Home | History | Annotate | Download | only in Scalar
      1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates commutative expressions in an order that is designed
     11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
     12 //
     13 // For example: 4 + (x + 5) -> x + (4 + 5)
     14 //
     15 // In the implementation of this algorithm, constants are assigned rank = 0,
     16 // function arguments are rank = 1, and other values are assigned ranks
     17 // corresponding to the reverse post order traversal of current function
     18 // (starting at 2), which effectively gives values in deep loops higher rank
     19 // than values not in loops.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #define DEBUG_TYPE "reassociate"
     24 #include "llvm/Transforms/Scalar.h"
     25 #include "llvm/Transforms/Utils/Local.h"
     26 #include "llvm/Constants.h"
     27 #include "llvm/DerivedTypes.h"
     28 #include "llvm/Function.h"
     29 #include "llvm/Instructions.h"
     30 #include "llvm/IntrinsicInst.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Assembly/Writer.h"
     33 #include "llvm/Support/CFG.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ValueHandle.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/ADT/PostOrderIterator.h"
     38 #include "llvm/ADT/Statistic.h"
     39 #include "llvm/ADT/DenseMap.h"
     40 #include <algorithm>
     41 using namespace llvm;
     42 
     43 STATISTIC(NumLinear , "Number of insts linearized");
     44 STATISTIC(NumChanged, "Number of insts reassociated");
     45 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
     46 STATISTIC(NumFactor , "Number of multiplies factored");
     47 
     48 namespace {
     49   struct ValueEntry {
     50     unsigned Rank;
     51     Value *Op;
     52     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
     53   };
     54   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
     55     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
     56   }
     57 }
     58 
     59 #ifndef NDEBUG
     60 /// PrintOps - Print out the expression identified in the Ops list.
     61 ///
     62 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
     63   Module *M = I->getParent()->getParent()->getParent();
     64   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
     65        << *Ops[0].Op->getType() << '\t';
     66   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     67     dbgs() << "[ ";
     68     WriteAsOperand(dbgs(), Ops[i].Op, false, M);
     69     dbgs() << ", #" << Ops[i].Rank << "] ";
     70   }
     71 }
     72 #endif
     73 
     74 namespace {
     75   class Reassociate : public FunctionPass {
     76     DenseMap<BasicBlock*, unsigned> RankMap;
     77     DenseMap<AssertingVH<>, unsigned> ValueRankMap;
     78     SmallVector<WeakVH, 8> RedoInsts;
     79     SmallVector<WeakVH, 8> DeadInsts;
     80     bool MadeChange;
     81   public:
     82     static char ID; // Pass identification, replacement for typeid
     83     Reassociate() : FunctionPass(ID) {
     84       initializeReassociatePass(*PassRegistry::getPassRegistry());
     85     }
     86 
     87     bool runOnFunction(Function &F);
     88 
     89     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     90       AU.setPreservesCFG();
     91     }
     92   private:
     93     void BuildRankMap(Function &F);
     94     unsigned getRank(Value *V);
     95     Value *ReassociateExpression(BinaryOperator *I);
     96     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
     97                          unsigned Idx = 0);
     98     Value *OptimizeExpression(BinaryOperator *I,
     99                               SmallVectorImpl<ValueEntry> &Ops);
    100     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    101     void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    102     void LinearizeExpr(BinaryOperator *I);
    103     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
    104     void ReassociateInst(BasicBlock::iterator &BBI);
    105 
    106     void RemoveDeadBinaryOp(Value *V);
    107   };
    108 }
    109 
    110 char Reassociate::ID = 0;
    111 INITIALIZE_PASS(Reassociate, "reassociate",
    112                 "Reassociate expressions", false, false)
    113 
    114 // Public interface to the Reassociate pass
    115 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
    116 
    117 void Reassociate::RemoveDeadBinaryOp(Value *V) {
    118   Instruction *Op = dyn_cast<Instruction>(V);
    119   if (!Op || !isa<BinaryOperator>(Op))
    120     return;
    121 
    122   Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
    123 
    124   ValueRankMap.erase(Op);
    125   DeadInsts.push_back(Op);
    126   RemoveDeadBinaryOp(LHS);
    127   RemoveDeadBinaryOp(RHS);
    128 }
    129 
    130 
    131 static bool isUnmovableInstruction(Instruction *I) {
    132   if (I->getOpcode() == Instruction::PHI ||
    133       I->getOpcode() == Instruction::Alloca ||
    134       I->getOpcode() == Instruction::Load ||
    135       I->getOpcode() == Instruction::Invoke ||
    136       (I->getOpcode() == Instruction::Call &&
    137        !isa<DbgInfoIntrinsic>(I)) ||
    138       I->getOpcode() == Instruction::UDiv ||
    139       I->getOpcode() == Instruction::SDiv ||
    140       I->getOpcode() == Instruction::FDiv ||
    141       I->getOpcode() == Instruction::URem ||
    142       I->getOpcode() == Instruction::SRem ||
    143       I->getOpcode() == Instruction::FRem)
    144     return true;
    145   return false;
    146 }
    147 
    148 void Reassociate::BuildRankMap(Function &F) {
    149   unsigned i = 2;
    150 
    151   // Assign distinct ranks to function arguments
    152   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    153     ValueRankMap[&*I] = ++i;
    154 
    155   ReversePostOrderTraversal<Function*> RPOT(&F);
    156   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
    157          E = RPOT.end(); I != E; ++I) {
    158     BasicBlock *BB = *I;
    159     unsigned BBRank = RankMap[BB] = ++i << 16;
    160 
    161     // Walk the basic block, adding precomputed ranks for any instructions that
    162     // we cannot move.  This ensures that the ranks for these instructions are
    163     // all different in the block.
