Home | History | Annotate | Download | only in Scalar
      1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into forms suitable for efficient execution
     12 // on the target.
     13 //
     14 // This pass performs a strength reduction on array references inside loops that
     15 // have as one or more of their components the loop induction variable, it
     16 // rewrites expressions to take advantage of scaled-index addressing modes
     17 // available on the target, and it performs a variety of other optimizations
     18 // related to loop induction variables.
     19 //
     20 // Terminology note: this code has a lot of handling for "post-increment" or
     21 // "post-inc" users. This is not talking about post-increment addressing modes;
     22 // it is instead talking about code like this:
     23 //
     24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
     25 //   ...
     26 //   %i.next = add %i, 1
     27 //   %c = icmp eq %i.next, %n
     28 //
     29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
     30 // it's useful to think about these as the same register, with some uses using
     31 // the value of the register before the add and some using // it after. In this
     32 // example, the icmp is a post-increment user, since it uses %i.next, which is
     33 // the value of the induction variable after the increment. The other common
     34 // case of post-increment users is users outside the loop.
     35 //
     36 // TODO: More sophistication in the way Formulae are generated and filtered.
     37 //
     38 // TODO: Handle multiple loops at a time.
     39 //
     40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
     41 //       instead of a GlobalValue?
     42 //
     43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
     44 //       smaller encoding (on x86 at least).
     45 //
     46 // TODO: When a negated register is used by an add (such as in a list of
     47 //       multiple base registers, or as the increment expression in an addrec),
     48 //       we may not actually need both reg and (-1 * reg) in registers; the
     49 //       negation can be implemented by using a sub instead of an add. The
     50 //       lack of support for taking this into consideration when making
     51 //       register pressure decisions is partly worked around by the "Special"
     52 //       use kind.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #define DEBUG_TYPE "loop-reduce"
     57 #include "llvm/Transforms/Scalar.h"
     58 #include "llvm/Constants.h"
     59 #include "llvm/Instructions.h"
     60 #include "llvm/IntrinsicInst.h"
     61 #include "llvm/DerivedTypes.h"
     62 #include "llvm/Analysis/IVUsers.h"
     63 #include "llvm/Analysis/Dominators.h"
     64 #include "llvm/Analysis/LoopPass.h"
     65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     66 #include "llvm/Assembly/Writer.h"
     67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     68 #include "llvm/Transforms/Utils/Local.h"
     69 #include "llvm/ADT/SmallBitVector.h"
     70 #include "llvm/ADT/SetVector.h"
     71 #include "llvm/ADT/DenseSet.h"
     72 #include "llvm/Support/Debug.h"
     73 #include "llvm/Support/CommandLine.h"
     74 #include "llvm/Support/ValueHandle.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include "llvm/Target/TargetLowering.h"
     77 #include <algorithm>
     78 using namespace llvm;
     79 
     80 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
     81 /// bail out. This threshold is far beyond the number of users that LSR can
     82 /// conceivably solve, so it should not affect generated code, but catches the
     83 /// worst cases before LSR burns too much compile time and stack space.
     84 static const unsigned MaxIVUsers = 200;
     85 
     86 // Temporary flag to cleanup congruent phis after LSR phi expansion.
     87 // It's currently disabled until we can determine whether it's truly useful or
     88 // not. The flag should be removed after the v3.0 release.
     89 // This is now needed for ivchains.
     90 static cl::opt<bool> EnablePhiElim(
     91   "enable-lsr-phielim", cl::Hidden, cl::init(true),
     92   cl::desc("Enable LSR phi elimination"));
     93 
     94 #ifndef NDEBUG
     95 // Stress test IV chain generation.
     96 static cl::opt<bool> StressIVChain(
     97   "stress-ivchain", cl::Hidden, cl::init(false),
     98   cl::desc("Stress test LSR IV chains"));
     99 #else
    100 static bool StressIVChain = false;
    101 #endif
    102 
    103 namespace {
    104 
    105 /// RegSortData - This class holds data which is used to order reuse candidates.
    106 class RegSortData {
    107 public:
    108   /// UsedByIndices - This represents the set of LSRUse indices which reference
    109   /// a particular register.
    110   SmallBitVector UsedByIndices;
    111 
    112   RegSortData() {}
    113 
    114   void print(raw_ostream &OS) const;
    115   void dump() const;
    116 };
    117 
    118 }
    119 
    120 void RegSortData::print(raw_ostream &OS) const {
    121   OS << "[NumUses=" << UsedByIndices.count() << ']';
    122 }
    123 
    124 void RegSortData::dump() const {
    125   print(errs()); errs() << '\n';
    126 }
    127 
    128 namespace {
    129 
    130 /// RegUseTracker - Map register candidates to information about how they are
    131 /// used.
    132 class RegUseTracker {
    133   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
    134 
    135   RegUsesTy RegUsesMap;
    136   SmallVector<const SCEV *, 16> RegSequence;
    137 
    138 public:
    139   void CountRegister(const SCEV *Reg, size_t LUIdx);
    140   void DropRegister(const SCEV *Reg, size_t LUIdx);
    141   void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
    142 
    143   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
    144 
    145   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
    146 
    147   void clear();
    148 
    149   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
    150   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
    151   iterator begin() { return RegSequence.begin(); }
    152   iterator end()   { return RegSequence.end(); }
    153   const_iterator begin() const { return RegSequence.begin(); }
    154   const_iterator end() const   { return RegSequence.end(); }
    155 };
    156 
    157 }
    158 
    159 void
    160 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
    161   std::pair<RegUsesTy::iterator, bool> Pair =
    162     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
    163   RegSortData &RSD = Pair.first->second;
    164   if (Pair.second)
    165     RegSequence.push_back(Reg);
    166   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
    167   RSD.UsedByIndices.set(LUIdx);
    168 }
    169 
    170 void
    171 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
    172   RegUsesTy::iterator It = RegUsesMap.find(Reg);
    173   assert(It != RegUsesMap.end());
    174   RegSortData &RSD = It->second;
    175   assert(RSD.UsedByIndices.size() > LUIdx);
    176   RSD.UsedByIndices.reset(LUIdx);
    177 }
    178 
    179 void
    180 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
    181   assert(LUIdx <= LastLUIdx);
    182 
    183   // Update RegUses. The data structure is not optimized for this purpose;
    184   // we must iterate through it and update each of the bit vectors.
    185   for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
    186        I != E; ++I) {
    187     SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    188     if (LUIdx < UsedByIndices.size())
    189       UsedByIndices[LUIdx] =
    190         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
    191     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
    192   }
    193 }
    194 
    195 bool
    196 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
    197   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    198   if (I == RegUsesMap.end())
    199     return false;
    200   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    201   int i = UsedByIndices.find_first();
    202   if (i == -1) return false;
    203   if ((size_t)i != LUIdx) return true;
    204   return UsedByIndices.find_next(i) != -1;
    205 }
    206 
    207 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
    208   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    209   assert(I != RegUsesMap.end() && "Unknown register!");
    210   return I->second.UsedByIndices;
    211 }
    212 
    213 void RegUseTracker::clear() {
    214   RegUsesMap.clear();
    215   RegSequence.clear();
    216 }
    217 
    218 namespace {
    219 
    220 /// Formula - This class holds information that describes a formula for
    221 /// computing satisfying a use. It may include broken-out immediates and scaled
    222 /// registers.
    223 struct Formula {
    224   /// AM - This is used to represent complex addressing, as well as other kinds
    225   /// of interesting uses.
    226   TargetLowering::AddrMode AM;
    227 
    228   /// BaseRegs - The list of "base" registers for this use. When this is
    229   /// non-empty, AM.HasBaseReg should be set to true.
    230   SmallVector<const SCEV *, 2> BaseRegs;
    231 
    232   /// ScaledReg - The 'scaled' register for this use. This should be non-null
    233   /// when AM.Scale is not zero.
    234   const SCEV *ScaledReg;
    235 
    236   /// UnfoldedOffset - An additional constant offset which added near the
    237   /// use. This requires a temporary register, but the offset itself can
    238   /// live in an add immediate field rather than a register.
    239   int64_t UnfoldedOffset;
    240 
    241   Formula() : ScaledReg(0), UnfoldedOffset(0) {}
    242 
    243   void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
    244 
    245   unsigned getNumRegs() const;
    246   Type *getType() const;
    247 
    248   void DeleteBaseReg(const SCEV *&S);
    249 
    250   bool referencesReg(const SCEV *S) const;
    251   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
    252                                   const RegUseTracker &RegUses) const;
    253 
    254   void print(raw_ostream &OS) const;
    255   void dump() const;
    256 };
    257 
    258 }
    259 
    260 /// DoInitialMatch - Recursion helper for InitialMatch.
    261 static void DoInitialMatch(const SCEV *S, Loop *L,
    262                            SmallVectorImpl<const SCEV *> &Good,
    263                            SmallVectorImpl<const SCEV *> &Bad,
    264                            ScalarEvolution &SE) {
    265   // Collect expressions which properly dominate the loop header.
    266   if (SE.properlyDominates(S, L->getHeader())) {
    267     Good.push_back(S);
    268     return;
    269   }
    270 
    271   // Look at add operands.
    272   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    273     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    274          I != E; ++I)
    275       DoInitialMatch(*I, L, Good, Bad, SE);
    276     return;
    277   }
    278 
    279   // Look at addrec operands.
    280   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    281     if (!AR->getStart()->isZero()) {
    282       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
    283       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
    284                                       AR->getStepRecurrence(SE),
    285                                       // FIXME: AR->getNoWrapFlags()
    286                                       AR->getLoop(), SCEV::FlagAnyWrap),
    287                      L, Good, Bad, SE);
    288       return;
    289     }
    290 
    291   // Handle a multiplication by -1 (negation) if it didn't fold.
    292   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    293     if (Mul->getOperand(0)->isAllOnesValue()) {
    294       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
    295       const SCEV *NewMul = SE.getMulExpr(Ops);
    296 
    297       SmallVector<const SCEV *, 4> MyGood;
    298       SmallVector<const SCEV *, 4> MyBad;
    299       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
    300       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
    301         SE.getEffectiveSCEVType(NewMul->getType())));
    302       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
    303            E = MyGood.end(); I != E; ++I)
    304         Good.push_back(SE.getMulExpr(NegOne, *I));
    305       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
    306            E = MyBad.end(); I != E; ++I)
    307         Bad.push_back(SE.getMulExpr(NegOne, *I));
    308       return;
    309     }
    310 
    311   // Ok, we can't do anything interesting. Just stuff the whole thing into a
    312   // register and hope for the best.
