Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Pass to verify generated machine code. The following is checked:
     11 //
     12 // Operand counts: All explicit operands must be present.
     13 //
     14 // Register classes: All physical and virtual register operands must be
     15 // compatible with the register class required by the instruction descriptor.
     16 //
     17 // Register live intervals: Registers must be defined only once, and must be
     18 // defined before use.
     19 //
     20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
     21 // command-line option -verify-machineinstrs, or by defining the environment
     22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
     23 // the verifier errors.
     24 //===----------------------------------------------------------------------===//
     25 
     26 #include "llvm/Instructions.h"
     27 #include "llvm/Function.h"
     28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     29 #include "llvm/CodeGen/LiveVariables.h"
     30 #include "llvm/CodeGen/LiveStackAnalysis.h"
     31 #include "llvm/CodeGen/MachineFunctionPass.h"
     32 #include "llvm/CodeGen/MachineFrameInfo.h"
     33 #include "llvm/CodeGen/MachineMemOperand.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/CodeGen/Passes.h"
     36 #include "llvm/MC/MCAsmInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include "llvm/Target/TargetInstrInfo.h"
     40 #include "llvm/ADT/DenseSet.h"
     41 #include "llvm/ADT/SetOperations.h"
     42 #include "llvm/ADT/SmallVector.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 using namespace llvm;
     47 
     48 namespace {
     49   struct MachineVerifier {
     50 
     51     MachineVerifier(Pass *pass, const char *b) :
     52       PASS(pass),
     53       Banner(b),
     54       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
     55       {}
     56 
     57     bool runOnMachineFunction(MachineFunction &MF);
     58 
     59     Pass *const PASS;
     60     const char *Banner;
     61     const char *const OutFileName;
     62     raw_ostream *OS;
     63     const MachineFunction *MF;
     64     const TargetMachine *TM;
     65     const TargetInstrInfo *TII;
     66     const TargetRegisterInfo *TRI;
     67     const MachineRegisterInfo *MRI;
     68 
     69     unsigned foundErrors;
     70 
     71     typedef SmallVector<unsigned, 16> RegVector;
     72     typedef DenseSet<unsigned> RegSet;
     73     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
     74 
     75     const MachineInstr *FirstTerminator;
     76 
     77     BitVector regsReserved;
     78     RegSet regsLive;
     79     RegVector regsDefined, regsDead, regsKilled;
     80     RegSet regsLiveInButUnused;
     81 
     82     SlotIndex lastIndex;
     83 
     84     // Add Reg and any sub-registers to RV
     85     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
     86       RV.push_back(Reg);
     87       if (TargetRegisterInfo::isPhysicalRegister(Reg))
     88         for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
     89           RV.push_back(*R);
     90     }
     91 
     92     struct BBInfo {
     93       // Is this MBB reachable from the MF entry point?
     94       bool reachable;
     95 
     96       // Vregs that must be live in because they are used without being
     97       // defined. Map value is the user.
     98       RegMap vregsLiveIn;
     99 
    100       // Regs killed in MBB. They may be defined again, and will then be in both
    101       // regsKilled and regsLiveOut.
    102       RegSet regsKilled;
    103 
    104       // Regs defined in MBB and live out. Note that vregs passing through may
    105       // be live out without being mentioned here.
    106       RegSet regsLiveOut;
    107 
    108       // Vregs that pass through MBB untouched. This set is disjoint from
    109       // regsKilled and regsLiveOut.
    110       RegSet vregsPassed;
    111 
    112       // Vregs that must pass through MBB because they are needed by a successor
    113       // block. This set is disjoint from regsLiveOut.
    114       RegSet vregsRequired;
    115 
    116       BBInfo() : reachable(false) {}
    117 
    118       // Add register to vregsPassed if it belongs there. Return true if
    119       // anything changed.
    120       bool addPassed(unsigned Reg) {
    121         if (!TargetRegisterInfo::isVirtualRegister(Reg))
    122           return false;
    123         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
    124           return false;
    125         return vregsPassed.insert(Reg).second;
    126       }
    127 
    128       // Same for a full set.
    129       bool addPassed(const RegSet &RS) {
    130         bool changed = false;
    131         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
    132           if (addPassed(*I))
    133             changed = true;
    134         return changed;
    135       }
    136 
    137       // Add register to vregsRequired if it belongs there. Return true if
    138       // anything changed.
    139       bool addRequired(unsigned Reg) {
    140         if (!TargetRegisterInfo::isVirtualRegister(Reg))
    141           return false;
    142         if (regsLiveOut.count(Reg))
    143           return false;
    144         return vregsRequired.insert(Reg).second;
    145       }
    146 
    147       // Same for a full set.
    148       bool addRequired(const RegSet &RS) {
    149         bool changed = false;
    150         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
    151           if (addRequired(*I))
    152             changed = true;
    153         return changed;
    154       }
    155 
    156       // Same for a full map.
    157       bool addRequired(const RegMap &RM) {
    158         bool changed = false;
    159         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
    160           if (addRequired(I->first))
    161             changed = true;
    162         return changed;
    163       }
    164 
    165       // Live-out registers are either in regsLiveOut or vregsPassed.
    166       bool isLiveOut(unsigned Reg) const {
    167         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
    168       }
    169     };
    170 
    171     // Extra register info per MBB.
