Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef X86ISELLOWERING_H
     16 #define X86ISELLOWERING_H
     17 
     18 #include "X86Subtarget.h"
     19 #include "X86RegisterInfo.h"
     20 #include "X86MachineFunctionInfo.h"
     21 #include "llvm/Target/TargetLowering.h"
     22 #include "llvm/Target/TargetOptions.h"
     23 #include "llvm/CodeGen/FastISel.h"
     24 #include "llvm/CodeGen/SelectionDAG.h"
     25 #include "llvm/CodeGen/CallingConvLower.h"
     26 
     27 namespace llvm {
     28   namespace X86ISD {
     29     // X86 Specific DAG Nodes
     30     enum NodeType {
     31       // Start the numbering where the builtin ops leave off.
     32       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     33 
     34       /// BSF - Bit scan forward.
     35       /// BSR - Bit scan reverse.
     36       BSF,
     37       BSR,
     38 
     39       /// SHLD, SHRD - Double shift instructions. These correspond to
     40       /// X86::SHLDxx and X86::SHRDxx instructions.
     41       SHLD,
     42       SHRD,
     43 
     44       /// FAND - Bitwise logical AND of floating point values. This corresponds
     45       /// to X86::ANDPS or X86::ANDPD.
     46       FAND,
     47 
     48       /// FOR - Bitwise logical OR of floating point values. This corresponds
     49       /// to X86::ORPS or X86::ORPD.
     50       FOR,
     51 
     52       /// FXOR - Bitwise logical XOR of floating point values. This corresponds
     53       /// to X86::XORPS or X86::XORPD.
     54       FXOR,
     55 
     56       /// FSRL - Bitwise logical right shift of floating point values. These
     57       /// corresponds to X86::PSRLDQ.
     58       FSRL,
     59 
     60       /// CALL - These operations represent an abstract X86 call
     61       /// instruction, which includes a bunch of information.  In particular the
     62       /// operands of these node are:
     63       ///
     64       ///     #0 - The incoming token chain
     65       ///     #1 - The callee
     66       ///     #2 - The number of arg bytes the caller pushes on the stack.
     67       ///     #3 - The number of arg bytes the callee pops off the stack.
     68       ///     #4 - The value to pass in AL/AX/EAX (optional)
     69       ///     #5 - The value to pass in DL/DX/EDX (optional)
     70       ///
     71       /// The result values of these nodes are:
     72       ///
     73       ///     #0 - The outgoing token chain
     74       ///     #1 - The first register result value (optional)
     75       ///     #2 - The second register result value (optional)
     76       ///
     77       CALL,
     78 
     79       /// RDTSC_DAG - This operation implements the lowering for
     80       /// readcyclecounter
     81       RDTSC_DAG,
     82 
     83       /// X86 compare and logical compare instructions.
     84       CMP, COMI, UCOMI,
     85 
     86       /// X86 bit-test instructions.
     87       BT,
     88 
     89       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
     90       /// operand, usually produced by a CMP instruction.
     91       SETCC,
     92 
     93       // Same as SETCC except it's materialized with a sbb and the value is all
     94       // one's or all zero's.
     95       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
     96 
     97       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
     98       /// Operands are two FP values to compare; result is a mask of
     99       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
    100       FSETCCss, FSETCCsd,
    101 
    102       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
    103       /// result in an integer GPR.  Needs masking for scalar result.
    104       FGETSIGNx86,
    105 
    106       /// X86 conditional moves. Operand 0 and operand 1 are the two values
    107       /// to select from. Operand 2 is the condition code, and operand 3 is the
    108       /// flag operand produced by a CMP or TEST instruction. It also writes a
    109       /// flag result.
    110       CMOV,
    111 
    112       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
    113       /// is the block to branch if condition is true, operand 2 is the
    114       /// condition code, and operand 3 is the flag operand produced by a CMP
    115       /// or TEST instruction.
    116       BRCOND,
    117 
    118       /// Return with a flag operand. Operand 0 is the chain operand, operand
    119       /// 1 is the number of bytes of stack to pop.