    313   Bad.push_back(S);
    314 }
    315 
    316 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
    317 /// attempting to keep all loop-invariant and loop-computable values in a
    318 /// single base register.
    319 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
    320   SmallVector<const SCEV *, 4> Good;
    321   SmallVector<const SCEV *, 4> Bad;
    322   DoInitialMatch(S, L, Good, Bad, SE);
    323   if (!Good.empty()) {
    324     const SCEV *Sum = SE.getAddExpr(Good);
    325     if (!Sum->isZero())
    326       BaseRegs.push_back(Sum);
    327     AM.HasBaseReg = true;
    328   }
    329   if (!Bad.empty()) {
    330     const SCEV *Sum = SE.getAddExpr(Bad);
    331     if (!Sum->isZero())
    332       BaseRegs.push_back(Sum);
    333     AM.HasBaseReg = true;
    334   }
    335 }
    336 
    337 /// getNumRegs - Return the total number of register operands used by this
    338 /// formula. This does not include register uses implied by non-constant
    339 /// addrec strides.
    340 unsigned Formula::getNumRegs() const {
    341   return !!ScaledReg + BaseRegs.size();
    342 }
    343 
    344 /// getType - Return the type of this formula, if it has one, or null
    345 /// otherwise. This type is meaningless except for the bit size.
    346 Type *Formula::getType() const {
    347   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
    348          ScaledReg ? ScaledReg->getType() :
    349          AM.BaseGV ? AM.BaseGV->getType() :
    350          0;
    351 }
    352 
    353 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
    354 void Formula::DeleteBaseReg(const SCEV *&S) {
    355   if (&S != &BaseRegs.back())
    356     std::swap(S, BaseRegs.back());
    357   BaseRegs.pop_back();
    358 }
    359 
    360 /// referencesReg - Test if this formula references the given register.
    361 bool Formula::referencesReg(const SCEV *S) const {
    362   return S == ScaledReg ||
    363          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
    364 }
    365 
    366 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
    367 /// which are used by uses other than the use with the given index.
    368 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
    369                                          const RegUseTracker &RegUses) const {
    370   if (ScaledReg)
    371     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
    372       return true;
    373   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    374        E = BaseRegs.end(); I != E; ++I)
    375     if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
    376       return true;
    377   return false;
    378 }
    379 
    380 void Formula::print(raw_ostream &OS) const {
    381   bool First = true;
    382   if (AM.BaseGV) {
    383     if (!First) OS << " + "; else First = false;
    384     WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
    385   }
    386   if (AM.BaseOffs != 0) {
    387     if (!First) OS << " + "; else First = false;
    388     OS << AM.BaseOffs;
    389   }
    390   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    391        E = BaseRegs.end(); I != E; ++I) {
    392     if (!First) OS << " + "; else First = false;
    393     OS << "reg(" << **I << ')';
    394   }
    395   if (AM.HasBaseReg && BaseRegs.empty()) {
    396     if (!First) OS << " + "; else First = false;
    397     OS << "**error: HasBaseReg**";
    398   } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
    399     if (!First) OS << " + "; else First = false;
    400     OS << "**error: !HasBaseReg**";
    401   }
    402   if (AM.Scale != 0) {
    403     if (!First) OS << " + "; else First = false;
    404     OS << AM.Scale << "*reg(";
    405     if (ScaledReg)
    406       OS << *ScaledReg;
    407     else
    408       OS << "<unknown>";
    409     OS << ')';
    410   }
    411   if (UnfoldedOffset != 0) {
    412     if (!First) OS << " + "; else First = false;
    413     OS << "imm(" << UnfoldedOffset << ')';
    414   }
    415 }
    416 
    417 void Formula::dump() const {
    418   print(errs()); errs() << '\n';
    419 }
    420 
    421 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
    422 /// without changing its value.
    423 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    424   Type *WideTy =
    425     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
    426   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    427 }
    428 
    429 /// isAddSExtable - Return true if the given add can be sign-extended
    430 /// without changing its value.
    431 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
    432   Type *WideTy =
    433     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
    434   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
    435 }
    436 
    437 /// isMulSExtable - Return true if the given mul can be sign-extended
    438 /// without changing its value.
    439 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
    440   Type *WideTy =
    441     IntegerType::get(SE.getContext(),
    442                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
    443   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
    444 }
    445 
    446 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
    447 /// and if the remainder is known to be zero,  or null otherwise. If
    448 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
    449 /// to Y, ignoring that the multiplication may overflow, which is useful when
    450 /// the result will be used in a context where the most significant bits are
    451 /// ignored.
    452 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
    453                                 ScalarEvolution &SE,
    454                                 bool IgnoreSignificantBits = false) {
    455   // Handle the trivial case, which works for any SCEV type.
    456   if (LHS == RHS)
    457     return SE.getConstant(LHS->getType(), 1);
    458 
    459   // Handle a few RHS special cases.
    460   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
    461   if (RC) {
    462     const APInt &RA = RC->getValue()->getValue();
    463     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    464     // some folding.
    465     if (RA.isAllOnesValue())
    466       return SE.getMulExpr(LHS, RC);
    467     // Handle x /s 1 as x.
    468     if (RA == 1)
    469       return LHS;
    470   }
    471 
    472   // Check for a division of a constant by a constant.
    473   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    474     if (!RC)
    475       return 0;
    476     const APInt &LA = C->getValue()->getValue();
    477     const APInt &RA = RC->getValue()->getValue();
    478     if (LA.srem(RA) != 0)
    479       return 0;
    480     return SE.getConstant(LA.sdiv(RA));
    481   }
    482 
    483   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
    484   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    485     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
    486       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
    487                                       IgnoreSignificantBits);
    488       if (!Step) return 0;
    489       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
    490                                        IgnoreSignificantBits);
    491       if (!Start) return 0;
    492       // FlagNW is independent of the start value, step direction, and is
    493       // preserved with smaller magnitude steps.
    494       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    495       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
    496     }
    497     return 0;
    498   }
    499 
    500   // Distribute the sdiv over add operands, if the add doesn't overflow.
    501   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    502     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
    503       SmallVector<const SCEV *, 8> Ops;
    504       for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    505            I != E; ++I) {
    506         const SCEV *Op = getExactSDiv(*I, RHS, SE,
    507                                       IgnoreSignificantBits);
    508         if (!Op) return 0;
    509         Ops.push_back(Op);
    510       }
    511       return SE.getAddExpr(Ops);
    512     }
    513     return 0;
    514   }
    515 
    516   // Check for a multiply operand that we can pull RHS out of.
    517   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    518     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
    519       SmallVector<const SCEV *, 4> Ops;
    520       bool Found = false;
    521       for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
    522            I != E; ++I) {
    523         const SCEV *S = *I;
    524         if (!Found)
    525           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
    526                                            IgnoreSignificantBits)) {
    527             S = Q;
    528             Found = true;
    529           }
    530         Ops.push_back(S);
    531       }
    532       return Found ? SE.getMulExpr(Ops) : 0;
    533     }
    534     return 0;
    535   }
    536 
    537   // Otherwise we don't know.
    538   return 0;
    539 }
    540 
    541 /// ExtractImmediate - If S involves the addition of a constant integer value,
    542 /// return that integer value, and mutate S to point to a new SCEV with that
    543 /// value excluded.
    544 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
    545   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    546     if (C->getValue()->getValue().getMinSignedBits() <= 64) {
    547       S = SE.getConstant(C->getType(), 0);
    548       return C->getValue()->getSExtValue();
    549     }
    550   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    551     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    552     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    553     if (Result != 0)
    554       S = SE.getAddExpr(NewOps);
    555     return Result;
    556   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    557     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    558     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    559     if (Result != 0)
    560       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    561                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    562                            SCEV::FlagAnyWrap);
    563     return Result;
    564   }
    565   return 0;
    566 }
    567 
    568 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
    569 /// return that symbol, and mutate S to point to a new SCEV with that
    570 /// value excluded.
    571 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
    572   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    573     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
    574       S = SE.getConstant(GV->getType(), 0);
    575       return GV;
    576     }
    577   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    578     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    579     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    580     if (Result)
    581       S = SE.getAddExpr(NewOps);
    582     return Result;
    583   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    584     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    585     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    586     if (Result)
    587       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    588                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    589                            SCEV::FlagAnyWrap);
    590     return Result;
    591   }
    592   return 0;
    593 }
    594 
    595 /// isAddressUse - Returns true if the specified instruction is using the
    596 /// specified value as an address.
    597 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
    598   bool isAddress = isa<LoadInst>(Inst);
    599   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    600     if (SI->getOperand(1) == OperandVal)
    601       isAddress = true;
    602   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    603     // Addressing modes can also be folded into prefetches and a variety
    604     // of intrinsics.
    605     switch (II->getIntrinsicID()) {
    606       default: break;
    607       case Intrinsic::prefetch:
    608       case Intrinsic::x86_sse_storeu_ps:
    609       case Intrinsic::x86_sse2_storeu_pd:
    610       case Intrinsic::x86_sse2_storeu_dq:
    611       case Intrinsic::x86_sse2_storel_dq:
    612         if (II->getArgOperand(0) == OperandVal)
    613           isAddress = true;
    614         break;
    615     }
    616   }
    617   return isAddress;
    618 }
    619 
    620 /// getAccessType - Return the type of the memory being accessed.
    621 static Type *getAccessType(const Instruction *Inst) {
    622   Type *AccessTy = Inst->getType();
    623   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    624     AccessTy = SI->getOperand(0)->getType();
    625   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    626     // Addressing modes can also be folded into prefetches and a variety
    627     // of intrinsics.
    628     switch (II->getIntrinsicID()) {
    629     default: break;
    630     case Intrinsic::x86_sse_storeu_ps:
    631     case Intrinsic::x86_sse2_storeu_pd:
    632     case Intrinsic::x86_sse2_storeu_dq:
    633     case Intrinsic::x86_sse2_storel_dq:
    634       AccessTy = II->getArgOperand(0)->getType();
    635       break;
    636     }
    637   }
    638 
    639   // All pointers have the same requirements, so canonicalize them to an
    640   // arbitrary pointer type to minimize variation.