    172     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
    173 
    174     bool isReserved(unsigned Reg) {
    175       return Reg < regsReserved.size() && regsReserved.test(Reg);
    176     }
    177 
    178     // Analysis information if available
    179     LiveVariables *LiveVars;
    180     LiveIntervals *LiveInts;
    181     LiveStacks *LiveStks;
    182     SlotIndexes *Indexes;
    183 
    184     void visitMachineFunctionBefore();
    185     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    186     void visitMachineInstrBefore(const MachineInstr *MI);
    187     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    188     void visitMachineInstrAfter(const MachineInstr *MI);
    189     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    190     void visitMachineFunctionAfter();
    191 
    192     void report(const char *msg, const MachineFunction *MF);
    193     void report(const char *msg, const MachineBasicBlock *MBB);
    194     void report(const char *msg, const MachineInstr *MI);
    195     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
    196 
    197     void markReachable(const MachineBasicBlock *MBB);
    198     void calcRegsPassed();
    199     void checkPHIOps(const MachineBasicBlock *MBB);
    200 
    201     void calcRegsRequired();
    202     void verifyLiveVariables();
    203     void verifyLiveIntervals();
    204   };
    205 
    206   struct MachineVerifierPass : public MachineFunctionPass {
    207     static char ID; // Pass ID, replacement for typeid
    208     const char *const Banner;
    209 
    210     MachineVerifierPass(const char *b = 0)
    211       : MachineFunctionPass(ID), Banner(b) {
    212         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
    213       }
    214 
    215     void getAnalysisUsage(AnalysisUsage &AU) const {
    216       AU.setPreservesAll();
    217       MachineFunctionPass::getAnalysisUsage(AU);
    218     }
    219 
    220     bool runOnMachineFunction(MachineFunction &MF) {
    221       MF.verify(this, Banner);
    222       return false;
    223     }
    224   };
    225 
    226 }
    227 
    228 char MachineVerifierPass::ID = 0;
    229 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
    230                 "Verify generated machine code", false, false)
    231 
    232 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
    233   return new MachineVerifierPass(Banner);
    234 }
    235 
    236 void MachineFunction::verify(Pass *p, const char *Banner) const {
    237   MachineVerifier(p, Banner)
    238     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
    239 }
    240 
    241 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
    242   raw_ostream *OutFile = 0;
    243   if (OutFileName) {
    244     std::string ErrorInfo;
    245     OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
    246                                  raw_fd_ostream::F_Append);
    247     if (!ErrorInfo.empty()) {
    248       errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
    249       exit(1);
    250     }
    251 
    252     OS = OutFile;
    253   } else {
    254     OS = &errs();
    255   }
    256 
    257   foundErrors = 0;
    258 
    259   this->MF = &MF;
    260   TM = &MF.getTarget();
    261   TII = TM->getInstrInfo();
    262   TRI = TM->getRegisterInfo();
    263   MRI = &MF.getRegInfo();
    264 
    265   LiveVars = NULL;
    266   LiveInts = NULL;
    267   LiveStks = NULL;
    268   Indexes = NULL;
    269   if (PASS) {
    270     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
    271     // We don't want to verify LiveVariables if LiveIntervals is available.
    272     if (!LiveInts)
    273       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
    274     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
    275     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
    276   }
    277 
    278   visitMachineFunctionBefore();
    279   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
    280        MFI!=MFE; ++MFI) {
    281     visitMachineBasicBlockBefore(MFI);
    282     for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
    283            MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
    284       if (MBBI->getParent() != MFI) {
    285         report("Bad instruction parent pointer", MFI);
    286         *OS << "Instruction: " << *MBBI;
    287         continue;
    288       }
    289       visitMachineInstrBefore(MBBI);
    290       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
    291         visitMachineOperand(&MBBI->getOperand(I), I);
    292       visitMachineInstrAfter(MBBI);
    293     }
    294     visitMachineBasicBlockAfter(MFI);
    295   }
    296   visitMachineFunctionAfter();
    297 
    298   if (OutFile)
    299     delete OutFile;
    300   else if (foundErrors)
    301     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
    302 
    303   // Clean up.
    304   regsLive.clear();
    305   regsDefined.clear();
    306   regsDead.clear();
    307   regsKilled.clear();
    308   regsLiveInButUnused.clear();
    309   MBBInfoMap.clear();
    310 
    311   return false;                 // no changes
    312 }
    313 
    314 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
    315   assert(MF);
    316   *OS << '\n';
    317   if (!foundErrors++) {
    318     if (Banner)
    319       *OS << "# " << Banner << '\n';
    320     MF->print(*OS, Indexes);
    321   }
    322   *OS << "*** Bad machine code: " << msg << " ***\n"
    323       << "- function:    " << MF->getFunction()->getNameStr() << "\n";
    324 }
    325 
    326 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
    327   assert(MBB);
    328   report(msg, MBB->getParent());
    329   *OS << "- basic block: " << MBB->getName()
    330       << " " << (void*)MBB
    331       << " (BB#" << MBB->getNumber() << ")";
    332   if (Indexes)
    333     *OS << " [" << Indexes->getMBBStartIdx(MBB)
    334         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
    335   *OS << '\n';
    336 }
    337 
    338 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
    339   assert(MI);
    340   report(msg, MI->getParent());
    341   *OS << "- instruction: ";
    342   if (Indexes && Indexes->hasIndex(MI))
    343     *OS << Indexes->getInstructionIndex(MI) << '\t';
    344   MI->print(*OS, TM);
    345 }
    346 
    347 void MachineVerifier::report(const char *msg,
    348                              const MachineOperand *MO, unsigned MONum) {
    349   assert(MO);
    350   report(msg, MO->getParent());
    351   *OS << "- operand " << MONum << ":   ";
    352   MO->print(*OS, TM);
    353   *OS << "\n";
    354 }
    355 
    356 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
    357   BBInfo &MInfo = MBBInfoMap[MBB];
    358   if (!MInfo.reachable) {
    359     MInfo.reachable = true;
    360     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
    361            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
    362       markReachable(*SuI);
    363   }
    364 }
    365 
    366 void MachineVerifier::visitMachineFunctionBefore() {
    367   lastIndex = SlotIndex();
    368   regsReserved = TRI->getReservedRegs(*MF);
    369 
    370   // A sub-register of a reserved register is also reserved
    371   for (int Reg = regsReserved.find_first(); Reg>=0;
    372        Reg = regsReserved.find_next(Reg)) {
    373     for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
    374       // FIXME: This should probably be:
    375       // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
    376       regsReserved.set(*Sub);
    377     }
    378   }
    379   markReachable(&MF->front());
    380 }
    381 
    382 // Does iterator point to a and b as the first two elements?