    164     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    165       if (isUnmovableInstruction(I))
    166         ValueRankMap[&*I] = ++BBRank;
    167   }
    168 }
    169 
    170 unsigned Reassociate::getRank(Value *V) {
    171   Instruction *I = dyn_cast<Instruction>(V);
    172   if (I == 0) {
    173     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    174     return 0;  // Otherwise it's a global or constant, rank 0.
    175   }
    176 
    177   if (unsigned Rank = ValueRankMap[I])
    178     return Rank;    // Rank already known?
    179 
    180   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
    181   // we can reassociate expressions for code motion!  Since we do not recurse
    182   // for PHI nodes, we cannot have infinite recursion here, because there
    183   // cannot be loops in the value graph that do not go through PHI nodes.
    184   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
    185   for (unsigned i = 0, e = I->getNumOperands();
    186        i != e && Rank != MaxRank; ++i)
    187     Rank = std::max(Rank, getRank(I->getOperand(i)));
    188 
    189   // If this is a not or neg instruction, do not count it for rank.  This
    190   // assures us that X and ~X will have the same rank.
    191   if (!I->getType()->isIntegerTy() ||
    192       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
    193     ++Rank;
    194 
    195   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
    196   //     << Rank << "\n");
    197 
    198   return ValueRankMap[I] = Rank;
    199 }
    200 
    201 /// isReassociableOp - Return true if V is an instruction of the specified
    202 /// opcode and if it only has one use.
    203 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
    204   if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
    205       cast<Instruction>(V)->getOpcode() == Opcode)
    206     return cast<BinaryOperator>(V);
    207   return 0;
    208 }
    209 
    210 /// LowerNegateToMultiply - Replace 0-X with X*-1.
    211 ///
    212 static Instruction *LowerNegateToMultiply(Instruction *Neg,
    213                               DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
    214   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
    215 
    216   Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
    217   ValueRankMap.erase(Neg);
    218   Res->takeName(Neg);
    219   Neg->replaceAllUsesWith(Res);
    220   Res->setDebugLoc(Neg->getDebugLoc());
    221   Neg->eraseFromParent();
    222   return Res;
    223 }
    224 
    225 // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
    226 // Note that if D is also part of the expression tree that we recurse to
    227 // linearize it as well.  Besides that case, this does not recurse into A,B, or
    228 // C.
    229 void Reassociate::LinearizeExpr(BinaryOperator *I) {
    230   BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
    231   BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
    232   assert(isReassociableOp(LHS, I->getOpcode()) &&
    233          isReassociableOp(RHS, I->getOpcode()) &&
    234          "Not an expression that needs linearization?");
    235 
    236   DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
    237 
    238   // Move the RHS instruction to live immediately before I, avoiding breaking
    239   // dominator properties.
    240   RHS->moveBefore(I);
    241 
    242   // Move operands around to do the linearization.
    243   I->setOperand(1, RHS->getOperand(0));
    244   RHS->setOperand(0, LHS);
    245   I->setOperand(0, RHS);
    246 
    247   // Conservatively clear all the optional flags, which may not hold
    248   // after the reassociation.
    249   I->clearSubclassOptionalData();
    250   LHS->clearSubclassOptionalData();
    251   RHS->clearSubclassOptionalData();
    252 
    253   ++NumLinear;
    254   MadeChange = true;
    255   DEBUG(dbgs() << "Linearized: " << *I << '\n');
    256 
    257   // If D is part of this expression tree, tail recurse.
    258   if (isReassociableOp(I->getOperand(1), I->getOpcode()))
    259     LinearizeExpr(I);
    260 }
    261 
    262 
    263 /// LinearizeExprTree - Given an associative binary expression tree, traverse
    264 /// all of the uses putting it into canonical form.  This forces a left-linear
    265 /// form of the expression (((a+b)+c)+d), and collects information about the
    266 /// rank of the non-tree operands.
    267 ///
    268 /// NOTE: These intentionally destroys the expression tree operands (turning
    269 /// them into undef values) to reduce #uses of the values.  This means that the
    270 /// caller MUST use something like RewriteExprTree to put the values back in.
    271 ///
    272 void Reassociate::LinearizeExprTree(BinaryOperator *I,
    273                                     SmallVectorImpl<ValueEntry> &Ops) {
    274   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
    275   unsigned Opcode = I->getOpcode();
    276 
    277   // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
    278   BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
    279   BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
    280 
    281   // If this is a multiply expression tree and it contains internal negations,
    282   // transform them into multiplies by -1 so they can be reassociated.