    641   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
    642     AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
    643                                 PTy->getAddressSpace());
    644 
    645   return AccessTy;
    646 }
    647 
    648 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
    649 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    650   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
    651        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    652     if (SE.isSCEVable(PN->getType()) &&
    653         (SE.getEffectiveSCEVType(PN->getType()) ==
    654          SE.getEffectiveSCEVType(AR->getType())) &&
    655         SE.getSCEV(PN) == AR)
    656       return true;
    657   }
    658   return false;
    659 }
    660 
    661 /// Check if expanding this expression is likely to incur significant cost. This
    662 /// is tricky because SCEV doesn't track which expressions are actually computed
    663 /// by the current IR.
    664 ///
    665 /// We currently allow expansion of IV increments that involve adds,
    666 /// multiplication by constants, and AddRecs from existing phis.
    667 ///
    668 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
    669 /// obvious multiple of the UDivExpr.
    670 static bool isHighCostExpansion(const SCEV *S,
    671                                 SmallPtrSet<const SCEV*, 8> &Processed,
    672                                 ScalarEvolution &SE) {
    673   // Zero/One operand expressions
    674   switch (S->getSCEVType()) {
    675   case scUnknown:
    676   case scConstant:
    677     return false;
    678   case scTruncate:
    679     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
    680                                Processed, SE);
    681   case scZeroExtend:
    682     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
    683                                Processed, SE);
    684   case scSignExtend:
    685     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
    686                                Processed, SE);
    687   }
    688 
    689   if (!Processed.insert(S))
    690     return false;
    691 
    692   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    693     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    694          I != E; ++I) {
    695       if (isHighCostExpansion(*I, Processed, SE))
    696         return true;
    697     }
    698     return false;
    699   }
    700 
    701   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    702     if (Mul->getNumOperands() == 2) {
    703       // Multiplication by a constant is ok
    704       if (isa<SCEVConstant>(Mul->getOperand(0)))
    705         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
    706 
    707       // If we have the value of one operand, check if an existing
    708       // multiplication already generates this expression.
    709       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
    710         Value *UVal = U->getValue();
    711         for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
    712              UI != UE; ++UI) {
    713           // If U is a constant, it may be used by a ConstantExpr.
    714           Instruction *User = dyn_cast<Instruction>(*UI);
    715           if (User && User->getOpcode() == Instruction::Mul
    716               && SE.isSCEVable(User->getType())) {
    717             return SE.getSCEV(User) == Mul;
    718           }
    719         }
    720       }
    721     }
    722   }
    723 
    724   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    725     if (isExistingPhi(AR, SE))
    726       return false;
    727   }
    728 
    729   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
    730   return true;
    731 }
    732 
    733 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
    734 /// specified set are trivially dead, delete them and see if this makes any of
    735 /// their operands subsequently dead.
    736 static bool
    737 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
    738   bool Changed = false;
    739 
    740   while (!DeadInsts.empty()) {
    741     Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
    742 
    743     if (I == 0 || !isInstructionTriviallyDead(I))
    744       continue;
    745 
    746     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
    747       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
    748         *OI = 0;
    749         if (U->use_empty())
    750           DeadInsts.push_back(U);
    751       }
    752 
    753     I->eraseFromParent();
    754     Changed = true;
    755   }
    756 
    757   return Changed;
    758 }
    759 
    760 namespace {
    761 
    762 /// Cost - This class is used to measure and compare candidate formulae.
    763 class Cost {
    764   /// TODO: Some of these could be merged. Also, a lexical ordering
    765   /// isn't always optimal.
    766   unsigned NumRegs;
    767   unsigned AddRecCost;
    768   unsigned NumIVMuls;
    769   unsigned NumBaseAdds;
    770   unsigned ImmCost;
    771   unsigned SetupCost;
    772 
    773 public:
    774   Cost()
    775     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
    776       SetupCost(0) {}
    777 
    778   bool operator<(const Cost &Other) const;
    779 
    780   void Loose();
    781 
    782 #ifndef NDEBUG
    783   // Once any of the metrics loses, they must all remain losers.
    784   bool isValid() {
    785     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
    786              | ImmCost | SetupCost) != ~0u)
    787       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
    788            & ImmCost & SetupCost) == ~0u);
    789   }
    790 #endif
    791 
    792   bool isLoser() {
    793     assert(isValid() && "invalid cost");
    794     return NumRegs == ~0u;
    795   }
    796 
    797   void RateFormula(const Formula &F,
    798                    SmallPtrSet<const SCEV *, 16> &Regs,
    799                    const DenseSet<const SCEV *> &VisitedRegs,
    800                    const Loop *L,
    801                    const SmallVectorImpl<int64_t> &Offsets,
    802                    ScalarEvolution &SE, DominatorTree &DT,
    803                    SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
    804 
    805   void print(raw_ostream &OS) const;
    806   void dump() const;
    807 
    808 private:
    809   void RateRegister(const SCEV *Reg,
    810                     SmallPtrSet<const SCEV *, 16> &Regs,
    811                     const Loop *L,
    812                     ScalarEvolution &SE, DominatorTree &DT);
    813   void RatePrimaryRegister(const SCEV *Reg,
    814                            SmallPtrSet<const SCEV *, 16> &Regs,
    815                            const Loop *L,
    816                            ScalarEvolution &SE, DominatorTree &DT,
    817                            SmallPtrSet<const SCEV *, 16> *LoserRegs);
    818 };
    819 
    820 }
    821 
    822 /// RateRegister - Tally up interesting quantities from the given register.
    823 void Cost::RateRegister(const SCEV *Reg,
    824                         SmallPtrSet<const SCEV *, 16> &Regs,
    825                         const Loop *L,
    826                         ScalarEvolution &SE, DominatorTree &DT) {
    827   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    828     // If this is an addrec for another loop, don't second-guess its addrec phi
    829     // nodes. LSR isn't currently smart enough to reason about more than one
    830     // loop at a time. LSR has already run on inner loops, will not run on outer
    831     // loops, and cannot be expected to change sibling loops.
    832     if (AR->getLoop() != L) {
    833       // If the AddRec exists, consider it's register free and leave it alone.
    834       if (isExistingPhi(AR, SE))
    835         return;
    836 
    837       // Otherwise, do not consider this formula at all.
    838       Loose();
    839       return;
    840     }
    841     AddRecCost += 1; /// TODO: This should be a function of the stride.
    842 
    843     // Add the step value register, if it needs one.
    844     // TODO: The non-affine case isn't precisely modeled here.
    845     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
    846       if (!Regs.count(AR->getOperand(1))) {
    847         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
    848         if (isLoser())
    849           return;
    850       }
    851     }
    852   }
    853   ++NumRegs;
    854 
    855   // Rough heuristic; favor registers which don't require extra setup
    856   // instructions in the preheader.
    857   if (!isa<SCEVUnknown>(Reg) &&
    858       !isa<SCEVConstant>(Reg) &&
    859       !(isa<SCEVAddRecExpr>(Reg) &&
    860         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
    861          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    862     ++SetupCost;
    863 
    864     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
    865                  SE.hasComputableLoopEvolution(Reg, L);
    866 }
    867 
    868 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
    869 /// before, rate it. Optional LoserRegs provides a way to declare any formula
    870 /// that refers to one of those regs an instant loser.
    871 void Cost::RatePrimaryRegister(const SCEV *Reg,
    872                                SmallPtrSet<const SCEV *, 16> &Regs,
    873                                const Loop *L,
    874                                ScalarEvolution &SE, DominatorTree &DT,
    875                                SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    876   if (LoserRegs && LoserRegs->count(Reg)) {
    877     Loose();
    878     return;
    879   }
    880   if (Regs.insert(Reg)) {
    881     RateRegister(Reg, Regs, L, SE, DT);
    882     if (isLoser())
    883       LoserRegs->insert(Reg);
    884   }
    885 }
    886 
    887 void Cost::RateFormula(const Formula &F,
    888                        SmallPtrSet<const SCEV *, 16> &Regs,
    889                        const DenseSet<const SCEV *> &VisitedRegs,
    890                        const Loop *L,
    891                        const SmallVectorImpl<int64_t> &Offsets,
    892                        ScalarEvolution &SE, DominatorTree &DT,
    893                        SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    894   // Tally up the registers.
    895   if (const SCEV *ScaledReg = F.ScaledReg) {
    896     if (VisitedRegs.count(ScaledReg)) {
    897       Loose();
    898       return;
    899     }
    900     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
    901     if (isLoser())
    902       return;
    903   }
    904   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
    905        E = F.BaseRegs.end(); I != E; ++I) {
    906     const SCEV *BaseReg = *I;
    907     if (VisitedRegs.count(BaseReg)) {
    908       Loose();
    909       return;
    910     }
    911     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
    912     if (isLoser())
    913       return;
    914   }
    915 
    916   // Determine how many (unfolded) adds we'll need inside the loop.
    917   size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
    918   if (NumBaseParts > 1)
    919     NumBaseAdds += NumBaseParts - 1;
    920 
    921   // Tally up the non-zero immediates.
    922   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
    923        E = Offsets.end(); I != E; ++I) {
    924     int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
    925     if (F.AM.BaseGV)
    926       ImmCost += 64; // Handle symbolic values conservatively.
    927                      // TODO: This should probably be the pointer size.
    928     else if (Offset != 0)
    929       ImmCost += APInt(64, Offset, true).getMinSignedBits();
    930   }
    931   assert(isValid() && "invalid cost");
    932 }
    933 
    934 /// Loose - Set this cost to a losing value.
    935 void Cost::Loose() {
    936   NumRegs = ~0u;
    937   AddRecCost = ~0u;
    938   NumIVMuls = ~0u;
    939   NumBaseAdds = ~0u;
    940   ImmCost = ~0u;
    941   SetupCost = ~0u;
    942 }
    943 
    944 /// operator< - Choose the lower cost.
