341     unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
    342       const { return 0; }
    343 
    344     /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    345     /// machine operand requires relocation, record the relocation and return
    346     /// zero.
    347     unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
    348                             unsigned Reloc);
    349 
    350     /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    351     ///
    352     unsigned getShiftOp(unsigned Imm) const ;
    353 
    354     /// Routines that handle operands which add machine relocations which are
    355     /// fixed up by the relocation stage.
    356     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
    357                            bool MayNeedFarStub,  bool Indirect,
    358                            intptr_t ACPV = 0) const;
    359     void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
    360     void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
    361     void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
    362     void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
    363                                intptr_t JTBase = 0) const;
    364   };
    365 }
    366 
    367 char ARMCodeEmitter::ID = 0;
    368 
    369 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
    370 /// code to the specified MCE object.
    371 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
    372                                                 JITCodeEmitter &JCE) {
    373   return new ARMCodeEmitter(TM, JCE);
    374 }
    375 
    376 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
    377   assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
    378           MF.getTarget().getRelocationModel() != Reloc::Static) &&
    379          "JIT relocation model must be set to static or default!");
    380   JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
    381   II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
    382   TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
    383   Subtarget = &TM.getSubtarget<ARMSubtarget>();
    384   MCPEs = &MF.getConstantPool()->getConstants();
    385   MJTEs = 0;
    386   if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
    387   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
    388   IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
    389   JTI->Initialize(MF, IsPIC);
    390   MMI = &getAnalysis<MachineModuleInfo>();
    391   MCE.setModuleInfo(MMI);
    392 
    393   do {
    394     DEBUG(errs() << "JITTing function '"
    395           << MF.getFunction()->getName() << "'\n");
    396     MCE.startFunction(MF);
    397     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
    398          MBB != E; ++MBB) {
    399       MCE.StartMachineBasicBlock(MBB);
    400       for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
    401            I != E; ++I)
    402         emitInstruction(*I);
    403     }
    404   } while (MCE.finishFunction(MF));
    405 
    406   return false;
    407 }
    408 
    409 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    410 ///
    411 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
    412   switch (ARM_AM::getAM2ShiftOpc(Imm)) {
    413   default: llvm_unreachable("Unknown shift opc!");
    414   case ARM_AM::asr: return 2;
    415   case ARM_AM::lsl: return 0;
    416   case ARM_AM::lsr: return 1;
    417   case ARM_AM::ror:
    418   case ARM_AM::rrx: return 3;
    419   }
    420   return 0;
    421 }
    422 
    423 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    424 /// machine operand requires relocation, record the relocation and return zero.
    425 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
    426                                         const MachineOperand &MO,
    427                                         unsigned Reloc) {
    428   assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
    429       && "Relocation to this function should be for movt or movw");
    430 
    431   if (MO.isImm())
    432     return static_cast<unsigned>(MO.getImm());
    433   else if (MO.isGlobal())
    434     emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
    435   else if (MO.isSymbol())
    436     emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
    437   else if (MO.isMBB())
    438     emitMachineBasicBlock(MO.getMBB(), Reloc);
    439   else {
    440 #ifndef NDEBUG
    441     errs() << MO;
    442 #endif
    443     llvm_unreachable("Unsupported operand type for movw/movt");
    444   }
    445   return 0;
    446 }
    447 
    448 /// getMachineOpValue - Return binary encoding of operand. If the machine
    449 /// operand requires relocation, record the relocation and return zero.
    450 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
    451                                            const MachineOperand &MO) const {
    452   if (MO.isReg())
    453     return getARMRegisterNumbering(MO.getReg());
    454   else if (MO.isImm())
    455     return static_cast<unsigned>(MO.getImm());
    456   else if (MO.isFPImm())
    457     return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
    458                       .bitcastToAPInt().getHiBits(32).getLimitedValue());
    459   else if (MO.isGlobal())
    460     emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
    461   else if (MO.isSymbol())
    462     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
    463   else if (MO.isCPI()) {
    464     const MCInstrDesc &MCID = MI.getDesc();
    465     // For VFP load, the immediate offset is multiplied by 4.
    466     unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
    467       ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
    468     emitConstPoolAddress(MO.getIndex(), Reloc);
    469   } else if (MO.isJTI())
    470     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
    471   else if (MO.isMBB())
    472     emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
    473   else
    474     llvm_unreachable("Unable to encode MachineOperand!");
    475   return 0;
    476 }
    477 
    478 /// emitGlobalAddress - Emit the specified address to the code stream.
    479 ///
    480 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
    481                                        bool MayNeedFarStub, bool Indirect,
    482                                        intptr_t ACPV) const {
    483   MachineRelocation MR = Indirect
    484     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
    485                                            const_cast<GlobalValue *>(GV),
    486                                            ACPV, MayNeedFarStub)
    487     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
    488                                const_cast<GlobalValue *>(GV), ACPV,
    489                                MayNeedFarStub);
    490   MCE.addRelocation(MR);
    491 }
    492 
    493 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
    494 /// be emitted to the current location in the function, and allow it to be PC
    495 /// relative.
    496 void ARMCodeEmitter::
    497 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
    498   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
    499                                                  Reloc, ES));
    500 }
    501 
    502 /// emitConstPoolAddress - Arrange for the address of an constant pool
    503 /// to be emitted to the current location in the function, and allow it to be PC
    504 /// relative.
    505 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
    506   // Tell JIT emitter we'll resolve the address.
    507   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
    508                                                     Reloc, CPI, 0, true));
    509 }
    510 
    511 /// emitJumpTableAddress - Arrange for the address of a jump table to
    512 /// be emitted to the current location in the function, and allow it to be PC
    513 /// relative.
    514 void ARMCodeEmitter::
    515 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
    516   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
    517                                                     Reloc, JTIndex, 0, true));
    518 }
    519 
    520 /// emitMachineBasicBlock - Emit the specified address basic block.
    521 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
    522                                            unsigned Reloc,
    523                                            intptr_t JTBase) const {
    524   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
    525                                              Reloc, BB, JTBase));
    526 }
    527 
    528 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
    529   DEBUG(errs() << "  0x";
    530         errs().write_hex(Binary) << "\n");
    531   MCE.emitWordLE(Binary);
    532 }
    533 
    534 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
    535   DEBUG(errs() << "  0x";
    536         errs().write_hex(Binary) << "\n");
    537   MCE.emitDWordLE(Binary);
    538 }
    539 
    540 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
    541   DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
    542 
    543   MCE.processDebugLoc(MI.getDebugLoc(), true);
    544 
    545   ++NumEmitted;  // Keep track of the # of mi's emitted
    546   switch (MI.getDesc().TSFlags & ARMII::FormMask) {
    547   default: {
    548     llvm_unreachable("Unhandled instruction encoding format!");
    549     break;
    550   }
    551   case ARMII::MiscFrm:
    552     if (MI.getOpcode() == ARM::LEApcrelJT) {
    553       // Materialize jumptable address.
