Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that PPC uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
     16 #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
     17 
     18 #include "PPC.h"
     19 #include "PPCSubtarget.h"
     20 #include "llvm/Target/TargetLowering.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 
     23 namespace llvm {
     24   namespace PPCISD {
     25     enum NodeType {
     26       // Start the numbering where the builtin ops and target ops leave off.
     27       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     28 
     29       /// FSEL - Traditional three-operand fsel node.
     30       ///
     31       FSEL,
     32 
     33       /// FCFID - The FCFID instruction, taking an f64 operand and producing
     34       /// and f64 value containing the FP representation of the integer that
     35       /// was temporarily in the f64 operand.
     36       FCFID,
     37 
     38       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
     39       /// operand, producing an f64 value containing the integer representation
     40       /// of that FP value.
     41       FCTIDZ, FCTIWZ,
     42 
     43       /// STFIWX - The STFIWX instruction.  The first operand is an input token
     44       /// chain, then an f64 value to store, then an address to store it to.
     45       STFIWX,
     46 
     47       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
     48       // three v4f32 operands and producing a v4f32 result.
     49       VMADDFP, VNMSUBFP,
     50 
     51       /// VPERM - The PPC VPERM Instruction.
     52       ///
     53       VPERM,
     54 
     55       /// Hi/Lo - These represent the high and low 16-bit parts of a global
     56       /// address respectively.  These nodes have two operands, the first of
     57       /// which must be a TargetGlobalAddress, and the second of which must be a
     58       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
     59       /// though these are usually folded into other nodes.
     60       Hi, Lo,
     61 
     62       TOC_ENTRY,
     63 
     64       /// The following three target-specific nodes are used for calls through
     65       /// function pointers in the 64-bit SVR4 ABI.
     66 
     67       /// Restore the TOC from the TOC save area of the current stack frame.
     68       /// This is basically a hard coded load instruction which additionally
     69       /// takes/produces a flag.
     70       TOC_RESTORE,
     71 
     72       /// Like a regular LOAD but additionally taking/producing a flag.
     73       LOAD,
     74 
     75       /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
     76       /// a hard coded load instruction.
     77       LOAD_TOC,
     78 
     79       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
     80       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     81       /// compute an allocation on the stack.
     82       DYNALLOC,
     83 
     84       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
     85       /// at function entry, used for PIC code.
     86       GlobalBaseReg,
     87 
     88       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
     89       /// shift amounts.  These nodes are generated by the multi-precision shift
     90       /// code.
     91       SRL, SRA, SHL,
     92 
     93       /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
     94       /// registers.
     95       EXTSW_32,
     96 
     97       /// CALL - A direct function call.
     98       /// CALL_NOP_SVR4 is a call with the special  NOP which follows 64-bit
     99       /// SVR4 calls.
    100       CALL_Darwin, CALL_SVR4, CALL_NOP_SVR4,
    101 
    102       /// NOP - Special NOP which follows 64-bit SVR4 calls.
    103       NOP,
    104 
    105       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
    106       /// MTCTR instruction.
    107       MTCTR,
    108 
    109       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
    110       /// BCTRL instruction.
    111       BCTRL_Darwin, BCTRL_SVR4,
    112 
    113       /// Return with a flag operand, matched by 'blr'
    114       RET_FLAG,
    115 
    116       /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
    117       /// instructions.  This copies the bits corresponding to the specified
    118       /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
    119       /// are undefined.
    120       MFCR,
    121 
    122       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
    123       /// instructions.  For lack of better number, we use the opcode number
    124       /// encoding for the OPC field to identify the compare.  For example, 838
    125       /// is VCMPGTSH.
    126       VCMP,
    127 
    128       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
    129       /// altivec VCMP*o instructions.  For lack of better number, we use the
    130       /// opcode number encoding for the OPC field to identify the compare.  For
    131       /// example, 838 is VCMPGTSH.
    132       VCMPo,
    133 
    134       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
    135       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
    136       /// condition register to branch on, OPC is the branch opcode to use (e.g.
    137       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
    138       /// an optional input flag argument.