    383 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
    384                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
    385   if (*i == a)
    386     return *++i == b;
    387   if (*i == b)
    388     return *++i == a;
    389   return false;
    390 }
    391 
    392 void
    393 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
    394   FirstTerminator = 0;
    395 
    396   // Count the number of landing pad successors.
    397   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
    398   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
    399        E = MBB->succ_end(); I != E; ++I) {
    400     if ((*I)->isLandingPad())
    401       LandingPadSuccs.insert(*I);
    402   }
    403 
    404   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
    405   const BasicBlock *BB = MBB->getBasicBlock();
    406   if (LandingPadSuccs.size() > 1 &&
    407       !(AsmInfo &&
    408         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
    409         BB && isa<SwitchInst>(BB->getTerminator())))
    410     report("MBB has more than one landing pad successor", MBB);
    411 
    412   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
    413   MachineBasicBlock *TBB = 0, *FBB = 0;
    414   SmallVector<MachineOperand, 4> Cond;
    415   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
    416                           TBB, FBB, Cond)) {
    417     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
    418     // check whether its answers match up with reality.
    419     if (!TBB && !FBB) {
    420       // Block falls through to its successor.
    421       MachineFunction::const_iterator MBBI = MBB;
    422       ++MBBI;
    423       if (MBBI == MF->end()) {
    424         // It's possible that the block legitimately ends with a noreturn
    425         // call or an unreachable, in which case it won't actually fall
    426         // out the bottom of the function.
    427       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
    428         // It's possible that the block legitimately ends with a noreturn
    429         // call or an unreachable, in which case it won't actuall fall
    430         // out of the block.
    431       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
    432         report("MBB exits via unconditional fall-through but doesn't have "
    433                "exactly one CFG successor!", MBB);
    434       } else if (!MBB->isSuccessor(MBBI)) {
    435         report("MBB exits via unconditional fall-through but its successor "
    436                "differs from its CFG successor!", MBB);
    437       }
    438       if (!MBB->empty() && MBB->back().getDesc().isBarrier() &&
    439           !TII->isPredicated(&MBB->back())) {
    440         report("MBB exits via unconditional fall-through but ends with a "
    441                "barrier instruction!", MBB);
    442       }
    443       if (!Cond.empty()) {
    444         report("MBB exits via unconditional fall-through but has a condition!",
    445                MBB);
    446       }
    447     } else if (TBB && !FBB && Cond.empty()) {
    448       // Block unconditionally branches somewhere.
    449       if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
    450         report("MBB exits via unconditional branch but doesn't have "
    451                "exactly one CFG successor!", MBB);
    452       } else if (!MBB->isSuccessor(TBB)) {
    453         report("MBB exits via unconditional branch but the CFG "
    454                "successor doesn't match the actual successor!", MBB);
    455       }
    456       if (MBB->empty()) {
    457         report("MBB exits via unconditional branch but doesn't contain "
    458                "any instructions!", MBB);
    459       } else if (!MBB->back().getDesc().isBarrier()) {
    460         report("MBB exits via unconditional branch but doesn't end with a "
    461                "barrier instruction!", MBB);
    462       } else if (!MBB->back().getDesc().isTerminator()) {
    463         report("MBB exits via unconditional branch but the branch isn't a "
    464                "terminator instruction!", MBB);
    465       }
    466     } else if (TBB && !FBB && !Cond.empty()) {
    467       // Block conditionally branches somewhere, otherwise falls through.
    468       MachineFunction::const_iterator MBBI = MBB;
    469       ++MBBI;
    470       if (MBBI == MF->end()) {
    471         report("MBB conditionally falls through out of function!", MBB);
    472       } if (MBB->succ_size() != 2) {
    473         report("MBB exits via conditional branch/fall-through but doesn't have "
    474                "exactly two CFG successors!", MBB);
    475       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
    476         report("MBB exits via conditional branch/fall-through but the CFG "
    477                "successors don't match the actual successors!", MBB);
    478       }
    479       if (MBB->empty()) {
    480         report("MBB exits via conditional branch/fall-through but doesn't "
    481                "contain any instructions!", MBB);
    482       } else if (MBB->back().getDesc().isBarrier()) {
    483         report("MBB exits via conditional branch/fall-through but ends with a "
    484                "barrier instruction!", MBB);
    485       } else if (!MBB->back().getDesc().isTerminator()) {
    486         report("MBB exits via conditional branch/fall-through but the branch "
    487                "isn't a terminator instruction!", MBB);
    488       }
    489     } else if (TBB && FBB) {
    490       // Block conditionally branches somewhere, otherwise branches
    491       // somewhere else.