    554       emitLEApcrelJTInstruction(MI);
    555       break;
    556     }
    557     llvm_unreachable("Unhandled instruction encoding!");
    558     break;
    559   case ARMII::Pseudo:
    560     emitPseudoInstruction(MI);
    561     break;
    562   case ARMII::DPFrm:
    563   case ARMII::DPSoRegFrm:
    564     emitDataProcessingInstruction(MI);
    565     break;
    566   case ARMII::LdFrm:
    567   case ARMII::StFrm:
    568     emitLoadStoreInstruction(MI);
    569     break;
    570   case ARMII::LdMiscFrm:
    571   case ARMII::StMiscFrm:
    572     emitMiscLoadStoreInstruction(MI);
    573     break;
    574   case ARMII::LdStMulFrm:
    575     emitLoadStoreMultipleInstruction(MI);
    576     break;
    577   case ARMII::MulFrm:
    578     emitMulFrmInstruction(MI);
    579     break;
    580   case ARMII::ExtFrm:
    581     emitExtendInstruction(MI);
    582     break;
    583   case ARMII::ArithMiscFrm:
    584     emitMiscArithInstruction(MI);
    585     break;
    586   case ARMII::SatFrm:
    587     emitSaturateInstruction(MI);
    588     break;
    589   case ARMII::BrFrm:
    590     emitBranchInstruction(MI);
    591     break;
    592   case ARMII::BrMiscFrm:
    593     emitMiscBranchInstruction(MI);
    594     break;
    595   // VFP instructions.
    596   case ARMII::VFPUnaryFrm:
    597   case ARMII::VFPBinaryFrm:
    598     emitVFPArithInstruction(MI);
    599     break;
    600   case ARMII::VFPConv1Frm:
    601   case ARMII::VFPConv2Frm:
    602   case ARMII::VFPConv3Frm:
    603   case ARMII::VFPConv4Frm:
    604   case ARMII::VFPConv5Frm:
    605     emitVFPConversionInstruction(MI);
    606     break;
    607   case ARMII::VFPLdStFrm:
    608     emitVFPLoadStoreInstruction(MI);
    609     break;
    610   case ARMII::VFPLdStMulFrm:
    611     emitVFPLoadStoreMultipleInstruction(MI);
    612     break;
    613   case ARMII::VFPMiscFrm:
    614     emitMiscInstruction(MI);
    615     break;
    616   // NEON instructions.
    617   case ARMII::NGetLnFrm:
    618   case ARMII::NSetLnFrm:
    619     emitNEONLaneInstruction(MI);
    620     break;
    621   case ARMII::NDupFrm:
    622     emitNEONDupInstruction(MI);
    623     break;
    624   case ARMII::N1RegModImmFrm:
    625     emitNEON1RegModImmInstruction(MI);
    626     break;
    627   case ARMII::N2RegFrm:
    628     emitNEON2RegInstruction(MI);
    629     break;
    630   case ARMII::N3RegFrm:
    631     emitNEON3RegInstruction(MI);
    632     break;
    633   }
    634   MCE.processDebugLoc(MI.getDebugLoc(), false);
    635 }
    636 
    637 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
    638   DEBUG({
    639       errs() << "  ** Constant pool #" << CPI << " @ "
    640              << (void*)MCE.getCurrentPCValue() << " ";
    641       if (const Function *F = dyn_cast<Function>(C))
    642         errs() << F->getName();
    643       else
    644         errs() << *C;
    645       errs() << '\n';
    646     });
    647 
    648   switch (C->getValueID()) {
    649   default: {
    650     llvm_unreachable("Unable to handle this constantpool entry!");
    651     break;
    652   }
    653   case Value::GlobalVariableVal: {
    654     emitGlobalAddress(static_cast<const GlobalValue*>(C),
    655                       ARM::reloc_arm_absolute, isa<Function>(C), false);
    656     emitWordLE(0);
    657     break;
    658   }
    659   case Value::ConstantIntVal: {
    660     const ConstantInt *CI = static_cast<const ConstantInt*>(C);
    661     uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
    662     emitWordLE(Val);
    663     break;
    664   }
    665   case Value::ConstantFPVal: {
    666     const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
    667     if (CFP->getType()->isFloatTy())
    668       emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    669     else if (CFP->getType()->isDoubleTy())
    670       emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    671     else {
    672       llvm_unreachable("Unable to handle this constantpool entry!");
    673     }
    674     break;
    675   }
    676   case Value::ConstantArrayVal: {
    677     const ConstantArray *CA = static_cast<const ConstantArray*>(C);
    678     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    679       emitConstantToMemory(CPI, CA->getOperand(i));
    680     break;
    681   }
    682   case Value::ConstantVectorVal:{
    683     //FIXME:emit vector
    684     const ConstantVector *CV = static_cast<const ConstantVector*>(C);
    685     break;
    686   }
    687   }
    688 
    689   return;
    690 }
    691 
    692 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
    693   unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
    694   unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
    695   const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
    696 
    697   // Remember the CONSTPOOL_ENTRY address for later relocation.
    698   JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
    699 
    700   // Emit constpool island entry. In most cases, the actual values will be
    701   // resolved and relocated after code emission.
    702   if (MCPE.isMachineConstantPoolEntry()) {
    703     ARMConstantPoolValue *ACPV =
    704       static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
    705 
    706     DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
    707           << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
    708 
    709     assert(ACPV->isGlobalValue() && "unsupported constant pool value");
    710     const GlobalValue *GV = ACPV->getGV();
    711     if (GV) {
    712       Reloc::Model RelocM = TM.getRelocationModel();
    713       emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
    714                         isa<Function>(GV),
    715                         Subtarget->GVIsIndirectSymbol(GV, RelocM),
    716                         (intptr_t)ACPV);
    717      } else  {
    718       emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
    719     }
    720     emitWordLE(0);
    721   } else {
    722     emitConstantToMemory(CPI, MCPE.Val.ConstVal);
    723   }
    724 }
    725 
    726 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
    727   const MachineOperand &MO0 = MI.getOperand(0);
    728   const MachineOperand &MO1 = MI.getOperand(1);
    729 
    730   // Emit the 'movw' instruction.
    731   unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
    732 
    733   unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
    734 
    735   // Set the conditional execution predicate.
    736   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    737 
    738   // Encode Rd.
    739   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    740 
    741   // Encode imm16 as imm4:imm12
    742   Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
    743   Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
    744   emitWordLE(Binary);
    745 
    746   unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
    747   // Emit the 'movt' instruction.
    748   Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
    749 
    750   // Set the conditional execution predicate.
    751   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    752 
    753   // Encode Rd.
    754   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    755 
    756   // Encode imm16 as imm4:imm1, same as movw above.
    757   Binary |= Hi16 & 0xFFF;
    758   Binary |= ((Hi16 >> 12) & 0xF) << 16;
    759   emitWordLE(Binary);
    760 }
    761 
    762 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
    763   const MachineOperand &MO0 = MI.getOperand(0);
    764   const MachineOperand &MO1 = MI.getOperand(1);
    765   assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
    766                                                   "Not a valid so_imm value!");
    767   unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
    768   unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
    769 
    770   // Emit the 'mov' instruction.
    771   unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
    772 
    773   // Set the conditional execution predicate.
    774   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    775 
    776   // Encode Rd.
    777   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    778 
    779   // Encode so_imm.
    780   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    781   Binary |= 1 << ARMII::I_BitShift;
    782   Binary |= getMachineSoImmOpValue(V1);
    783   emitWordLE(Binary);
    784 
    785   // Now the 'orr' instruction.