    945 bool Cost::operator<(const Cost &Other) const {
    946   if (NumRegs != Other.NumRegs)
    947     return NumRegs < Other.NumRegs;
    948   if (AddRecCost != Other.AddRecCost)
    949     return AddRecCost < Other.AddRecCost;
    950   if (NumIVMuls != Other.NumIVMuls)
    951     return NumIVMuls < Other.NumIVMuls;
    952   if (NumBaseAdds != Other.NumBaseAdds)
    953     return NumBaseAdds < Other.NumBaseAdds;
    954   if (ImmCost != Other.ImmCost)
    955     return ImmCost < Other.ImmCost;
    956   if (SetupCost != Other.SetupCost)
    957     return SetupCost < Other.SetupCost;
    958   return false;
    959 }
    960 
    961 void Cost::print(raw_ostream &OS) const {
    962   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
    963   if (AddRecCost != 0)
    964     OS << ", with addrec cost " << AddRecCost;
    965   if (NumIVMuls != 0)
    966     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
    967   if (NumBaseAdds != 0)
    968     OS << ", plus " << NumBaseAdds << " base add"
    969        << (NumBaseAdds == 1 ? "" : "s");
    970   if (ImmCost != 0)
    971     OS << ", plus " << ImmCost << " imm cost";
    972   if (SetupCost != 0)
    973     OS << ", plus " << SetupCost << " setup cost";
    974 }
    975 
    976 void Cost::dump() const {
    977   print(errs()); errs() << '\n';
    978 }
    979 
    980 namespace {
    981 
    982 /// LSRFixup - An operand value in an instruction which is to be replaced
    983 /// with some equivalent, possibly strength-reduced, replacement.
    984 struct LSRFixup {
    985   /// UserInst - The instruction which will be updated.
    986   Instruction *UserInst;
    987 
    988   /// OperandValToReplace - The operand of the instruction which will
    989   /// be replaced. The operand may be used more than once; every instance
    990   /// will be replaced.
    991   Value *OperandValToReplace;
    992 
    993   /// PostIncLoops - If this user is to use the post-incremented value of an
    994   /// induction variable, this variable is non-null and holds the loop
    995   /// associated with the induction variable.
    996   PostIncLoopSet PostIncLoops;
    997 
    998   /// LUIdx - The index of the LSRUse describing the expression which
    999   /// this fixup needs, minus an offset (below).
   1000   size_t LUIdx;
   1001 
   1002   /// Offset - A constant offset to be added to the LSRUse expression.
   1003   /// This allows multiple fixups to share the same LSRUse with different
   1004   /// offsets, for example in an unrolled loop.
   1005   int64_t Offset;
   1006 
   1007   bool isUseFullyOutsideLoop(const Loop *L) const;
   1008 
   1009   LSRFixup();
   1010 
   1011   void print(raw_ostream &OS) const;
   1012   void dump() const;
   1013 };
   1014 
   1015 }
   1016 
   1017 LSRFixup::LSRFixup()
   1018   : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
   1019 
   1020 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
   1021 /// value outside of the given loop.
   1022 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
   1023   // PHI nodes use their value in their incoming blocks.
   1024   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
   1025     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1026       if (PN->getIncomingValue(i) == OperandValToReplace &&
   1027           L->contains(PN->getIncomingBlock(i)))
   1028         return false;
   1029     return true;
   1030   }
   1031 
   1032   return !L->contains(UserInst);
   1033 }
   1034 
   1035 void LSRFixup::print(raw_ostream &OS) const {
   1036   OS << "UserInst=";
   1037   // Store is common and interesting enough to be worth special-casing.
   1038   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
   1039     OS << "store ";
   1040     WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
   1041   } else if (UserInst->getType()->isVoidTy())
   1042     OS << UserInst->getOpcodeName();
   1043   else
   1044     WriteAsOperand(OS, UserInst, /*PrintType=*/false);
   1045 
   1046   OS << ", OperandValToReplace=";
   1047   WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
   1048 
   1049   for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
   1050        E = PostIncLoops.end(); I != E; ++I) {
   1051     OS << ", PostIncLoop=";
   1052     WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
   1053   }
   1054 
   1055   if (LUIdx != ~size_t(0))
   1056     OS << ", LUIdx=" << LUIdx;
   1057 
   1058   if (Offset != 0)
   1059     OS << ", Offset=" << Offset;
   1060 }
   1061 
   1062 void LSRFixup::dump() const {
   1063   print(errs()); errs() << '\n';
   1064 }
   1065 
   1066 namespace {
   1067 
   1068 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
   1069 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
   1070 struct UniquifierDenseMapInfo {
   1071   static SmallVector<const SCEV *, 2> getEmptyKey() {
   1072     SmallVector<const SCEV *, 2> V;
   1073     V.push_back(reinterpret_cast<const SCEV *>(-1));
   1074     return V;
   1075   }
   1076 
   1077   static SmallVector<const SCEV *, 2> getTombstoneKey() {
   1078     SmallVector<const SCEV *, 2> V;
   1079     V.push_back(reinterpret_cast<const SCEV *>(-2));
   1080     return V;
   1081   }
   1082 
   1083   static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
   1084     unsigned Result = 0;
   1085     for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
   1086          E = V.end(); I != E; ++I)
   1087       Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
   1088     return Result;
   1089   }
   1090 
   1091   static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
   1092                       const SmallVector<const SCEV *, 2> &RHS) {
   1093     return LHS == RHS;
   1094   }
   1095 };
   1096 
   1097 /// LSRUse - This class holds the state that LSR keeps for each use in
   1098 /// IVUsers, as well as uses invented by LSR itself. It includes information
   1099 /// about what kinds of things can be folded into the user, information about
   1100 /// the user itself, and information about how the use may be satisfied.
   1101 /// TODO: Represent multiple users of the same expression in common?
   1102 class LSRUse {
   1103   DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
   1104 
   1105 public:
   1106   /// KindType - An enum for a kind of use, indicating what types of
   1107   /// scaled and immediate operands it might support.
   1108   enum KindType {
   1109     Basic,   ///< A normal use, with no folding.
   1110     Special, ///< A special case of basic, allowing -1 scales.
   1111     Address, ///< An address use; folding according to TargetLowering
   1112     ICmpZero ///< An equality icmp with both operands folded into one.
   1113     // TODO: Add a generic icmp too?
   1114   };
   1115 
   1116   KindType Kind;
   1117   Type *AccessTy;
   1118 
   1119   SmallVector<int64_t, 8> Offsets;
   1120   int64_t MinOffset;
   1121   int64_t MaxOffset;
   1122 
   1123   /// AllFixupsOutsideLoop - This records whether all of the fixups using this
   1124   /// LSRUse are outside of the loop, in which case some special-case heuristics
   1125   /// may be used.
   1126   bool AllFixupsOutsideLoop;
   1127 
   1128   /// WidestFixupType - This records the widest use type for any fixup using
   1129   /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
   1130   /// max fixup widths to be equivalent, because the narrower one may be relying
   1131   /// on the implicit truncation to truncate away bogus bits.
   1132   Type *WidestFixupType;
   1133 
   1134   /// Formulae - A list of ways to build a value that can satisfy this user.
   1135   /// After the list is populated, one of these is selected heuristically and
   1136   /// used to formulate a replacement for OperandValToReplace in UserInst.
   1137   SmallVector<Formula, 12> Formulae;
   1138 
   1139   /// Regs - The set of register candidates used by all formulae in this LSRUse.
   1140   SmallPtrSet<const SCEV *, 4> Regs;
   1141 
   1142   LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
   1143                                       MinOffset(INT64_MAX),
   1144                                       MaxOffset(INT64_MIN),
   1145                                       AllFixupsOutsideLoop(true),
   1146                                       WidestFixupType(0) {}
   1147 
   1148   bool HasFormulaWithSameRegs(const Formula &F) const;
   1149   bool InsertFormula(const Formula &F);
   1150   void DeleteFormula(Formula &F);
   1151   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
   1152 
   1153   void print(raw_ostream &OS) const;
   1154   void dump() const;
   1155 };
   1156 
   1157 }
   1158 
   1159 /// HasFormula - Test whether this use as a formula which has the same
   1160 /// registers as the given formula.
   1161 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
   1162   SmallVector<const SCEV *, 2> Key = F.BaseRegs;
   1163   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1164   // Unstable sort by host order ok, because this is only used for uniquifying.
   1165   std::sort(Key.begin(), Key.end());
   1166   return Uniquifier.count(Key);
   1167 }
   1168 
   1169 /// InsertFormula - If the given formula has not yet been inserted, add it to
   1170 /// the list, and return true. Return false otherwise.
   1171 bool LSRUse::InsertFormula(const Formula &F) {
   1172   SmallVector<const SCEV *, 2> Key = F.BaseRegs;
   1173   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1174   // Unstable sort by host order ok, because this is only used for uniquifying.
   1175   std::sort(Key.begin(), Key.end());
   1176 
   1177   if (!Uniquifier.insert(Key).second)
   1178     return false;
   1179 
   1180   // Using a register to hold the value of 0 is not profitable.
   1181   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
   1182          "Zero allocated in a scaled register!");
   1183 #ifndef NDEBUG
   1184   for (SmallVectorImpl<const SCEV *>::const_iterator I =
   1185        F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
   1186     assert(!(*I)->isZero() && "Zero allocated in a base register!");
   1187 #endif
   1188 
   1189   // Add the formula to the list.
   1190   Formulae.push_back(F);
   1191 
   1192   // Record registers now being used by this use.
   1193   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1194 
   1195   return true;
   1196 }
   1197 
   1198 /// DeleteFormula - Remove the given formula from this use's list.
   1199 void LSRUse::DeleteFormula(Formula &F) {
   1200   if (&F != &Formulae.back())
   1201     std::swap(F, Formulae.back());
   1202   Formulae.pop_back();
   1203 }
   1204 
   1205 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
   1206 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
   1207   // Now that we've filtered out some formulae, recompute the Regs set.
   1208   SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
   1209   Regs.clear();
   1210   for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
   1211        E = Formulae.end(); I != E; ++I) {
   1212     const Formula &F = *I;
   1213     if (F.ScaledReg) Regs.insert(F.ScaledReg);
   1214     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1215   }
   1216 
   1217   // Update the RegTracker.