    492       if (MBB->succ_size() != 2) {
    493         report("MBB exits via conditional branch/branch but doesn't have "
    494                "exactly two CFG successors!", MBB);
    495       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
    496         report("MBB exits via conditional branch/branch but the CFG "
    497                "successors don't match the actual successors!", MBB);
    498       }
    499       if (MBB->empty()) {
    500         report("MBB exits via conditional branch/branch but doesn't "
    501                "contain any instructions!", MBB);
    502       } else if (!MBB->back().getDesc().isBarrier()) {
    503         report("MBB exits via conditional branch/branch but doesn't end with a "
    504                "barrier instruction!", MBB);
    505       } else if (!MBB->back().getDesc().isTerminator()) {
    506         report("MBB exits via conditional branch/branch but the branch "
    507                "isn't a terminator instruction!", MBB);
    508       }
    509       if (Cond.empty()) {
    510         report("MBB exits via conditinal branch/branch but there's no "
    511                "condition!", MBB);
    512       }
    513     } else {
    514       report("AnalyzeBranch returned invalid data!", MBB);
    515     }
    516   }
    517 
    518   regsLive.clear();
    519   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    520          E = MBB->livein_end(); I != E; ++I) {
    521     if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
    522       report("MBB live-in list contains non-physical register", MBB);
    523       continue;
    524     }
    525     regsLive.insert(*I);
    526     for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
    527       regsLive.insert(*R);
    528   }
    529   regsLiveInButUnused = regsLive;
    530 
    531   const MachineFrameInfo *MFI = MF->getFrameInfo();
    532   assert(MFI && "Function has no frame info");
    533   BitVector PR = MFI->getPristineRegs(MBB);
    534   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
    535     regsLive.insert(I);
    536     for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
    537       regsLive.insert(*R);
    538   }
    539 
    540   regsKilled.clear();
    541   regsDefined.clear();
    542 
    543   if (Indexes)
    544     lastIndex = Indexes->getMBBStartIdx(MBB);
    545 }
    546 
    547 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
    548   const MCInstrDesc &MCID = MI->getDesc();
    549   if (MI->getNumOperands() < MCID.getNumOperands()) {
    550     report("Too few operands", MI);
    551     *OS << MCID.getNumOperands() << " operands expected, but "
    552         << MI->getNumExplicitOperands() << " given.\n";
    553   }
    554 
    555   // Check the MachineMemOperands for basic consistency.
    556   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
    557        E = MI->memoperands_end(); I != E; ++I) {
    558     if ((*I)->isLoad() && !MCID.mayLoad())
    559       report("Missing mayLoad flag", MI);
    560     if ((*I)->isStore() && !MCID.mayStore())
    561       report("Missing mayStore flag", MI);
    562   }
    563 
    564   // Debug values must not have a slot index.
    565   // Other instructions must have one.
    566   if (LiveInts) {
    567     bool mapped = !LiveInts->isNotInMIMap(MI);
    568     if (MI->isDebugValue()) {
    569       if (mapped)
    570         report("Debug instruction has a slot index", MI);
    571     } else {
    572       if (!mapped)
    573         report("Missing slot index", MI);
    574     }
    575   }
    576 
    577   // Ensure non-terminators don't follow terminators.
    578   if (MCID.isTerminator()) {
    579     if (!FirstTerminator)
    580       FirstTerminator = MI;
    581   } else if (FirstTerminator) {
    582     report("Non-terminator instruction after the first terminator", MI);
    583     *OS << "First terminator was:\t" << *FirstTerminator;
    584   }
    585 
    586   StringRef ErrorInfo;
    587   if (!TII->verifyInstruction(MI, ErrorInfo))
    588     report(ErrorInfo.data(), MI);
    589 }
    590 
    591 void
    592 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
    593   const MachineInstr *MI = MO->getParent();
    594   const MCInstrDesc &MCID = MI->getDesc();
    595   const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    596 
    597   // The first MCID.NumDefs operands must be explicit register defines
    598   if (MONum < MCID.getNumDefs()) {
    599     if (!MO->isReg())
    600       report("Explicit definition must be a register", MO, MONum);
    601     else if (!MO->isDef())
    602       report("Explicit definition marked as use", MO, MONum);
    603     else if (MO->isImplicit())
    604       report("Explicit definition marked as implicit", MO, MONum);
    605   } else if (MONum < MCID.getNumOperands()) {
    606     // Don't check if it's the last operand in a variadic instruction. See,
    607     // e.g., LDM_RET in the arm back end.
    608     if (MO->isReg() &&
    609         !(MCID.isVariadic() && MONum == MCID.getNumOperands()-1)) {
    610       if (MO->isDef() && !MCOI.isOptionalDef())
    611           report("Explicit operand marked as def", MO, MONum);
    612       if (MO->isImplicit())
    613         report("Explicit operand marked as implicit", MO, MONum);
    614     }
    615   } else {
    616     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
    617     if (MO->isReg() && !MO->isImplicit() && !MCID.isVariadic() && MO->getReg())
    618       report("Extra explicit operand on non-variadic instruction", MO, MONum);
    619   }
    620 
    621   switch (MO->getType()) {
    622   case MachineOperand::MO_Register: {
    623     const unsigned Reg = MO->getReg();
    624     if (!Reg)
    625       return;
    626 
    627     // Check Live Variables.
    628     if (MI->isDebugValue()) {
    629       // Liveness checks are not valid for debug values.
    630     } else if (MO->isUse() && !MO->isUndef()) {
    631       regsLiveInButUnused.erase(Reg);
    632 
    633       bool isKill = false;
    634       unsigned defIdx;
    635       if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
    636         // A two-addr use counts as a kill if use and def are the same.