    786   Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
    787 
    788   // Set the conditional execution predicate.
    789   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    790 
    791   // Encode Rd.
    792   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    793 
    794   // Encode Rn.
    795   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
    796 
    797   // Encode so_imm.
    798   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    799   Binary |= 1 << ARMII::I_BitShift;
    800   Binary |= getMachineSoImmOpValue(V2);
    801   emitWordLE(Binary);
    802 }
    803 
    804 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
    805   // It's basically add r, pc, (LCPI - $+8)
    806   const MCInstrDesc &MCID = MI.getDesc();
    807 
    808   unsigned Binary = 0;
    809 
    810   // Set the conditional execution predicate
    811   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    812 
    813   // Encode S bit if MI modifies CPSR.
    814   Binary |= getAddrModeSBit(MI, MCID);
    815 
    816   // Encode Rd.
    817   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    818 
    819   // Encode Rn which is PC.
    820   Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
    821 
    822   // Encode the displacement which is a so_imm.
    823   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    824   Binary |= 1 << ARMII::I_BitShift;
    825   emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
    826 
    827   emitWordLE(Binary);
    828 }
    829 
    830 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
    831   // It's basically add r, pc, (LJTI - $+8)
    832 
    833   const MCInstrDesc &MCID = MI.getDesc();
    834 
    835   // Emit the 'add' instruction.
    836   unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
    837 
    838   // Set the conditional execution predicate
    839   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    840 
    841   // Encode S bit if MI modifies CPSR.
    842   Binary |= getAddrModeSBit(MI, MCID);
    843 
    844   // Encode Rd.
    845   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    846 
    847   // Encode Rn which is PC.
    848   Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
    849 
    850   // Encode the displacement.
    851   Binary |= 1 << ARMII::I_BitShift;
    852   emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
    853 
    854   emitWordLE(Binary);
    855 }
    856 
    857 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
    858   unsigned Opcode = MI.getDesc().Opcode;
    859 
    860   // Part of binary is determined by TableGn.
    861   unsigned Binary = getBinaryCodeForInstr(MI);
    862 
    863   // Set the conditional execution predicate
    864   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    865 
    866   // Encode S bit if MI modifies CPSR.
    867   if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
    868     Binary |= 1 << ARMII::S_BitShift;
    869 
    870   // Encode register def if there is one.
    871   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    872 
    873   // Encode the shift operation.
    874   switch (Opcode) {
    875   default: break;
    876   case ARM::RRX:
    877     // rrx
    878     Binary |= 0x6 << 4;
    879     break;
    880   case ARM::MOVsrl_flag:
    881     // lsr #1
    882     Binary |= (0x2 << 4) | (1 << 7);
    883     break;
    884   case ARM::MOVsra_flag:
    885     // asr #1
    886     Binary |= (0x4 << 4) | (1 << 7);
    887     break;
    888   }
    889 
    890   // Encode register Rm.
    891   Binary |= getMachineOpValue(MI, 1);
    892 
    893   emitWordLE(Binary);
    894 }
    895 
    896 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
    897   DEBUG(errs() << "  ** LPC" << LabelID << " @ "
    898         << (void*)MCE.getCurrentPCValue() << '\n');
    899   JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
    900 }
    901 
    902 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
    903   unsigned Opcode = MI.getDesc().Opcode;
    904   switch (Opcode) {
    905   default:
    906     llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
    907   case ARM::B:
    908     emitBranchInstruction(MI);
    909     break;
    910   case ARM::BR_JTr:
    911   case ARM::BR_JTm:
    912   case ARM::BR_JTadd:
    913     emitMiscBranchInstruction(MI);
    914     break;
    915   case ARM::BX_CALL:
    916   case ARM::BMOVPCRX_CALL:
    917   case ARM::BXr9_CALL:
    918   case ARM::BMOVPCRXr9_CALL: {
    919     // First emit mov lr, pc
    920     unsigned Binary = 0x01a0e00f;
    921     Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    922     emitWordLE(Binary);
    923 
    924     // and then emit the branch.
    925     emitMiscBranchInstruction(MI);
    926     break;
    927   }
    928   case TargetOpcode::INLINEASM: {
    929     // We allow inline assembler nodes with empty bodies - they can
    930     // implicitly define registers, which is ok for JIT.
    931     if (MI.getOperand(0).getSymbolName()[0]) {
    932       report_fatal_error("JIT does not support inline asm!");
    933     }
    934     break;
    935   }
    936   case TargetOpcode::PROLOG_LABEL:
    937   case TargetOpcode::EH_LABEL:
    938     MCE.emitLabel(MI.getOperand(0).getMCSymbol());
    939     break;
    940   case TargetOpcode::IMPLICIT_DEF:
    941   case TargetOpcode::KILL:
    942     // Do nothing.
    943     break;
    944   case ARM::CONSTPOOL_ENTRY:
    945     emitConstPoolInstruction(MI);
    946     break;
    947   case ARM::LDMIA_RET:
    948     emitLoadStoreMultipleInstruction(MI);
    949     break;
    950   case ARM::PICADD: {
    951     // Remember of the address of the PC label for relocation later.
    952     addPCLabel(MI.getOperand(2).getImm());
    953     // PICADD is just an add instruction that implicitly read pc.
    954     emitDataProcessingInstruction(MI, 0, ARM::PC);
    955     break;
    956   }
    957   case ARM::PICLDR:
    958   case ARM::PICLDRB:
    959   case ARM::PICSTR:
    960   case ARM::PICSTRB: {
    961     // Remember of the address of the PC label for relocation later.
    962     addPCLabel(MI.getOperand(2).getImm());
    963     // These are just load / store instructions that implicitly read pc.
    964     emitLoadStoreInstruction(MI, 0, ARM::PC);
    965     break;
    966   }
    967   case ARM::PICLDRH:
    968   case ARM::PICLDRSH:
    969   case ARM::PICLDRSB:
    970   case ARM::PICSTRH: {
    971     // Remember of the address of the PC label for relocation later.
    972     addPCLabel(MI.getOperand(2).getImm());
    973     // These are just load / store instructions that implicitly read pc.
    974     emitMiscLoadStoreInstruction(MI, ARM::PC);
    975     break;
    976   }
    977 
    978   case ARM::MOVi32imm:
    979     // Two instructions to materialize a constant.
    980     if (Subtarget->hasV6T2Ops())
    981       emitMOVi32immInstruction(MI);
    982     else
    983       emitMOVi2piecesInstruction(MI);
    984     break;
    985   case ARM::LEApcrel:
    986     // Materialize constantpool index address.
    987     emitLEApcrelInstruction(MI);
    988     break;
    989   case ARM::LEApcrelJT:
    990     // Materialize jumptable address.
    991     emitLEApcrelJTInstruction(MI);
    992     break;
    993   case ARM::RRX:
    994   case ARM::MOVsrl_flag:
    995   case ARM::MOVsra_flag:
    996     emitPseudoMoveInstruction(MI);
    997     break;
    998   }
    999 }
   1000 
   1001 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
   1002                                                 const MCInstrDesc &MCID,
   1003                                                 const MachineOperand &MO,
   1004                                                 unsigned OpIdx) {
   1005   unsigned Binary = getMachineOpValue(MI, MO);
   1006 
   1007   const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
   1008   const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
   1009   ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
   1010 
   1011   // Encode the shift opcode.