    283   if (I->getOpcode() == Instruction::Mul) {
    284     if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
    285       LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
    286       LHSBO = isReassociableOp(LHS, Opcode);
    287     }
    288     if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
    289       RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
    290       RHSBO = isReassociableOp(RHS, Opcode);
    291     }
    292   }
    293 
    294   if (!LHSBO) {
    295     if (!RHSBO) {
    296       // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
    297       // such, just remember these operands and their rank.
    298       Ops.push_back(ValueEntry(getRank(LHS), LHS));
    299       Ops.push_back(ValueEntry(getRank(RHS), RHS));
    300 
    301       // Clear the leaves out.
    302       I->setOperand(0, UndefValue::get(I->getType()));
    303       I->setOperand(1, UndefValue::get(I->getType()));
    304       return;
    305     }
    306 
    307     // Turn X+(Y+Z) -> (Y+Z)+X
    308     std::swap(LHSBO, RHSBO);
    309     std::swap(LHS, RHS);
    310     bool Success = !I->swapOperands();
    311     assert(Success && "swapOperands failed");
    312     (void)Success;
    313     MadeChange = true;
    314   } else if (RHSBO) {
    315     // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
    316     // part of the expression tree.
    317     LinearizeExpr(I);
    318     LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
    319     RHS = I->getOperand(1);
    320     RHSBO = 0;
    321   }
    322 
    323   // Okay, now we know that the LHS is a nested expression and that the RHS is
    324   // not.  Perform reassociation.
    325   assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
    326 
    327   // Move LHS right before I to make sure that the tree expression dominates all
    328   // values.
    329   LHSBO->moveBefore(I);
    330 
    331   // Linearize the expression tree on the LHS.
    332   LinearizeExprTree(LHSBO, Ops);
    333 
    334   // Remember the RHS operand and its rank.
    335   Ops.push_back(ValueEntry(getRank(RHS), RHS));
    336 
    337   // Clear the RHS leaf out.
    338   I->setOperand(1, UndefValue::get(I->getType()));
    339 }
    340 
    341 // RewriteExprTree - Now that the operands for this expression tree are
    342 // linearized and optimized, emit them in-order.  This function is written to be
    343 // tail recursive.
    344 void Reassociate::RewriteExprTree(BinaryOperator *I,
    345                                   SmallVectorImpl<ValueEntry> &Ops,
    346                                   unsigned i) {
    347   if (i+2 == Ops.size()) {
    348     if (I->getOperand(0) != Ops[i].Op ||
    349         I->getOperand(1) != Ops[i+1].Op) {
    350       Value *OldLHS = I->getOperand(0);
    351       DEBUG(dbgs() << "RA: " << *I << '\n');
    352       I->setOperand(0, Ops[i].Op);
    353       I->setOperand(1, Ops[i+1].Op);
    354 
    355       // Clear all the optional flags, which may not hold after the
    356       // reassociation if the expression involved more than just this operation.
    357       if (Ops.size() != 2)
    358         I->clearSubclassOptionalData();
    359 
    360       DEBUG(dbgs() << "TO: " << *I << '\n');
    361       MadeChange = true;
    362       ++NumChanged;
    363 
    364       // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
    365       // delete the extra, now dead, nodes.
    366       RemoveDeadBinaryOp(OldLHS);
    367     }
    368     return;
    369   }
    370   assert(i+2 < Ops.size() && "Ops index out of range!");
    371 
    372   if (I->getOperand(1) != Ops[i].Op) {
    373     DEBUG(dbgs() << "RA: " << *I << '\n');
    374     I->setOperand(1, Ops[i].Op);
    375 
    376     // Conservatively clear all the optional flags, which may not hold
    377     // after the reassociation.
    378     I->clearSubclassOptionalData();
    379 
    380     DEBUG(dbgs() << "TO: " << *I << '\n');
    381     MadeChange = true;
    382     ++NumChanged;
    383   }
    384 
    385   BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
    386   assert(LHS->getOpcode() == I->getOpcode() &&
    387          "Improper expression tree!");
    388 
    389   // Compactify the tree instructions together with each other to guarantee
    390   // that the expression tree is dominated by all of Ops.
    391   LHS->moveBefore(I);
    392   RewriteExprTree(LHS, Ops, i+1);
    393 }
    394 
    395 
    396 
    397 // NegateValue - Insert instructions before the instruction pointed to by BI,
    398 // that computes the negative version of the value specified.  The negative
    399 // version of the value is returned, and BI is left pointing at the instruction
    400 // that should be processed next by the reassociation pass.
    401 //
    402 static Value *NegateValue(Value *V, Instruction *BI) {
    403   if (Constant *C = dyn_cast<Constant>(V))
    404     return ConstantExpr::getNeg(C);
    405 
    406   // We are trying to expose opportunity for reassociation.  One of the things
    407   // that we want to do to achieve this is to push a negation as deep into an
    408   // expression chain as possible, to expose the add instructions.  In practice,
    409   // this means that we turn this:
    410   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
    411   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
    412   // the constants.  We assume that instcombine will clean up the mess later if
    413   // we introduce tons of unnecessary negation instructions.