    637         unsigned DefReg = MI->getOperand(defIdx).getReg();
    638         if (Reg == DefReg)
    639           isKill = true;
    640         else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    641           report("Two-address instruction operands must be identical",
    642                  MO, MONum);
    643         }
    644       } else
    645         isKill = MO->isKill();
    646 
    647       if (isKill)
    648         addRegWithSubRegs(regsKilled, Reg);
    649 
    650       // Check that LiveVars knows this kill.
    651       if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
    652           MO->isKill()) {
    653         LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
    654         if (std::find(VI.Kills.begin(),
    655                       VI.Kills.end(), MI) == VI.Kills.end())
    656           report("Kill missing from LiveVariables", MO, MONum);
    657       }
    658 
    659       // Check LiveInts liveness and kill.
    660       if (TargetRegisterInfo::isVirtualRegister(Reg) &&
    661           LiveInts && !LiveInts->isNotInMIMap(MI)) {
    662         SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex();
    663         if (LiveInts->hasInterval(Reg)) {
    664           const LiveInterval &LI = LiveInts->getInterval(Reg);
    665           if (!LI.liveAt(UseIdx)) {
    666             report("No live range at use", MO, MONum);
    667             *OS << UseIdx << " is not live in " << LI << '\n';
    668           }
    669           // Check for extra kill flags.
    670           // Note that we allow missing kill flags for now.
    671           if (MO->isKill() && !LI.killedAt(UseIdx.getDefIndex())) {
    672             report("Live range continues after kill flag", MO, MONum);
    673             *OS << "Live range: " << LI << '\n';
    674           }
    675         } else {
    676           report("Virtual register has no Live interval", MO, MONum);
    677         }
    678       }
    679 
    680       // Use of a dead register.
    681       if (!regsLive.count(Reg)) {
    682         if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    683           // Reserved registers may be used even when 'dead'.
    684           if (!isReserved(Reg))
    685             report("Using an undefined physical register", MO, MONum);
    686         } else {
    687           BBInfo &MInfo = MBBInfoMap[MI->getParent()];
    688           // We don't know which virtual registers are live in, so only complain
    689           // if vreg was killed in this MBB. Otherwise keep track of vregs that
    690           // must be live in. PHI instructions are handled separately.
    691           if (MInfo.regsKilled.count(Reg))
    692             report("Using a killed virtual register", MO, MONum);
    693           else if (!MI->isPHI())
    694             MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
    695         }
    696       }
    697     } else if (MO->isDef()) {
    698       // Register defined.
    699       // TODO: verify that earlyclobber ops are not used.
    700       if (MO->isDead())
    701         addRegWithSubRegs(regsDead, Reg);
    702       else
    703         addRegWithSubRegs(regsDefined, Reg);
    704 
    705       // Verify SSA form.
    706       if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
    707           llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
    708         report("Multiple virtual register defs in SSA form", MO, MONum);
    709 
    710       // Check LiveInts for a live range, but only for virtual registers.
    711       if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
    712           !LiveInts->isNotInMIMap(MI)) {
    713         SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex();
    714         if (LiveInts->hasInterval(Reg)) {
    715           const LiveInterval &LI = LiveInts->getInterval(Reg);
    716           if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
    717             assert(VNI && "NULL valno is not allowed");
    718             if (VNI->def != DefIdx && !MO->isEarlyClobber()) {
    719               report("Inconsistent valno->def", MO, MONum);
    720               *OS << "Valno " << VNI->id << " is not defined at "
    721                   << DefIdx << " in " << LI << '\n';
    722             }
    723           } else {
    724             report("No live range at def", MO, MONum);
    725             *OS << DefIdx << " is not live in " << LI << '\n';
    726           }
    727         } else {
    728           report("Virtual register has no Live interval", MO, MONum);
    729         }
    730       }
    731     }
    732 
    733     // Check register classes.
    734     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
    735       unsigned SubIdx = MO->getSubReg();
    736 
    737       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    738         if (SubIdx) {
    739           report("Illegal subregister index for physical register", MO, MONum);
    740           return;
    741         }
    742         if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
    743           if (!DRC->contains(Reg)) {
    744             report("Illegal physical register for instruction", MO, MONum);
    745             *OS << TRI->getName(Reg) << " is not a "
    746                 << DRC->getName() << " register.\n";
    747           }
    748         }
    749       } else {
    750         // Virtual register.
