Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the internal per-function state used for llvm translation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
     15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
     16 
     17 #include "clang/AST/Type.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/ExprObjC.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/Frontend/CodeGenOptions.h"
     22 #include "clang/Basic/ABI.h"
     23 #include "clang/Basic/TargetInfo.h"
     24 #include "llvm/ADT/ArrayRef.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/Support/ValueHandle.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "CodeGenModule.h"
     30 #include "CGBuilder.h"
     31 #include "CGDebugInfo.h"
     32 #include "CGValue.h"
     33 
     34 namespace llvm {
     35   class BasicBlock;
     36   class LLVMContext;
     37   class MDNode;
     38   class Module;
     39   class SwitchInst;
     40   class Twine;
     41   class Value;
     42   class CallSite;
     43 }
     44 
     45 namespace clang {
     46   class APValue;
     47   class ASTContext;
     48   class CXXDestructorDecl;
     49   class CXXForRangeStmt;
     50   class CXXTryStmt;
     51   class Decl;
     52   class LabelDecl;
     53   class EnumConstantDecl;
     54   class FunctionDecl;
     55   class FunctionProtoType;
     56   class LabelStmt;
     57   class ObjCContainerDecl;
     58   class ObjCInterfaceDecl;
     59   class ObjCIvarDecl;
     60   class ObjCMethodDecl;
     61   class ObjCImplementationDecl;
     62   class ObjCPropertyImplDecl;
     63   class TargetInfo;
     64   class TargetCodeGenInfo;
     65   class VarDecl;
     66   class ObjCForCollectionStmt;
     67   class ObjCAtTryStmt;
     68   class ObjCAtThrowStmt;
     69   class ObjCAtSynchronizedStmt;
     70   class ObjCAutoreleasePoolStmt;
     71 
     72 namespace CodeGen {
     73   class CodeGenTypes;
     74   class CGFunctionInfo;
     75   class CGRecordLayout;
     76   class CGBlockInfo;
     77   class CGCXXABI;
     78   class BlockFlags;
     79   class BlockFieldFlags;
     80 
     81 /// A branch fixup.  These are required when emitting a goto to a
     82 /// label which hasn't been emitted yet.  The goto is optimistically
     83 /// emitted as a branch to the basic block for the label, and (if it
     84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
     85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
     86 /// unresolved fixups in that scope are threaded through the cleanup.
     87 struct BranchFixup {
     88   /// The block containing the terminator which needs to be modified
     89   /// into a switch if this fixup is resolved into the current scope.
     90   /// If null, LatestBranch points directly to the destination.
     91   llvm::BasicBlock *OptimisticBranchBlock;
     92 
     93   /// The ultimate destination of the branch.
     94   ///
     95   /// This can be set to null to indicate that this fixup was
     96   /// successfully resolved.
     97   llvm::BasicBlock *Destination;
     98 
     99   /// The destination index value.
    100   unsigned DestinationIndex;
    101 
    102   /// The initial branch of the fixup.
    103   llvm::BranchInst *InitialBranch;
    104 };
    105 
    106 template <class T> struct InvariantValue {
    107   typedef T type;
    108   typedef T saved_type;
    109   static bool needsSaving(type value) { return false; }
    110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
    111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
    112 };
    113 
    114 /// A metaprogramming class for ensuring that a value will dominate an
    115 /// arbitrary position in a function.
    116 template <class T> struct DominatingValue : InvariantValue<T> {};
    117 
    118 template <class T, bool mightBeInstruction =
    119             llvm::is_base_of<llvm::Value, T>::value &&
    120             !llvm::is_base_of<llvm::Constant, T>::value &&
    121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
    122 struct DominatingPointer;
    123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
    124 // template <class T> struct DominatingPointer<T,true> at end of file
    125 
    126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
    127 
    128 enum CleanupKind {
    129   EHCleanup = 0x1,
    130   NormalCleanup = 0x2,
    131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
    132 
    133   InactiveCleanup = 0x4,
    134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
    135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
    136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
    137 };
    138 
    139 /// A stack of scopes which respond to exceptions, including cleanups
    140 /// and catch blocks.
    141 class EHScopeStack {
    142 public:
    143   /// A saved depth on the scope stack.  This is necessary because
    144   /// pushing scopes onto the stack invalidates iterators.
    145   class stable_iterator {
    146     friend class EHScopeStack;
    147 
    148     /// Offset from StartOfData to EndOfBuffer.
    149     ptrdiff_t Size;
    150 
    151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
    152 
    153   public:
    154     static stable_iterator invalid() { return stable_iterator(-1); }
    155     stable_iterator() : Size(-1) {}
    156 
    157     bool isValid() const { return Size >= 0; }
    158 
    159     /// Returns true if this scope encloses I.
    160     /// Returns false if I is invalid.
    161     /// This scope must be valid.
    162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
    163 
    164     /// Returns true if this scope strictly encloses I: that is,
    165     /// if it encloses I and is not I.
    166     /// Returns false is I is invalid.
    167     /// This scope must be valid.
    168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
    169 
    170     friend bool operator==(stable_iterator A, stable_iterator B) {
    171       return A.Size == B.Size;
    172     }
    173     friend bool operator!=(stable_iterator A, stable_iterator B) {
    174       return A.Size != B.Size;
    175     }
    176   };
    177 
    178   /// Information for lazily generating a cleanup.  Subclasses must be
    179   /// POD-like: cleanups will not be destructed, and they will be
    180   /// allocated on the cleanup stack and freely copied and moved
    181   /// around.
    182   ///
    183   /// Cleanup implementations should generally be declared in an
    184   /// anonymous namespace.
    185   class Cleanup {
    186     // Anchor the construction vtable.
    187     virtual void anchor();
    188   public:
    189     /// Generation flags.
    190     class Flags {
    191       enum {
    192         F_IsForEH             = 0x1,
    193         F_IsNormalCleanupKind = 0x2,
    194         F_IsEHCleanupKind     = 0x4
    195       };
    196       unsigned flags;
    197 
    198     public:
    199       Flags() : flags(0) {}
    200 
    201       /// isForEH - true if the current emission is for an EH cleanup.
    202       bool isForEHCleanup() const { return flags & F_IsForEH; }
    203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
    204       void setIsForEHCleanup() { flags |= F_IsForEH; }
    205 
    206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
    207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
    208 
    209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
    210       /// cleanup.
    211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
    212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
    213     };
    214 
    215     // Provide a virtual destructor to suppress a very common warning
    216     // that unfortunately cannot be suppressed without this.  Cleanups
    217     // should not rely on this destructor ever being called.
    218     virtual ~Cleanup() {}
    219 
    220     /// Emit the cleanup.  For normal cleanups, this is run in the
    221     /// same EH context as when the cleanup was pushed, i.e. the
    222     /// immediately-enclosing context of the cleanup scope.  For
    223     /// EH cleanups, this is run in a terminate context.
    224     ///
    225     // \param IsForEHCleanup true if this is for an EH cleanup, false
    226     ///  if for a normal cleanup.
    227     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
    228   };
    229 
    230   /// ConditionalCleanupN stores the saved form of its N parameters,
    231   /// then restores them and performs the cleanup.
    232   template <class T, class A0>
    233   class ConditionalCleanup1 : public Cleanup {
    234     typedef typename DominatingValue<A0>::saved_type A0_saved;
    235     A0_saved a0_saved;
    236 
    237     void Emit(CodeGenFunction &CGF, Flags flags) {
    238       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    239       T(a0).Emit(CGF, flags);
    240     }
    241 
    242   public:
    243     ConditionalCleanup1(A0_saved a0)
    244       : a0_saved(a0) {}
    245   };
    246 
    247   template <class T, class A0, class A1>
    248   class ConditionalCleanup2 : public Cleanup {
    249     typedef typename DominatingValue<A0>::saved_type A0_saved;
    250     typedef typename DominatingValue<A1>::saved_type A1_saved;
    251     A0_saved a0_saved;
    252     A1_saved a1_saved;
    253 
    254     void Emit(CodeGenFunction &CGF, Flags flags) {
    255       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    256       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    257       T(a0, a1).Emit(CGF, flags);
    258     }
    259 
    260   public:
    261     ConditionalCleanup2(A0_saved a0, A1_saved a1)
    262       : a0_saved(a0), a1_saved(a1) {}
    263   };
    264 
    265   template <class T, class A0, class A1, class A2>
    266   class ConditionalCleanup3 : public Cleanup {
    267     typedef typename DominatingValue<A0>::saved_type A0_saved;
    268     typedef typename DominatingValue<A1>::saved_type A1_saved;
    269     typedef typename DominatingValue<A2>::saved_type A2_saved;
    270     A0_saved a0_saved;
    271     A1_saved a1_saved;
    272     A2_saved a2_saved;
    273 
    274     void Emit(CodeGenFunction &CGF, Flags flags) {
    275       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    276       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    277       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
    278       T(a0, a1, a2).Emit(CGF, flags);
    279     }
    280 
    281   public:
    282     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
    283       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
    284   };
    285 
    286   template <class T, class A0, class A1, class A2, class A3>
    287   class ConditionalCleanup4 : public Cleanup {
    288     typedef typename DominatingValue<A0>::saved_type A0_saved;
    289     typedef typename DominatingValue<A1>::saved_type A1_saved;
    290     typedef typename DominatingValue<A2>::saved_type A2_saved;
    291     typedef typename DominatingValue<A3>::saved_type A3_saved;
    292     A0_saved a0_saved;
    293     A1_saved a1_saved;
    294     A2_saved a2_saved;
    295     A3_saved a3_saved;
    296 
    297     void Emit(CodeGenFunction &CGF, Flags flags) {
    298       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    299       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    300       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
    301       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
    302       T(a0, a1, a2, a3).Emit(CGF, flags);
    303     }
    304 
    305   public:
    306     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
    307       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
    308   };
    309 
    310 private:
    311   // The implementation for this class is in CGException.h and
    312   // CGException.cpp; the definition is here because it's used as a
    313   // member of CodeGenFunction.
    314 
    315   /// The start of the scope-stack buffer, i.e. the allocated pointer
    316   /// for the buffer.  All of these pointers are either simultaneously
    317   /// null or simultaneously valid.
    318   char *StartOfBuffer;
    319 
    320   /// The end of the buffer.
    321   char *EndOfBuffer;
    322 
    323   /// The first valid entry in the buffer.
    324   char *StartOfData;
    325 
    326   /// The innermost normal cleanup on the stack.
    327   stable_iterator InnermostNormalCleanup;
    328 
    329   /// The innermost EH scope on the stack.
    330   stable_iterator InnermostEHScope;
    331 
    332   /// The current set of branch fixups.  A branch fixup is a jump to
    333   /// an as-yet unemitted label, i.e. a label for which we don't yet
    334   /// know the EH stack depth.  Whenever we pop a cleanup, we have
    335   /// to thread all the current branch fixups through it.
    336   ///
    337   /// Fixups are recorded as the Use of the respective branch or
    338   /// switch statement.  The use points to the final destination.
    339   /// When popping out of a cleanup, these uses are threaded through
    340   /// the cleanup and adjusted to point to the new cleanup.