    139       COND_BRANCH,
    140 
    141       // The following 5 instructions are used only as part of the
    142       // long double-to-int conversion sequence.
    143 
    144       /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
    145       /// register.
    146       MFFS,
    147 
    148       /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
    149       MTFSB0,
    150 
    151       /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
    152       MTFSB1,
    153 
    154       /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
    155       /// rounding towards zero.  It has flags added so it won't move past the
    156       /// FPSCR-setting instructions.
    157       FADDRTZ,
    158 
    159       /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
    160       MTFSF,
    161 
    162       /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
    163       /// reserve indexed. This is used to implement atomic operations.
    164       LARX,
    165 
    166       /// STCX = This corresponds to PPC stcx. instrcution: store conditional
    167       /// indexed. This is used to implement atomic operations.
    168       STCX,
    169 
    170       /// TC_RETURN - A tail call return.
    171       ///   operand #0 chain
    172       ///   operand #1 callee (register or absolute)
    173       ///   operand #2 stack adjustment
    174       ///   operand #3 optional in flag
    175       TC_RETURN,
    176 
    177       /// STD_32 - This is the STD instruction for use with "32-bit" registers.
    178       STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
    179 
    180       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
    181       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
    182       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
    183       /// i32.
    184       STBRX,
    185 
    186       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
    187       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
    188       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
    189       /// or i32.
    190       LBRX
    191     };
    192   }
    193 
    194   /// Define some predicates that are used for node matching.
    195   namespace PPC {
    196     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    197     /// VPKUHUM instruction.
    198     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
    199 
    200     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    201     /// VPKUWUM instruction.
    202     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
    203 
    204     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    205     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    206     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    207                             bool isUnary);
    208 
    209     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    210     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    211     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    212                             bool isUnary);
    213 
    214     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    215     /// amount, otherwise return -1.
    216     int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
    217 
    218     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    219     /// specifies a splat of a single element that is suitable for input to
    220     /// VSPLTB/VSPLTH/VSPLTW.
    221     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
    222 
    223     /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    224     /// are -0.0.
    225     bool isAllNegativeZeroVector(SDNode *N);
    226 
    227     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    228     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    229     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
    230 
    231     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    232     /// formed by using a vspltis[bhw] instruction of the specified element
    233     /// size, return the constant being splatted.  The ByteSize field indicates
    234     /// the number of bytes of each element [124] -> [bhw].
    235     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
    236   }
    237 
    238   class PPCTargetLowering : public TargetLowering {
    239     const PPCSubtarget &PPCSubTarget;
    240 
    241   public:
    242     explicit PPCTargetLowering(PPCTargetMachine &TM);
    243 
    244     /// getTargetNodeName() - This method returns the name of a target specific
    245     /// DAG node.
    246     virtual const char *getTargetNodeName(unsigned Opcode) const;
    247 
    248     virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
    249 
    250     /// getSetCCResultType - Return the ISD::SETCC ValueType
    251     virtual EVT getSetCCResultType(EVT VT) const;
    252 
    253     /// getPreIndexedAddressParts - returns true by value, base pointer and
    254     /// offset pointer and addressing mode by reference if the node's address
    255     /// can be legally represented as pre-indexed load / store address.
    256     virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    257                                            SDValue &Offset,
    258                                            ISD::MemIndexedMode &AM,
    259                                            SelectionDAG &DAG) const;
    260 
    261     /// SelectAddressRegReg - Given the specified addressed, check to see if it
    262     /// can be represented as an indexed [r+r] operation.  Returns false if it
    263     /// can be more efficiently represented with [r+imm].
    264     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
    265                              SelectionDAG &DAG) const;
    266 
    267     /// SelectAddressRegImm - Returns true if the address N can be represented
    268     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    269     /// is not better represented as reg+reg.
    270     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
    271                              SelectionDAG &DAG) const;
    272 
    273     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    274     /// represented as an indexed [r+r] operation.
    275     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
    276                                  SelectionDAG &DAG) const;
    277 
    278     /// SelectAddressRegImmShift - Returns true if the address N can be
    279     /// represented by a base register plus a signed 14-bit displacement
    280     /// [r+imm*4].  Suitable for use by STD and friends.