    751         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    752         if (SubIdx) {
    753           const TargetRegisterClass *SRC =
    754             TRI->getSubClassWithSubReg(RC, SubIdx);
    755           if (!SRC) {
    756             report("Invalid subregister index for virtual register", MO, MONum);
    757             *OS << "Register class " << RC->getName()
    758                 << " does not support subreg index " << SubIdx << "\n";
    759             return;
    760           }
    761           if (RC != SRC) {
    762             report("Invalid register class for subregister index", MO, MONum);
    763             *OS << "Register class " << RC->getName()
    764                 << " does not fully support subreg index " << SubIdx << "\n";
    765             return;
    766           }
    767         }
    768         if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
    769           if (SubIdx) {
    770             const TargetRegisterClass *SuperRC =
    771               TRI->getLargestLegalSuperClass(RC);
    772             if (!SuperRC) {
    773               report("No largest legal super class exists.", MO, MONum);
    774               return;
    775             }
    776             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
    777             if (!DRC) {
    778               report("No matching super-reg register class.", MO, MONum);
    779               return;
    780             }
    781           }
    782           if (!RC->hasSuperClassEq(DRC)) {
    783             report("Illegal virtual register for instruction", MO, MONum);
    784             *OS << "Expected a " << DRC->getName() << " register, but got a "
    785                 << RC->getName() << " register\n";
    786           }
    787         }
    788       }
    789     }
    790     break;
    791   }
    792 
    793   case MachineOperand::MO_MachineBasicBlock:
    794     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
    795       report("PHI operand is not in the CFG", MO, MONum);
    796     break;
    797 
    798   case MachineOperand::MO_FrameIndex:
    799     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
    800         LiveInts && !LiveInts->isNotInMIMap(MI)) {
    801       LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
    802       SlotIndex Idx = LiveInts->getInstructionIndex(MI);
    803       if (MCID.mayLoad() && !LI.liveAt(Idx.getUseIndex())) {
    804         report("Instruction loads from dead spill slot", MO, MONum);
    805         *OS << "Live stack: " << LI << '\n';
    806       }
    807       if (MCID.mayStore() && !LI.liveAt(Idx.getDefIndex())) {
    808         report("Instruction stores to dead spill slot", MO, MONum);
    809         *OS << "Live stack: " << LI << '\n';
    810       }
    811     }
    812     break;
    813 
    814   default:
    815     break;
    816   }
    817 }
    818 
    819 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
    820   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
    821   set_union(MInfo.regsKilled, regsKilled);
    822   set_subtract(regsLive, regsKilled); regsKilled.clear();
    823   set_subtract(regsLive, regsDead);   regsDead.clear();
    824   set_union(regsLive, regsDefined);   regsDefined.clear();
    825 
    826   if (Indexes && Indexes->hasIndex(MI)) {
    827     SlotIndex idx = Indexes->getInstructionIndex(MI);
    828     if (!(idx > lastIndex)) {
    829       report("Instruction index out of order", MI);
    830       *OS << "Last instruction was at " << lastIndex << '\n';
    831     }
    832     lastIndex = idx;
    833   }
    834 }
    835 
    836 void
    837 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
    838   MBBInfoMap[MBB].regsLiveOut = regsLive;
    839   regsLive.clear();
    840 
    841   if (Indexes) {
    842     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
    843     if (!(stop > lastIndex)) {
    844       report("Block ends before last instruction index", MBB);
    845       *OS << "Block ends at " << stop
    846           << " last instruction was at " << lastIndex << '\n';
    847     }
    848     lastIndex = stop;
    849   }
    850 }
    851 
    852 // Calculate the largest possible vregsPassed sets. These are the registers that
    853 // can pass through an MBB live, but may not be live every time. It is assumed
    854 // that all vregsPassed sets are empty before the call.
    855 void MachineVerifier::calcRegsPassed() {
    856   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
    857   // have any vregsPassed.
    858   DenseSet<const MachineBasicBlock*> todo;
    859   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    860        MFI != MFE; ++MFI) {
    861     const MachineBasicBlock &MBB(*MFI);
    862     BBInfo &MInfo = MBBInfoMap[&MBB];
    863     if (!MInfo.reachable)
    864       continue;
    865     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
    866            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
    867       BBInfo &SInfo = MBBInfoMap[*SuI];
    868       if (SInfo.addPassed(MInfo.regsLiveOut))
    869         todo.insert(*SuI);
    870     }
    871   }
    872 
    873   // Iteratively push vregsPassed to successors. This will converge to the same
    874   // final state regardless of DenseSet iteration order.
    875   while (!todo.empty()) {
    876     const MachineBasicBlock *MBB = *todo.begin();
    877     todo.erase(MBB);
    878     BBInfo &MInfo = MBBInfoMap[MBB];
    879     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
    880            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
    881       if (*SuI == MBB)
    882         continue;
    883       BBInfo &SInfo = MBBInfoMap[*SuI];
    884       if (SInfo.addPassed(MInfo.vregsPassed))
    885         todo.insert(*SuI);
    886     }
    887   }
    888 }
    889 
    890 // Calculate the set of virtual registers that must be passed through each basic
    891 // block in order to satisfy the requirements of successor blocks. This is very
    892 // similar to calcRegsPassed, only backwards.
    893 void MachineVerifier::calcRegsRequired() {
    894   // First push live-in regs to predecessors' vregsRequired.
    895   DenseSet<const MachineBasicBlock*> todo;
    896   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    897        MFI != MFE; ++MFI) {
    898     const MachineBasicBlock &MBB(*MFI);
    899     BBInfo &MInfo = MBBInfoMap[&MBB];
    900     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
    901            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
    902       BBInfo &PInfo = MBBInfoMap[*PrI];
    903       if (PInfo.addRequired(MInfo.vregsLiveIn))
    904         todo.insert(*PrI);
    905     }
    906   }
    907 
    908   // Iteratively push vregsRequired to predecessors. This will converge to the
    909   // same final state regardless of DenseSet iteration order.
    910   while (!todo.empty()) {
    911     const MachineBasicBlock *MBB = *todo.begin();
    912     todo.erase(MBB);
    913     BBInfo &MInfo = MBBInfoMap[MBB];
    914     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
    915            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
    916       if (*PrI == MBB)
    917         continue;
    918       BBInfo &SInfo = MBBInfoMap[*PrI];
    919       if (SInfo.addRequired(MInfo.vregsRequired))
    920         todo.insert(*PrI);
    921     }
    922   }
    923 }
    924 
    925 // Check PHI instructions at the beginning of MBB. It is assumed that
    926 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
    927 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
    928   for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
    929        BBI != BBE && BBI->isPHI(); ++BBI) {
    930     DenseSet<const MachineBasicBlock*> seen;
    931 
    932     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    933       unsigned Reg = BBI->getOperand(i).getReg();
    934       const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
    935       if (!Pre->isSuccessor(MBB))
    936         continue;
    937       seen.insert(Pre);
    938       BBInfo &PrInfo = MBBInfoMap[Pre];
    939       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
    940         report("PHI operand is not live-out from predecessor",
    941                &BBI->getOperand(i), i);
    942     }
    943 
    944     // Did we see all predecessors?