    341   ///
    342   /// Note that branches are allowed to jump into protected scopes
    343   /// in certain situations;  e.g. the following code is legal:
    344   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
    345   ///     goto foo;
    346   ///     A a;
    347   ///    foo:
    348   ///     bar();
    349   SmallVector<BranchFixup, 8> BranchFixups;
    350 
    351   char *allocate(size_t Size);
    352 
    353   void *pushCleanup(CleanupKind K, size_t DataSize);
    354 
    355 public:
    356   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
    357                    InnermostNormalCleanup(stable_end()),
    358                    InnermostEHScope(stable_end()) {}
    359   ~EHScopeStack() { delete[] StartOfBuffer; }
    360 
    361   // Variadic templates would make this not terrible.
    362 
    363   /// Push a lazily-created cleanup on the stack.
    364   template <class T>
    365   void pushCleanup(CleanupKind Kind) {
    366     void *Buffer = pushCleanup(Kind, sizeof(T));
    367     Cleanup *Obj = new(Buffer) T();
    368     (void) Obj;
    369   }
    370 
    371   /// Push a lazily-created cleanup on the stack.
    372   template <class T, class A0>
    373   void pushCleanup(CleanupKind Kind, A0 a0) {
    374     void *Buffer = pushCleanup(Kind, sizeof(T));
    375     Cleanup *Obj = new(Buffer) T(a0);
    376     (void) Obj;
    377   }
    378 
    379   /// Push a lazily-created cleanup on the stack.
    380   template <class T, class A0, class A1>
    381   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
    382     void *Buffer = pushCleanup(Kind, sizeof(T));
    383     Cleanup *Obj = new(Buffer) T(a0, a1);
    384     (void) Obj;
    385   }
    386 
    387   /// Push a lazily-created cleanup on the stack.
    388   template <class T, class A0, class A1, class A2>
    389   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
    390     void *Buffer = pushCleanup(Kind, sizeof(T));
    391     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
    392     (void) Obj;
    393   }
    394 
    395   /// Push a lazily-created cleanup on the stack.
    396   template <class T, class A0, class A1, class A2, class A3>
    397   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
    398     void *Buffer = pushCleanup(Kind, sizeof(T));
    399     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
    400     (void) Obj;
    401   }
    402 
    403   /// Push a lazily-created cleanup on the stack.
    404   template <class T, class A0, class A1, class A2, class A3, class A4>
    405   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
    406     void *Buffer = pushCleanup(Kind, sizeof(T));
    407     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
    408     (void) Obj;
    409   }
    410 
    411   // Feel free to add more variants of the following:
    412 
    413   /// Push a cleanup with non-constant storage requirements on the
    414   /// stack.  The cleanup type must provide an additional static method:
    415   ///   static size_t getExtraSize(size_t);
    416   /// The argument to this method will be the value N, which will also
    417   /// be passed as the first argument to the constructor.
    418   ///
    419   /// The data stored in the extra storage must obey the same
    420   /// restrictions as normal cleanup member data.
    421   ///
    422   /// The pointer returned from this method is valid until the cleanup
    423   /// stack is modified.
    424   template <class T, class A0, class A1, class A2>
    425   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
    426     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
    427     return new (Buffer) T(N, a0, a1, a2);
    428   }
    429 
    430   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
    431   void popCleanup();
    432 
    433   /// Push a set of catch handlers on the stack.  The catch is
    434   /// uninitialized and will need to have the given number of handlers
    435   /// set on it.
    436   class EHCatchScope *pushCatch(unsigned NumHandlers);
    437 
    438   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
    439   void popCatch();
    440 
    441   /// Push an exceptions filter on the stack.
    442   class EHFilterScope *pushFilter(unsigned NumFilters);
    443 
    444   /// Pops an exceptions filter off the stack.
    445   void popFilter();
    446 
    447   /// Push a terminate handler on the stack.
    448   void pushTerminate();
    449 
    450   /// Pops a terminate handler off the stack.
    451   void popTerminate();
    452 
    453   /// Determines whether the exception-scopes stack is empty.
    454   bool empty() const { return StartOfData == EndOfBuffer; }
    455 
    456   bool requiresLandingPad() const {
    457     return InnermostEHScope != stable_end();
    458   }
    459 
    460   /// Determines whether there are any normal cleanups on the stack.
    461   bool hasNormalCleanups() const {
    462     return InnermostNormalCleanup != stable_end();
    463   }
    464 
    465   /// Returns the innermost normal cleanup on the stack, or
    466   /// stable_end() if there are no normal cleanups.
    467   stable_iterator getInnermostNormalCleanup() const {
    468     return InnermostNormalCleanup;
    469   }
    470   stable_iterator getInnermostActiveNormalCleanup() const;
    471 
    472   stable_iterator getInnermostEHScope() const {
    473     return InnermostEHScope;
    474   }
    475 
    476   stable_iterator getInnermostActiveEHScope() const;
    477 
    478   /// An unstable reference to a scope-stack depth.  Invalidated by
    479   /// pushes but not pops.
    480   class iterator;
    481 
    482   /// Returns an iterator pointing to the innermost EH scope.
    483   iterator begin() const;
    484 
    485   /// Returns an iterator pointing to the outermost EH scope.
    486   iterator end() const;
    487 
    488   /// Create a stable reference to the top of the EH stack.  The
    489   /// returned reference is valid until that scope is popped off the
    490   /// stack.
    491   stable_iterator stable_begin() const {
    492     return stable_iterator(EndOfBuffer - StartOfData);
    493   }
    494 
    495   /// Create a stable reference to the bottom of the EH stack.
    496   static stable_iterator stable_end() {
    497     return stable_iterator(0);
    498   }
    499 
    500   /// Translates an iterator into a stable_iterator.
    501   stable_iterator stabilize(iterator it) const;
    502 
    503   /// Turn a stable reference to a scope depth into a unstable pointer
    504   /// to the EH stack.
    505   iterator find(stable_iterator save) const;
    506 
    507   /// Removes the cleanup pointed to by the given stable_iterator.
    508   void removeCleanup(stable_iterator save);
    509 
    510   /// Add a branch fixup to the current cleanup scope.
    511   BranchFixup &addBranchFixup() {
    512     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
    513     BranchFixups.push_back(BranchFixup());
    514     return BranchFixups.back();
    515   }
    516 
    517   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
    518   BranchFixup &getBranchFixup(unsigned I) {
    519     assert(I < getNumBranchFixups());
    520     return BranchFixups[I];
    521   }
    522 
    523   /// Pops lazily-removed fixups from the end of the list.  This
    524   /// should only be called by procedures which have just popped a
    525   /// cleanup or resolved one or more fixups.
    526   void popNullFixups();
    527 
    528   /// Clears the branch-fixups list.  This should only be called by
    529   /// ResolveAllBranchFixups.
    530   void clearFixups() { BranchFixups.clear(); }
    531 };
    532 
    533 /// CodeGenFunction - This class organizes the per-function state that is used
    534 /// while generating LLVM code.
    535 class CodeGenFunction : public CodeGenTypeCache {
    536   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
    537   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
    538 
    539   friend class CGCXXABI;
    540 public:
    541   /// A jump destination is an abstract label, branching to which may
    542   /// require a jump out through normal cleanups.
    543   struct JumpDest {
    544     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
    545     JumpDest(llvm::BasicBlock *Block,
    546              EHScopeStack::stable_iterator Depth,
    547              unsigned Index)
    548       : Block(Block), ScopeDepth(Depth), Index(Index) {}
    549 
    550     bool isValid() const { return Block != 0; }
    551     llvm::BasicBlock *getBlock() const { return Block; }
    552     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    553     unsigned getDestIndex() const { return Index; }
    554 
    555   private:
    556     llvm::BasicBlock *Block;
    557     EHScopeStack::stable_iterator ScopeDepth;
    558     unsigned Index;
    559   };
    560 
    561   CodeGenModule &CGM;  // Per-module state.
    562   const TargetInfo &Target;
    563 
    564   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
    565   CGBuilderTy Builder;
    566 
    567   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
    568   /// This excludes BlockDecls.
    569   const Decl *CurFuncDecl;
    570   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
    571   const Decl *CurCodeDecl;
    572   const CGFunctionInfo *CurFnInfo;
    573   QualType FnRetTy;
    574   llvm::Function *CurFn;
    575 
    576   /// CurGD - The GlobalDecl for the current function being compiled.
    577   GlobalDecl CurGD;
    578 
    579   /// PrologueCleanupDepth - The cleanup depth enclosing all the
    580   /// cleanups associated with the parameters.
    581   EHScopeStack::stable_iterator PrologueCleanupDepth;
    582 
    583   /// ReturnBlock - Unified return block.
    584   JumpDest ReturnBlock;
    585 
    586   /// ReturnValue - The temporary alloca to hold the return value. This is null
    587   /// iff the function has no return value.
    588   llvm::Value *ReturnValue;
    589 
    590   /// AllocaInsertPoint - This is an instruction in the entry block before which
    591   /// we prefer to insert allocas.
    592   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
    593 
    594   bool CatchUndefined;
    595 
    596   /// In ARC, whether we should autorelease the return value.
    597   bool AutoreleaseResult;
    598 
    599   const CodeGen::CGBlockInfo *BlockInfo;
    600   llvm::Value *BlockPointer;
    601 
    602   /// \brief A mapping from NRVO variables to the flags used to indicate
    603   /// when the NRVO has been applied to this variable.
    604   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
    605 
    606   EHScopeStack EHStack;
    607 
    608   /// i32s containing the indexes of the cleanup destinations.
    609   llvm::AllocaInst *NormalCleanupDest;
    610 
    611   unsigned NextCleanupDestIndex;
    612 
    613   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
    614   llvm::BasicBlock *EHResumeBlock;
    615 
    616   /// The exception slot.  All landing pads write the current exception pointer
    617   /// into this alloca.
    618   llvm::Value *ExceptionSlot;
    619 
    620   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
    621   /// write the current selector value into this alloca.
    622   llvm::AllocaInst *EHSelectorSlot;
    623 
    624   /// Emits a landing pad for the current EH stack.
    625   llvm::BasicBlock *EmitLandingPad();
    626 
    627   llvm::BasicBlock *getInvokeDestImpl();
    628 
    629   /// Set up the last cleaup that was pushed as a conditional
    630   /// full-expression cleanup.
    631   void initFullExprCleanup();
    632 
    633   template <class T>
    634   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    635     return DominatingValue<T>::save(*this, value);
    636   }
    637 
    638 public:
    639   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
    640   /// rethrows.
    641   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
    642 
    643   /// A class controlling the emission of a finally block.
    644   class FinallyInfo {
    645     /// Where the catchall's edge through the cleanup should go.
    646     JumpDest RethrowDest;
    647 
    648     /// A function to call to enter the catch.
    649     llvm::Constant *BeginCatchFn;
    650 
    651     /// An i1 variable indicating whether or not the @finally is
    652     /// running for an exception.
    653     llvm::AllocaInst *ForEHVar;
    654 
    655     /// An i8* variable into which the exception pointer to rethrow
    656     /// has been saved.
    657     llvm::AllocaInst *SavedExnVar;
    658 
    659   public:
    660     void enter(CodeGenFunction &CGF, const Stmt *Finally,
    661                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
    662                llvm::Constant *rethrowFn);
    663     void exit(CodeGenFunction &CGF);
    664   };
    665 
    666   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    667   /// current full-expression.  Safe against the possibility that
    668   /// we're currently inside a conditionally-evaluated expression.
    669   template <class T, class A0>
    670   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
    671     // If we're not in a conditional branch, or if none of the
    672     // arguments requires saving, then use the unconditional cleanup.