    120       RET_FLAG,
    121 
    122       /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
    123       REP_STOS,
    124 
    125       /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
    126       REP_MOVS,
    127 
    128       /// GlobalBaseReg - On Darwin, this node represents the result of the popl
    129       /// at function entry, used for PIC code.
    130       GlobalBaseReg,
    131 
    132       /// Wrapper - A wrapper node for TargetConstantPool,
    133       /// TargetExternalSymbol, and TargetGlobalAddress.
    134       Wrapper,
    135 
    136       /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
    137       /// relative displacements.
    138       WrapperRIP,
    139 
    140       /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
    141       /// of an XMM vector, with the high word zero filled.
    142       MOVQ2DQ,
    143 
    144       /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
    145       /// to an MMX vector.  If you think this is too close to the previous
    146       /// mnemonic, so do I; blame Intel.
    147       MOVDQ2Q,
    148 
    149       /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
    150       /// i32, corresponds to X86::PEXTRB.
    151       PEXTRB,
    152 
    153       /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
    154       /// i32, corresponds to X86::PEXTRW.
    155       PEXTRW,
    156 
    157       /// INSERTPS - Insert any element of a 4 x float vector into any element
    158       /// of a destination 4 x floatvector.
    159       INSERTPS,
    160 
    161       /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
    162       /// corresponds to X86::PINSRB.
    163       PINSRB,
    164 
    165       /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
    166       /// corresponds to X86::PINSRW.
    167       PINSRW, MMX_PINSRW,
    168 
    169       /// PSHUFB - Shuffle 16 8-bit values within a vector.
    170       PSHUFB,
    171 
    172       /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
    173       ANDNP,
    174 
    175       /// PSIGN - Copy integer sign.
    176       PSIGN,
    177 
    178       /// BLENDV - Blend where the selector is an XMM.
    179       BLENDV,
    180 
    181       /// BLENDxx - Blend where the selector is an immediate.
    182       BLENDPW,
    183       BLENDPS,
    184       BLENDPD,
    185 
    186       /// HADD - Integer horizontal add.
    187       HADD,
    188 
    189       /// HSUB - Integer horizontal sub.
    190       HSUB,
    191 
    192       /// FHADD - Floating point horizontal add.
    193       FHADD,
    194 
    195       /// FHSUB - Floating point horizontal sub.
    196       FHSUB,
    197 
    198       /// FMAX, FMIN - Floating point max and min.
    199       ///
    200       FMAX, FMIN,
    201 
    202       /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
    203       /// approximation.  Note that these typically require refinement
    204       /// in order to obtain suitable precision.
    205       FRSQRT, FRCP,
    206 
    207       // TLSADDR - Thread Local Storage.
    208       TLSADDR,
    209 
    210       // TLSCALL - Thread Local Storage.  When calling to an OS provided
    211       // thunk at the address from an earlier relocation.
    212       TLSCALL,
    213 
    214       // EH_RETURN - Exception Handling helpers.
    215       EH_RETURN,
    216 
    217       /// TC_RETURN - Tail call return.
    218       ///   operand #0 chain
    219       ///   operand #1 callee (register or absolute)
    220       ///   operand #2 stack adjustment
    221       ///   operand #3 optional in flag
    222       TC_RETURN,
    223 
    224       // VZEXT_MOVL - Vector move low and zero extend.
    225       VZEXT_MOVL,
    226 
    227       // VSEXT_MOVL - Vector move low and sign extend.
    228       VSEXT_MOVL,
    229 
    230       // VSHL, VSRL - 128-bit vector logical left / right shift
    231       VSHLDQ, VSRLDQ,
    232 
    233       // VSHL, VSRL, VSRA - Vector shift elements
    234       VSHL, VSRL, VSRA,
    235 
    236       // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
    237       VSHLI, VSRLI, VSRAI,
    238 
    239       // CMPP - Vector packed double/float comparison.
    240       CMPP,
    241 
    242       // PCMP* - Vector integer comparisons.