    945     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
    946            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
    947       if (!seen.count(*PrI)) {
    948         report("Missing PHI operand", BBI);
    949         *OS << "BB#" << (*PrI)->getNumber()
    950             << " is a predecessor according to the CFG.\n";
    951       }
    952     }
    953   }
    954 }
    955 
    956 void MachineVerifier::visitMachineFunctionAfter() {
    957   calcRegsPassed();
    958 
    959   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    960        MFI != MFE; ++MFI) {
    961     BBInfo &MInfo = MBBInfoMap[MFI];
    962 
    963     // Skip unreachable MBBs.
    964     if (!MInfo.reachable)
    965       continue;
    966 
    967     checkPHIOps(MFI);
    968   }
    969 
    970   // Now check liveness info if available
    971   if (LiveVars || LiveInts)
    972     calcRegsRequired();
    973   if (LiveVars)
    974     verifyLiveVariables();
    975   if (LiveInts)
    976     verifyLiveIntervals();
    977 }
    978 
    979 void MachineVerifier::verifyLiveVariables() {
    980   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
    981   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    982     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    983     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
    984     for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    985          MFI != MFE; ++MFI) {
    986       BBInfo &MInfo = MBBInfoMap[MFI];
    987 
    988       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
    989       if (MInfo.vregsRequired.count(Reg)) {
    990         if (!VI.AliveBlocks.test(MFI->getNumber())) {
    991           report("LiveVariables: Block missing from AliveBlocks", MFI);
    992           *OS << "Virtual register " << PrintReg(Reg)
    993               << " must be live through the block.\n";
    994         }
    995       } else {
    996         if (VI.AliveBlocks.test(MFI->getNumber())) {
    997           report("LiveVariables: Block should not be in AliveBlocks", MFI);
    998           *OS << "Virtual register " << PrintReg(Reg)
    999               << " is not needed live through the block.\n";
   1000         }
   1001       }
   1002     }
   1003   }
   1004 }
   1005 
   1006 void MachineVerifier::verifyLiveIntervals() {
   1007   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
   1008   for (LiveIntervals::const_iterator LVI = LiveInts->begin(),
   1009        LVE = LiveInts->end(); LVI != LVE; ++LVI) {
   1010     const LiveInterval &LI = *LVI->second;
   1011 
   1012     // Spilling and splitting may leave unused registers around. Skip them.
   1013     if (MRI->use_empty(LI.reg))
   1014       continue;
   1015 
   1016     // Physical registers have much weirdness going on, mostly from coalescing.
   1017     // We should probably fix it, but for now just ignore them.
   1018     if (TargetRegisterInfo::isPhysicalRegister(LI.reg))
   1019       continue;
   1020 
   1021     assert(LVI->first == LI.reg && "Invalid reg to interval mapping");
   1022 
   1023     for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
   1024          I!=E; ++I) {
   1025       VNInfo *VNI = *I;
   1026       const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
   1027 
   1028       if (!DefVNI) {
   1029         if (!VNI->isUnused()) {
   1030           report("Valno not live at def and not marked unused", MF);
   1031           *OS << "Valno #" << VNI->id << " in " << LI << '\n';
   1032         }
   1033         continue;
   1034       }
   1035 
   1036       if (VNI->isUnused())
   1037         continue;
   1038 
   1039       if (DefVNI != VNI) {
   1040         report("Live range at def has different valno", MF);
   1041         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1042             << " where valno #" << DefVNI->id << " is live in " << LI << '\n';
   1043         continue;
   1044       }
   1045 
   1046       const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
   1047       if (!MBB) {
   1048         report("Invalid definition index", MF);
   1049         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1050             << " in " << LI << '\n';
   1051         continue;
   1052       }
   1053 
   1054       if (VNI->isPHIDef()) {
   1055         if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
   1056           report("PHIDef value is not defined at MBB start", MF);
   1057           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1058               << ", not at the beginning of BB#" << MBB->getNumber()
   1059               << " in " << LI << '\n';
   1060         }
   1061       } else {
   1062         // Non-PHI def.
   1063         const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
   1064         if (!MI) {
   1065           report("No instruction at def index", MF);
   1066           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1067               << " in " << LI << '\n';
   1068         } else if (!MI->modifiesRegister(LI.reg, TRI)) {
   1069           report("Defining instruction does not modify register", MI);
   1070           *OS << "Valno #" << VNI->id << " in " << LI << '\n';
   1071         }
   1072 
   1073         bool isEarlyClobber = false;
   1074         if (MI) {
   1075           for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
   1076                MOE = MI->operands_end(); MOI != MOE; ++MOI) {
   1077             if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() &&
   1078                 MOI->isEarlyClobber()) {
   1079               isEarlyClobber = true;
   1080               break;
   1081             }
   1082           }
   1083         }
   1084 
   1085         // Early clobber defs begin at USE slots, but other defs must begin at
   1086         // DEF slots.