    673     if (!isInConditionalBranch())
    674       return EHStack.pushCleanup<T>(kind, a0);
    675 
    676     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    677 
    678     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
    679     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
    680     initFullExprCleanup();
    681   }
    682 
    683   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    684   /// current full-expression.  Safe against the possibility that
    685   /// we're currently inside a conditionally-evaluated expression.
    686   template <class T, class A0, class A1>
    687   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
    688     // If we're not in a conditional branch, or if none of the
    689     // arguments requires saving, then use the unconditional cleanup.
    690     if (!isInConditionalBranch())
    691       return EHStack.pushCleanup<T>(kind, a0, a1);
    692 
    693     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    694     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    695 
    696     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
    697     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
    698     initFullExprCleanup();
    699   }
    700 
    701   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    702   /// current full-expression.  Safe against the possibility that
    703   /// we're currently inside a conditionally-evaluated expression.
    704   template <class T, class A0, class A1, class A2>
    705   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
    706     // If we're not in a conditional branch, or if none of the
    707     // arguments requires saving, then use the unconditional cleanup.
    708     if (!isInConditionalBranch()) {
    709       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
    710     }
    711 
    712     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    713     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    714     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
    715 
    716     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
    717     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
    718     initFullExprCleanup();
    719   }
    720 
    721   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    722   /// current full-expression.  Safe against the possibility that
    723   /// we're currently inside a conditionally-evaluated expression.
    724   template <class T, class A0, class A1, class A2, class A3>
    725   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
    726     // If we're not in a conditional branch, or if none of the
    727     // arguments requires saving, then use the unconditional cleanup.
    728     if (!isInConditionalBranch()) {
    729       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
    730     }
    731 
    732     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    733     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    734     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
    735     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
    736 
    737     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
    738     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
    739                                      a2_saved, a3_saved);
    740     initFullExprCleanup();
    741   }
    742 
    743   /// PushDestructorCleanup - Push a cleanup to call the
    744   /// complete-object destructor of an object of the given type at the
    745   /// given address.  Does nothing if T is not a C++ class type with a
    746   /// non-trivial destructor.
    747   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
    748 
    749   /// PushDestructorCleanup - Push a cleanup to call the
    750   /// complete-object variant of the given destructor on the object at
    751   /// the given address.
    752   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
    753                              llvm::Value *Addr);
    754 
    755   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
    756   /// process all branch fixups.
    757   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
    758 
    759   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
    760   /// The block cannot be reactivated.  Pops it if it's the top of the
    761   /// stack.
    762   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
    763 
    764   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
    765   /// Cannot be used to resurrect a deactivated cleanup.
    766   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
    767 
    768   /// \brief Enters a new scope for capturing cleanups, all of which
    769   /// will be executed once the scope is exited.
    770   class RunCleanupsScope {
    771     EHScopeStack::stable_iterator CleanupStackDepth;
    772     bool OldDidCallStackSave;
    773     bool PerformCleanup;
    774 
    775     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
    776     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
    777 
    778   protected:
    779     CodeGenFunction& CGF;
    780 
    781   public:
    782     /// \brief Enter a new cleanup scope.
    783     explicit RunCleanupsScope(CodeGenFunction &CGF)
    784       : PerformCleanup(true), CGF(CGF)
    785     {
    786       CleanupStackDepth = CGF.EHStack.stable_begin();
    787       OldDidCallStackSave = CGF.DidCallStackSave;
    788       CGF.DidCallStackSave = false;
    789     }
    790 
    791     /// \brief Exit this cleanup scope, emitting any accumulated
    792     /// cleanups.
    793     ~RunCleanupsScope() {
    794       if (PerformCleanup) {
    795         CGF.DidCallStackSave = OldDidCallStackSave;
    796         CGF.PopCleanupBlocks(CleanupStackDepth);
    797       }
    798     }
    799 
    800     /// \brief Determine whether this scope requires any cleanups.
    801     bool requiresCleanups() const {
    802       return CGF.EHStack.stable_begin() != CleanupStackDepth;
    803     }
    804 
    805     /// \brief Force the emission of cleanups now, instead of waiting
    806     /// until this object is destroyed.
    807     void ForceCleanup() {
    808       assert(PerformCleanup && "Already forced cleanup");
    809       CGF.DidCallStackSave = OldDidCallStackSave;
    810       CGF.PopCleanupBlocks(CleanupStackDepth);
    811       PerformCleanup = false;
    812     }
    813   };
    814 
    815   class LexicalScope: protected RunCleanupsScope {
    816     SourceRange Range;
    817     bool PopDebugStack;
    818 
    819     LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
    820     LexicalScope &operator=(const LexicalScope &);
    821 
    822   public:
    823     /// \brief Enter a new cleanup scope.
    824     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
    825       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
    826       if (CGDebugInfo *DI = CGF.getDebugInfo())
    827         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
    828     }
    829 
    830     /// \brief Exit this cleanup scope, emitting any accumulated
    831     /// cleanups.
    832     ~LexicalScope() {
    833       if (PopDebugStack) {
    834         CGDebugInfo *DI = CGF.getDebugInfo();
    835         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
    836       }
    837     }
    838 
    839     /// \brief Force the emission of cleanups now, instead of waiting
    840     /// until this object is destroyed.
    841     void ForceCleanup() {
    842       RunCleanupsScope::ForceCleanup();
    843       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
    844         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
    845         PopDebugStack = false;
    846       }
    847     }
    848   };
    849 
    850 
    851   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
    852   /// the cleanup blocks that have been added.
    853   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
    854 
    855   void ResolveBranchFixups(llvm::BasicBlock *Target);
    856 
    857   /// The given basic block lies in the current EH scope, but may be a
    858   /// target of a potentially scope-crossing jump; get a stable handle
    859   /// to which we can perform this jump later.
    860   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    861     return JumpDest(Target,
    862                     EHStack.getInnermostNormalCleanup(),
    863                     NextCleanupDestIndex++);
    864   }
    865 
    866   /// The given basic block lies in the current EH scope, but may be a
    867   /// target of a potentially scope-crossing jump; get a stable handle
    868   /// to which we can perform this jump later.
    869   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
    870     return getJumpDestInCurrentScope(createBasicBlock(Name));
    871   }
    872 
    873   /// EmitBranchThroughCleanup - Emit a branch from the current insert
    874   /// block through the normal cleanup handling code (if any) and then
    875   /// on to \arg Dest.
    876   void EmitBranchThroughCleanup(JumpDest Dest);
    877 
    878   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
    879   /// specified destination obviously has no cleanups to run.  'false' is always
    880   /// a conservatively correct answer for this method.
    881   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
    882 
    883   /// popCatchScope - Pops the catch scope at the top of the EHScope
    884   /// stack, emitting any required code (other than the catch handlers
    885   /// themselves).
    886   void popCatchScope();
    887 
    888   llvm::BasicBlock *getEHResumeBlock();
    889   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
    890 
    891   /// An object to manage conditionally-evaluated expressions.
    892   class ConditionalEvaluation {
    893     llvm::BasicBlock *StartBB;
    894 
    895   public:
    896     ConditionalEvaluation(CodeGenFunction &CGF)
    897       : StartBB(CGF.Builder.GetInsertBlock()) {}
    898 
    899     void begin(CodeGenFunction &CGF) {
    900       assert(CGF.OutermostConditional != this);
    901       if (!CGF.OutermostConditional)
    902         CGF.OutermostConditional = this;
    903     }
    904 
    905     void end(CodeGenFunction &CGF) {
    906       assert(CGF.OutermostConditional != 0);
    907       if (CGF.OutermostConditional == this)
    908         CGF.OutermostConditional = 0;
    909     }
    910 
    911     /// Returns a block which will be executed prior to each
    912     /// evaluation of the conditional code.
    913     llvm::BasicBlock *getStartingBlock() const {
    914       return StartBB;
    915     }
    916   };
    917 
    918   /// isInConditionalBranch - Return true if we're currently emitting
    919   /// one branch or the other of a conditional expression.
    920   bool isInConditionalBranch() const { return OutermostConditional != 0; }
    921 
    922   /// An RAII object to record that we're evaluating a statement
    923   /// expression.
    924   class StmtExprEvaluation {
    925     CodeGenFunction &CGF;
    926 
    927     /// We have to save the outermost conditional: cleanups in a
    928     /// statement expression aren't conditional just because the
    929     /// StmtExpr is.
    930     ConditionalEvaluation *SavedOutermostConditional;
    931 
    932   public:
    933     StmtExprEvaluation(CodeGenFunction &CGF)
    934       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
    935       CGF.OutermostConditional = 0;
    936     }
    937 
    938     ~StmtExprEvaluation() {
    939       CGF.OutermostConditional = SavedOutermostConditional;
    940       CGF.EnsureInsertPoint();
    941     }
    942   };
    943 
    944   /// An object which temporarily prevents a value from being
    945   /// destroyed by aggressive peephole optimizations that assume that
    946   /// all uses of a value have been realized in the IR.
    947   class PeepholeProtection {
    948     llvm::Instruction *Inst;
    949     friend class CodeGenFunction;
    950 
    951   public:
    952     PeepholeProtection() : Inst(0) {}
    953   };
    954 
    955   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
    956   class OpaqueValueMapping {
    957     CodeGenFunction &CGF;
    958     const OpaqueValueExpr *OpaqueValue;
    959     bool BoundLValue;
    960     CodeGenFunction::PeepholeProtection Protection;
    961 
    962   public:
    963     static bool shouldBindAsLValue(const Expr *expr) {
    964       return expr->isGLValue() || expr->getType()->isRecordType();
    965     }
    966 
    967     /// Build the opaque value mapping for the given conditional
    968     /// operator if it's the GNU ?: extension.  This is a common
    969     /// enough pattern that the convenience operator is really
    970     /// helpful.
    971     ///
    972     OpaqueValueMapping(CodeGenFunction &CGF,
    973                        const AbstractConditionalOperator *op) : CGF(CGF) {
    974       if (isa<ConditionalOperator>(op)) {
    975         OpaqueValue = 0;
    976         BoundLValue = false;
    977         return;
    978       }
    979 
    980       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
    981       init(e->getOpaqueValue(), e->getCommon());
    982     }
    983 
    984     OpaqueValueMapping(CodeGenFunction &CGF,
    985                        const OpaqueValueExpr *opaqueValue,
    986                        LValue lvalue)
    987       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
    988       assert(opaqueValue && "no opaque value expression!");
    989       assert(shouldBindAsLValue(opaqueValue));
    990       initLValue(lvalue);
    991     }
    992 
    993     OpaqueValueMapping(CodeGenFunction &CGF,
    994                        const OpaqueValueExpr *opaqueValue,
    995                        RValue rvalue)
    996       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
    997       assert(opaqueValue && "no opaque value expression!");
    998       assert(!shouldBindAsLValue(opaqueValue));
    999       initRValue(rvalue);
   1000     }
   1001 
   1002     void pop() {
   1003       assert(OpaqueValue && "mapping already popped!");
   1004       popImpl();
   1005       OpaqueValue = 0;
   1006     }
   1007 
   1008     ~OpaqueValueMapping() {
   1009       if (OpaqueValue) popImpl();
   1010     }
   1011 
   1012   private:
   1013     void popImpl() {
   1014       if (BoundLValue)
   1015         CGF.OpaqueLValues.erase(OpaqueValue);
   1016       else {
   1017         CGF.OpaqueRValues.erase(OpaqueValue);
   1018         CGF.unprotectFromPeepholes(Protection);
   1019       }
   1020     }
   1021 
   1022     void init(const OpaqueValueExpr *ov, const Expr *e) {
   1023       OpaqueValue = ov;
   1024       BoundLValue = shouldBindAsLValue(ov);
   1025       assert(BoundLValue == shouldBindAsLValue(e)
   1026              && "inconsistent expression value kinds!");
   1027       if (BoundLValue)
   1028         initLValue(CGF.EmitLValue(e));
   1029       else
   1030         initRValue(CGF.EmitAnyExpr(e));
   1031     }
   1032 
   1033     void initLValue(const LValue &lv) {
   1034       CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
   1035     }
   1036 
   1037     void initRValue(const RValue &rv) {
   1038       // Work around an extremely aggressive peephole optimization in
   1039       // EmitScalarConversion which assumes that all other uses of a
   1040       // value are extant.