    243       PCMPEQ, PCMPGT,
    244 
    245       // VPCOM, VPCOMU - XOP Vector integer comparisons.
    246       VPCOM, VPCOMU,
    247 
    248       // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
    249       ADD, SUB, ADC, SBB, SMUL,
    250       INC, DEC, OR, XOR, AND,
    251 
    252       ANDN, // ANDN - Bitwise AND NOT with FLAGS results.
    253 
    254       BLSI,   // BLSI - Extract lowest set isolated bit
    255       BLSMSK, // BLSMSK - Get mask up to lowest set bit
    256       BLSR,   // BLSR - Reset lowest set bit
    257 
    258       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
    259 
    260       // MUL_IMM - X86 specific multiply by immediate.
    261       MUL_IMM,
    262 
    263       // PTEST - Vector bitwise comparisons
    264       PTEST,
    265 
    266       // TESTP - Vector packed fp sign bitwise comparisons
    267       TESTP,
    268 
    269       // Several flavors of instructions with vector shuffle behaviors.
    270       PALIGN,
    271       PSHUFD,
    272       PSHUFHW,
    273       PSHUFLW,
    274       SHUFP,
    275       MOVDDUP,
    276       MOVSHDUP,
    277       MOVSLDUP,
    278       MOVLHPS,
    279       MOVLHPD,
    280       MOVHLPS,
    281       MOVLPS,
    282       MOVLPD,
    283       MOVSD,
    284       MOVSS,
    285       UNPCKL,
    286       UNPCKH,
    287       VPERMILP,
    288       VPERMV,
    289       VPERMI,
    290       VPERM2X128,
    291       VBROADCAST,
    292 
    293       // PMULUDQ - Vector multiply packed unsigned doubleword integers
    294       PMULUDQ,
    295 
    296       // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
    297       // according to %al. An operator is needed so that this can be expanded
    298       // with control flow.
    299       VASTART_SAVE_XMM_REGS,
    300 
    301       // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
    302       WIN_ALLOCA,
    303 
    304       // SEG_ALLOCA - For allocating variable amounts of stack space when using
    305       // segmented stacks. Check if the current stacklet has enough space, and
    306       // falls back to heap allocation if not.
    307       SEG_ALLOCA,
    308 
    309       // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
    310       WIN_FTOL,
    311 
    312       // Memory barrier
    313       MEMBARRIER,
    314       MFENCE,
    315       SFENCE,
    316       LFENCE,
    317 
    318       // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
    319       // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
    320       // Atomic 64-bit binary operations.
    321       ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
    322       ATOMSUB64_DAG,
    323       ATOMOR64_DAG,
    324       ATOMXOR64_DAG,
    325       ATOMAND64_DAG,
    326       ATOMNAND64_DAG,
    327       ATOMSWAP64_DAG,
    328 
    329       // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
    330       LCMPXCHG_DAG,
    331       LCMPXCHG8_DAG,
    332       LCMPXCHG16_DAG,
    333 
    334       // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
    335       VZEXT_LOAD,
    336 
    337       // FNSTCW16m - Store FP control world into i16 memory.
    338       FNSTCW16m,
    339 
    340       /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
    341       /// integer destination in memory and a FP reg source.  This corresponds
    342       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
    343       /// has two inputs (token chain and address) and two outputs (int value
    344       /// and token chain).
    345       FP_TO_INT16_IN_MEM,
    346       FP_TO_INT32_IN_MEM,
    347       FP_TO_INT64_IN_MEM,
    348 
    349       /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
    350       /// integer source in memory and FP reg result.  This corresponds to the
    351       /// X86::FILD*m instructions. It has three inputs (token chain, address,
    352       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
    353       /// also produces a flag).
    354       FILD,
    355       FILD_FLAG,
    356 
    357       /// FLD - This instruction implements an extending load to FP stack slots.
    358       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
    359       /// operand, ptr to load from, and a ValueType node indicating the type
    360       /// to load to.