   1087         if (isEarlyClobber) {
   1088           if (!VNI->def.isUse()) {
   1089             report("Early clobber def must be at a USE slot", MF);
   1090             *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1091                 << " in " << LI << '\n';
   1092           }
   1093         } else if (!VNI->def.isDef()) {
   1094           report("Non-PHI, non-early clobber def must be at a DEF slot", MF);
   1095           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1096               << " in " << LI << '\n';
   1097         }
   1098       }
   1099     }
   1100 
   1101     for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) {
   1102       const VNInfo *VNI = I->valno;
   1103       assert(VNI && "Live range has no valno");
   1104 
   1105       if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
   1106         report("Foreign valno in live range", MF);
   1107         I->print(*OS);
   1108         *OS << " has a valno not in " << LI << '\n';
   1109       }
   1110 
   1111       if (VNI->isUnused()) {
   1112         report("Live range valno is marked unused", MF);
   1113         I->print(*OS);
   1114         *OS << " in " << LI << '\n';
   1115       }
   1116 
   1117       const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
   1118       if (!MBB) {
   1119         report("Bad start of live segment, no basic block", MF);
   1120         I->print(*OS);
   1121         *OS << " in " << LI << '\n';
   1122         continue;
   1123       }
   1124       SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
   1125       if (I->start != MBBStartIdx && I->start != VNI->def) {
   1126         report("Live segment must begin at MBB entry or valno def", MBB);
   1127         I->print(*OS);
   1128         *OS << " in " << LI << '\n' << "Basic block starts at "
   1129             << MBBStartIdx << '\n';
   1130       }
   1131 
   1132       const MachineBasicBlock *EndMBB =
   1133                                 LiveInts->getMBBFromIndex(I->end.getPrevSlot());
   1134       if (!EndMBB) {
   1135         report("Bad end of live segment, no basic block", MF);
   1136         I->print(*OS);
   1137         *OS << " in " << LI << '\n';
   1138         continue;
   1139       }
   1140       if (I->end != LiveInts->getMBBEndIdx(EndMBB)) {
   1141         // The live segment is ending inside EndMBB
   1142         const MachineInstr *MI =
   1143                         LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
   1144         if (!MI) {
   1145           report("Live segment doesn't end at a valid instruction", EndMBB);
   1146         I->print(*OS);
   1147         *OS << " in " << LI << '\n' << "Basic block starts at "
   1148             << MBBStartIdx << '\n';
   1149         } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) &&
   1150                    !MI->readsVirtualRegister(LI.reg)) {
   1151           // A live range can end with either a redefinition, a kill flag on a
   1152           // use, or a dead flag on a def.
   1153           // FIXME: Should we check for each of these?
   1154           bool hasDeadDef = false;
   1155           for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
   1156                MOE = MI->operands_end(); MOI != MOE; ++MOI) {
   1157             if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) {
   1158               hasDeadDef = true;
   1159               break;
   1160             }
   1161           }
   1162 
   1163           if (!hasDeadDef) {
   1164             report("Instruction killing live segment neither defines nor reads "
   1165                    "register", MI);
   1166             I->print(*OS);
   1167             *OS << " in " << LI << '\n';
   1168           }
   1169         }
   1170       }
   1171 
   1172       // Now check all the basic blocks in this live segment.
   1173       MachineFunction::const_iterator MFI = MBB;
   1174       // Is this live range the beginning of a non-PHIDef VN?
   1175       if (I->start == VNI->def && !VNI->isPHIDef()) {
   1176         // Not live-in to any blocks.
   1177         if (MBB == EndMBB)
   1178           continue;
   1179         // Skip this block.
   1180         ++MFI;
   1181       }
   1182       for (;;) {
   1183         assert(LiveInts->isLiveInToMBB(LI, MFI));
   1184         // We don't know how to track physregs into a landing pad.
   1185         if (TargetRegisterInfo::isPhysicalRegister(LI.reg) &&
   1186             MFI->isLandingPad()) {
   1187           if (&*MFI == EndMBB)
   1188             break;
   1189           ++MFI;
   1190           continue;
   1191         }
   1192         // Check that VNI is live-out of all predecessors.
   1193         for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
   1194              PE = MFI->pred_end(); PI != PE; ++PI) {
   1195           SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot();
   1196           const VNInfo *PVNI = LI.getVNInfoAt(PEnd);
   1197 
   1198           if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI))
   1199             continue;
   1200 
   1201           if (!PVNI) {
   1202             report("Register not marked live out of predecessor", *PI);
   1203             *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
   1204                 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at "
   1205                 << PEnd << " in " << LI << '\n';
   1206             continue;
   1207           }
   1208 
   1209           if (PVNI != VNI) {
   1210             report("Different value live out of predecessor", *PI);
   1211             *OS << "Valno #" << PVNI->id << " live out of BB#"
   1212                 << (*PI)->getNumber() << '@' << PEnd
   1213                 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
   1214                 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n';
   1215           }
   1216         }
   1217         if (&*MFI == EndMBB)
   1218           break;
   1219         ++MFI;
   1220       }
   1221     }
   1222 
   1223     // Check the LI only has one connected component.
   1224     if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
   1225       ConnectedVNInfoEqClasses ConEQ(*LiveInts);
   1226       unsigned NumComp = ConEQ.Classify(&LI);
   1227       if (NumComp > 1) {
   1228         report("Multiple connected components in live interval", MF);
   1229         *OS << NumComp << " components in " << LI << '\n';
   1230         for (unsigned comp = 0; comp != NumComp; ++comp) {
   1231           *OS << comp << ": valnos";
   1232           for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
   1233                E = LI.vni_end(); I!=E; ++I)
   1234             if (comp == ConEQ.getEqClass(*I))
   1235               *OS << ' ' << (*I)->id;
   1236           *OS << '\n';
   1237         }
   1238       }
   1239     }
   1240   }
   1241 }
   1242 
   1243