   1041       Protection = CGF.protectFromPeepholes(rv);
   1042       CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
   1043     }
   1044   };
   1045 
   1046   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
   1047   /// number that holds the value.
   1048   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
   1049 
   1050   /// BuildBlockByrefAddress - Computes address location of the
   1051   /// variable which is declared as __block.
   1052   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
   1053                                       const VarDecl *V);
   1054 private:
   1055   CGDebugInfo *DebugInfo;
   1056   bool DisableDebugInfo;
   1057 
   1058   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
   1059   /// calling llvm.stacksave for multiple VLAs in the same scope.
   1060   bool DidCallStackSave;
   1061 
   1062   /// IndirectBranch - The first time an indirect goto is seen we create a block
   1063   /// with an indirect branch.  Every time we see the address of a label taken,
   1064   /// we add the label to the indirect goto.  Every subsequent indirect goto is
   1065   /// codegen'd as a jump to the IndirectBranch's basic block.
   1066   llvm::IndirectBrInst *IndirectBranch;
   1067 
   1068   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
   1069   /// decls.
   1070   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
   1071   DeclMapTy LocalDeclMap;
   1072 
   1073   /// LabelMap - This keeps track of the LLVM basic block for each C label.
   1074   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
   1075 
   1076   // BreakContinueStack - This keeps track of where break and continue
   1077   // statements should jump to.
   1078   struct BreakContinue {
   1079     BreakContinue(JumpDest Break, JumpDest Continue)
   1080       : BreakBlock(Break), ContinueBlock(Continue) {}
   1081 
   1082     JumpDest BreakBlock;
   1083     JumpDest ContinueBlock;
   1084   };
   1085   SmallVector<BreakContinue, 8> BreakContinueStack;
   1086 
   1087   /// SwitchInsn - This is nearest current switch instruction. It is null if if
   1088   /// current context is not in a switch.
   1089   llvm::SwitchInst *SwitchInsn;
   1090 
   1091   /// CaseRangeBlock - This block holds if condition check for last case
   1092   /// statement range in current switch instruction.
   1093   llvm::BasicBlock *CaseRangeBlock;
   1094 
   1095   /// OpaqueLValues - Keeps track of the current set of opaque value
   1096   /// expressions.
   1097   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
   1098   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
   1099 
   1100   // VLASizeMap - This keeps track of the associated size for each VLA type.
   1101   // We track this by the size expression rather than the type itself because
   1102   // in certain situations, like a const qualifier applied to an VLA typedef,
   1103   // multiple VLA types can share the same size expression.
   1104   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
   1105   // enter/leave scopes.
   1106   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
   1107 
   1108   /// A block containing a single 'unreachable' instruction.  Created
   1109   /// lazily by getUnreachableBlock().
   1110   llvm::BasicBlock *UnreachableBlock;
   1111 
   1112   /// CXXThisDecl - When generating code for a C++ member function,
   1113   /// this will hold the implicit 'this' declaration.
   1114   ImplicitParamDecl *CXXThisDecl;
   1115   llvm::Value *CXXThisValue;
   1116 
   1117   /// CXXVTTDecl - When generating code for a base object constructor or
   1118   /// base object destructor with virtual bases, this will hold the implicit
   1119   /// VTT parameter.
   1120   ImplicitParamDecl *CXXVTTDecl;
   1121   llvm::Value *CXXVTTValue;
   1122 
   1123   /// OutermostConditional - Points to the outermost active
   1124   /// conditional control.  This is used so that we know if a
   1125   /// temporary should be destroyed conditionally.
   1126   ConditionalEvaluation *OutermostConditional;
   1127 
   1128 
   1129   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
   1130   /// type as well as the field number that contains the actual data.
   1131   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
   1132                                               unsigned> > ByRefValueInfo;
   1133 
   1134   llvm::BasicBlock *TerminateLandingPad;
   1135   llvm::BasicBlock *TerminateHandler;
   1136   llvm::BasicBlock *TrapBB;
   1137 
   1138 public:
   1139   CodeGenFunction(CodeGenModule &cgm);
   1140 
   1141   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
   1142   ASTContext &getContext() const { return CGM.getContext(); }
   1143   CGDebugInfo *getDebugInfo() {
   1144     if (DisableDebugInfo)
   1145       return NULL;
   1146     return DebugInfo;
   1147   }
   1148   void disableDebugInfo() { DisableDebugInfo = true; }
   1149   void enableDebugInfo() { DisableDebugInfo = false; }
   1150 
   1151   bool shouldUseFusedARCCalls() {
   1152     return CGM.getCodeGenOpts().OptimizationLevel == 0;
   1153   }
   1154 
   1155   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
   1156 
   1157   /// Returns a pointer to the function's exception object and selector slot,
   1158   /// which is assigned in every landing pad.
   1159   llvm::Value *getExceptionSlot();
   1160   llvm::Value *getEHSelectorSlot();
   1161 
   1162   /// Returns the contents of the function's exception object and selector
   1163   /// slots.
   1164   llvm::Value *getExceptionFromSlot();
   1165   llvm::Value *getSelectorFromSlot();
   1166 
   1167   llvm::Value *getNormalCleanupDestSlot();
   1168 
   1169   llvm::BasicBlock *getUnreachableBlock() {
   1170     if (!UnreachableBlock) {
   1171       UnreachableBlock = createBasicBlock("unreachable");
   1172       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
   1173     }
   1174     return UnreachableBlock;
   1175   }
   1176 
   1177   llvm::BasicBlock *getInvokeDest() {
   1178     if (!EHStack.requiresLandingPad()) return 0;
   1179     return getInvokeDestImpl();
   1180   }
   1181 
   1182   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
   1183 
   1184   //===--------------------------------------------------------------------===//
   1185   //                                  Cleanups
   1186   //===--------------------------------------------------------------------===//
   1187 
   1188   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
   1189 
   1190   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1191                                         llvm::Value *arrayEndPointer,
   1192                                         QualType elementType,
   1193                                         Destroyer &destroyer);
   1194   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1195                                       llvm::Value *arrayEnd,
   1196                                       QualType elementType,
   1197                                       Destroyer &destroyer);
   1198 
   1199   void pushDestroy(QualType::DestructionKind dtorKind,
   1200                    llvm::Value *addr, QualType type);
   1201   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
   1202                    Destroyer &destroyer, bool useEHCleanupForArray);
   1203   void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
   1204                    bool useEHCleanupForArray);
   1205   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
   1206                                         QualType type,
   1207                                         Destroyer &destroyer,
   1208                                         bool useEHCleanupForArray);
   1209   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
   1210                         QualType type, Destroyer &destroyer,
   1211                         bool checkZeroLength, bool useEHCleanup);
   1212 
   1213   Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
   1214 
   1215   /// Determines whether an EH cleanup is required to destroy a type
   1216   /// with the given destruction kind.
   1217   bool needsEHCleanup(QualType::DestructionKind kind) {
   1218     switch (kind) {
   1219     case QualType::DK_none:
   1220       return false;
   1221     case QualType::DK_cxx_destructor:
   1222     case QualType::DK_objc_weak_lifetime:
   1223       return getLangOptions().Exceptions;
   1224     case QualType::DK_objc_strong_lifetime:
   1225       return getLangOptions().Exceptions &&
   1226              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
   1227     }
   1228     llvm_unreachable("bad destruction kind");
   1229   }
   1230 
   1231   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
   1232     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
   1233   }
   1234 
   1235   //===--------------------------------------------------------------------===//
   1236   //                                  Objective-C
   1237   //===--------------------------------------------------------------------===//
   1238 
   1239   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
   1240 
   1241   void StartObjCMethod(const ObjCMethodDecl *MD,
   1242                        const ObjCContainerDecl *CD,
   1243                        SourceLocation StartLoc);
   1244 
   1245   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
   1246   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
   1247                           const ObjCPropertyImplDecl *PID);
   1248   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
   1249                               const ObjCPropertyImplDecl *propImpl);
   1250 
   1251   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1252                                   ObjCMethodDecl *MD, bool ctor);
   1253 
   1254   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
   1255   /// for the given property.
   1256   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1257                           const ObjCPropertyImplDecl *PID);
   1258   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1259                               const ObjCPropertyImplDecl *propImpl);
   1260   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
   1261   bool IvarTypeWithAggrGCObjects(QualType Ty);
   1262 
   1263   //===--------------------------------------------------------------------===//
   1264   //                                  Block Bits
   1265   //===--------------------------------------------------------------------===//
   1266 
   1267   llvm::Value *EmitBlockLiteral(const BlockExpr *);
   1268   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
   1269                                            const CGBlockInfo &Info,
   1270                                            llvm::StructType *,
   1271                                            llvm::Constant *BlockVarLayout);
   1272 
   1273   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
   1274                                         const CGBlockInfo &Info,
   1275                                         const Decl *OuterFuncDecl,
   1276                                         const DeclMapTy &ldm);
   1277 
   1278   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
   1279   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
   1280 
   1281   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
   1282 
   1283   class AutoVarEmission;
   1284 
   1285   void emitByrefStructureInit(const AutoVarEmission &emission);
   1286   void enterByrefCleanup(const AutoVarEmission &emission);
   1287 
   1288   llvm::Value *LoadBlockStruct() {
   1289     assert(BlockPointer && "no block pointer set!");
   1290     return BlockPointer;
   1291   }
   1292 
   1293   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
   1294   void AllocateBlockDecl(const BlockDeclRefExpr *E);
   1295   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
   1296     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
   1297   }
   1298   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
   1299   llvm::Type *BuildByRefType(const VarDecl *var);
   1300 
   1301   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
   1302                     const CGFunctionInfo &FnInfo);
   1303   void StartFunction(GlobalDecl GD, QualType RetTy,
   1304                      llvm::Function *Fn,
   1305                      const CGFunctionInfo &FnInfo,
   1306                      const FunctionArgList &Args,
   1307                      SourceLocation StartLoc);
   1308 
   1309   void EmitConstructorBody(FunctionArgList &Args);
   1310   void EmitDestructorBody(FunctionArgList &Args);
   1311   void EmitFunctionBody(FunctionArgList &Args);
   1312 
   1313   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
   1314   /// emission when possible.
   1315   void EmitReturnBlock();
   1316 
   1317   /// FinishFunction - Complete IR generation of the current function. It is
   1318   /// legal to call this function even if there is no current insertion point.
   1319   void FinishFunction(SourceLocation EndLoc=SourceLocation());
   1320 
   1321   /// GenerateThunk - Generate a thunk for the given method.
   1322   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1323                      GlobalDecl GD, const ThunkInfo &Thunk);
   1324 
   1325   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1326                             GlobalDecl GD, const ThunkInfo &Thunk);
   1327 
   1328   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
   1329                         FunctionArgList &Args);
   1330 
   1331   /// InitializeVTablePointer - Initialize the vtable pointer of the given
   1332   /// subobject.