   1218   for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
   1219        E = OldRegs.end(); I != E; ++I)
   1220     if (!Regs.count(*I))
   1221       RegUses.DropRegister(*I, LUIdx);
   1222 }
   1223 
   1224 void LSRUse::print(raw_ostream &OS) const {
   1225   OS << "LSR Use: Kind=";
   1226   switch (Kind) {
   1227   case Basic:    OS << "Basic"; break;
   1228   case Special:  OS << "Special"; break;
   1229   case ICmpZero: OS << "ICmpZero"; break;
   1230   case Address:
   1231     OS << "Address of ";
   1232     if (AccessTy->isPointerTy())
   1233       OS << "pointer"; // the full pointer type could be really verbose
   1234     else
   1235       OS << *AccessTy;
   1236   }
   1237 
   1238   OS << ", Offsets={";
   1239   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
   1240        E = Offsets.end(); I != E; ++I) {
   1241     OS << *I;
   1242     if (llvm::next(I) != E)
   1243       OS << ',';
   1244   }
   1245   OS << '}';
   1246 
   1247   if (AllFixupsOutsideLoop)
   1248     OS << ", all-fixups-outside-loop";
   1249 
   1250   if (WidestFixupType)
   1251     OS << ", widest fixup type: " << *WidestFixupType;
   1252 }
   1253 
   1254 void LSRUse::dump() const {
   1255   print(errs()); errs() << '\n';
   1256 }
   1257 
   1258 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
   1259 /// be completely folded into the user instruction at isel time. This includes
   1260 /// address-mode folding and special icmp tricks.
   1261 static bool isLegalUse(const TargetLowering::AddrMode &AM,
   1262                        LSRUse::KindType Kind, Type *AccessTy,
   1263                        const TargetLowering *TLI) {
   1264   switch (Kind) {
   1265   case LSRUse::Address:
   1266     // If we have low-level target information, ask the target if it can
   1267     // completely fold this address.
   1268     if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
   1269 
   1270     // Otherwise, just guess that reg+reg addressing is legal.
   1271     return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
   1272 
   1273   case LSRUse::ICmpZero:
   1274     // There's not even a target hook for querying whether it would be legal to
   1275     // fold a GV into an ICmp.
   1276     if (AM.BaseGV)
   1277       return false;
   1278 
   1279     // ICmp only has two operands; don't allow more than two non-trivial parts.
   1280     if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
   1281       return false;
   1282 
   1283     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
   1284     // putting the scaled register in the other operand of the icmp.
   1285     if (AM.Scale != 0 && AM.Scale != -1)
   1286       return false;
   1287 
   1288     // If we have low-level target information, ask the target if it can fold an
   1289     // integer immediate on an icmp.
   1290     if (AM.BaseOffs != 0) {
   1291       if (!TLI)
   1292         return false;
   1293       // We have one of:
   1294       // ICmpZero     BaseReg + Offset => ICmp BaseReg, -Offset
   1295       // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
   1296       // Offs is the ICmp immediate.
   1297       int64_t Offs = AM.BaseOffs;
   1298       if (AM.Scale == 0)
   1299         Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
   1300       return TLI->isLegalICmpImmediate(Offs);
   1301     }
   1302 
   1303     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
   1304     return true;
   1305 
   1306   case LSRUse::Basic:
   1307     // Only handle single-register values.
   1308     return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
   1309 
   1310   case LSRUse::Special:
   1311     // Only handle -1 scales, or no scale.
   1312     return AM.Scale == 0 || AM.Scale == -1;
   1313   }
   1314 
   1315   llvm_unreachable("Invalid LSRUse Kind!");
   1316 }
   1317 
   1318 static bool isLegalUse(TargetLowering::AddrMode AM,
   1319                        int64_t MinOffset, int64_t MaxOffset,
   1320                        LSRUse::KindType Kind, Type *AccessTy,
   1321                        const TargetLowering *TLI) {
   1322   // Check for overflow.
   1323   if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
   1324       (MinOffset > 0))
   1325     return false;
   1326   AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
   1327   if (isLegalUse(AM, Kind, AccessTy, TLI)) {
   1328     AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
   1329     // Check for overflow.
   1330     if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
   1331         (MaxOffset > 0))
   1332       return false;
   1333     AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
   1334     return isLegalUse(AM, Kind, AccessTy, TLI);
   1335   }
   1336   return false;
   1337 }
   1338 
   1339 static bool isAlwaysFoldable(int64_t BaseOffs,
   1340                              GlobalValue *BaseGV,
   1341                              bool HasBaseReg,
   1342                              LSRUse::KindType Kind, Type *AccessTy,
   1343                              const TargetLowering *TLI) {
   1344   // Fast-path: zero is always foldable.
   1345   if (BaseOffs == 0 && !BaseGV) return true;
   1346 
   1347   // Conservatively, create an address with an immediate and a
   1348   // base and a scale.
   1349   TargetLowering::AddrMode AM;
   1350   AM.BaseOffs = BaseOffs;
   1351   AM.BaseGV = BaseGV;
   1352   AM.HasBaseReg = HasBaseReg;
   1353   AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1354 
   1355   // Canonicalize a scale of 1 to a base register if the formula doesn't
   1356   // already have a base register.
   1357   if (!AM.HasBaseReg && AM.Scale == 1) {
   1358     AM.Scale = 0;
   1359     AM.HasBaseReg = true;
   1360   }
   1361 
   1362   return isLegalUse(AM, Kind, AccessTy, TLI);
   1363 }
   1364 
   1365 static bool isAlwaysFoldable(const SCEV *S,
   1366                              int64_t MinOffset, int64_t MaxOffset,
   1367                              bool HasBaseReg,
   1368                              LSRUse::KindType Kind, Type *AccessTy,
   1369                              const TargetLowering *TLI,
   1370                              ScalarEvolution &SE) {
   1371   // Fast-path: zero is always foldable.
   1372   if (S->isZero()) return true;
   1373 
   1374   // Conservatively, create an address with an immediate and a
   1375   // base and a scale.
   1376   int64_t BaseOffs = ExtractImmediate(S, SE);
   1377   GlobalValue *BaseGV = ExtractSymbol(S, SE);
   1378 
   1379   // If there's anything else involved, it's not foldable.
   1380   if (!S->isZero()) return false;
   1381 
   1382   // Fast-path: zero is always foldable.
   1383   if (BaseOffs == 0 && !BaseGV) return true;
   1384 
   1385   // Conservatively, create an address with an immediate and a
   1386   // base and a scale.
   1387   TargetLowering::AddrMode AM;
   1388   AM.BaseOffs = BaseOffs;
   1389   AM.BaseGV = BaseGV;
   1390   AM.HasBaseReg = HasBaseReg;
   1391   AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1392 
   1393   return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
   1394 }
   1395 
   1396 namespace {
   1397 
   1398 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
   1399 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
   1400 struct UseMapDenseMapInfo {
   1401   static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
   1402     return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
   1403   }
   1404 
   1405   static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
   1406     return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
   1407   }
   1408 
   1409   static unsigned
   1410   getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
   1411     unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
   1412     Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
   1413     return Result;
   1414   }
   1415 
   1416   static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
   1417                       const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
   1418     return LHS == RHS;
   1419   }
   1420 };
   1421 
   1422 /// IVInc - An individual increment in a Chain of IV increments.
   1423 /// Relate an IV user to an expression that computes the IV it uses from the IV
   1424 /// used by the previous link in the Chain.
   1425 ///
   1426 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
   1427 /// original IVOperand. The head of the chain's IVOperand is only valid during
   1428 /// chain collection, before LSR replaces IV users. During chain generation,
   1429 /// IncExpr can be used to find the new IVOperand that computes the same
   1430 /// expression.
   1431 struct IVInc {
   1432   Instruction *UserInst;
   1433   Value* IVOperand;
   1434   const SCEV *IncExpr;
   1435 
   1436   IVInc(Instruction *U, Value *O, const SCEV *E):
   1437     UserInst(U), IVOperand(O), IncExpr(E) {}
   1438 };
   1439 
   1440 // IVChain - The list of IV increments in program order.
   1441 // We typically add the head of a chain without finding subsequent links.
   1442 typedef SmallVector<IVInc,1> IVChain;
   1443 
   1444 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
   1445 /// Distinguish between FarUsers that definitely cross IV increments and
   1446 /// NearUsers that may be used between IV increments.
   1447 struct ChainUsers {
   1448   SmallPtrSet<Instruction*, 4> FarUsers;
   1449   SmallPtrSet<Instruction*, 4> NearUsers;
   1450 };
   1451 
   1452 /// LSRInstance - This class holds state for the main loop strength reduction
   1453 /// logic.
   1454 class LSRInstance {
   1455   IVUsers &IU;
   1456   ScalarEvolution &SE;
   1457   DominatorTree &DT;
   1458   LoopInfo &LI;
   1459   const TargetLowering *const TLI;
   1460   Loop *const L;
   1461   bool Changed;
   1462 
   1463   /// IVIncInsertPos - This is the insert position that the current loop's
   1464   /// induction variable increment should be placed. In simple loops, this is
   1465   /// the latch block's terminator. But in more complicated cases, this is a
   1466   /// position which will dominate all the in-loop post-increment users.
   1467   Instruction *IVIncInsertPos;
   1468 
   1469   /// Factors - Interesting factors between use strides.
   1470   SmallSetVector<int64_t, 8> Factors;
   1471 
   1472   /// Types - Interesting use types, to facilitate truncation reuse.
   1473   SmallSetVector<Type *, 4> Types;
   1474 
   1475   /// Fixups - The list of operands which are to be replaced.
   1476   SmallVector<LSRFixup, 16> Fixups;
   1477 
   1478   /// Uses - The list of interesting uses.
   1479   SmallVector<LSRUse, 16> Uses;
   1480 
   1481   /// RegUses - Track which uses use which register candidates.
   1482   RegUseTracker RegUses;
   1483 
   1484   // Limit the number of chains to avoid quadratic behavior. We don't expect to
   1485   // have more than a few IV increment chains in a loop. Missing a Chain falls
   1486   // back to normal LSR behavior for those uses.
   1487   static const unsigned MaxChains = 8;
   1488 
   1489   /// IVChainVec - IV users can form a chain of IV increments.
   1490   SmallVector<IVChain, MaxChains> IVChainVec;
   1491 
   1492   /// IVIncSet - IV users that belong to profitable IVChains.