   1012   unsigned SBits = 0;
   1013   unsigned Rs = MO1.getReg();
   1014   if (Rs) {
   1015     // Set shift operand (bit[7:4]).
   1016     // LSL - 0001
   1017     // LSR - 0011
   1018     // ASR - 0101
   1019     // ROR - 0111
   1020     // RRX - 0110 and bit[11:8] clear.
   1021     switch (SOpc) {
   1022     default: llvm_unreachable("Unknown shift opc!");
   1023     case ARM_AM::lsl: SBits = 0x1; break;
   1024     case ARM_AM::lsr: SBits = 0x3; break;
   1025     case ARM_AM::asr: SBits = 0x5; break;
   1026     case ARM_AM::ror: SBits = 0x7; break;
   1027     case ARM_AM::rrx: SBits = 0x6; break;
   1028     }
   1029   } else {
   1030     // Set shift operand (bit[6:4]).
   1031     // LSL - 000
   1032     // LSR - 010
   1033     // ASR - 100
   1034     // ROR - 110
   1035     switch (SOpc) {
   1036     default: llvm_unreachable("Unknown shift opc!");
   1037     case ARM_AM::lsl: SBits = 0x0; break;
   1038     case ARM_AM::lsr: SBits = 0x2; break;
   1039     case ARM_AM::asr: SBits = 0x4; break;
   1040     case ARM_AM::ror: SBits = 0x6; break;
   1041     }
   1042   }
   1043   Binary |= SBits << 4;
   1044   if (SOpc == ARM_AM::rrx)
   1045     return Binary;
   1046 
   1047   // Encode the shift operation Rs or shift_imm (except rrx).
   1048   if (Rs) {
   1049     // Encode Rs bit[11:8].
   1050     assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
   1051     return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
   1052   }
   1053 
   1054   // Encode shift_imm bit[11:7].
   1055   return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
   1056 }
   1057 
   1058 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
   1059   int SoImmVal = ARM_AM::getSOImmVal(SoImm);
   1060   assert(SoImmVal != -1 && "Not a valid so_imm value!");
   1061 
   1062   // Encode rotate_imm.
   1063   unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
   1064     << ARMII::SoRotImmShift;
   1065 
   1066   // Encode immed_8.
   1067   Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
   1068   return Binary;
   1069 }
   1070 
   1071 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
   1072                                          const MCInstrDesc &MCID) const {
   1073   for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e; --i){
   1074     const MachineOperand &MO = MI.getOperand(i-1);
   1075     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
   1076       return 1 << ARMII::S_BitShift;
   1077   }
   1078   return 0;
   1079 }
   1080 
   1081 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
   1082                                                    unsigned ImplicitRd,
   1083                                                    unsigned ImplicitRn) {
   1084   const MCInstrDesc &MCID = MI.getDesc();
   1085 
   1086   // Part of binary is determined by TableGn.
   1087   unsigned Binary = getBinaryCodeForInstr(MI);
   1088 
   1089   if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
   1090       emitWordLE(Binary);
   1091       return;
   1092   }
   1093 
   1094   // Set the conditional execution predicate
   1095   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1096 
   1097   // Encode S bit if MI modifies CPSR.
   1098   Binary |= getAddrModeSBit(MI, MCID);
   1099 
   1100   // Encode register def if there is one.
   1101   unsigned NumDefs = MCID.getNumDefs();
   1102   unsigned OpIdx = 0;
   1103   if (NumDefs)
   1104     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1105   else if (ImplicitRd)
   1106     // Special handling for implicit use (e.g. PC).
   1107     Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
   1108 
   1109   if (MCID.Opcode == ARM::MOVi16) {
   1110       // Get immediate from MI.
   1111       unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
   1112                       ARM::reloc_arm_movw);
   1113       // Encode imm which is the same as in emitMOVi32immInstruction().
   1114       Binary |= Lo16 & 0xFFF;
   1115       Binary |= ((Lo16 >> 12) & 0xF) << 16;
   1116       emitWordLE(Binary);
   1117       return;
   1118   } else if(MCID.Opcode == ARM::MOVTi16) {
   1119       unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
   1120                        ARM::reloc_arm_movt) >> 16);
   1121       Binary |= Hi16 & 0xFFF;
   1122       Binary |= ((Hi16 >> 12) & 0xF) << 16;
   1123       emitWordLE(Binary);
   1124       return;
   1125   } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
   1126       uint32_t v = ~MI.getOperand(2).getImm();
   1127       int32_t lsb = CountTrailingZeros_32(v);
   1128       int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
   1129       // Instr{20-16} = msb, Instr{11-7} = lsb
   1130       Binary |= (msb & 0x1F) << 16;
   1131       Binary |= (lsb & 0x1F) << 7;
   1132       emitWordLE(Binary);
   1133       return;
   1134   } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
   1135       // Encode Rn in Instr{0-3}
   1136       Binary |= getMachineOpValue(MI, OpIdx++);
   1137 
   1138       uint32_t lsb = MI.getOperand(OpIdx++).getImm();
   1139       uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
   1140 
   1141       // Instr{20-16} = widthm1, Instr{11-7} = lsb
   1142       Binary |= (widthm1 & 0x1F) << 16;
   1143       Binary |= (lsb & 0x1F) << 7;
   1144       emitWordLE(Binary);
   1145       return;
   1146   }
   1147 
   1148   // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
   1149   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1150     ++OpIdx;
   1151 
   1152   // Encode first non-shifter register operand if there is one.
   1153   bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
   1154   if (!isUnary) {
   1155     if (ImplicitRn)
   1156       // Special handling for implicit use (e.g. PC).
   1157       Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
   1158     else {
   1159       Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
   1160       ++OpIdx;
   1161     }
   1162   }
   1163 
   1164   // Encode shifter operand.
   1165   const MachineOperand &MO = MI.getOperand(OpIdx);
   1166   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
   1167     // Encode SoReg.
   1168     emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
   1169     return;
   1170   }
   1171 
   1172   if (MO.isReg()) {
   1173     // Encode register Rm.
   1174     emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
   1175     return;
   1176   }
   1177 
   1178   // Encode so_imm.
   1179   Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
   1180 
   1181   emitWordLE(Binary);
   1182 }
   1183 
   1184 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
   1185                                               unsigned ImplicitRd,
   1186                                               unsigned ImplicitRn) {
   1187   const MCInstrDesc &MCID = MI.getDesc();
   1188   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1189   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1190 
   1191   // Part of binary is determined by TableGn.
   1192   unsigned Binary = getBinaryCodeForInstr(MI);
   1193 
   1194   // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
   1195   if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
   1196       MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
   1197       MI.getOpcode() == ARM::STRBi12) {
   1198     emitWordLE(Binary);
   1199     return;
   1200   }
   1201 
   1202   if (MI.getOpcode() == ARM::BR_JTm)
   1203     Binary = 0x710F000;
   1204   else if (MI.getOpcode() == ARM::BR_JTr)
   1205     Binary = 0x1A0F000;
   1206 
   1207   // Set the conditional execution predicate
   1208   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1209 
   1210   unsigned OpIdx = 0;
   1211 
   1212   // Operand 0 of a pre- and post-indexed store is the address base
   1213   // writeback. Skip it.