   1333   ///
   1334   void InitializeVTablePointer(BaseSubobject Base,
   1335                                const CXXRecordDecl *NearestVBase,
   1336                                CharUnits OffsetFromNearestVBase,
   1337                                llvm::Constant *VTable,
   1338                                const CXXRecordDecl *VTableClass);
   1339 
   1340   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
   1341   void InitializeVTablePointers(BaseSubobject Base,
   1342                                 const CXXRecordDecl *NearestVBase,
   1343                                 CharUnits OffsetFromNearestVBase,
   1344                                 bool BaseIsNonVirtualPrimaryBase,
   1345                                 llvm::Constant *VTable,
   1346                                 const CXXRecordDecl *VTableClass,
   1347                                 VisitedVirtualBasesSetTy& VBases);
   1348 
   1349   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
   1350 
   1351   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
   1352   /// to by This.
   1353   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
   1354 
   1355   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
   1356   /// given phase of destruction for a destructor.  The end result
   1357   /// should call destructors on members and base classes in reverse
   1358   /// order of their construction.
   1359   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
   1360 
   1361   /// ShouldInstrumentFunction - Return true if the current function should be
   1362   /// instrumented with __cyg_profile_func_* calls
   1363   bool ShouldInstrumentFunction();
   1364 
   1365   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
   1366   /// instrumentation function with the current function and the call site, if
   1367   /// function instrumentation is enabled.
   1368   void EmitFunctionInstrumentation(const char *Fn);
   1369 
   1370   /// EmitMCountInstrumentation - Emit call to .mcount.
   1371   void EmitMCountInstrumentation();
   1372 
   1373   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
   1374   /// arguments for the given function. This is also responsible for naming the
   1375   /// LLVM function arguments.
   1376   void EmitFunctionProlog(const CGFunctionInfo &FI,
   1377                           llvm::Function *Fn,
   1378                           const FunctionArgList &Args);
   1379 
   1380   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
   1381   /// given temporary.
   1382   void EmitFunctionEpilog(const CGFunctionInfo &FI);
   1383 
   1384   /// EmitStartEHSpec - Emit the start of the exception spec.
   1385   void EmitStartEHSpec(const Decl *D);
   1386 
   1387   /// EmitEndEHSpec - Emit the end of the exception spec.
   1388   void EmitEndEHSpec(const Decl *D);
   1389 
   1390   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
   1391   llvm::BasicBlock *getTerminateLandingPad();
   1392 
   1393   /// getTerminateHandler - Return a handler (not a landing pad, just
   1394   /// a catch handler) that just calls terminate.  This is used when
   1395   /// a terminate scope encloses a try.
   1396   llvm::BasicBlock *getTerminateHandler();
   1397 
   1398   llvm::Type *ConvertTypeForMem(QualType T);
   1399   llvm::Type *ConvertType(QualType T);
   1400   llvm::Type *ConvertType(const TypeDecl *T) {
   1401     return ConvertType(getContext().getTypeDeclType(T));
   1402   }
   1403 
   1404   /// LoadObjCSelf - Load the value of self. This function is only valid while
   1405   /// generating code for an Objective-C method.
   1406   llvm::Value *LoadObjCSelf();
   1407 
   1408   /// TypeOfSelfObject - Return type of object that this self represents.
   1409   QualType TypeOfSelfObject();
   1410 
   1411   /// hasAggregateLLVMType - Return true if the specified AST type will map into
   1412   /// an aggregate LLVM type or is void.
   1413   static bool hasAggregateLLVMType(QualType T);
   1414 
   1415   /// createBasicBlock - Create an LLVM basic block.
   1416   llvm::BasicBlock *createBasicBlock(StringRef name = "",
   1417                                      llvm::Function *parent = 0,
   1418                                      llvm::BasicBlock *before = 0) {
   1419 #ifdef NDEBUG
   1420     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
   1421 #else
   1422     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
   1423 #endif
   1424   }
   1425 
   1426   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
   1427   /// label maps to.
   1428   JumpDest getJumpDestForLabel(const LabelDecl *S);
   1429 
   1430   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
   1431   /// another basic block, simplify it. This assumes that no other code could
   1432   /// potentially reference the basic block.
   1433   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
   1434 
   1435   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
   1436   /// adding a fall-through branch from the current insert block if
   1437   /// necessary. It is legal to call this function even if there is no current
   1438   /// insertion point.
   1439   ///
   1440   /// IsFinished - If true, indicates that the caller has finished emitting
   1441   /// branches to the given block and does not expect to emit code into it. This
   1442   /// means the block can be ignored if it is unreachable.
   1443   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
   1444 
   1445   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
   1446   /// near its uses, and leave the insertion point in it.
   1447   void EmitBlockAfterUses(llvm::BasicBlock *BB);
   1448 
   1449   /// EmitBranch - Emit a branch to the specified basic block from the current
   1450   /// insert block, taking care to avoid creation of branches from dummy
   1451   /// blocks. It is legal to call this function even if there is no current
   1452   /// insertion point.
   1453   ///
   1454   /// This function clears the current insertion point. The caller should follow
   1455   /// calls to this function with calls to Emit*Block prior to generation new
   1456   /// code.
   1457   void EmitBranch(llvm::BasicBlock *Block);
   1458 
   1459   /// HaveInsertPoint - True if an insertion point is defined. If not, this
   1460   /// indicates that the current code being emitted is unreachable.
   1461   bool HaveInsertPoint() const {
   1462     return Builder.GetInsertBlock() != 0;
   1463   }
   1464 
   1465   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
   1466   /// emitted IR has a place to go. Note that by definition, if this function
   1467   /// creates a block then that block is unreachable; callers may do better to
   1468   /// detect when no insertion point is defined and simply skip IR generation.
   1469   void EnsureInsertPoint() {
   1470     if (!HaveInsertPoint())
   1471       EmitBlock(createBasicBlock());
   1472   }
   1473 
   1474   /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1475   /// specified stmt yet.
   1476   void ErrorUnsupported(const Stmt *S, const char *Type,
   1477                         bool OmitOnError=false);
   1478 
   1479   //===--------------------------------------------------------------------===//
   1480   //                                  Helpers
   1481   //===--------------------------------------------------------------------===//
   1482 
   1483   LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
   1484     return LValue::MakeAddr(V, T, Alignment, getContext(),
   1485                             CGM.getTBAAInfo(T));
   1486   }
   1487 
   1488   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
   1489   /// block. The caller is responsible for setting an appropriate alignment on
   1490   /// the alloca.
   1491   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
   1492                                      const Twine &Name = "tmp");
   1493 
   1494   /// InitTempAlloca - Provide an initial value for the given alloca.
   1495   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
   1496 
   1497   /// CreateIRTemp - Create a temporary IR object of the given type, with
   1498   /// appropriate alignment. This routine should only be used when an temporary
   1499   /// value needs to be stored into an alloca (for example, to avoid explicit
   1500   /// PHI construction), but the type is the IR type, not the type appropriate
   1501   /// for storing in memory.
   1502   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
   1503 
   1504   /// CreateMemTemp - Create a temporary memory object of the given type, with
   1505   /// appropriate alignment.
   1506   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
   1507 
   1508   /// CreateAggTemp - Create a temporary memory object for the given
   1509   /// aggregate type.
   1510   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
   1511     return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
   1512                                  AggValueSlot::IsNotDestructed,
   1513                                  AggValueSlot::DoesNotNeedGCBarriers,
   1514                                  AggValueSlot::IsNotAliased);
   1515   }
   1516 
   1517   /// Emit a cast to void* in the appropriate address space.
   1518   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
   1519 
   1520   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
   1521   /// expression and compare the result against zero, returning an Int1Ty value.
   1522   llvm::Value *EvaluateExprAsBool(const Expr *E);
   1523 
   1524   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
   1525   void EmitIgnoredExpr(const Expr *E);
   1526 
   1527   /// EmitAnyExpr - Emit code to compute the specified expression which can have
   1528   /// any type.  The result is returned as an RValue struct.  If this is an
   1529   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
   1530   /// the result should be returned.
   1531   ///
   1532   /// \param IgnoreResult - True if the resulting value isn't used.
   1533   RValue EmitAnyExpr(const Expr *E,
   1534                      AggValueSlot AggSlot = AggValueSlot::ignored(),
   1535                      bool IgnoreResult = false);
   1536 
   1537   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
   1538   // or the value of the expression, depending on how va_list is defined.
   1539   llvm::Value *EmitVAListRef(const Expr *E);
   1540 
   1541   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
   1542   /// always be accessible even if no aggregate location is provided.
   1543   RValue EmitAnyExprToTemp(const Expr *E);
   1544 
   1545   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
   1546   /// arbitrary expression into the given memory location.
   1547   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
   1548                         Qualifiers Quals, bool IsInitializer);
   1549 
   1550   /// EmitExprAsInit - Emits the code necessary to initialize a
   1551   /// location in memory with the given initializer.
   1552   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
   1553                       LValue lvalue, bool capturedByInit);
   1554 
   1555   /// EmitAggregateCopy - Emit an aggrate copy.
   1556   ///
   1557   /// \param isVolatile - True iff either the source or the destination is
   1558   /// volatile.
   1559   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   1560                          QualType EltTy, bool isVolatile=false);
   1561 
   1562   /// StartBlock - Start new block named N. If insert block is a dummy block
   1563   /// then reuse it.
   1564   void StartBlock(const char *N);
   1565 
   1566   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
   1567   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
   1568     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
   1569   }
   1570 
   1571   /// GetAddrOfLocalVar - Return the address of a local variable.
   1572   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
   1573     llvm::Value *Res = LocalDeclMap[VD];
   1574     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
   1575     return Res;
   1576   }
   1577 
   1578   /// getOpaqueLValueMapping - Given an opaque value expression (which
   1579   /// must be mapped to an l-value), return its mapping.
   1580   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
   1581     assert(OpaqueValueMapping::shouldBindAsLValue(e));
   1582 
   1583     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
   1584       it = OpaqueLValues.find(e);
   1585     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
   1586     return it->second;
   1587   }
   1588 
   1589   /// getOpaqueRValueMapping - Given an opaque value expression (which
   1590   /// must be mapped to an r-value), return its mapping.
   1591   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
   1592     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
   1593 
   1594     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
   1595       it = OpaqueRValues.find(e);
   1596     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
   1597     return it->second;
   1598   }
   1599 
   1600   /// getAccessedFieldNo - Given an encoded value and a result number, return
   1601   /// the input field number being accessed.
   1602   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
   1603 
   1604   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
   1605   llvm::BasicBlock *GetIndirectGotoBlock();
   1606 
   1607   /// EmitNullInitialization - Generate code to set a value of the given type to
   1608   /// null, If the type contains data member pointers, they will be initialized
   1609   /// to -1 in accordance with the Itanium C++ ABI.
   1610   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
   1611 
   1612   // EmitVAArg - Generate code to get an argument from the passed in pointer
   1613   // and update it accordingly. The return value is a pointer to the argument.
   1614   // FIXME: We should be able to get rid of this method and use the va_arg
   1615   // instruction in LLVM instead once it works well enough.
   1616   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
   1617 
   1618   /// emitArrayLength - Compute the length of an array, even if it's a
   1619   /// VLA, and drill down to the base element type.