    361       FLD,
    362 
    363       /// FST - This instruction implements a truncating store to FP stack
    364       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
    365       /// chain operand, value to store, address, and a ValueType to store it
    366       /// as.
    367       FST,
    368 
    369       /// VAARG_64 - This instruction grabs the address of the next argument
    370       /// from a va_list. (reads and modifies the va_list in memory)
    371       VAARG_64
    372 
    373       // WARNING: Do not add anything in the end unless you want the node to
    374       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
    375       // thought as target memory ops!
    376     };
    377   }
    378 
    379   /// Define some predicates that are used for node matching.
    380   namespace X86 {
    381     /// isVEXTRACTF128Index - Return true if the specified
    382     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    383     /// suitable for input to VEXTRACTF128.
    384     bool isVEXTRACTF128Index(SDNode *N);
    385 
    386     /// isVINSERTF128Index - Return true if the specified
    387     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    388     /// suitable for input to VINSERTF128.
    389     bool isVINSERTF128Index(SDNode *N);
    390 
    391     /// getExtractVEXTRACTF128Immediate - Return the appropriate
    392     /// immediate to extract the specified EXTRACT_SUBVECTOR index
    393     /// with VEXTRACTF128 instructions.
    394     unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
    395 
    396     /// getInsertVINSERTF128Immediate - Return the appropriate
    397     /// immediate to insert at the specified INSERT_SUBVECTOR index
    398     /// with VINSERTF128 instructions.
    399     unsigned getInsertVINSERTF128Immediate(SDNode *N);
    400 
    401     /// isZeroNode - Returns true if Elt is a constant zero or a floating point
    402     /// constant +0.0.
    403     bool isZeroNode(SDValue Elt);
    404 
    405     /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
    406     /// fit into displacement field of the instruction.
    407     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
    408                                       bool hasSymbolicDisplacement = true);
    409 
    410 
    411     /// isCalleePop - Determines whether the callee is required to pop its
    412     /// own arguments. Callee pop is necessary to support tail calls.
    413     bool isCalleePop(CallingConv::ID CallingConv,
    414                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
    415   }
    416 
    417   //===--------------------------------------------------------------------===//
    418   //  X86TargetLowering - X86 Implementation of the TargetLowering interface
    419   class X86TargetLowering : public TargetLowering {
    420   public:
    421     explicit X86TargetLowering(X86TargetMachine &TM);
    422 
    423     virtual unsigned getJumpTableEncoding() const;
    424 
    425     virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
    426 
    427     virtual const MCExpr *
    428     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
    429                               const MachineBasicBlock *MBB, unsigned uid,
    430                               MCContext &Ctx) const;
    431 
    432     /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    433     /// jumptable.
    434     virtual SDValue getPICJumpTableRelocBase(SDValue Table,
    435                                              SelectionDAG &DAG) const;
    436     virtual const MCExpr *
    437     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    438                                  unsigned JTI, MCContext &Ctx) const;
    439 
    440     /// getStackPtrReg - Return the stack pointer register we are using: either
    441     /// ESP or RSP.
    442     unsigned getStackPtrReg() const { return X86StackPtr; }
    443 
    444     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    445     /// function arguments in the caller parameter area. For X86, aggregates
    446     /// that contains are placed at 16-byte boundaries while the rest are at
    447     /// 4-byte boundaries.
    448     virtual unsigned getByValTypeAlignment(Type *Ty) const;
    449 
    450     /// getOptimalMemOpType - Returns the target specific optimal type for load
    451     /// and store operations as a result of memset, memcpy, and memmove
    452     /// lowering. If DstAlign is zero that means it's safe to destination
    453     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    454     /// means there isn't a need to check it against alignment requirement,
    455     /// probably because the source does not need to be loaded. If
    456     /// 'IsZeroVal' is true, that means it's safe to return a
    457     /// non-scalar-integer type, e.g. empty string source, constant, or loaded
    458     /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
    459     /// constant so it does not need to be loaded.
    460     /// It returns EVT::Other if the type should be determined using generic
    461     /// target-independent logic.