   1214   bool Skipped = false;
   1215   if (IsPrePost && Form == ARMII::StFrm) {
   1216     ++OpIdx;
   1217     Skipped = true;
   1218   }
   1219 
   1220   // Set first operand
   1221   if (ImplicitRd)
   1222     // Special handling for implicit use (e.g. PC).
   1223     Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
   1224   else
   1225     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1226 
   1227   // Set second operand
   1228   if (ImplicitRn)
   1229     // Special handling for implicit use (e.g. PC).
   1230     Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
   1231   else
   1232     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1233 
   1234   // If this is a two-address operand, skip it. e.g. LDR_PRE.
   1235   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1236     ++OpIdx;
   1237 
   1238   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1239   unsigned AM2Opc = (ImplicitRn == ARM::PC)
   1240     ? 0 : MI.getOperand(OpIdx+1).getImm();
   1241 
   1242   // Set bit U(23) according to sign of immed value (positive or negative).
   1243   Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
   1244              ARMII::U_BitShift);
   1245   if (!MO2.getReg()) { // is immediate
   1246     if (ARM_AM::getAM2Offset(AM2Opc))
   1247       // Set the value of offset_12 field
   1248       Binary |= ARM_AM::getAM2Offset(AM2Opc);
   1249     emitWordLE(Binary);
   1250     return;
   1251   }
   1252 
   1253   // Set bit I(25), because this is not in immediate encoding.
   1254   Binary |= 1 << ARMII::I_BitShift;
   1255   assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
   1256   // Set bit[3:0] to the corresponding Rm register
   1257   Binary |= getARMRegisterNumbering(MO2.getReg());
   1258 
   1259   // If this instr is in scaled register offset/index instruction, set
   1260   // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
   1261   if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
   1262     Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
   1263     Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
   1264   }
   1265 
   1266   emitWordLE(Binary);
   1267 }
   1268 
   1269 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
   1270                                                   unsigned ImplicitRn) {
   1271   const MCInstrDesc &MCID = MI.getDesc();
   1272   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1273   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1274 
   1275   // Part of binary is determined by TableGn.
   1276   unsigned Binary = getBinaryCodeForInstr(MI);
   1277 
   1278   // Set the conditional execution predicate
   1279   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1280 
   1281   unsigned OpIdx = 0;
   1282 
   1283   // Operand 0 of a pre- and post-indexed store is the address base
   1284   // writeback. Skip it.
   1285   bool Skipped = false;
   1286   if (IsPrePost && Form == ARMII::StMiscFrm) {
   1287     ++OpIdx;
   1288     Skipped = true;
   1289   }
   1290 
   1291   // Set first operand
   1292   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1293 
   1294   // Skip LDRD and STRD's second operand.
   1295   if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
   1296     ++OpIdx;
   1297 
   1298   // Set second operand
   1299   if (ImplicitRn)
   1300     // Special handling for implicit use (e.g. PC).
   1301     Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
   1302   else
   1303     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1304 
   1305   // If this is a two-address operand, skip it. e.g. LDRH_POST.
   1306   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1307     ++OpIdx;
   1308 
   1309   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1310   unsigned AM3Opc = (ImplicitRn == ARM::PC)
   1311     ? 0 : MI.getOperand(OpIdx+1).getImm();
   1312 
   1313   // Set bit U(23) according to sign of immed value (positive or negative)
   1314   Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
   1315              ARMII::U_BitShift);
   1316 
   1317   // If this instr is in register offset/index encoding, set bit[3:0]
   1318   // to the corresponding Rm register.
   1319   if (MO2.getReg()) {
   1320     Binary |= getARMRegisterNumbering(MO2.getReg());
   1321     emitWordLE(Binary);
   1322     return;
   1323   }
   1324 
   1325   // This instr is in immediate offset/index encoding, set bit 22 to 1.
   1326   Binary |= 1 << ARMII::AM3_I_BitShift;
   1327   if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
   1328     // Set operands
   1329     Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
   1330     Binary |= (ImmOffs & 0xF);                      // immedL
   1331   }
   1332 
   1333   emitWordLE(Binary);
   1334 }
   1335 
   1336 static unsigned getAddrModeUPBits(unsigned Mode) {
   1337   unsigned Binary = 0;
   1338 
   1339   // Set addressing mode by modifying bits U(23) and P(24)
   1340   // IA - Increment after  - bit U = 1 and bit P = 0
   1341   // IB - Increment before - bit U = 1 and bit P = 1
   1342   // DA - Decrement after  - bit U = 0 and bit P = 0
   1343   // DB - Decrement before - bit U = 0 and bit P = 1
   1344   switch (Mode) {
   1345   default: llvm_unreachable("Unknown addressing sub-mode!");
   1346   case ARM_AM::da:                                     break;
   1347   case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
   1348   case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
   1349   case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
   1350   }
   1351 
   1352   return Binary;
   1353 }
   1354 
   1355 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
   1356   const MCInstrDesc &MCID = MI.getDesc();
   1357   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1358 
   1359   // Part of binary is determined by TableGn.
   1360   unsigned Binary = getBinaryCodeForInstr(MI);
   1361 
   1362   if (MCID.getOpcode() == ARM::LDMIA_RET) {
   1363     IsUpdating = true;
   1364     Binary |= 0x8B00000;
   1365   }
   1366 
   1367   // Set the conditional execution predicate
   1368   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1369 
   1370   // Skip operand 0 of an instruction with base register update.
   1371   unsigned OpIdx = 0;
   1372   if (IsUpdating)
   1373     ++OpIdx;
   1374 
   1375   // Set base address operand
   1376   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1377 
   1378   // Set addressing mode by modifying bits U(23) and P(24)
   1379   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
   1380   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
   1381 
   1382   // Set bit W(21)
   1383   if (IsUpdating)
   1384     Binary |= 0x1 << ARMII::W_BitShift;
   1385 
   1386   // Set registers
   1387   for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
   1388     const MachineOperand &MO = MI.getOperand(i);
   1389     if (!MO.isReg() || MO.isImplicit())
   1390       break;
   1391     unsigned RegNum = getARMRegisterNumbering(MO.getReg());
   1392     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
   1393            RegNum < 16);
   1394     Binary |= 0x1 << RegNum;
   1395   }
   1396 
   1397   emitWordLE(Binary);
   1398 }
   1399 
   1400 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
   1401   const MCInstrDesc &MCID = MI.getDesc();
   1402 
   1403   // Part of binary is determined by TableGn.
   1404   unsigned Binary = getBinaryCodeForInstr(MI);
   1405 
   1406   // Set the conditional execution predicate
   1407   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1408 
   1409   // Encode S bit if MI modifies CPSR.
   1410   Binary |= getAddrModeSBit(MI, MCID);
   1411 
   1412   // 32x32->64bit operations have two destination registers. The number
   1413   // of register definitions will tell us if that's what we're dealing with.
   1414   unsigned OpIdx = 0;
   1415   if (MCID.getNumDefs() == 2)
   1416     Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
   1417 
   1418   // Encode Rd
   1419   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
   1420 
   1421   // Encode Rm
   1422   Binary |= getMachineOpValue(MI, OpIdx++);
   1423 
   1424   // Encode Rs
   1425   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
   1426 
   1427   // Many multiple instructions (e.g. MLA) have three src operands. Encode
   1428   // it as Rn (for multiply, that's in the same offset as RdLo.