    281     bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
    282                                   SelectionDAG &DAG) const;
    283 
    284     Sched::Preference getSchedulingPreference(SDNode *N) const;
    285 
    286     /// LowerOperation - Provide custom lowering hooks for some operations.
    287     ///
    288     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
    289 
    290     /// ReplaceNodeResults - Replace the results of node with an illegal result
    291     /// type with new values built out of custom code.
    292     ///
    293     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    294                                     SelectionDAG &DAG) const;
    295 
    296     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    297 
    298     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    299                                                 APInt &KnownZero,
    300                                                 APInt &KnownOne,
    301                                                 const SelectionDAG &DAG,
    302                                                 unsigned Depth = 0) const;
    303 
    304     virtual MachineBasicBlock *
    305       EmitInstrWithCustomInserter(MachineInstr *MI,
    306                                   MachineBasicBlock *MBB) const;
    307     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
    308                                         MachineBasicBlock *MBB, bool is64Bit,
    309                                         unsigned BinOpcode) const;
    310     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
    311                                                 MachineBasicBlock *MBB,
    312                                             bool is8bit, unsigned Opcode) const;
    313 
    314     ConstraintType getConstraintType(const std::string &Constraint) const;
    315 
    316     /// Examine constraint string and operand type and determine a weight value.
    317     /// The operand object must already have been set up with the operand type.
    318     ConstraintWeight getSingleConstraintMatchWeight(
    319       AsmOperandInfo &info, const char *constraint) const;
    320 
    321     std::pair<unsigned, const TargetRegisterClass*>
    322       getRegForInlineAsmConstraint(const std::string &Constraint,
    323                                    EVT VT) const;
    324 
    325     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    326     /// function arguments in the caller parameter area.  This is the actual
    327     /// alignment, not its logarithm.
    328     unsigned getByValTypeAlignment(Type *Ty) const;
    329 
    330     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    331     /// vector.  If it is invalid, don't add anything to Ops.
    332     virtual void LowerAsmOperandForConstraint(SDValue Op,
    333                                               std::string &Constraint,
    334                                               std::vector<SDValue> &Ops,
    335                                               SelectionDAG &DAG) const;
    336 
    337     /// isLegalAddressingMode - Return true if the addressing mode represented
    338     /// by AM is legal for this target, for a load/store of the specified type.
    339     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
    340 
    341     /// isLegalAddressImmediate - Return true if the integer value can be used
    342     /// as the offset of the target addressing mode for load / store of the
    343     /// given type.
    344     virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
    345 
    346     /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
    347     /// the offset of the target addressing mode.
    348     virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
    349 
    350     virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
    351 
    352     /// getOptimalMemOpType - Returns the target specific optimal type for load
    353     /// and store operations as a result of memset, memcpy, and memmove
    354     /// lowering. If DstAlign is zero that means it's safe to destination
    355     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    356     /// means there isn't a need to check it against alignment requirement,
    357     /// probably because the source does not need to be loaded. If
    358     /// 'IsZeroVal' is true, that means it's safe to return a
    359     /// non-scalar-integer type, e.g. empty string source, constant, or loaded
    360     /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
    361     /// constant so it does not need to be loaded.
    362     /// It returns EVT::Other if the type should be determined using generic
    363     /// target-independent logic.