    462     virtual EVT
    463     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    464                         bool IsZeroVal, bool MemcpyStrSrc,
    465                         MachineFunction &MF) const;
    466 
    467     /// allowsUnalignedMemoryAccesses - Returns true if the target allows
    468     /// unaligned memory accesses. of the specified type.
    469     virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
    470       return true;
    471     }
    472 
    473     /// LowerOperation - Provide custom lowering hooks for some operations.
    474     ///
    475     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
    476 
    477     /// ReplaceNodeResults - Replace the results of node with an illegal result
    478     /// type with new values built out of custom code.
    479     ///
    480     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    481                                     SelectionDAG &DAG) const;
    482 
    483 
    484     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    485 
    486     /// isTypeDesirableForOp - Return true if the target has native support for
    487     /// the specified value type and it is 'desirable' to use the type for the
    488     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    489     /// instruction encodings are longer and some i16 instructions are slow.
    490     virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
    491 
    492     /// isTypeDesirable - Return true if the target has native support for the
    493     /// specified value type and it is 'desirable' to use the type. e.g. On x86
    494     /// i16 is legal, but undesirable since i16 instruction encodings are longer
    495     /// and some i16 instructions are slow.
    496     virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
    497 
    498     virtual MachineBasicBlock *
    499       EmitInstrWithCustomInserter(MachineInstr *MI,
    500                                   MachineBasicBlock *MBB) const;
    501 
    502 
    503     /// getTargetNodeName - This method returns the name of a target specific
    504     /// DAG node.
    505     virtual const char *getTargetNodeName(unsigned Opcode) const;
    506 
    507     /// getSetCCResultType - Return the value type to use for ISD::SETCC.
    508     virtual EVT getSetCCResultType(EVT VT) const;
    509 
    510     /// computeMaskedBitsForTargetNode - Determine which of the bits specified
    511     /// in Mask are known to be either zero or one and return them in the
    512     /// KnownZero/KnownOne bitsets.
    513     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    514                                                 APInt &KnownZero,
    515                                                 APInt &KnownOne,
    516                                                 const SelectionDAG &DAG,
    517                                                 unsigned Depth = 0) const;
    518 
    519     // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
    520     // operation that are sign bits.
    521     virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
    522                                                      unsigned Depth) const;
    523 
    524     virtual bool
    525     isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
    526 
    527     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
    528 
    529     virtual bool ExpandInlineAsm(CallInst *CI) const;
    530 
    531     ConstraintType getConstraintType(const std::string &Constraint) const;
    532 
    533     /// Examine constraint string and operand type and determine a weight value.
    534     /// The operand object must already have been set up with the operand type.
    535     virtual ConstraintWeight getSingleConstraintMatchWeight(
    536       AsmOperandInfo &info, const char *constraint) const;
    537 
    538     virtual const char *LowerXConstraint(EVT ConstraintVT) const;
    539 
    540     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    541     /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
    542     /// true it means one of the asm constraint of the inline asm instruction
    543     /// being processed is 'm'.
    544     virtual void LowerAsmOperandForConstraint(SDValue Op,
    545                                               std::string &Constraint,
    546                                               std::vector<SDValue> &Ops,
    547                                               SelectionDAG &DAG) const;
    548 
    549     /// getRegForInlineAsmConstraint - Given a physical register constraint
    550     /// (e.g. {edx}), return the register number and the register class for the
    551     /// register.  This should only be used for C_Register constraints.  On
    552     /// error, this returns a register number of 0.
    553     std::pair<unsigned, const TargetRegisterClass*>
    554       getRegForInlineAsmConstraint(const std::string &Constraint,
    555                                    EVT VT) const;
    556 
    557     /// isLegalAddressingMode - Return true if the addressing mode represented
    558     /// by AM is legal for this target, for a load/store of the specified type.
    559     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
    560 
    561     /// isTruncateFree - Return true if it's free to truncate a value of
    562     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    563     /// register EAX to i16 by referencing its sub-register AX.