    414   //
    415   if (Instruction *I = dyn_cast<Instruction>(V))
    416     if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
    417       // Push the negates through the add.
    418       I->setOperand(0, NegateValue(I->getOperand(0), BI));
    419       I->setOperand(1, NegateValue(I->getOperand(1), BI));
    420 
    421       // We must move the add instruction here, because the neg instructions do
    422       // not dominate the old add instruction in general.  By moving it, we are
    423       // assured that the neg instructions we just inserted dominate the
    424       // instruction we are about to insert after them.
    425       //
    426       I->moveBefore(BI);
    427       I->setName(I->getName()+".neg");
    428       return I;
    429     }
    430 
    431   // Okay, we need to materialize a negated version of V with an instruction.
    432   // Scan the use lists of V to see if we have one already.
    433   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    434     User *U = *UI;
    435     if (!BinaryOperator::isNeg(U)) continue;
    436 
    437     // We found one!  Now we have to make sure that the definition dominates
    438     // this use.  We do this by moving it to the entry block (if it is a
    439     // non-instruction value) or right after the definition.  These negates will
    440     // be zapped by reassociate later, so we don't need much finesse here.
    441     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
    442 
    443     // Verify that the negate is in this function, V might be a constant expr.
    444     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
    445       continue;
    446 
    447     BasicBlock::iterator InsertPt;
    448     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
    449       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
    450         InsertPt = II->getNormalDest()->begin();
    451       } else {
    452         InsertPt = InstInput;
    453         ++InsertPt;
    454       }
    455       while (isa<PHINode>(InsertPt)) ++InsertPt;
    456     } else {
    457       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    458     }
    459     TheNeg->moveBefore(InsertPt);
    460     return TheNeg;
    461   }
    462 
    463   // Insert a 'neg' instruction that subtracts the value from zero to get the
    464   // negation.
    465   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
    466 }
    467 
    468 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
    469 /// X-Y into (X + -Y).
    470 static bool ShouldBreakUpSubtract(Instruction *Sub) {
    471   // If this is a negation, we can't split it up!
    472   if (BinaryOperator::isNeg(Sub))
    473     return false;
    474 
    475   // Don't bother to break this up unless either the LHS is an associable add or
    476   // subtract or if this is only used by one.
    477   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
    478       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
    479     return true;
    480   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
    481       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
    482     return true;
    483   if (Sub->hasOneUse() &&
    484       (isReassociableOp(Sub->use_back(), Instruction::Add) ||
    485        isReassociableOp(Sub->use_back(), Instruction::Sub)))
    486     return true;
    487 
    488   return false;
    489 }
    490 
    491 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
    492 /// only used by an add, transform this into (X+(0-Y)) to promote better
    493 /// reassociation.
    494 static Instruction *BreakUpSubtract(Instruction *Sub,
    495                               DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
    496   // Convert a subtract into an add and a neg instruction. This allows sub
    497   // instructions to be commuted with other add instructions.
    498   //
    499   // Calculate the negative value of Operand 1 of the sub instruction,
    500   // and set it as the RHS of the add instruction we just made.
    501   //
    502   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
    503   Instruction *New =
    504     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
    505   New->takeName(Sub);
    506 
    507   // Everyone now refers to the add instruction.
    508   ValueRankMap.erase(Sub);
    509   Sub->replaceAllUsesWith(New);
    510   New->setDebugLoc(Sub->getDebugLoc());
    511   Sub->eraseFromParent();
    512 
    513   DEBUG(dbgs() << "Negated: " << *New << '\n');
    514   return New;
    515 }
    516 
    517 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
    518 /// by one, change this into a multiply by a constant to assist with further
    519 /// reassociation.
    520 static Instruction *ConvertShiftToMul(Instruction *Shl,
    521                               DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
    522   // If an operand of this shift is a reassociable multiply, or if the shift
    523   // is used by a reassociable multiply or add, turn into a multiply.
    524   if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
    525       (Shl->hasOneUse() &&
    526        (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
    527         isReassociableOp(Shl->use_back(), Instruction::Add)))) {
    528     Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
    529     MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
    530 
    531     Instruction *Mul =
    532       BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
    533     ValueRankMap.erase(Shl);
    534     Mul->takeName(Shl);
    535     Shl->replaceAllUsesWith(Mul);
    536     Mul->setDebugLoc(Shl->getDebugLoc());
    537     Shl->eraseFromParent();
    538     return Mul;
    539   }
    540   return 0;
    541 }
    542 
    543 // Scan backwards and forwards among values with the same rank as element i to
    544 // see if X exists.  If X does not exist, return i.  This is useful when
    545 // scanning for 'x' when we see '-x' because they both get the same rank.
    546 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
    547                                   Value *X) {
    548   unsigned XRank = Ops[i].Rank;
    549   unsigned e = Ops.size();
    550   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
    551     if (Ops[j].Op == X)
    552       return j;
    553   // Scan backwards.