   1493   SmallPtrSet<Use*, MaxChains> IVIncSet;
   1494 
   1495   void OptimizeShadowIV();
   1496   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
   1497   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
   1498   void OptimizeLoopTermCond();
   1499 
   1500   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   1501                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
   1502   void FinalizeChain(IVChain &Chain);
   1503   void CollectChains();
   1504   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   1505                        SmallVectorImpl<WeakVH> &DeadInsts);
   1506 
   1507   void CollectInterestingTypesAndFactors();
   1508   void CollectFixupsAndInitialFormulae();
   1509 
   1510   LSRFixup &getNewFixup() {
   1511     Fixups.push_back(LSRFixup());
   1512     return Fixups.back();
   1513   }
   1514 
   1515   // Support for sharing of LSRUses between LSRFixups.
   1516   typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
   1517                    size_t,
   1518                    UseMapDenseMapInfo> UseMapTy;
   1519   UseMapTy UseMap;
   1520 
   1521   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   1522                           LSRUse::KindType Kind, Type *AccessTy);
   1523 
   1524   std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
   1525                                     LSRUse::KindType Kind,
   1526                                     Type *AccessTy);
   1527 
   1528   void DeleteUse(LSRUse &LU, size_t LUIdx);
   1529 
   1530   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
   1531 
   1532   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1533   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1534   void CountRegisters(const Formula &F, size_t LUIdx);
   1535   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
   1536 
   1537   void CollectLoopInvariantFixupsAndFormulae();
   1538 
   1539   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
   1540                               unsigned Depth = 0);
   1541   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
   1542   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1543   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1544   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1545   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1546   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
   1547   void GenerateCrossUseConstantOffsets();
   1548   void GenerateAllReuseFormulae();
   1549 
   1550   void FilterOutUndesirableDedicatedRegisters();
   1551 
   1552   size_t EstimateSearchSpaceComplexity() const;
   1553   void NarrowSearchSpaceByDetectingSupersets();
   1554   void NarrowSearchSpaceByCollapsingUnrolledCode();
   1555   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   1556   void NarrowSearchSpaceByPickingWinnerRegs();
   1557   void NarrowSearchSpaceUsingHeuristics();
   1558 
   1559   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   1560                     Cost &SolutionCost,
   1561                     SmallVectorImpl<const Formula *> &Workspace,
   1562                     const Cost &CurCost,
   1563                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
   1564                     DenseSet<const SCEV *> &VisitedRegs) const;
   1565   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
   1566 
   1567   BasicBlock::iterator
   1568     HoistInsertPosition(BasicBlock::iterator IP,
   1569                         const SmallVectorImpl<Instruction *> &Inputs) const;
   1570   BasicBlock::iterator
   1571     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
   1572                                   const LSRFixup &LF,
   1573                                   const LSRUse &LU,
   1574                                   SCEVExpander &Rewriter) const;
   1575 
   1576   Value *Expand(const LSRFixup &LF,
   1577                 const Formula &F,
   1578                 BasicBlock::iterator IP,
   1579                 SCEVExpander &Rewriter,
   1580                 SmallVectorImpl<WeakVH> &DeadInsts) const;
   1581   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
   1582                      const Formula &F,
   1583                      SCEVExpander &Rewriter,
   1584                      SmallVectorImpl<WeakVH> &DeadInsts,
   1585                      Pass *P) const;
   1586   void Rewrite(const LSRFixup &LF,
   1587                const Formula &F,
   1588                SCEVExpander &Rewriter,
   1589                SmallVectorImpl<WeakVH> &DeadInsts,
   1590                Pass *P) const;
   1591   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   1592                          Pass *P);
   1593 
   1594 public:
   1595   LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
   1596 
   1597   bool getChanged() const { return Changed; }
   1598 
   1599   void print_factors_and_types(raw_ostream &OS) const;
   1600   void print_fixups(raw_ostream &OS) const;
   1601   void print_uses(raw_ostream &OS) const;
   1602   void print(raw_ostream &OS) const;
   1603   void dump() const;
   1604 };
   1605 
   1606 }
   1607 
   1608 /// OptimizeShadowIV - If IV is used in a int-to-float cast
   1609 /// inside the loop then try to eliminate the cast operation.
   1610 void LSRInstance::OptimizeShadowIV() {
   1611   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1612   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1613     return;
   1614 
   1615   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
   1616        UI != E; /* empty */) {
   1617     IVUsers::const_iterator CandidateUI = UI;
   1618     ++UI;
   1619     Instruction *ShadowUse = CandidateUI->getUser();
   1620     Type *DestTy = NULL;
   1621     bool IsSigned = false;
   1622 
   1623     /* If shadow use is a int->float cast then insert a second IV
   1624        to eliminate this cast.
   1625 
   1626          for (unsigned i = 0; i < n; ++i)
   1627            foo((double)i);
   1628 
   1629        is transformed into
   1630 
   1631          double d = 0.0;
   1632          for (unsigned i = 0; i < n; ++i, ++d)
   1633            foo(d);
   1634     */
   1635     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
   1636       IsSigned = false;
   1637       DestTy = UCast->getDestTy();
   1638     }
   1639     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
   1640       IsSigned = true;
   1641       DestTy = SCast->getDestTy();
   1642     }
   1643     if (!DestTy) continue;
   1644 
   1645     if (TLI) {
   1646       // If target does not support DestTy natively then do not apply
   1647       // this transformation.
   1648       EVT DVT = TLI->getValueType(DestTy);
   1649       if (!TLI->isTypeLegal(DVT)) continue;
   1650     }
   1651 
   1652     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
   1653     if (!PH) continue;
   1654     if (PH->getNumIncomingValues() != 2) continue;
   1655 
   1656     Type *SrcTy = PH->getType();
   1657     int Mantissa = DestTy->getFPMantissaWidth();
   1658     if (Mantissa == -1) continue;
   1659     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
   1660       continue;
   1661 
   1662     unsigned Entry, Latch;
   1663     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
   1664       Entry = 0;
   1665       Latch = 1;
   1666     } else {
   1667       Entry = 1;
   1668       Latch = 0;
   1669     }
   1670 
   1671     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
   1672     if (!Init) continue;
   1673     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
   1674                                         (double)Init->getSExtValue() :
   1675                                         (double)Init->getZExtValue());
   1676 
   1677     BinaryOperator *Incr =
   1678       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
   1679     if (!Incr) continue;
   1680     if (Incr->getOpcode() != Instruction::Add
   1681         && Incr->getOpcode() != Instruction::Sub)
   1682       continue;
   1683 
   1684     /* Initialize new IV, double d = 0.0 in above example. */
   1685     ConstantInt *C = NULL;
   1686     if (Incr->getOperand(0) == PH)
   1687       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
   1688     else if (Incr->getOperand(1) == PH)
   1689       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
   1690     else
   1691       continue;
   1692 
   1693     if (!C) continue;
   1694 
   1695     // Ignore negative constants, as the code below doesn't handle them
   1696     // correctly. TODO: Remove this restriction.
   1697     if (!C->getValue().isStrictlyPositive()) continue;
   1698 
   1699     /* Add new PHINode. */
   1700     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
   1701 
   1702     /* create new increment. '++d' in above example. */
   1703     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
   1704     BinaryOperator *NewIncr =
   1705       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
   1706                                Instruction::FAdd : Instruction::FSub,
   1707                              NewPH, CFP, "IV.S.next.", Incr);
   1708 
   1709     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
   1710     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
   1711 
   1712     /* Remove cast operation */
   1713     ShadowUse->replaceAllUsesWith(NewPH);
   1714     ShadowUse->eraseFromParent();
   1715     Changed = true;
   1716     break;
   1717   }
   1718 }
   1719 
   1720 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
   1721 /// set the IV user and stride information and return true, otherwise return
   1722 /// false.
   1723 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
   1724   for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1725     if (UI->getUser() == Cond) {
   1726       // NOTE: we could handle setcc instructions with multiple uses here, but
   1727       // InstCombine does it as well for simple uses, it's not clear that it
   1728       // occurs enough in real life to handle.
   1729       CondUse = UI;
   1730       return true;
   1731     }
   1732   return false;
   1733 }
   1734 
   1735 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
   1736 /// a max computation.
   1737 ///
   1738 /// This is a narrow solution to a specific, but acute, problem. For loops
   1739 /// like this:
   1740 ///
   1741 ///   i = 0;
   1742 ///   do {
   1743 ///     p[i] = 0.0;
   1744 ///   } while (++i < n);
   1745 ///
   1746 /// the trip count isn't just 'n', because 'n' might not be positive. And
   1747 /// unfortunately this can come up even for loops where the user didn't use
   1748 /// a C do-while loop. For example, seemingly well-behaved top-test loops
   1749 /// will commonly be lowered like this:
   1750 //
   1751 ///   if (n > 0) {
   1752 ///     i = 0;
   1753 ///     do {
   1754 ///       p[i] = 0.0;
   1755 ///     } while (++i < n);
   1756 ///   }
   1757 ///
   1758 /// and then it's possible for subsequent optimization to obscure the if
   1759 /// test in such a way that indvars can't find it.
   1760 ///
   1761 /// When indvars can't find the if test in loops like this, it creates a
   1762 /// max expression, which allows it to give the loop a canonical
   1763 /// induction variable:
   1764 ///
   1765 ///   i = 0;
   1766 ///   max = n < 1 ? 1 : n;
   1767 ///   do {
   1768 ///     p[i] = 0.0;
   1769 ///   } while (++i != max);
   1770 ///
   1771 /// Canonical induction variables are necessary because the loop passes
   1772 /// are designed around them. The most obvious example of this is the
   1773 /// LoopInfo analysis, which doesn't remember trip count values. It
   1774 /// expects to be able to rediscover the trip count each time it is
   1775 /// needed, and it does this using a simple analysis that only succeeds if
   1776 /// the loop has a canonical induction variable.
   1777 ///
   1778 /// However, when it comes time to generate code, the maximum operation
   1779 /// can be quite costly, especially if it's inside of an outer loop.
   1780 ///
   1781 /// This function solves this problem by detecting this type of loop and
   1782 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
   1783 /// the instructions for the maximum computation.
   1784 ///
   1785 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
   1786   // Check that the loop matches the pattern we're looking for.
   1787   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
   1788       Cond->getPredicate() != CmpInst::ICMP_NE)
   1789     return Cond;
   1790 
   1791   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
   1792   if (!Sel || !Sel->hasOneUse()) return Cond;
   1793 
   1794   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1795   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1796     return Cond;
   1797   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
   1798 
   1799   // Add one to the backedge-taken count to get the trip count.