    564     virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
    565     virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
    566 
    567     /// isZExtFree - Return true if any actual instruction that defines a
    568     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    569     /// register. This does not necessarily include registers defined in
    570     /// unknown ways, such as incoming arguments, or copies from unknown
    571     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    572     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    573     /// all instructions that define 32-bit values implicit zero-extend the
    574     /// result out to 64 bits.
    575     virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
    576     virtual bool isZExtFree(EVT VT1, EVT VT2) const;
    577 
    578     /// isNarrowingProfitable - Return true if it's profitable to narrow
    579     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    580     /// from i32 to i8 but not from i32 to i16.
    581     virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
    582 
    583     /// isFPImmLegal - Returns true if the target can instruction select the
    584     /// specified FP immediate natively. If false, the legalizer will
    585     /// materialize the FP immediate as a load from a constant pool.
    586     virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
    587 
    588     /// isShuffleMaskLegal - Targets can use this to indicate that they only
    589     /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    590     /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
    591     /// values are assumed to be legal.
    592     virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
    593                                     EVT VT) const;
    594 
    595     /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    596     /// used by Targets can use this to indicate if there is a suitable
    597     /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    598     /// pool entry.
    599     virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
    600                                         EVT VT) const;
    601 
    602     /// ShouldShrinkFPConstant - If true, then instruction selection should
    603     /// seek to shrink the FP constant of the specified type to a smaller type
    604     /// in order to save space and / or reduce runtime.
    605     virtual bool ShouldShrinkFPConstant(EVT VT) const {
    606       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
    607       // expensive than a straight movsd. On the other hand, it's important to
    608       // shrink long double fp constant since fldt is very slow.
    609       return !X86ScalarSSEf64 || VT == MVT::f80;
    610     }
    611 
    612     const X86Subtarget* getSubtarget() const {
    613       return Subtarget;
    614     }
    615 
    616     /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    617     /// computed in an SSE register, not on the X87 floating point stack.
    618     bool isScalarFPTypeInSSEReg(EVT VT) const {
    619       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
    620       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    621     }
    622 
    623     /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
    624     /// for fptoui.
    625     bool isTargetFTOL() const {
    626       return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
    627     }
    628 
    629     /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
    630     /// used for fptoui to the given type.
    631     bool isIntegerTypeFTOL(EVT VT) const {
    632       return isTargetFTOL() && VT == MVT::i64;
    633     }
    634 
    635     /// createFastISel - This method returns a target specific FastISel object,
    636     /// or null if the target does not support "fast" ISel.
    637     virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
    638 
    639     /// getStackCookieLocation - Return true if the target stores stack
    640     /// protector cookies at a fixed offset in some non-standard address
    641     /// space, and populates the address space and offset as
    642     /// appropriate.
    643     virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
    644 
    645     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
    646                       SelectionDAG &DAG) const;
    647 
    648   protected:
    649     std::pair<const TargetRegisterClass*, uint8_t>
    650     findRepresentativeClass(EVT VT) const;
    651 
    652   private:
    653     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    654     /// make the right decision when generating code for different targets.
    655     const X86Subtarget *Subtarget;
    656     const X86RegisterInfo *RegInfo;
    657     const TargetData *TD;
    658 
    659     /// X86StackPtr - X86 physical register used as stack ptr.
    660     unsigned X86StackPtr;
    661 
    662     /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
    663     /// floating point ops.
    664     /// When SSE is available, use it for f32 operations.
    665     /// When SSE2 is available, use it for f64 operations.
    666     bool X86ScalarSSEf32;
    667     bool X86ScalarSSEf64;
    668 
    669     /// LegalFPImmediates - A list of legal fp immediates.
    670     std::vector<APFloat> LegalFPImmediates;
    671 
    672     /// addLegalFPImmediate - Indicate that this x86 target can instruction
    673     /// select the specified FP immediate natively.