   1429   if (MCID.getNumOperands() > OpIdx &&
   1430       !MCID.OpInfo[OpIdx].isPredicate() &&
   1431       !MCID.OpInfo[OpIdx].isOptionalDef())
   1432     Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
   1433 
   1434   emitWordLE(Binary);
   1435 }
   1436 
   1437 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
   1438   const MCInstrDesc &MCID = MI.getDesc();
   1439 
   1440   // Part of binary is determined by TableGn.
   1441   unsigned Binary = getBinaryCodeForInstr(MI);
   1442 
   1443   // Set the conditional execution predicate
   1444   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1445 
   1446   unsigned OpIdx = 0;
   1447 
   1448   // Encode Rd
   1449   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1450 
   1451   const MachineOperand &MO1 = MI.getOperand(OpIdx++);
   1452   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1453   if (MO2.isReg()) {
   1454     // Two register operand form.
   1455     // Encode Rn.
   1456     Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
   1457 
   1458     // Encode Rm.
   1459     Binary |= getMachineOpValue(MI, MO2);
   1460     ++OpIdx;
   1461   } else {
   1462     Binary |= getMachineOpValue(MI, MO1);
   1463   }
   1464 
   1465   // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
   1466   if (MI.getOperand(OpIdx).isImm() &&
   1467       !MCID.OpInfo[OpIdx].isPredicate() &&
   1468       !MCID.OpInfo[OpIdx].isOptionalDef())
   1469     Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
   1470 
   1471   emitWordLE(Binary);
   1472 }
   1473 
   1474 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
   1475   const MCInstrDesc &MCID = MI.getDesc();
   1476 
   1477   // Part of binary is determined by TableGn.
   1478   unsigned Binary = getBinaryCodeForInstr(MI);
   1479 
   1480   // Set the conditional execution predicate
   1481   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1482 
   1483   // PKH instructions are finished at this point
   1484   if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
   1485     emitWordLE(Binary);
   1486     return;
   1487   }
   1488 
   1489   unsigned OpIdx = 0;
   1490 
   1491   // Encode Rd
   1492   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1493 
   1494   const MachineOperand &MO = MI.getOperand(OpIdx++);
   1495   if (OpIdx == MCID.getNumOperands() ||
   1496       MCID.OpInfo[OpIdx].isPredicate() ||
   1497       MCID.OpInfo[OpIdx].isOptionalDef()) {
   1498     // Encode Rm and it's done.
   1499     Binary |= getMachineOpValue(MI, MO);
   1500     emitWordLE(Binary);
   1501     return;
   1502   }
   1503 
   1504   // Encode Rn.
   1505   Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
   1506 
   1507   // Encode Rm.
   1508   Binary |= getMachineOpValue(MI, OpIdx++);
   1509 
   1510   // Encode shift_imm.
   1511   unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
   1512   if (MCID.Opcode == ARM::PKHTB) {
   1513     assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
   1514     if (ShiftAmt == 32)
   1515       ShiftAmt = 0;
   1516   }
   1517   assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
   1518   Binary |= ShiftAmt << ARMII::ShiftShift;
   1519 
   1520   emitWordLE(Binary);
   1521 }
   1522 
   1523 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
   1524   const MCInstrDesc &MCID = MI.getDesc();
   1525 
   1526   // Part of binary is determined by TableGen.
   1527   unsigned Binary = getBinaryCodeForInstr(MI);
   1528 
   1529   // Set the conditional execution predicate
   1530   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1531 
   1532   // Encode Rd
   1533   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
   1534 
   1535   // Encode saturate bit position.
   1536   unsigned Pos = MI.getOperand(1).getImm();
   1537   if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
   1538     Pos -= 1;
   1539   assert((Pos < 16 || (Pos < 32 &&
   1540                        MCID.Opcode != ARM::SSAT16 &&
   1541                        MCID.Opcode != ARM::USAT16)) &&
   1542          "saturate bit position out of range");
   1543   Binary |= Pos << 16;
   1544 
   1545   // Encode Rm
   1546   Binary |= getMachineOpValue(MI, 2);
   1547 
   1548   // Encode shift_imm.
   1549   if (MCID.getNumOperands() == 4) {
   1550     unsigned ShiftOp = MI.getOperand(3).getImm();
   1551     ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
   1552     if (Opc == ARM_AM::asr)
   1553       Binary |= (1 << 6);
   1554     unsigned ShiftAmt = MI.getOperand(3).getImm();
   1555     if (ShiftAmt == 32 && Opc == ARM_AM::asr)
   1556       ShiftAmt = 0;
   1557     assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
   1558     Binary |= ShiftAmt << ARMII::ShiftShift;
   1559   }
   1560 
   1561   emitWordLE(Binary);
   1562 }
   1563 
   1564 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
   1565   const MCInstrDesc &MCID = MI.getDesc();
   1566 
   1567   if (MCID.Opcode == ARM::TPsoft) {
   1568     llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
   1569   }
   1570 
   1571   // Part of binary is determined by TableGn.
   1572   unsigned Binary = getBinaryCodeForInstr(MI);
   1573 
   1574   if (MCID.Opcode == ARM::B) {
   1575     Binary = 0xEA000000;
   1576   }
   1577 
   1578   // Set the conditional execution predicate
   1579   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1580 
   1581   // Set signed_immed_24 field
   1582   Binary |= getMachineOpValue(MI, 0);
   1583 
   1584   emitWordLE(Binary);
   1585 }
   1586 
   1587 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
   1588   // Remember the base address of the inline jump table.
   1589   uintptr_t JTBase = MCE.getCurrentPCValue();
   1590   JTI->addJumpTableBaseAddr(JTIndex, JTBase);
   1591   DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
   1592                << '\n');
   1593 
   1594   // Now emit the jump table entries.
   1595   const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
   1596   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   1597     if (IsPIC)
   1598       // DestBB address - JT base.
   1599       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
   1600     else
   1601       // Absolute DestBB address.
   1602       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
   1603     emitWordLE(0);
   1604   }
   1605 }
   1606 
   1607 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
   1608   const MCInstrDesc &MCID = MI.getDesc();
   1609 
   1610   // Handle jump tables.
   1611   if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
   1612     // First emit a ldr pc, [] instruction.
   1613     emitDataProcessingInstruction(MI, ARM::PC);
   1614 
   1615     // Then emit the inline jump table.
   1616     unsigned JTIndex =
   1617       (MCID.Opcode == ARM::BR_JTr)
   1618       ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
   1619     emitInlineJumpTable(JTIndex);
   1620     return;
   1621   } else if (MCID.Opcode == ARM::BR_JTm) {
   1622     // First emit a ldr pc, [] instruction.
   1623     emitLoadStoreInstruction(MI, ARM::PC);
   1624 
   1625     // Then emit the inline jump table.
   1626     emitInlineJumpTable(MI.getOperand(3).getIndex());
   1627     return;
   1628   }
   1629 
   1630   // Part of binary is determined by TableGn.
   1631   unsigned Binary = getBinaryCodeForInstr(MI);
   1632 
   1633   // Set the conditional execution predicate
   1634   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1635 
   1636   if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
   1637     // The return register is LR.