   1620   llvm::Value *emitArrayLength(const ArrayType *arrayType,
   1621                                QualType &baseType,
   1622                                llvm::Value *&addr);
   1623 
   1624   /// EmitVLASize - Capture all the sizes for the VLA expressions in
   1625   /// the given variably-modified type and store them in the VLASizeMap.
   1626   ///
   1627   /// This function can be called with a null (unreachable) insert point.
   1628   void EmitVariablyModifiedType(QualType Ty);
   1629 
   1630   /// getVLASize - Returns an LLVM value that corresponds to the size,
   1631   /// in non-variably-sized elements, of a variable length array type,
   1632   /// plus that largest non-variably-sized element type.  Assumes that
   1633   /// the type has already been emitted with EmitVariablyModifiedType.
   1634   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
   1635   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
   1636 
   1637   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
   1638   /// generating code for an C++ member function.
   1639   llvm::Value *LoadCXXThis() {
   1640     assert(CXXThisValue && "no 'this' value for this function");
   1641     return CXXThisValue;
   1642   }
   1643 
   1644   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
   1645   /// virtual bases.
   1646   llvm::Value *LoadCXXVTT() {
   1647     assert(CXXVTTValue && "no VTT value for this function");
   1648     return CXXVTTValue;
   1649   }
   1650 
   1651   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
   1652   /// complete class to the given direct base.
   1653   llvm::Value *
   1654   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
   1655                                         const CXXRecordDecl *Derived,
   1656                                         const CXXRecordDecl *Base,
   1657                                         bool BaseIsVirtual);
   1658 
   1659   /// GetAddressOfBaseClass - This function will add the necessary delta to the
   1660   /// load of 'this' and returns address of the base class.
   1661   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
   1662                                      const CXXRecordDecl *Derived,
   1663                                      CastExpr::path_const_iterator PathBegin,
   1664                                      CastExpr::path_const_iterator PathEnd,
   1665                                      bool NullCheckValue);
   1666 
   1667   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
   1668                                         const CXXRecordDecl *Derived,
   1669                                         CastExpr::path_const_iterator PathBegin,
   1670                                         CastExpr::path_const_iterator PathEnd,
   1671                                         bool NullCheckValue);
   1672 
   1673   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
   1674                                          const CXXRecordDecl *ClassDecl,
   1675                                          const CXXRecordDecl *BaseClassDecl);
   1676 
   1677   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1678                                       CXXCtorType CtorType,
   1679                                       const FunctionArgList &Args);
   1680   // It's important not to confuse this and the previous function. Delegating
   1681   // constructors are the C++0x feature. The constructor delegate optimization
   1682   // is used to reduce duplication in the base and complete consturctors where
   1683   // they are substantially the same.
   1684   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1685                                         const FunctionArgList &Args);
   1686   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
   1687                               bool ForVirtualBase, llvm::Value *This,
   1688                               CallExpr::const_arg_iterator ArgBeg,
   1689                               CallExpr::const_arg_iterator ArgEnd);
   1690 
   1691   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1692                               llvm::Value *This, llvm::Value *Src,
   1693                               CallExpr::const_arg_iterator ArgBeg,
   1694                               CallExpr::const_arg_iterator ArgEnd);
   1695 
   1696   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1697                                   const ConstantArrayType *ArrayTy,
   1698                                   llvm::Value *ArrayPtr,
   1699                                   CallExpr::const_arg_iterator ArgBeg,
   1700                                   CallExpr::const_arg_iterator ArgEnd,
   1701                                   bool ZeroInitialization = false);
   1702 
   1703   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1704                                   llvm::Value *NumElements,
   1705                                   llvm::Value *ArrayPtr,
   1706                                   CallExpr::const_arg_iterator ArgBeg,
   1707                                   CallExpr::const_arg_iterator ArgEnd,
   1708                                   bool ZeroInitialization = false);
   1709 
   1710   static Destroyer destroyCXXObject;
   1711 
   1712   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
   1713                              bool ForVirtualBase, llvm::Value *This);
   1714 
   1715   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
   1716                                llvm::Value *NewPtr, llvm::Value *NumElements);
   1717 
   1718   void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
   1719 
   1720   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
   1721   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
   1722 
   1723   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
   1724                       QualType DeleteTy);
   1725 
   1726   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
   1727   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
   1728 
   1729   void EmitCheck(llvm::Value *, unsigned Size);
   1730 
   1731   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1732                                        bool isInc, bool isPre);
   1733   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
   1734                                          bool isInc, bool isPre);
   1735   //===--------------------------------------------------------------------===//
   1736   //                            Declaration Emission
   1737   //===--------------------------------------------------------------------===//
   1738 
   1739   /// EmitDecl - Emit a declaration.
   1740   ///
   1741   /// This function can be called with a null (unreachable) insert point.
   1742   void EmitDecl(const Decl &D);
   1743 
   1744   /// EmitVarDecl - Emit a local variable declaration.
   1745   ///
   1746   /// This function can be called with a null (unreachable) insert point.
   1747   void EmitVarDecl(const VarDecl &D);
   1748 
   1749   void EmitScalarInit(const Expr *init, const ValueDecl *D,
   1750                       LValue lvalue, bool capturedByInit);
   1751   void EmitScalarInit(llvm::Value *init, LValue lvalue);
   1752 
   1753   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
   1754                              llvm::Value *Address);
   1755 
   1756   /// EmitAutoVarDecl - Emit an auto variable declaration.
   1757   ///
   1758   /// This function can be called with a null (unreachable) insert point.
   1759   void EmitAutoVarDecl(const VarDecl &D);
   1760 
   1761   class AutoVarEmission {
   1762     friend class CodeGenFunction;
   1763 
   1764     const VarDecl *Variable;
   1765 
   1766     /// The alignment of the variable.
   1767     CharUnits Alignment;
   1768 
   1769     /// The address of the alloca.  Null if the variable was emitted
   1770     /// as a global constant.
   1771     llvm::Value *Address;
   1772 
   1773     llvm::Value *NRVOFlag;
   1774 
   1775     /// True if the variable is a __block variable.
   1776     bool IsByRef;
   1777 
   1778     /// True if the variable is of aggregate type and has a constant
   1779     /// initializer.
   1780     bool IsConstantAggregate;
   1781 
   1782     struct Invalid {};
   1783     AutoVarEmission(Invalid) : Variable(0) {}
   1784 
   1785     AutoVarEmission(const VarDecl &variable)
   1786       : Variable(&variable), Address(0), NRVOFlag(0),
   1787         IsByRef(false), IsConstantAggregate(false) {}
   1788 
   1789     bool wasEmittedAsGlobal() const { return Address == 0; }
   1790 
   1791   public:
   1792     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
   1793 
   1794     /// Returns the address of the object within this declaration.
   1795     /// Note that this does not chase the forwarding pointer for
   1796     /// __block decls.
   1797     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
   1798       if (!IsByRef) return Address;
   1799 
   1800       return CGF.Builder.CreateStructGEP(Address,
   1801                                          CGF.getByRefValueLLVMField(Variable),
   1802                                          Variable->getNameAsString());
   1803     }
   1804   };
   1805   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
   1806   void EmitAutoVarInit(const AutoVarEmission &emission);
   1807   void EmitAutoVarCleanups(const AutoVarEmission &emission);
   1808   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
   1809                               QualType::DestructionKind dtorKind);
   1810 
   1811   void EmitStaticVarDecl(const VarDecl &D,
   1812                          llvm::GlobalValue::LinkageTypes Linkage);
   1813 
   1814   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
   1815   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
   1816 
   1817   /// protectFromPeepholes - Protect a value that we're intending to
   1818   /// store to the side, but which will probably be used later, from
   1819   /// aggressive peepholing optimizations that might delete it.
   1820   ///
   1821   /// Pass the result to unprotectFromPeepholes to declare that
   1822   /// protection is no longer required.
   1823   ///
   1824   /// There's no particular reason why this shouldn't apply to
   1825   /// l-values, it's just that no existing peepholes work on pointers.
   1826   PeepholeProtection protectFromPeepholes(RValue rvalue);
   1827   void unprotectFromPeepholes(PeepholeProtection protection);
   1828 
   1829   //===--------------------------------------------------------------------===//
   1830   //                             Statement Emission
   1831   //===--------------------------------------------------------------------===//
   1832 
   1833   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
   1834   void EmitStopPoint(const Stmt *S);
   1835 
   1836   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
   1837   /// this function even if there is no current insertion point.
   1838   ///
   1839   /// This function may clear the current insertion point; callers should use
   1840   /// EnsureInsertPoint if they wish to subsequently generate code without first
   1841   /// calling EmitBlock, EmitBranch, or EmitStmt.
   1842   void EmitStmt(const Stmt *S);
   1843 
   1844   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
   1845   /// necessarily require an insertion point or debug information; typically
   1846   /// because the statement amounts to a jump or a container of other
   1847   /// statements.
   1848   ///
   1849   /// \return True if the statement was handled.
   1850   bool EmitSimpleStmt(const Stmt *S);
   1851 
   1852   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
   1853                           AggValueSlot AVS = AggValueSlot::ignored());
   1854 
   1855   /// EmitLabel - Emit the block for the given label. It is legal to call this
   1856   /// function even if there is no current insertion point.
   1857   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
   1858 
   1859   void EmitLabelStmt(const LabelStmt &S);
   1860   void EmitGotoStmt(const GotoStmt &S);
   1861   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
   1862   void EmitIfStmt(const IfStmt &S);
   1863   void EmitWhileStmt(const WhileStmt &S);
   1864   void EmitDoStmt(const DoStmt &S);
   1865   void EmitForStmt(const ForStmt &S);
   1866   void EmitReturnStmt(const ReturnStmt &S);
   1867   void EmitDeclStmt(const DeclStmt &S);
   1868   void EmitBreakStmt(const BreakStmt &S);
   1869   void EmitContinueStmt(const ContinueStmt &S);
   1870   void EmitSwitchStmt(const SwitchStmt &S);
   1871   void EmitDefaultStmt(const DefaultStmt &S);
   1872   void EmitCaseStmt(const CaseStmt &S);
   1873   void EmitCaseStmtRange(const CaseStmt &S);
   1874   void EmitAsmStmt(const AsmStmt &S);
   1875 
   1876   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
   1877   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
   1878   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
   1879   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
   1880   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
   1881 
   1882   llvm::Constant *getUnwindResumeFn();
   1883   llvm::Constant *getUnwindResumeOrRethrowFn();
   1884   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   1885   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   1886 
   1887   void EmitCXXTryStmt(const CXXTryStmt &S);
   1888   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
   1889 
   1890   //===--------------------------------------------------------------------===//
   1891   //                         LValue Expression Emission
   1892   //===--------------------------------------------------------------------===//
   1893 
   1894   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
   1895   RValue GetUndefRValue(QualType Ty);
   1896 
   1897   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
   1898   /// and issue an ErrorUnsupported style diagnostic (using the
   1899   /// provided Name).
   1900   RValue EmitUnsupportedRValue(const Expr *E,
   1901                                const char *Name);
   1902 
   1903   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
   1904   /// an ErrorUnsupported style diagnostic (using the provided Name).
   1905   LValue EmitUnsupportedLValue(const Expr *E,
   1906                                const char *Name);
   1907 
   1908   /// EmitLValue - Emit code to compute a designator that specifies the location
   1909   /// of the expression.
   1910   ///
   1911   /// This can return one of two things: a simple address or a bitfield
   1912   /// reference.  In either case, the LLVM Value* in the LValue structure is
   1913   /// guaranteed to be an LLVM pointer type.