    674     void addLegalFPImmediate(const APFloat& Imm) {
    675       LegalFPImmediates.push_back(Imm);
    676     }
    677 
    678     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    679                             CallingConv::ID CallConv, bool isVarArg,
    680                             const SmallVectorImpl<ISD::InputArg> &Ins,
    681                             DebugLoc dl, SelectionDAG &DAG,
    682                             SmallVectorImpl<SDValue> &InVals) const;
    683     SDValue LowerMemArgument(SDValue Chain,
    684                              CallingConv::ID CallConv,
    685                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
    686                              DebugLoc dl, SelectionDAG &DAG,
    687                              const CCValAssign &VA,  MachineFrameInfo *MFI,
    688                               unsigned i) const;
    689     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
    690                              DebugLoc dl, SelectionDAG &DAG,
    691                              const CCValAssign &VA,
    692                              ISD::ArgFlagsTy Flags) const;
    693 
    694     // Call lowering helpers.
    695 
    696     /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    697     /// for tail call optimization. Targets which want to do tail call
    698     /// optimization should implement this function.
    699     bool IsEligibleForTailCallOptimization(SDValue Callee,
    700                                            CallingConv::ID CalleeCC,
    701                                            bool isVarArg,
    702                                            bool isCalleeStructRet,
    703                                            bool isCallerStructRet,
    704                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
    705                                     const SmallVectorImpl<SDValue> &OutVals,
    706                                     const SmallVectorImpl<ISD::InputArg> &Ins,
    707                                            SelectionDAG& DAG) const;
    708     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
    709     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
    710                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
    711                                 int FPDiff, DebugLoc dl) const;
    712 
    713     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
    714                                          SelectionDAG &DAG) const;
    715 
    716     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
    717                                                bool isSigned,
    718                                                bool isReplace) const;
    719 
    720     SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
    721                                    SelectionDAG &DAG) const;
    722     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    723     SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
    724     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    725     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    726     SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
    727     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    728     SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
    729     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    730     SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
    731     SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
    732     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    733     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    734     SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
    735                                int64_t Offset, SelectionDAG &DAG) const;
    736     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    737     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    738     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
    739     SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
    740     SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
    741     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    742     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    743     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
    744     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
    745     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
    746     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
    747     SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
    748     SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
    749     SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
    750     SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const;
    751     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
    752                       DebugLoc dl, SelectionDAG &DAG) const;
    753     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    754     SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
    755     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    756     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    757     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
    758     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    759     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    760     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    761     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    762     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
    763     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    764     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    765     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    766     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    767     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    768     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    769     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    770     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    771     SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
    772     SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) const;
    773     SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
    774     SDValue LowerADD(SDValue Op, SelectionDAG &DAG) const;
    775     SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) const;
    776     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    777     SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
    778     SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
    779 
    780     SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
    781     SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
    782     SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
    783     SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
    784     SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
    785     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
    786     SDValue PerformTruncateCombine(SDNode* N, SelectionDAG &DAG, DAGCombinerInfo &DCI) const;
    787 
    788     // Utility functions to help LowerVECTOR_SHUFFLE
    789     SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
    790     SDValue LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const;
    791     SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const;
    792 
    793     virtual SDValue
    794       LowerFormalArguments(SDValue Chain,
    795                            CallingConv::ID CallConv, bool isVarArg,
    796                            const SmallVectorImpl<ISD::InputArg> &Ins,
    797                            DebugLoc dl, SelectionDAG &DAG,
    798                            SmallVectorImpl<SDValue> &InVals) const;
    799     virtual SDValue
    800       LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
    801                 bool isVarArg, bool doesNotRet, bool &isTailCall,
    802                 const SmallVectorImpl<ISD::OutputArg> &Outs,
    803                 const SmallVectorImpl<SDValue> &OutVals,
    804                 const SmallVectorImpl<ISD::InputArg> &Ins,
    805                 DebugLoc dl, SelectionDAG &DAG,
    806                 SmallVectorImpl<SDValue> &InVals) const;
    807 
    808     virtual SDValue
    809       LowerReturn(SDValue Chain,
    810                   CallingConv::ID CallConv, bool isVarArg,
    811                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    812                   const SmallVectorImpl<SDValue> &OutVals,
    813                   DebugLoc dl, SelectionDAG &DAG) const;
    814 
    815     virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
    816 
    817     virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
    818 
    819     virtual EVT
    820     getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
    821                              ISD::NodeType ExtendKind) const;
    822 
    823     virtual bool
    824     CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    825 		   bool isVarArg,
    826 		   const SmallVectorImpl<ISD::OutputArg> &Outs,
    827 		   LLVMContext &Context) const;
    828 
    829     void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
    830                                  SelectionDAG &DAG, unsigned NewOp) const;
    831 
    832     /// Utility function to emit string processing sse4.2 instructions
    833     /// that return in xmm0.