   1638     Binary |= getARMRegisterNumbering(ARM::LR);
   1639   else
   1640     // otherwise, set the return register
   1641     Binary |= getMachineOpValue(MI, 0);
   1642 
   1643   emitWordLE(Binary);
   1644 }
   1645 
   1646 static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
   1647   unsigned RegD = MI.getOperand(OpIdx).getReg();
   1648   unsigned Binary = 0;
   1649   bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
   1650   RegD = getARMRegisterNumbering(RegD);
   1651   if (!isSPVFP) {
   1652     Binary |=  (RegD & 0x0F)       << ARMII::RegRdShift;
   1653     Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
   1654   } else {
   1655     Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
   1656     Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
   1657   }
   1658   return Binary;
   1659 }
   1660 
   1661 static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
   1662   unsigned RegN = MI.getOperand(OpIdx).getReg();
   1663   unsigned Binary = 0;
   1664   bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
   1665   RegN = getARMRegisterNumbering(RegN);
   1666   if (!isSPVFP) {
   1667     Binary |=  (RegN & 0x0F)       << ARMII::RegRnShift;
   1668     Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
   1669   } else {
   1670     Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
   1671     Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
   1672   }
   1673   return Binary;
   1674 }
   1675 
   1676 static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
   1677   unsigned RegM = MI.getOperand(OpIdx).getReg();
   1678   unsigned Binary = 0;
   1679   bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
   1680   RegM = getARMRegisterNumbering(RegM);
   1681   if (!isSPVFP) {
   1682     Binary |=  (RegM & 0x0F);
   1683     Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
   1684   } else {
   1685     Binary |= ((RegM & 0x1E) >> 1);
   1686     Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
   1687   }
   1688   return Binary;
   1689 }
   1690 
   1691 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
   1692   const MCInstrDesc &MCID = MI.getDesc();
   1693 
   1694   // Part of binary is determined by TableGn.
   1695   unsigned Binary = getBinaryCodeForInstr(MI);
   1696 
   1697   // Set the conditional execution predicate
   1698   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1699 
   1700   unsigned OpIdx = 0;
   1701 
   1702   // Encode Dd / Sd.
   1703   Binary |= encodeVFPRd(MI, OpIdx++);
   1704 
   1705   // If this is a two-address operand, skip it, e.g. FMACD.
   1706   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1707     ++OpIdx;
   1708 
   1709   // Encode Dn / Sn.
   1710   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
   1711     Binary |= encodeVFPRn(MI, OpIdx++);
   1712 
   1713   if (OpIdx == MCID.getNumOperands() ||
   1714       MCID.OpInfo[OpIdx].isPredicate() ||
   1715       MCID.OpInfo[OpIdx].isOptionalDef()) {
   1716     // FCMPEZD etc. has only one operand.
   1717     emitWordLE(Binary);
   1718     return;
   1719   }
   1720 
   1721   // Encode Dm / Sm.
   1722   Binary |= encodeVFPRm(MI, OpIdx);
   1723 
   1724   emitWordLE(Binary);
   1725 }
   1726 
   1727 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
   1728   const MCInstrDesc &MCID = MI.getDesc();
   1729   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1730 
   1731   // Part of binary is determined by TableGn.
   1732   unsigned Binary = getBinaryCodeForInstr(MI);
   1733 
   1734   // Set the conditional execution predicate
   1735   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1736 
   1737   switch (Form) {
   1738   default: break;
   1739   case ARMII::VFPConv1Frm:
   1740   case ARMII::VFPConv2Frm:
   1741   case ARMII::VFPConv3Frm:
   1742     // Encode Dd / Sd.
   1743     Binary |= encodeVFPRd(MI, 0);
   1744     break;
   1745   case ARMII::VFPConv4Frm:
   1746     // Encode Dn / Sn.
   1747     Binary |= encodeVFPRn(MI, 0);
   1748     break;
   1749   case ARMII::VFPConv5Frm:
   1750     // Encode Dm / Sm.
   1751     Binary |= encodeVFPRm(MI, 0);
   1752     break;
   1753   }
   1754 
   1755   switch (Form) {
   1756   default: break;
   1757   case ARMII::VFPConv1Frm:
   1758     // Encode Dm / Sm.
   1759     Binary |= encodeVFPRm(MI, 1);
   1760     break;
   1761   case ARMII::VFPConv2Frm:
   1762   case ARMII::VFPConv3Frm:
   1763     // Encode Dn / Sn.
   1764     Binary |= encodeVFPRn(MI, 1);
   1765     break;
   1766   case ARMII::VFPConv4Frm:
   1767   case ARMII::VFPConv5Frm:
   1768     // Encode Dd / Sd.
   1769     Binary |= encodeVFPRd(MI, 1);
   1770     break;
   1771   }
   1772 
   1773   if (Form == ARMII::VFPConv5Frm)
   1774     // Encode Dn / Sn.
   1775     Binary |= encodeVFPRn(MI, 2);
   1776   else if (Form == ARMII::VFPConv3Frm)
   1777     // Encode Dm / Sm.
   1778     Binary |= encodeVFPRm(MI, 2);
   1779 
   1780   emitWordLE(Binary);
   1781 }
   1782 
   1783 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
   1784   // Part of binary is determined by TableGn.
   1785   unsigned Binary = getBinaryCodeForInstr(MI);
   1786 
   1787   // Set the conditional execution predicate
   1788   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1789 
   1790   if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
   1791       MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
   1792     emitWordLE(Binary);
   1793     return;
   1794   }
   1795 
   1796   unsigned OpIdx = 0;
   1797 
   1798   // Encode Dd / Sd.
   1799   Binary |= encodeVFPRd(MI, OpIdx++);
   1800 
   1801   // Encode address base.
   1802   const MachineOperand &Base = MI.getOperand(OpIdx++);
   1803   Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
   1804 
   1805   // If there is a non-zero immediate offset, encode it.
   1806   if (Base.isReg()) {
   1807     const MachineOperand &Offset = MI.getOperand(OpIdx);
   1808     if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
   1809       if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
   1810         Binary |= 1 << ARMII::U_BitShift;
   1811       Binary |= ImmOffs;
   1812       emitWordLE(Binary);
   1813       return;
   1814     }
   1815   }
   1816 
   1817   // If immediate offset is omitted, default to +0.
   1818   Binary |= 1 << ARMII::U_BitShift;
   1819 
   1820   emitWordLE(Binary);
   1821 }
   1822 
   1823 void
   1824 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
   1825   const MCInstrDesc &MCID = MI.getDesc();
   1826   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1827 
   1828   // Part of binary is determined by TableGn.
   1829   unsigned Binary = getBinaryCodeForInstr(MI);
   1830 
   1831   // Set the conditional execution predicate
   1832   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1833 
   1834   // Skip operand 0 of an instruction with base register update.
   1835   unsigned OpIdx = 0;
   1836   if (IsUpdating)
   1837     ++OpIdx;
   1838 
   1839   // Set base address operand
   1840   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1841 
   1842   // Set addressing mode by modifying bits U(23) and P(24)
   1843   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
   1844   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
   1845 
   1846   // Set bit W(21)
   1847   if (IsUpdating)
   1848     Binary |= 0x1 << ARMII::W_BitShift;
   1849 
   1850   // First register is encoded in Dd.