   1914   ///
   1915   /// If this returns a bitfield reference, nothing about the pointee type of
   1916   /// the LLVM value is known: For example, it may not be a pointer to an
   1917   /// integer.
   1918   ///
   1919   /// If this returns a normal address, and if the lvalue's C type is fixed
   1920   /// size, this method guarantees that the returned pointer type will point to
   1921   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
   1922   /// variable length type, this is not possible.
   1923   ///
   1924   LValue EmitLValue(const Expr *E);
   1925 
   1926   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
   1927   /// checking code to guard against undefined behavior.  This is only
   1928   /// suitable when we know that the address will be used to access the
   1929   /// object.
   1930   LValue EmitCheckedLValue(const Expr *E);
   1931 
   1932   /// EmitToMemory - Change a scalar value from its value
   1933   /// representation to its in-memory representation.
   1934   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
   1935 
   1936   /// EmitFromMemory - Change a scalar value from its memory
   1937   /// representation to its value representation.
   1938   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
   1939 
   1940   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   1941   /// care to appropriately convert from the memory representation to
   1942   /// the LLVM value representation.
   1943   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   1944                                 unsigned Alignment, QualType Ty,
   1945                                 llvm::MDNode *TBAAInfo = 0);
   1946 
   1947   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   1948   /// care to appropriately convert from the memory representation to
   1949   /// the LLVM value representation.  The l-value must be a simple
   1950   /// l-value.
   1951   llvm::Value *EmitLoadOfScalar(LValue lvalue);
   1952 
   1953   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   1954   /// care to appropriately convert from the memory representation to
   1955   /// the LLVM value representation.
   1956   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   1957                          bool Volatile, unsigned Alignment, QualType Ty,
   1958                          llvm::MDNode *TBAAInfo = 0);
   1959 
   1960   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   1961   /// care to appropriately convert from the memory representation to
   1962   /// the LLVM value representation.  The l-value must be a simple
   1963   /// l-value.
   1964   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
   1965 
   1966   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
   1967   /// this method emits the address of the lvalue, then loads the result as an
   1968   /// rvalue, returning the rvalue.
   1969   RValue EmitLoadOfLValue(LValue V);
   1970   RValue EmitLoadOfExtVectorElementLValue(LValue V);
   1971   RValue EmitLoadOfBitfieldLValue(LValue LV);
   1972   RValue EmitLoadOfPropertyRefLValue(LValue LV,
   1973                                  ReturnValueSlot Return = ReturnValueSlot());
   1974 
   1975   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   1976   /// lvalue, where both are guaranteed to the have the same type, and that type
   1977   /// is 'Ty'.
   1978   void EmitStoreThroughLValue(RValue Src, LValue Dst);
   1979   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
   1980   void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
   1981 
   1982   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
   1983   /// EmitStoreThroughLValue.
   1984   ///
   1985   /// \param Result [out] - If non-null, this will be set to a Value* for the
   1986   /// bit-field contents after the store, appropriate for use as the result of
   1987   /// an assignment to the bit-field.
   1988   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1989                                       llvm::Value **Result=0);
   1990 
   1991   /// Emit an l-value for an assignment (simple or compound) of complex type.
   1992   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
   1993   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
   1994 
   1995   // Note: only available for agg return types
   1996   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
   1997   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
   1998   // Note: only available for agg return types
   1999   LValue EmitCallExprLValue(const CallExpr *E);
   2000   // Note: only available for agg return types
   2001   LValue EmitVAArgExprLValue(const VAArgExpr *E);
   2002   LValue EmitDeclRefLValue(const DeclRefExpr *E);
   2003   LValue EmitStringLiteralLValue(const StringLiteral *E);
   2004   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
   2005   LValue EmitPredefinedLValue(const PredefinedExpr *E);
   2006   LValue EmitUnaryOpLValue(const UnaryOperator *E);
   2007   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
   2008   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
   2009   LValue EmitMemberExpr(const MemberExpr *E);
   2010   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
   2011   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
   2012   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
   2013   LValue EmitCastLValue(const CastExpr *E);
   2014   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
   2015   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2016   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
   2017 
   2018   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   2019                               const ObjCIvarDecl *Ivar);
   2020   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
   2021                                       const IndirectFieldDecl* Field,
   2022                                       unsigned CVRQualifiers);
   2023   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
   2024                             unsigned CVRQualifiers);
   2025 
   2026   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
   2027   /// if the Field is a reference, this will return the address of the reference
   2028   /// and not the address of the value stored in the reference.
   2029   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
   2030                                           const FieldDecl* Field,
   2031                                           unsigned CVRQualifiers);
   2032 
   2033   LValue EmitLValueForIvar(QualType ObjectTy,
   2034                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
   2035                            unsigned CVRQualifiers);
   2036 
   2037   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
   2038                                 unsigned CVRQualifiers);
   2039 
   2040   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
   2041 
   2042   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
   2043   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
   2044   LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
   2045   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
   2046 
   2047   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
   2048   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
   2049   LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
   2050   LValue EmitStmtExprLValue(const StmtExpr *E);
   2051   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
   2052   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
   2053   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
   2054 
   2055   //===--------------------------------------------------------------------===//
   2056   //                         Scalar Expression Emission
   2057   //===--------------------------------------------------------------------===//
   2058 
   2059   /// EmitCall - Generate a call of the given function, expecting the given
   2060   /// result type, and using the given argument list which specifies both the
   2061   /// LLVM arguments and the types they were derived from.
   2062   ///
   2063   /// \param TargetDecl - If given, the decl of the function in a direct call;
   2064   /// used to set attributes on the call (noreturn, etc.).
   2065   RValue EmitCall(const CGFunctionInfo &FnInfo,
   2066                   llvm::Value *Callee,
   2067                   ReturnValueSlot ReturnValue,
   2068                   const CallArgList &Args,
   2069                   const Decl *TargetDecl = 0,
   2070                   llvm::Instruction **callOrInvoke = 0);
   2071 
   2072   RValue EmitCall(QualType FnType, llvm::Value *Callee,
   2073                   ReturnValueSlot ReturnValue,
   2074                   CallExpr::const_arg_iterator ArgBeg,
   2075                   CallExpr::const_arg_iterator ArgEnd,
   2076                   const Decl *TargetDecl = 0);
   2077   RValue EmitCallExpr(const CallExpr *E,
   2078                       ReturnValueSlot ReturnValue = ReturnValueSlot());
   2079 
   2080   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2081                                   ArrayRef<llvm::Value *> Args,
   2082                                   const Twine &Name = "");
   2083   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2084                                   const Twine &Name = "");
   2085 
   2086   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
   2087                                 llvm::Type *Ty);
   2088   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
   2089                                 llvm::Value *This, llvm::Type *Ty);
   2090   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
   2091                                          NestedNameSpecifier *Qual,
   2092                                          llvm::Type *Ty);
   2093 
   2094   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
   2095                                                    CXXDtorType Type,
   2096                                                    const CXXRecordDecl *RD);
   2097 
   2098   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
   2099                            llvm::Value *Callee,
   2100                            ReturnValueSlot ReturnValue,
   2101                            llvm::Value *This,
   2102                            llvm::Value *VTT,
   2103                            CallExpr::const_arg_iterator ArgBeg,
   2104                            CallExpr::const_arg_iterator ArgEnd);
   2105   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
   2106                                ReturnValueSlot ReturnValue);
   2107   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
   2108                                       ReturnValueSlot ReturnValue);
   2109 
   2110   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
   2111                                            const CXXMethodDecl *MD,
   2112                                            llvm::Value *This);
   2113   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
   2114                                        const CXXMethodDecl *MD,
   2115                                        ReturnValueSlot ReturnValue);
   2116 
   2117   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
   2118                                 ReturnValueSlot ReturnValue);
   2119 
   2120 
   2121   RValue EmitBuiltinExpr(const FunctionDecl *FD,
   2122                          unsigned BuiltinID, const CallExpr *E);
   2123 
   2124   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
   2125 
   2126   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
   2127   /// is unhandled by the current target.
   2128   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2129 
   2130   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2131   llvm::Value *EmitNeonCall(llvm::Function *F,
   2132                             SmallVectorImpl<llvm::Value*> &O,
   2133                             const char *name,
   2134                             unsigned shift = 0, bool rightshift = false);
   2135   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
   2136   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
   2137                                    bool negateForRightShift);
   2138 
   2139   llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
   2140   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2141   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2142 
   2143   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
   2144   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
   2145   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
   2146   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
   2147                              ReturnValueSlot Return = ReturnValueSlot());
   2148 
   2149   /// Retrieves the default cleanup kind for an ARC cleanup.
   2150   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
   2151   CleanupKind getARCCleanupKind() {
   2152     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
   2153              ? NormalAndEHCleanup : NormalCleanup;
   2154   }
   2155 
   2156   // ARC primitives.
   2157   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
   2158   void EmitARCDestroyWeak(llvm::Value *addr);
   2159   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
   2160   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
   2161   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
   2162                                 bool ignored);
   2163   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
   2164   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
   2165   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
   2166   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
   2167   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
   2168                                   bool ignored);
   2169   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
   2170                                       bool ignored);
   2171   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
   2172   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
   2173   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
   2174   void EmitARCRelease(llvm::Value *value, bool precise);
   2175   llvm::Value *EmitARCAutorelease(llvm::Value *value);
   2176   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
   2177   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
   2178   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
   2179 
   2180   std::pair<LValue,llvm::Value*>
   2181   EmitARCStoreAutoreleasing(const BinaryOperator *e);
   2182   std::pair<LValue,llvm::Value*>
   2183   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
   2184 
   2185   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
   2186 
   2187   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
   2188   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
   2189   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
   2190 
   2191   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
   2192   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
   2193   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
   2194 
   2195   static Destroyer destroyARCStrongImprecise;
   2196   static Destroyer destroyARCStrongPrecise;
   2197   static Destroyer destroyARCWeak;
   2198 
   2199   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
   2200   llvm::Value *EmitObjCAutoreleasePoolPush();
   2201   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
   2202   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
   2203   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
   2204 
   2205   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
   2206   /// expression. Will emit a temporary variable if E is not an LValue.
   2207   RValue EmitReferenceBindingToExpr(const Expr* E,
   2208                                     const NamedDecl *InitializedDecl);
   2209 
   2210   //===--------------------------------------------------------------------===//
   2211   //                           Expression Emission
   2212   //===--------------------------------------------------------------------===//
   2213 
   2214   // Expressions are broken into three classes: scalar, complex, aggregate.
   2215 
   2216   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
   2217   /// scalar type, returning the result.
   2218   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
   2219 
   2220   /// EmitScalarConversion - Emit a conversion from the specified type to the
   2221   /// specified destination type, both of which are LLVM scalar types.
   2222   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
   2223                                     QualType DstTy);
   2224 
   2225   /// EmitComplexToScalarConversion - Emit a conversion from the specified
   2226   /// complex type to the specified destination type, where the destination type
   2227   /// is an LLVM scalar type.
   2228   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
   2229                                              QualType DstTy);
   2230 
   2231 
   2232   /// EmitAggExpr - Emit the computation of the specified expression
   2233   /// of aggregate type.  The result is computed into the given slot,
   2234   /// which may be null to indicate that the value is not needed.
   2235   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
   2236 
   2237   /// EmitAggExprToLValue - Emit the computation of the specified expression of
   2238   /// aggregate type into a temporary LValue.