   1800   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
   1801   if (IterationCount != SE.getSCEV(Sel)) return Cond;
   1802 
   1803   // Check for a max calculation that matches the pattern. There's no check
   1804   // for ICMP_ULE here because the comparison would be with zero, which
   1805   // isn't interesting.
   1806   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1807   const SCEVNAryExpr *Max = 0;
   1808   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
   1809     Pred = ICmpInst::ICMP_SLE;
   1810     Max = S;
   1811   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
   1812     Pred = ICmpInst::ICMP_SLT;
   1813     Max = S;
   1814   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
   1815     Pred = ICmpInst::ICMP_ULT;
   1816     Max = U;
   1817   } else {
   1818     // No match; bail.
   1819     return Cond;
   1820   }
   1821 
   1822   // To handle a max with more than two operands, this optimization would
   1823   // require additional checking and setup.
   1824   if (Max->getNumOperands() != 2)
   1825     return Cond;
   1826 
   1827   const SCEV *MaxLHS = Max->getOperand(0);
   1828   const SCEV *MaxRHS = Max->getOperand(1);
   1829 
   1830   // ScalarEvolution canonicalizes constants to the left. For < and >, look
   1831   // for a comparison with 1. For <= and >=, a comparison with zero.
   1832   if (!MaxLHS ||
   1833       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
   1834     return Cond;
   1835 
   1836   // Check the relevant induction variable for conformance to
   1837   // the pattern.
   1838   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
   1839   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
   1840   if (!AR || !AR->isAffine() ||
   1841       AR->getStart() != One ||
   1842       AR->getStepRecurrence(SE) != One)
   1843     return Cond;
   1844 
   1845   assert(AR->getLoop() == L &&
   1846          "Loop condition operand is an addrec in a different loop!");
   1847 
   1848   // Check the right operand of the select, and remember it, as it will
   1849   // be used in the new comparison instruction.
   1850   Value *NewRHS = 0;
   1851   if (ICmpInst::isTrueWhenEqual(Pred)) {
   1852     // Look for n+1, and grab n.
   1853     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
   1854       if (isa<ConstantInt>(BO->getOperand(1)) &&
   1855           cast<ConstantInt>(BO->getOperand(1))->isOne() &&
   1856           SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   1857         NewRHS = BO->getOperand(0);
   1858     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
   1859       if (isa<ConstantInt>(BO->getOperand(1)) &&
   1860           cast<ConstantInt>(BO->getOperand(1))->isOne() &&
   1861           SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   1862         NewRHS = BO->getOperand(0);
   1863     if (!NewRHS)
   1864       return Cond;
   1865   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
   1866     NewRHS = Sel->getOperand(1);
   1867   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
   1868     NewRHS = Sel->getOperand(2);
   1869   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
   1870     NewRHS = SU->getValue();
   1871   else
   1872     // Max doesn't match expected pattern.
   1873     return Cond;
   1874 
   1875   // Determine the new comparison opcode. It may be signed or unsigned,
   1876   // and the original comparison may be either equality or inequality.
   1877   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
   1878     Pred = CmpInst::getInversePredicate(Pred);
   1879 
   1880   // Ok, everything looks ok to change the condition into an SLT or SGE and
   1881   // delete the max calculation.
   1882   ICmpInst *NewCond =
   1883     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
   1884 
   1885   // Delete the max calculation instructions.
   1886   Cond->replaceAllUsesWith(NewCond);
   1887   CondUse->setUser(NewCond);
   1888   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
   1889   Cond->eraseFromParent();
   1890   Sel->eraseFromParent();
   1891   if (Cmp->use_empty())
   1892     Cmp->eraseFromParent();
   1893   return NewCond;
   1894 }
   1895 
   1896 /// OptimizeLoopTermCond - Change loop terminating condition to use the
   1897 /// postinc iv when possible.
   1898 void
   1899 LSRInstance::OptimizeLoopTermCond() {
   1900   SmallPtrSet<Instruction *, 4> PostIncs;
   1901 
   1902   BasicBlock *LatchBlock = L->getLoopLatch();
   1903   SmallVector<BasicBlock*, 8> ExitingBlocks;
   1904   L->getExitingBlocks(ExitingBlocks);
   1905 
   1906   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   1907     BasicBlock *ExitingBlock = ExitingBlocks[i];
   1908 
   1909     // Get the terminating condition for the loop if possible.  If we
   1910     // can, we want to change it to use a post-incremented version of its
   1911     // induction variable, to allow coalescing the live ranges for the IV into
   1912     // one register value.
   1913 
   1914     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   1915     if (!TermBr)
   1916       continue;
   1917     // FIXME: Overly conservative, termination condition could be an 'or' etc..
   1918     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
   1919       continue;
   1920 
   1921     // Search IVUsesByStride to find Cond's IVUse if there is one.
   1922     IVStrideUse *CondUse = 0;
   1923     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
   1924     if (!FindIVUserForCond(Cond, CondUse))
   1925       continue;
   1926 
   1927     // If the trip count is computed in terms of a max (due to ScalarEvolution
   1928     // being unable to find a sufficient guard, for example), change the loop
   1929     // comparison to use SLT or ULT instead of NE.
   1930     // One consequence of doing this now is that it disrupts the count-down
   1931     // optimization. That's not always a bad thing though, because in such
   1932     // cases it may still be worthwhile to avoid a max.
   1933     Cond = OptimizeMax(Cond, CondUse);
   1934 
   1935     // If this exiting block dominates the latch block, it may also use
   1936     // the post-inc value if it won't be shared with other uses.
   1937     // Check for dominance.
   1938     if (!DT.dominates(ExitingBlock, LatchBlock))
   1939       continue;
   1940 
   1941     // Conservatively avoid trying to use the post-inc value in non-latch
   1942     // exits if there may be pre-inc users in intervening blocks.
   1943     if (LatchBlock != ExitingBlock)
   1944       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1945         // Test if the use is reachable from the exiting block. This dominator
   1946         // query is a conservative approximation of reachability.
   1947         if (&*UI != CondUse &&
   1948             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
   1949           // Conservatively assume there may be reuse if the quotient of their
   1950           // strides could be a legal scale.
   1951           const SCEV *A = IU.getStride(*CondUse, L);
   1952           const SCEV *B = IU.getStride(*UI, L);
   1953           if (!A || !B) continue;
   1954           if (SE.getTypeSizeInBits(A->getType()) !=
   1955               SE.getTypeSizeInBits(B->getType())) {
   1956             if (SE.getTypeSizeInBits(A->getType()) >
   1957                 SE.getTypeSizeInBits(B->getType()))
   1958               B = SE.getSignExtendExpr(B, A->getType());
   1959             else
   1960               A = SE.getSignExtendExpr(A, B->getType());
   1961           }
   1962           if (const SCEVConstant *D =
   1963                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
   1964             const ConstantInt *C = D->getValue();
   1965             // Stride of one or negative one can have reuse with non-addresses.
   1966             if (C->isOne() || C->isAllOnesValue())
   1967               goto decline_post_inc;
   1968             // Avoid weird situations.
   1969             if (C->getValue().getMinSignedBits() >= 64 ||
   1970                 C->getValue().isMinSignedValue())
   1971               goto decline_post_inc;
   1972             // Without TLI, assume that any stride might be valid, and so any
   1973             // use might be shared.
   1974             if (!TLI)
   1975               goto decline_post_inc;
   1976             // Check for possible scaled-address reuse.
   1977             Type *AccessTy = getAccessType(UI->getUser());
   1978             TargetLowering::AddrMode AM;
   1979             AM.Scale = C->getSExtValue();
   1980             if (TLI->isLegalAddressingMode(AM, AccessTy))
   1981               goto decline_post_inc;
   1982             AM.Scale = -AM.Scale;
   1983             if (TLI->isLegalAddressingMode(AM, AccessTy))
   1984               goto decline_post_inc;
   1985           }
   1986         }
   1987 
   1988     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
   1989                  << *Cond << '\n');
   1990 
   1991     // It's possible for the setcc instruction to be anywhere in the loop, and
   1992     // possible for it to have multiple users.  If it is not immediately before
   1993     // the exiting block branch, move it.
   1994     if (&*++BasicBlock::iterator(Cond) != TermBr) {
   1995       if (Cond->hasOneUse()) {
   1996         Cond->moveBefore(TermBr);
   1997       } else {
   1998         // Clone the terminating condition and insert into the loopend.
   1999         ICmpInst *OldCond = Cond;
   2000         Cond = cast<ICmpInst>(Cond->clone());
   2001         Cond->setName(L->getHeader()->getName() + ".termcond");
   2002         ExitingBlock->getInstList().insert(TermBr, Cond);
   2003 
   2004         // Clone the IVUse, as the old use still exists!
   2005         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
   2006         TermBr->replaceUsesOfWith(OldCond, Cond);
   2007       }
   2008     }
   2009 
   2010     // If we get to here, we know that we can transform the setcc instruction to
   2011     // use the post-incremented version of the IV, allowing us to coalesce the
   2012     // live ranges for the IV correctly.
   2013     CondUse->transformToPostInc(L);
   2014     Changed = true;
   2015 
   2016     PostIncs.insert(Cond);
   2017   decline_post_inc:;
   2018   }
   2019 
   2020   // Determine an insertion point for the loop induction variable increment. It
   2021   // must dominate all the post-inc comparisons we just set up, and it must
   2022   // dominate the loop latch edge.
   2023   IVIncInsertPos = L->getLoopLatch()->getTerminator();
   2024   for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
   2025        E = PostIncs.end(); I != E; ++I) {
   2026     BasicBlock *BB =
   2027       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
   2028                                     (*I)->getParent());
   2029     if (BB == (*I)->getParent())
   2030       IVIncInsertPos = *I;
   2031     else if (BB != IVIncInsertPos->getParent())
   2032       IVIncInsertPos = BB->getTerminator();
   2033   }
   2034 }
   2035 
   2036 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
   2037 /// at the given offset and other details. If so, update the use and
   2038 /// return true.
   2039 bool
   2040 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   2041                                 LSRUse::KindType Kind, Type *AccessTy) {
   2042   int64_t NewMinOffset = LU.MinOffset;
   2043   int64_t NewMaxOffset = LU.MaxOffset;
   2044   Type *NewAccessTy = AccessTy;
   2045 
   2046   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
   2047   // something conservative, however this can pessimize in the case that one of
   2048   // the uses will have all its uses outside the loop, for example.