   1851   Binary |= encodeVFPRd(MI, OpIdx+2);
   1852 
   1853   // Count the number of registers.
   1854   unsigned NumRegs = 1;
   1855   for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
   1856     const MachineOperand &MO = MI.getOperand(i);
   1857     if (!MO.isReg() || MO.isImplicit())
   1858       break;
   1859     ++NumRegs;
   1860   }
   1861   // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
   1862   // Otherwise, it will be 0, in the case of 32-bit registers.
   1863   if(Binary & 0x100)
   1864     Binary |= NumRegs * 2;
   1865   else
   1866     Binary |= NumRegs;
   1867 
   1868   emitWordLE(Binary);
   1869 }
   1870 
   1871 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
   1872   unsigned Opcode = MI.getDesc().Opcode;
   1873   // Part of binary is determined by TableGn.
   1874   unsigned Binary = getBinaryCodeForInstr(MI);
   1875 
   1876   if (Opcode == ARM::FCONSTS) {
   1877     unsigned Imm = getMachineOpValue(MI, 1);
   1878     Binary &= ~(0x780000 >> 19);
   1879     Binary |= (Imm & 0x780000) >> 19;
   1880     Binary &= ~(0x3800000 >> 7);
   1881     Binary |= (Imm & 0x3800000) >> 7;
   1882     Binary = VFPThumb2PostEncoder(MI, Binary);
   1883   }
   1884 
   1885   // Set the conditional execution predicate
   1886   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1887 
   1888   emitWordLE(Binary);
   1889 }
   1890 
   1891 static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
   1892   unsigned RegD = MI.getOperand(OpIdx).getReg();
   1893   unsigned Binary = 0;
   1894   RegD = getARMRegisterNumbering(RegD);
   1895   Binary |= (RegD & 0xf) << ARMII::RegRdShift;
   1896   Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
   1897   return Binary;
   1898 }
   1899 
   1900 static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
   1901   unsigned RegN = MI.getOperand(OpIdx).getReg();
   1902   unsigned Binary = 0;
   1903   RegN = getARMRegisterNumbering(RegN);
   1904   Binary |= (RegN & 0xf) << ARMII::RegRnShift;
   1905   Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
   1906   return Binary;
   1907 }
   1908 
   1909 static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
   1910   unsigned RegM = MI.getOperand(OpIdx).getReg();
   1911   unsigned Binary = 0;
   1912   RegM = getARMRegisterNumbering(RegM);
   1913   Binary |= (RegM & 0xf);
   1914   Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
   1915   return Binary;
   1916 }
   1917 
   1918 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
   1919 /// data-processing instruction to the corresponding Thumb encoding.
   1920 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
   1921   assert((Binary & 0xfe000000) == 0xf2000000 &&
   1922          "not an ARM NEON data-processing instruction");
   1923   unsigned UBit = (Binary >> 24) & 1;
   1924   return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
   1925 }
   1926 
   1927 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
   1928   unsigned Binary = getBinaryCodeForInstr(MI);
   1929 
   1930   unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
   1931   const MCInstrDesc &MCID = MI.getDesc();
   1932   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
   1933     RegTOpIdx = 0;
   1934     RegNOpIdx = 1;
   1935     LnOpIdx = 2;
   1936   } else { // ARMII::NSetLnFrm
   1937     RegTOpIdx = 2;
   1938     RegNOpIdx = 0;
   1939     LnOpIdx = 3;
   1940   }
   1941 
   1942   // Set the conditional execution predicate
   1943   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
   1944 
   1945   unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
   1946   RegT = getARMRegisterNumbering(RegT);
   1947   Binary |= (RegT << ARMII::RegRdShift);
   1948   Binary |= encodeNEONRn(MI, RegNOpIdx);
   1949 
   1950   unsigned LaneShift;
   1951   if ((Binary & (1 << 22)) != 0)
   1952     LaneShift = 0; // 8-bit elements
   1953   else if ((Binary & (1 << 5)) != 0)
   1954     LaneShift = 1; // 16-bit elements
   1955   else
   1956     LaneShift = 2; // 32-bit elements
   1957 
   1958   unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
   1959   unsigned Opc1 = Lane >> 2;
   1960   unsigned Opc2 = Lane & 3;
   1961   assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
   1962   Binary |= (Opc1 << 21);
   1963   Binary |= (Opc2 << 5);
   1964 
   1965   emitWordLE(Binary);
   1966 }
   1967 
   1968 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
   1969   unsigned Binary = getBinaryCodeForInstr(MI);
   1970 
   1971   // Set the conditional execution predicate
   1972   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
   1973 
   1974   unsigned RegT = MI.getOperand(1).getReg();
   1975   RegT = getARMRegisterNumbering(RegT);
   1976   Binary |= (RegT << ARMII::RegRdShift);
   1977   Binary |= encodeNEONRn(MI, 0);
   1978   emitWordLE(Binary);
   1979 }
   1980 
   1981 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
   1982   unsigned Binary = getBinaryCodeForInstr(MI);
   1983   // Destination register is encoded in Dd.
   1984   Binary |= encodeNEONRd(MI, 0);
   1985   // Immediate fields: Op, Cmode, I, Imm3, Imm4
   1986   unsigned Imm = MI.getOperand(1).getImm();
   1987   unsigned Op = (Imm >> 12) & 1;
   1988   unsigned Cmode = (Imm >> 8) & 0xf;
   1989   unsigned I = (Imm >> 7) & 1;
   1990   unsigned Imm3 = (Imm >> 4) & 0x7;
   1991   unsigned Imm4 = Imm & 0xf;
   1992   Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
   1993   if (IsThumb)
   1994     Binary = convertNEONDataProcToThumb(Binary);
   1995   emitWordLE(Binary);
   1996 }
   1997 
   1998 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
   1999   const MCInstrDesc &MCID = MI.getDesc();
   2000   unsigned Binary = getBinaryCodeForInstr(MI);
   2001   // Destination register is encoded in Dd; source register in Dm.
   2002   unsigned OpIdx = 0;
   2003   Binary |= encodeNEONRd(MI, OpIdx++);
   2004   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2005     ++OpIdx;
   2006   Binary |= encodeNEONRm(MI, OpIdx);
   2007   if (IsThumb)
   2008     Binary = convertNEONDataProcToThumb(Binary);
   2009   // FIXME: This does not handle VDUPfdf or VDUPfqf.
   2010   emitWordLE(Binary);
   2011 }
   2012 
   2013 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
   2014   const MCInstrDesc &MCID = MI.getDesc();
   2015   unsigned Binary = getBinaryCodeForInstr(MI);
   2016   // Destination register is encoded in Dd; source registers in Dn and Dm.
   2017   unsigned OpIdx = 0;
   2018   Binary |= encodeNEONRd(MI, OpIdx++);
   2019   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2020     ++OpIdx;
   2021   Binary |= encodeNEONRn(MI, OpIdx++);
   2022   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2023     ++OpIdx;
   2024   Binary |= encodeNEONRm(MI, OpIdx);
   2025   if (IsThumb)
   2026     Binary = convertNEONDataProcToThumb(Binary);
   2027   // FIXME: This does not handle VMOVDneon or VMOVQ.
   2028   emitWordLE(Binary);
   2029 }
   2030 
   2031 #include "ARMGenCodeEmitter.inc"
   2032