    554   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
    555     if (Ops[j].Op == X)
    556       return j;
    557   return i;
    558 }
    559 
    560 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
    561 /// and returning the result.  Insert the tree before I.
    562 static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
    563   if (Ops.size() == 1) return Ops.back();
    564 
    565   Value *V1 = Ops.back();
    566   Ops.pop_back();
    567   Value *V2 = EmitAddTreeOfValues(I, Ops);
    568   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
    569 }
    570 
    571 /// RemoveFactorFromExpression - If V is an expression tree that is a
    572 /// multiplication sequence, and if this sequence contains a multiply by Factor,
    573 /// remove Factor from the tree and return the new tree.
    574 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
    575   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
    576   if (!BO) return 0;
    577 
    578   SmallVector<ValueEntry, 8> Factors;
    579   LinearizeExprTree(BO, Factors);
    580 
    581   bool FoundFactor = false;
    582   bool NeedsNegate = false;
    583   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
    584     if (Factors[i].Op == Factor) {
    585       FoundFactor = true;
    586       Factors.erase(Factors.begin()+i);
    587       break;
    588     }
    589 
    590     // If this is a negative version of this factor, remove it.
    591     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
    592       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
    593         if (FC1->getValue() == -FC2->getValue()) {
    594           FoundFactor = NeedsNegate = true;
    595           Factors.erase(Factors.begin()+i);
    596           break;
    597         }
    598   }
    599 
    600   if (!FoundFactor) {
    601     // Make sure to restore the operands to the expression tree.
    602     RewriteExprTree(BO, Factors);
    603     return 0;
    604   }
    605 
    606   BasicBlock::iterator InsertPt = BO; ++InsertPt;
    607 
    608   // If this was just a single multiply, remove the multiply and return the only
    609   // remaining operand.
    610   if (Factors.size() == 1) {
    611     ValueRankMap.erase(BO);
    612     DeadInsts.push_back(BO);
    613     V = Factors[0].Op;
    614   } else {
    615     RewriteExprTree(BO, Factors);
    616     V = BO;
    617   }
    618 
    619   if (NeedsNegate)
    620     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
    621 
    622   return V;
    623 }
    624 
    625 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
    626 /// add its operands as factors, otherwise add V to the list of factors.
    627 ///
    628 /// Ops is the top-level list of add operands we're trying to factor.
    629 static void FindSingleUseMultiplyFactors(Value *V,
    630                                          SmallVectorImpl<Value*> &Factors,
    631                                        const SmallVectorImpl<ValueEntry> &Ops,
    632                                          bool IsRoot) {
    633   BinaryOperator *BO;
    634   if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
    635       !(BO = dyn_cast<BinaryOperator>(V)) ||
    636       BO->getOpcode() != Instruction::Mul) {
    637     Factors.push_back(V);
    638     return;
    639   }
    640 
    641   // If this value has a single use because it is another input to the add
    642   // tree we're reassociating and we dropped its use, it actually has two
    643   // uses and we can't factor it.
    644   if (!IsRoot) {
    645     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    646       if (Ops[i].Op == V) {
    647         Factors.push_back(V);
    648         return;
    649       }
    650   }
    651 
    652 
    653   // Otherwise, add the LHS and RHS to the list of factors.
    654   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
    655   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
    656 }
    657 
    658 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
    659 /// instruction.  This optimizes based on identities.  If it can be reduced to
    660 /// a single Value, it is returned, otherwise the Ops list is mutated as
    661 /// necessary.
    662 static Value *OptimizeAndOrXor(unsigned Opcode,
    663                                SmallVectorImpl<ValueEntry> &Ops) {
    664   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
    665   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
    666   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    667     // First, check for X and ~X in the operand list.
    668     assert(i < Ops.size());
    669     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
    670       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
    671       unsigned FoundX = FindInOperandList(Ops, i, X);
    672       if (FoundX != i) {
    673         if (Opcode == Instruction::And)   // ...&X&~X = 0
    674           return Constant::getNullValue(X->getType());
    675 
    676         if (Opcode == Instruction::Or)    // ...|X|~X = -1
    677           return Constant::getAllOnesValue(X->getType());
    678       }
    679     }
    680 
    681     // Next, check for duplicate pairs of values, which we assume are next to
    682     // each other, due to our sorting criteria.
    683     assert(i < Ops.size());
    684     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
    685       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
    686         // Drop duplicate values for And and Or.
    687         Ops.erase(Ops.begin()+i);
    688         --i; --e;
    689         ++NumAnnihil;
    690         continue;
    691       }
    692 
    693       // Drop pairs of values for Xor.
    694       assert(Opcode == Instruction::Xor);
    695       if (e == 2)
    696         return Constant::getNullValue(Ops[0].Op->getType());
    697 
    698       // Y ^ X^X -> Y
    699       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
    700       i -= 1; e -= 2;
    701       ++NumAnnihil;
    702     }
    703   }
    704   return 0;
    705 }
    706 
    707 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
    708 /// optimizes based on identities.  If it can be reduced to a single Value, it
    709 /// is returned, otherwise the Ops list is mutated as necessary.