   2239   LValue EmitAggExprToLValue(const Expr *E);
   2240 
   2241   /// EmitGCMemmoveCollectable - Emit special API for structs with object
   2242   /// pointers.
   2243   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   2244                                 QualType Ty);
   2245 
   2246   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2247   /// make sure it survives garbage collection until this point.
   2248   void EmitExtendGCLifetime(llvm::Value *object);
   2249 
   2250   /// EmitComplexExpr - Emit the computation of the specified expression of
   2251   /// complex type, returning the result.
   2252   ComplexPairTy EmitComplexExpr(const Expr *E,
   2253                                 bool IgnoreReal = false,
   2254                                 bool IgnoreImag = false);
   2255 
   2256   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
   2257   /// of complex type, storing into the specified Value*.
   2258   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
   2259                                bool DestIsVolatile);
   2260 
   2261   /// StoreComplexToAddr - Store a complex number into the specified address.
   2262   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
   2263                           bool DestIsVolatile);
   2264   /// LoadComplexFromAddr - Load a complex number from the specified address.
   2265   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
   2266 
   2267   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
   2268   /// a static local variable.
   2269   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
   2270                                             const char *Separator,
   2271                                        llvm::GlobalValue::LinkageTypes Linkage);
   2272 
   2273   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
   2274   /// global variable that has already been created for it.  If the initializer
   2275   /// has a different type than GV does, this may free GV and return a different
   2276   /// one.  Otherwise it just returns GV.
   2277   llvm::GlobalVariable *
   2278   AddInitializerToStaticVarDecl(const VarDecl &D,
   2279                                 llvm::GlobalVariable *GV);
   2280 
   2281 
   2282   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
   2283   /// variable with global storage.
   2284   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
   2285 
   2286   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
   2287   /// with the C++ runtime so that its destructor will be called at exit.
   2288   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
   2289                                      llvm::Constant *DeclPtr);
   2290 
   2291   /// Emit code in this function to perform a guarded variable
   2292   /// initialization.  Guarded initializations are used when it's not
   2293   /// possible to prove that an initialization will be done exactly
   2294   /// once, e.g. with a static local variable or a static data member
   2295   /// of a class template.
   2296   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
   2297 
   2298   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
   2299   /// variables.
   2300   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
   2301                                  llvm::Constant **Decls,
   2302                                  unsigned NumDecls);
   2303 
   2304   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
   2305   /// variables.
   2306   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
   2307                                  const std::vector<std::pair<llvm::WeakVH,
   2308                                    llvm::Constant*> > &DtorsAndObjects);
   2309 
   2310   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
   2311                                         const VarDecl *D,
   2312                                         llvm::GlobalVariable *Addr);
   2313 
   2314   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
   2315 
   2316   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
   2317                                   const Expr *Exp);
   2318 
   2319   RValue EmitExprWithCleanups(const ExprWithCleanups *E,
   2320                               AggValueSlot Slot =AggValueSlot::ignored());
   2321 
   2322   void EmitCXXThrowExpr(const CXXThrowExpr *E);
   2323 
   2324   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
   2325 
   2326   //===--------------------------------------------------------------------===//
   2327   //                         Annotations Emission
   2328   //===--------------------------------------------------------------------===//
   2329 
   2330   /// Emit an annotation call (intrinsic or builtin).
   2331   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
   2332                                   llvm::Value *AnnotatedVal,
   2333                                   llvm::StringRef AnnotationStr,
   2334                                   SourceLocation Location);
   2335 
   2336   /// Emit local annotations for the local variable V, declared by D.
   2337   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
   2338 
   2339   /// Emit field annotations for the given field & value. Returns the
   2340   /// annotation result.
   2341   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
   2342 
   2343   //===--------------------------------------------------------------------===//
   2344   //                             Internal Helpers
   2345   //===--------------------------------------------------------------------===//
   2346 
   2347   /// ContainsLabel - Return true if the statement contains a label in it.  If
   2348   /// this statement is not executed normally, it not containing a label means
   2349   /// that we can just remove the code.
   2350   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
   2351 
   2352   /// containsBreak - Return true if the statement contains a break out of it.
   2353   /// If the statement (recursively) contains a switch or loop with a break
   2354   /// inside of it, this is fine.
   2355   static bool containsBreak(const Stmt *S);
   2356 
   2357   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2358   /// to a constant, or if it does but contains a label, return false.  If it
   2359   /// constant folds return true and set the boolean result in Result.
   2360   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
   2361 
   2362   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2363   /// to a constant, or if it does but contains a label, return false.  If it
   2364   /// constant folds return true and set the folded value.
   2365   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
   2366 
   2367   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
   2368   /// if statement) to the specified blocks.  Based on the condition, this might
   2369   /// try to simplify the codegen of the conditional based on the branch.
   2370   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
   2371                             llvm::BasicBlock *FalseBlock);
   2372 
   2373   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
   2374   /// generate a branch around the created basic block as necessary.
   2375   llvm::BasicBlock *getTrapBB();
   2376 
   2377   /// EmitCallArg - Emit a single call argument.
   2378   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
   2379 
   2380   /// EmitDelegateCallArg - We are performing a delegate call; that
   2381   /// is, the current function is delegating to another one.  Produce
   2382   /// a r-value suitable for passing the given parameter.
   2383   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
   2384 
   2385 private:
   2386   void EmitReturnOfRValue(RValue RV, QualType Ty);
   2387 
   2388   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
   2389   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
   2390   ///
   2391   /// \param AI - The first function argument of the expansion.
   2392   /// \return The argument following the last expanded function
   2393   /// argument.
   2394   llvm::Function::arg_iterator
   2395   ExpandTypeFromArgs(QualType Ty, LValue Dst,
   2396                      llvm::Function::arg_iterator AI);
   2397 
   2398   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
   2399   /// Ty, into individual arguments on the provided vector \arg Args. See
   2400   /// ABIArgInfo::Expand.
   2401   void ExpandTypeToArgs(QualType Ty, RValue Src,
   2402                         SmallVector<llvm::Value*, 16> &Args,
   2403                         llvm::FunctionType *IRFuncTy);
   2404 
   2405   llvm::Value* EmitAsmInput(const AsmStmt &S,
   2406                             const TargetInfo::ConstraintInfo &Info,
   2407                             const Expr *InputExpr, std::string &ConstraintStr);
   2408 
   2409   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
   2410                                   const TargetInfo::ConstraintInfo &Info,
   2411                                   LValue InputValue, QualType InputType,
   2412                                   std::string &ConstraintStr);
   2413 
   2414   /// EmitCallArgs - Emit call arguments for a function.
   2415   /// The CallArgTypeInfo parameter is used for iterating over the known
   2416   /// argument types of the function being called.
   2417   template<typename T>
   2418   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
   2419                     CallExpr::const_arg_iterator ArgBeg,
   2420                     CallExpr::const_arg_iterator ArgEnd) {
   2421       CallExpr::const_arg_iterator Arg = ArgBeg;
   2422 
   2423     // First, use the argument types that the type info knows about
   2424     if (CallArgTypeInfo) {
   2425       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
   2426            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
   2427         assert(Arg != ArgEnd && "Running over edge of argument list!");
   2428         QualType ArgType = *I;
   2429 #ifndef NDEBUG
   2430         QualType ActualArgType = Arg->getType();
   2431         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
   2432           QualType ActualBaseType =
   2433             ActualArgType->getAs<PointerType>()->getPointeeType();
   2434           QualType ArgBaseType =
   2435             ArgType->getAs<PointerType>()->getPointeeType();
   2436           if (ArgBaseType->isVariableArrayType()) {
   2437             if (const VariableArrayType *VAT =
   2438                 getContext().getAsVariableArrayType(ActualBaseType)) {
   2439               if (!VAT->getSizeExpr())
   2440                 ActualArgType = ArgType;
   2441             }
   2442           }
   2443         }
   2444         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
   2445                getTypePtr() ==
   2446                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
   2447                "type mismatch in call argument!");
   2448 #endif
   2449         EmitCallArg(Args, *Arg, ArgType);
   2450       }
   2451 
   2452       // Either we've emitted all the call args, or we have a call to a
   2453       // variadic function.
   2454       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
   2455              "Extra arguments in non-variadic function!");
   2456 
   2457     }
   2458 
   2459     // If we still have any arguments, emit them using the type of the argument.
   2460     for (; Arg != ArgEnd; ++Arg)
   2461       EmitCallArg(Args, *Arg, Arg->getType());
   2462   }
   2463 
   2464   const TargetCodeGenInfo &getTargetHooks() const {
   2465     return CGM.getTargetCodeGenInfo();
   2466   }
   2467 
   2468   void EmitDeclMetadata();
   2469 
   2470   CodeGenModule::ByrefHelpers *
   2471   buildByrefHelpers(llvm::StructType &byrefType,
   2472                     const AutoVarEmission &emission);
   2473 };
   2474 
   2475 /// Helper class with most of the code for saving a value for a
   2476 /// conditional expression cleanup.
   2477 struct DominatingLLVMValue {
   2478   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
   2479 
   2480   /// Answer whether the given value needs extra work to be saved.
   2481   static bool needsSaving(llvm::Value *value) {
   2482     // If it's not an instruction, we don't need to save.
   2483     if (!isa<llvm::Instruction>(value)) return false;
   2484 
   2485     // If it's an instruction in the entry block, we don't need to save.
   2486     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
   2487     return (block != &block->getParent()->getEntryBlock());
   2488   }
   2489 
   2490   /// Try to save the given value.
   2491   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
   2492     if (!needsSaving(value)) return saved_type(value, false);
   2493 
   2494     // Otherwise we need an alloca.
   2495     llvm::Value *alloca =
   2496       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
   2497     CGF.Builder.CreateStore(value, alloca);
   2498 
   2499     return saved_type(alloca, true);
   2500   }
   2501 
   2502   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
   2503     if (!value.getInt()) return value.getPointer();
   2504     return CGF.Builder.CreateLoad(value.getPointer());
   2505   }
   2506 };
   2507 
   2508 /// A partial specialization of DominatingValue for llvm::Values that
   2509 /// might be llvm::Instructions.
   2510 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
   2511   typedef T *type;
   2512   static type restore(CodeGenFunction &CGF, saved_type value) {
   2513     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
   2514   }
   2515 };
   2516 
   2517 /// A specialization of DominatingValue for RValue.
   2518 template <> struct DominatingValue<RValue> {
   2519   typedef RValue type;
   2520   class saved_type {
   2521     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
   2522                 AggregateAddress, ComplexAddress };
   2523 
   2524     llvm::Value *Value;
   2525     Kind K;
   2526     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
   2527 
   2528   public:
   2529     static bool needsSaving(RValue value);
   2530     static saved_type save(CodeGenFunction &CGF, RValue value);
   2531     RValue restore(CodeGenFunction &CGF);
   2532 
   2533     // implementations in CGExprCXX.cpp
   2534   };
   2535 
   2536   static bool needsSaving(type value) {
   2537     return saved_type::needsSaving(value);
   2538   }
   2539   static saved_type save(CodeGenFunction &CGF, type value) {
   2540     return saved_type::save(CGF, value);
   2541   }
   2542   static type restore(CodeGenFunction &CGF, saved_type value) {
   2543     return value.restore(CGF);
   2544   }
   2545 };
   2546 
   2547 }  // end namespace CodeGen
   2548 }  // end namespace clang
   2549 
   2550 #endif
   2551