    364     virtual EVT
    365     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    366                         bool IsZeroVal, bool MemcpyStrSrc,
    367                         MachineFunction &MF) const;
    368 
    369   private:
    370     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    371     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
    372 
    373     bool
    374     IsEligibleForTailCallOptimization(SDValue Callee,
    375                                       CallingConv::ID CalleeCC,
    376                                       bool isVarArg,
    377                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    378                                       SelectionDAG& DAG) const;
    379 
    380     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
    381                                          int SPDiff,
    382                                          SDValue Chain,
    383                                          SDValue &LROpOut,
    384                                          SDValue &FPOpOut,
    385                                          bool isDarwinABI,
    386                                          DebugLoc dl) const;
    387 
    388     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    389     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    390     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    391     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    392     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    393     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    394     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    395     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    396     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    397     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
    398                          const PPCSubtarget &Subtarget) const;
    399     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
    400                        const PPCSubtarget &Subtarget) const;
    401     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
    402                                 const PPCSubtarget &Subtarget) const;
    403     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
    404                                       const PPCSubtarget &Subtarget) const;
    405     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    406     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
    407     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    408     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    409     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    410     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    411     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    412     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    413     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    414     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    415     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    416     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    417 
    418     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    419                             CallingConv::ID CallConv, bool isVarArg,
    420                             const SmallVectorImpl<ISD::InputArg> &Ins,
    421                             DebugLoc dl, SelectionDAG &DAG,
    422                             SmallVectorImpl<SDValue> &InVals) const;
    423     SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
    424                        bool isVarArg,
    425                        SelectionDAG &DAG,
    426                        SmallVector<std::pair<unsigned, SDValue>, 8>
    427                          &RegsToPass,
    428                        SDValue InFlag, SDValue Chain,
    429                        SDValue &Callee,
    430                        int SPDiff, unsigned NumBytes,
    431                        const SmallVectorImpl<ISD::InputArg> &Ins,
    432                        SmallVectorImpl<SDValue> &InVals) const;
    433 
    434     virtual SDValue
    435       LowerFormalArguments(SDValue Chain,
    436                            CallingConv::ID CallConv, bool isVarArg,
    437                            const SmallVectorImpl<ISD::InputArg> &Ins,
    438                            DebugLoc dl, SelectionDAG &DAG,
    439                            SmallVectorImpl<SDValue> &InVals) const;
    440 
    441     virtual SDValue
    442       LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
    443                 bool isVarArg, bool doesNotRet, bool &isTailCall,
    444                 const SmallVectorImpl<ISD::OutputArg> &Outs,
    445                 const SmallVectorImpl<SDValue> &OutVals,
    446                 const SmallVectorImpl<ISD::InputArg> &Ins,
    447                 DebugLoc dl, SelectionDAG &DAG,
    448                 SmallVectorImpl<SDValue> &InVals) const;
    449 
    450     virtual bool
    451       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    452                    bool isVarArg,
    453                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    454                    LLVMContext &Context) const;
    455 
    456     virtual SDValue
    457       LowerReturn(SDValue Chain,
    458                   CallingConv::ID CallConv, bool isVarArg,
    459                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    460                   const SmallVectorImpl<SDValue> &OutVals,
    461                   DebugLoc dl, SelectionDAG &DAG) const;
    462 
    463     SDValue
    464       LowerFormalArguments_Darwin(SDValue Chain,
    465                                   CallingConv::ID CallConv, bool isVarArg,
    466                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    467                                   DebugLoc dl, SelectionDAG &DAG,
    468                                   SmallVectorImpl<SDValue> &InVals) const;
    469     SDValue
    470       LowerFormalArguments_SVR4(SDValue Chain,
    471                                 CallingConv::ID CallConv, bool isVarArg,
    472                                 const SmallVectorImpl<ISD::InputArg> &Ins,
    473                                 DebugLoc dl, SelectionDAG &DAG,
    474                                 SmallVectorImpl<SDValue> &InVals) const;
    475 
    476     SDValue
    477       LowerCall_Darwin(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
    478                        bool isVarArg, bool isTailCall,
    479                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    480                        const SmallVectorImpl<SDValue> &OutVals,
    481                        const SmallVectorImpl<ISD::InputArg> &Ins,
    482                        DebugLoc dl, SelectionDAG &DAG,
    483                        SmallVectorImpl<SDValue> &InVals) const;
    484     SDValue
    485     LowerCall_SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
    486                    bool isVarArg, bool isTailCall,
    487                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    488                    const SmallVectorImpl<SDValue> &OutVals,
    489                    const SmallVectorImpl<ISD::InputArg> &Ins,
    490                    DebugLoc dl, SelectionDAG &DAG,
    491                    SmallVectorImpl<SDValue> &InVals) const;
    492   };
    493 }
    494 
    495 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
    496