    710 Value *Reassociate::OptimizeAdd(Instruction *I,
    711                                 SmallVectorImpl<ValueEntry> &Ops) {
    712   // Scan the operand lists looking for X and -X pairs.  If we find any, we
    713   // can simplify the expression. X+-X == 0.  While we're at it, scan for any
    714   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
    715   //
    716   // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
    717   //
    718   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    719     Value *TheOp = Ops[i].Op;
    720     // Check to see if we've seen this operand before.  If so, we factor all
    721     // instances of the operand together.  Due to our sorting criteria, we know
    722     // that these need to be next to each other in the vector.
    723     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
    724       // Rescan the list, remove all instances of this operand from the expr.
    725       unsigned NumFound = 0;
    726       do {
    727         Ops.erase(Ops.begin()+i);
    728         ++NumFound;
    729       } while (i != Ops.size() && Ops[i].Op == TheOp);
    730 
    731       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
    732       ++NumFactor;
    733 
    734       // Insert a new multiply.
    735       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
    736       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
    737 
    738       // Now that we have inserted a multiply, optimize it. This allows us to
    739       // handle cases that require multiple factoring steps, such as this:
    740       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
    741       RedoInsts.push_back(Mul);
    742 
    743       // If every add operand was a duplicate, return the multiply.
    744       if (Ops.empty())
    745         return Mul;
    746 
    747       // Otherwise, we had some input that didn't have the dupe, such as
    748       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
    749       // things being added by this operation.
    750       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
    751 
    752       --i;
    753       e = Ops.size();
    754       continue;
    755     }
    756 
    757     // Check for X and -X in the operand list.
    758     if (!BinaryOperator::isNeg(TheOp))
    759       continue;
    760 
    761     Value *X = BinaryOperator::getNegArgument(TheOp);
    762     unsigned FoundX = FindInOperandList(Ops, i, X);
    763     if (FoundX == i)
    764       continue;
    765 
    766     // Remove X and -X from the operand list.
    767     if (Ops.size() == 2)
    768       return Constant::getNullValue(X->getType());
    769 
    770     Ops.erase(Ops.begin()+i);
    771     if (i < FoundX)
    772       --FoundX;
    773     else
    774       --i;   // Need to back up an extra one.
    775     Ops.erase(Ops.begin()+FoundX);
    776     ++NumAnnihil;
    777     --i;     // Revisit element.
    778     e -= 2;  // Removed two elements.
    779   }
    780 
    781   // Scan the operand list, checking to see if there are any common factors
    782   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
    783   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
    784   // To efficiently find this, we count the number of times a factor occurs
    785   // for any ADD operands that are MULs.
    786   DenseMap<Value*, unsigned> FactorOccurrences;
    787 
    788   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
    789   // where they are actually the same multiply.
    790   unsigned MaxOcc = 0;
    791   Value *MaxOccVal = 0;
    792   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    793     BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
    794     if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
    795       continue;
    796 
    797     // Compute all of the factors of this added value.
    798     SmallVector<Value*, 8> Factors;
    799     FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
    800     assert(Factors.size() > 1 && "Bad linearize!");
    801 
    802     // Add one to FactorOccurrences for each unique factor in this op.
    803     SmallPtrSet<Value*, 8> Duplicates;
    804     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
    805       Value *Factor = Factors[i];
    806       if (!Duplicates.insert(Factor)) continue;
    807 
    808       unsigned Occ = ++FactorOccurrences[Factor];
    809       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
    810 
    811       // If Factor is a negative constant, add the negated value as a factor
    812       // because we can percolate the negate out.  Watch for minint, which
    813       // cannot be positivified.
    814       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
    815         if (CI->isNegative() && !CI->isMinValue(true)) {
    816           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
    817           assert(!Duplicates.count(Factor) &&
    818                  "Shouldn't have two constant factors, missed a canonicalize");
    819 
    820           unsigned Occ = ++FactorOccurrences[Factor];
    821           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
    822         }
    823     }
    824   }
    825 
    826   // If any factor occurred more than one time, we can pull it out.
    827   if (MaxOcc > 1) {
    828     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
    829     ++NumFactor;
    830 
    831     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
    832     // this, we could otherwise run into situations where removing a factor
    833     // from an expression will drop a use of maxocc, and this can cause
    834     // RemoveFactorFromExpression on successive values to behave differently.
    835     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
    836     SmallVector<Value*, 4> NewMulOps;
    837     for (unsigned i = 0; i != Ops.size(); ++i) {
    838       // Only try to remove factors from expressions we're allowed to.
    839       BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
    840       if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
    841         continue;
    842 
    843       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
    844         // The factorized operand may occur several times.  Convert them all in
    845         // one fell swoop.
    846         for (unsigned j = Ops.size(); j != i;) {
    847           --j;
    848           if (Ops[j].Op == Ops[i].Op) {
    849             NewMulOps.push_back(V);
    850             Ops.erase(Ops.begin()+j);
    851           }
    852         }
    853         --i;
    854       }
    855     }
    856 
    857     // No need for extra uses anymore.