    834     /// This takes the instruction to expand, the associated machine basic
    835     /// block, the number of args, and whether or not the second arg is
    836     /// in memory or not.
    837     MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
    838                                 unsigned argNum, bool inMem) const;
    839 
    840     /// Utility functions to emit monitor and mwait instructions. These
    841     /// need to make sure that the arguments to the intrinsic are in the
    842     /// correct registers.
    843     MachineBasicBlock *EmitMonitor(MachineInstr *MI,
    844                                    MachineBasicBlock *BB) const;
    845     MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
    846 
    847     /// Utility function to emit atomic bitwise operations (and, or, xor).
    848     /// It takes the bitwise instruction to expand, the associated machine basic
    849     /// block, and the associated X86 opcodes for reg/reg and reg/imm.
    850     MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
    851                                                     MachineInstr *BInstr,
    852                                                     MachineBasicBlock *BB,
    853                                                     unsigned regOpc,
    854                                                     unsigned immOpc,
    855                                                     unsigned loadOpc,
    856                                                     unsigned cxchgOpc,
    857                                                     unsigned notOpc,
    858                                                     unsigned EAXreg,
    859                                               const TargetRegisterClass *RC,
    860                                                     bool Invert = false) const;
    861 
    862     MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
    863                                                     MachineInstr *BInstr,
    864                                                     MachineBasicBlock *BB,
    865                                                     unsigned regOpcL,
    866                                                     unsigned regOpcH,
    867                                                     unsigned immOpcL,
    868                                                     unsigned immOpcH,
    869                                                     bool Invert = false) const;
    870 
    871     /// Utility function to emit atomic min and max.  It takes the min/max
    872     /// instruction to expand, the associated basic block, and the associated
    873     /// cmov opcode for moving the min or max value.
    874     MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
    875                                                           MachineBasicBlock *BB,
    876                                                         unsigned cmovOpc) const;
    877 
    878     // Utility function to emit the low-level va_arg code for X86-64.
    879     MachineBasicBlock *EmitVAARG64WithCustomInserter(
    880                        MachineInstr *MI,
    881                        MachineBasicBlock *MBB) const;
    882 
    883     /// Utility function to emit the xmm reg save portion of va_start.
    884     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
    885                                                    MachineInstr *BInstr,
    886                                                    MachineBasicBlock *BB) const;
    887 
    888     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
    889                                          MachineBasicBlock *BB) const;
    890 
    891     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
    892                                               MachineBasicBlock *BB) const;
    893 
    894     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
    895                                             MachineBasicBlock *BB,
    896                                             bool Is64Bit) const;
    897 
    898     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
    899                                           MachineBasicBlock *BB) const;
    900 
    901     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
    902                                           MachineBasicBlock *BB) const;
    903 
    904     /// Emit nodes that will be selected as "test Op0,Op0", or something
    905     /// equivalent, for use with the given x86 condition code.
    906     SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
    907 
    908     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
    909     /// equivalent, for use with the given x86 condition code.
    910     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
    911                     SelectionDAG &DAG) const;
    912   };
    913 
    914   namespace X86 {
    915     FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
    916   }
    917 }
    918 
    919 #endif    // X86ISELLOWERING_H
    920