    858     delete DummyInst;
    859 
    860     unsigned NumAddedValues = NewMulOps.size();
    861     Value *V = EmitAddTreeOfValues(I, NewMulOps);
    862 
    863     // Now that we have inserted the add tree, optimize it. This allows us to
    864     // handle cases that require multiple factoring steps, such as this:
    865     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
    866     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
    867     (void)NumAddedValues;
    868     V = ReassociateExpression(cast<BinaryOperator>(V));
    869 
    870     // Create the multiply.
    871     Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
    872 
    873     // Rerun associate on the multiply in case the inner expression turned into
    874     // a multiply.  We want to make sure that we keep things in canonical form.
    875     V2 = ReassociateExpression(cast<BinaryOperator>(V2));
    876 
    877     // If every add operand included the factor (e.g. "A*B + A*C"), then the
    878     // entire result expression is just the multiply "A*(B+C)".
    879     if (Ops.empty())
    880       return V2;
    881 
    882     // Otherwise, we had some input that didn't have the factor, such as
    883     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
    884     // things being added by this operation.
    885     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
    886   }
    887 
    888   return 0;
    889 }
    890 
    891 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
    892                                        SmallVectorImpl<ValueEntry> &Ops) {
    893   // Now that we have the linearized expression tree, try to optimize it.
    894   // Start by folding any constants that we found.
    895   bool IterateOptimization = false;
    896   if (Ops.size() == 1) return Ops[0].Op;
    897 
    898   unsigned Opcode = I->getOpcode();
    899 
    900   if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
    901     if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
    902       Ops.pop_back();
    903       Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
    904       return OptimizeExpression(I, Ops);
    905     }
    906 
    907   // Check for destructive annihilation due to a constant being used.
    908   if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
    909     switch (Opcode) {
    910     default: break;
    911     case Instruction::And:
    912       if (CstVal->isZero())                  // X & 0 -> 0
    913         return CstVal;
    914       if (CstVal->isAllOnesValue())          // X & -1 -> X
    915         Ops.pop_back();
    916       break;
    917     case Instruction::Mul:
    918       if (CstVal->isZero()) {                // X * 0 -> 0
    919         ++NumAnnihil;
    920         return CstVal;
    921       }
    922 
    923       if (cast<ConstantInt>(CstVal)->isOne())
    924         Ops.pop_back();                      // X * 1 -> X
    925       break;
    926     case Instruction::Or:
    927       if (CstVal->isAllOnesValue())          // X | -1 -> -1
    928         return CstVal;
    929       // FALLTHROUGH!
    930     case Instruction::Add:
    931     case Instruction::Xor:
    932       if (CstVal->isZero())                  // X [|^+] 0 -> X
    933         Ops.pop_back();
    934       break;
    935     }
    936   if (Ops.size() == 1) return Ops[0].Op;
    937 
    938   // Handle destructive annihilation due to identities between elements in the
    939   // argument list here.
    940   switch (Opcode) {
    941   default: break;
    942   case Instruction::And:
    943   case Instruction::Or:
    944   case Instruction::Xor: {
    945     unsigned NumOps = Ops.size();
    946     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
    947       return Result;
    948     IterateOptimization |= Ops.size() != NumOps;
    949     break;
    950   }
    951 
    952   case Instruction::Add: {
    953     unsigned NumOps = Ops.size();
    954     if (Value *Result = OptimizeAdd(I, Ops))
    955       return Result;
    956     IterateOptimization |= Ops.size() != NumOps;
    957   }
    958 
    959     break;
    960   //case Instruction::Mul:
    961   }
    962 
    963   if (IterateOptimization)
    964     return OptimizeExpression(I, Ops);
    965   return 0;
    966 }
    967 
    968 
    969 /// ReassociateInst - Inspect and reassociate the instruction at the
    970 /// given position, post-incrementing the position.
    971 void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
    972   Instruction *BI = BBI++;
    973   if (BI->getOpcode() == Instruction::Shl &&
    974       isa<ConstantInt>(BI->getOperand(1)))
    975     if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
    976       MadeChange = true;
    977       BI = NI;
    978     }
    979 
    980   // Reject cases where it is pointless to do this.
    981   if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
    982       BI->getType()->isVectorTy())
    983     return;  // Floating point ops are not associative.
    984 
    985   // Do not reassociate boolean (i1) expressions.  We want to preserve the
    986   // original order of evaluation for short-circuited comparisons that
    987   // SimplifyCFG has folded to AND/OR expressions.  If the expression
    988   // is not further optimized, it is likely to be transformed back to a
    989   // short-circuited form for code gen, and the source order may have been
    990   // optimized for the most likely conditions.
    991   if (BI->getType()->isIntegerTy(1))
    992     return;
    993 
    994   // If this is a subtract instruction which is not already in negate form,
    995   // see if we can convert it to X+-Y.
    996   if (BI->getOpcode() == Instruction::Sub) {
    997     if (ShouldBreakUpSubtract(BI)) {
    998       BI = BreakUpSubtract(BI, ValueRankMap);
    999       // Reset the BBI iterator in case BreakUpSubtract changed the
   1000       // instruction it points to.
   1001       BBI = BI;
   1002       ++BBI;
   1003       MadeChange = true;
   1004     } else if (BinaryOperator::isNeg(BI)) {
   1005       // Otherwise, this is a negation.  See if the operand is a multiply tree
   1006       // and if this is not an inner node of a multiply tree.
   1007       if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
   1008           (!BI->hasOneUse() ||
   1009            !isReassociableOp(BI->use_back(), Instruction::Mul))) {
   1010         BI = LowerNegateToMultiply(BI, ValueRankMap);
   1011         MadeChange = true;
   1012       }
   1013     }
   1014   }
   1015 
   1016   // If this instruction is a commutative binary operator, process it.
   1017   if (!BI->isAssociative()) return;
   1018   BinaryOperator *I = cast<BinaryOperator>(BI);
   1019 
   1020   // If this is an interior node of a reassociable tree, ignore it until we
   1021   // get to the root of the tree, to avoid N^2 analysis.
   1022   if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
   1023     return;
   1024 
   1025   // If this is an add tree that is used by a sub instruction, ignore it
   1026   // until we process the subtract.
   1027   if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
   1028       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
   1029     return;
   1030 
   1031   ReassociateExpression(I);
   1032 }
   1033 
   1034 Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
   1035 
   1036   // First, walk the expression tree, linearizing the tree, collecting the
   1037   // operand information.
   1038   SmallVector<ValueEntry, 8> Ops;
   1039   LinearizeExprTree(I, Ops);
   1040 
   1041   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1042 
   1043   // Now that we have linearized the tree to a list and have gathered all of
   1044   // the operands and their ranks, sort the operands by their rank.  Use a
   1045   // stable_sort so that values with equal ranks will have their relative
   1046   // positions maintained (and so the compiler is deterministic).  Note that
   1047   // this sorts so that the highest ranking values end up at the beginning of
   1048   // the vector.
   1049   std::stable_sort(Ops.begin(), Ops.end());
   1050 
   1051   // OptimizeExpression - Now that we have the expression tree in a convenient
   1052   // sorted form, optimize it globally if possible.
   1053   if (Value *V = OptimizeExpression(I, Ops)) {
   1054     // This expression tree simplified to something that isn't a tree,
   1055     // eliminate it.
   1056     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
   1057     I->replaceAllUsesWith(V);
   1058     if (Instruction *VI = dyn_cast<Instruction>(V))
   1059       VI->setDebugLoc(I->getDebugLoc());
   1060     RemoveDeadBinaryOp(I);
   1061     ++NumAnnihil;
   1062     return V;
   1063   }
   1064 
   1065   // We want to sink immediates as deeply as possible except in the case where
   1066   // this is a multiply tree used only by an add, and the immediate is a -1.
   1067   // In this case we reassociate to put the negation on the outside so that we
   1068   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
   1069   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
   1070       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
   1071       isa<ConstantInt>(Ops.back().Op) &&
   1072       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
   1073     ValueEntry Tmp = Ops.pop_back_val();
   1074     Ops.insert(Ops.begin(), Tmp);
   1075   }
   1076 
   1077   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1078 
   1079   if (Ops.size() == 1) {
   1080     // This expression tree simplified to something that isn't a tree,
   1081     // eliminate it.
   1082     I->replaceAllUsesWith(Ops[0].Op);
   1083     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
   1084       OI->setDebugLoc(I->getDebugLoc());
   1085     RemoveDeadBinaryOp(I);
   1086     return Ops[0].Op;
   1087   }
   1088 
   1089   // Now that we ordered and optimized the expressions, splat them back into
   1090   // the expression tree, removing any unneeded nodes.
   1091   RewriteExprTree(I, Ops);
   1092   return I;
   1093 }
   1094 
   1095 
   1096 bool Reassociate::runOnFunction(Function &F) {
   1097   // Recalculate the rank map for F
   1098   BuildRankMap(F);
   1099 
   1100   MadeChange = false;
   1101   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
   1102     for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
   1103       ReassociateInst(BBI);
   1104 
   1105   // Now that we're done, revisit any instructions which are likely to
   1106   // have secondary reassociation opportunities.
   1107   while (!RedoInsts.empty())
   1108     if (Value *V = RedoInsts.pop_back_val()) {
   1109       BasicBlock::iterator BBI = cast<Instruction>(V);
   1110       ReassociateInst(BBI);
   1111     }
   1112 
   1113   // Now that we're done, delete any instructions which are no longer used.
   1114   while (!DeadInsts.empty())
   1115     if (Value *V = DeadInsts.pop_back_val())
   1116       RecursivelyDeleteTriviallyDeadInstructions(V);
   1117 
   1118   // We are done with the rank map.
   1119   RankMap.clear();
   1120   ValueRankMap.clear();
   1121   return MadeChange;
   1122 }
   1123 
   1124