   2049   if (LU.Kind != Kind)
   2050     return false;
   2051   // Conservatively assume HasBaseReg is true for now.
   2052   if (NewOffset < LU.MinOffset) {
   2053     if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
   2054                           Kind, AccessTy, TLI))
   2055       return false;
   2056     NewMinOffset = NewOffset;
   2057   } else if (NewOffset > LU.MaxOffset) {
   2058     if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
   2059                           Kind, AccessTy, TLI))
   2060       return false;
   2061     NewMaxOffset = NewOffset;
   2062   }
   2063   // Check for a mismatched access type, and fall back conservatively as needed.
   2064   // TODO: Be less conservative when the type is similar and can use the same
   2065   // addressing modes.
   2066   if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
   2067     NewAccessTy = Type::getVoidTy(AccessTy->getContext());
   2068 
   2069   // Update the use.
   2070   LU.MinOffset = NewMinOffset;
   2071   LU.MaxOffset = NewMaxOffset;
   2072   LU.AccessTy = NewAccessTy;
   2073   if (NewOffset != LU.Offsets.back())
   2074     LU.Offsets.push_back(NewOffset);
   2075   return true;
   2076 }
   2077 
   2078 /// getUse - Return an LSRUse index and an offset value for a fixup which
   2079 /// needs the given expression, with the given kind and optional access type.
   2080 /// Either reuse an existing use or create a new one, as needed.
   2081 std::pair<size_t, int64_t>
   2082 LSRInstance::getUse(const SCEV *&Expr,
   2083                     LSRUse::KindType Kind, Type *AccessTy) {
   2084   const SCEV *Copy = Expr;
   2085   int64_t Offset = ExtractImmediate(Expr, SE);
   2086 
   2087   // Basic uses can't accept any offset, for example.
   2088   if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
   2089     Expr = Copy;
   2090     Offset = 0;
   2091   }
   2092 
   2093   std::pair<UseMapTy::iterator, bool> P =
   2094     UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
   2095   if (!P.second) {
   2096     // A use already existed with this base.
   2097     size_t LUIdx = P.first->second;
   2098     LSRUse &LU = Uses[LUIdx];
   2099     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
   2100       // Reuse this use.
   2101       return std::make_pair(LUIdx, Offset);
   2102   }
   2103 
   2104   // Create a new use.
   2105   size_t LUIdx = Uses.size();
   2106   P.first->second = LUIdx;
   2107   Uses.push_back(LSRUse(Kind, AccessTy));
   2108   LSRUse &LU = Uses[LUIdx];
   2109 
   2110   // We don't need to track redundant offsets, but we don't need to go out
   2111   // of our way here to avoid them.
   2112   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
   2113     LU.Offsets.push_back(Offset);
   2114 
   2115   LU.MinOffset = Offset;
   2116   LU.MaxOffset = Offset;
   2117   return std::make_pair(LUIdx, Offset);
   2118 }
   2119 
   2120 /// DeleteUse - Delete the given use from the Uses list.
   2121 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
   2122   if (&LU != &Uses.back())
   2123     std::swap(LU, Uses.back());
   2124   Uses.pop_back();
   2125 
   2126   // Update RegUses.
   2127   RegUses.SwapAndDropUse(LUIdx, Uses.size());
   2128 }
   2129 
   2130 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
   2131 /// a formula that has the same registers as the given formula.
   2132 LSRUse *
   2133 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
   2134                                        const LSRUse &OrigLU) {
   2135   // Search all uses for the formula. This could be more clever.
   2136   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   2137     LSRUse &LU = Uses[LUIdx];
   2138     // Check whether this use is close enough to OrigLU, to see whether it's
   2139     // worthwhile looking through its formulae.
   2140     // Ignore ICmpZero uses because they may contain formulae generated by
   2141     // GenerateICmpZeroScales, in which case adding fixup offsets may
   2142     // be invalid.
   2143     if (&LU != &OrigLU &&
   2144         LU.Kind != LSRUse::ICmpZero &&
   2145         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
   2146         LU.WidestFixupType == OrigLU.WidestFixupType &&
   2147         LU.HasFormulaWithSameRegs(OrigF)) {
   2148       // Scan through this use's formulae.
   2149       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   2150            E = LU.Formulae.end(); I != E; ++I) {
   2151         const Formula &F = *I;
   2152         // Check to see if this formula has the same registers and symbols
   2153         // as OrigF.
   2154         if (F.BaseRegs == OrigF.BaseRegs &&
   2155             F.ScaledReg == OrigF.ScaledReg &&
   2156             F.AM.BaseGV == OrigF.AM.BaseGV &&
   2157             F.AM.Scale == OrigF.AM.Scale &&
   2158             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
   2159           if (F.AM.BaseOffs == 0)
   2160             return &LU;
   2161           // This is the formula where all the registers and symbols matched;
   2162           // there aren't going to be any others. Since we declined it, we
   2163           // can skip the rest of the formulae and procede to the next LSRUse.
   2164           break;
   2165         }
   2166       }
   2167     }
   2168   }
   2169 
   2170   // Nothing looked good.
   2171   return 0;
   2172 }
   2173 
   2174 void LSRInstance::CollectInterestingTypesAndFactors() {
   2175   SmallSetVector<const SCEV *, 4> Strides;
   2176 
   2177   // Collect interesting types and strides.
   2178   SmallVector<const SCEV *, 4> Worklist;
   2179   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2180     const SCEV *Expr = IU.getExpr(*UI);
   2181 
   2182     // Collect interesting types.
   2183     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
   2184 
   2185     // Add strides for mentioned loops.
   2186     Worklist.push_back(Expr);
   2187     do {
   2188       const SCEV *S = Worklist.pop_back_val();
   2189       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2190         if (AR->getLoop() == L)
   2191           Strides.insert(AR->getStepRecurrence(SE));
   2192         Worklist.push_back(AR->getStart());
   2193       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2194         Worklist.append(Add->op_begin(), Add->op_end());
   2195       }
   2196     } while (!Worklist.empty());
   2197   }
   2198 
   2199   // Compute interesting factors from the set of interesting strides.
   2200   for (SmallSetVector<const SCEV *, 4>::const_iterator
   2201        I = Strides.begin(), E = Strides.end(); I != E; ++I)
   2202     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
   2203          llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
   2204       const SCEV *OldStride = *I;
   2205       const SCEV *NewStride = *NewStrideIter;
   2206 
   2207       if (SE.getTypeSizeInBits(OldStride->getType()) !=
   2208           SE.getTypeSizeInBits(NewStride->getType())) {
   2209         if (SE.getTypeSizeInBits(OldStride->getType()) >
   2210             SE.getTypeSizeInBits(NewStride->getType()))
   2211           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
   2212         else
   2213           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
   2214       }
   2215       if (const SCEVConstant *Factor =
   2216             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
   2217                                                         SE, true))) {
   2218         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2219           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2220       } else if (const SCEVConstant *Factor =
   2221                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
   2222                                                                NewStride,
   2223                                                                SE, true))) {
   2224         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2225           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2226       }
   2227     }
   2228 
   2229   // If all uses use the same type, don't bother looking for truncation-based
   2230   // reuse.
   2231   if (Types.size() == 1)
   2232     Types.clear();
   2233 
   2234   DEBUG(print_factors_and_types(dbgs()));
   2235 }
   2236 
   2237 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
   2238 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
   2239 /// Instructions to IVStrideUses, we could partially skip this.
   2240 static User::op_iterator
   2241 findIVOperand(User::op_iterator OI, User::op_iterator OE,
   2242               Loop *L, ScalarEvolution &SE) {
   2243   for(; OI != OE; ++OI) {
   2244     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
   2245       if (!SE.isSCEVable(Oper->getType()))
   2246         continue;
   2247 
   2248       if (const SCEVAddRecExpr *AR =
   2249           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
   2250         if (AR->getLoop() == L)
   2251           break;
   2252       }
   2253     }
   2254   }
   2255   return OI;
   2256 }
   2257 
   2258 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
   2259 /// operands, so wrap it in a convenient helper.
   2260 static Value *getWideOperand(Value *Oper) {
   2261   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
   2262     return Trunc->getOperand(0);
   2263   return Oper;
   2264 }
   2265 
   2266 /// isCompatibleIVType - Return true if we allow an IV chain to include both
   2267 /// types.
   2268 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
   2269   Type *LType = LVal->getType();
   2270   Type *RType = RVal->getType();
   2271   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
   2272 }
   2273 
   2274 /// getExprBase - Return an approximation of this SCEV expression's "base", or
   2275 /// NULL for any constant. Returning the expression itself is
   2276 /// conservative. Returning a deeper subexpression is more precise and valid as
   2277 /// long as it isn't less complex than another subexpression. For expressions
   2278 /// involving multiple unscaled values, we need to return the pointer-type
   2279 /// SCEVUnknown. This avoids forming chains across objects, such as:
   2280 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
   2281 ///
   2282 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
   2283 /// SCEVUnknown, we simply return the rightmost SCEV operand.
   2284 static const SCEV *getExprBase(const SCEV *S) {
   2285   switch (S->getSCEVType()) {
   2286   default: // uncluding scUnknown.
   2287     return S;
   2288   case scConstant:
   2289     return 0;
   2290   case scTruncate:
   2291     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
   2292   case scZeroExtend:
   2293     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
   2294   case scSignExtend:
   2295     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
   2296   case scAddExpr: {
   2297     // Skip over scaled operands (scMulExpr) to follow add operands as long as
   2298     // there's nothing more complex.
   2299     // FIXME: not sure if we want to recognize negation.
   2300     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
   2301     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
   2302            E(Add->op_begin()); I != E; ++I) {
   2303       const SCEV *SubExpr = *I;
   2304       if (SubExpr->getSCEVType() == scAddExpr)
   2305         return getExprBase(SubExpr);
   2306 
   2307       if (SubExpr->getSCEVType() != scMulExpr)
   2308         return SubExpr;
   2309     }
   2310     return S; // all operands are scaled, be conservative.
   2311   }
   2312   case scAddRecExpr:
   2313     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
   2314   }
   2315 }
   2316 
   2317 /// Return true if the chain increment is profitable to expand into a loop
   2318 /// invariant value, which may require its own register. A profitable chain
   2319 /// increment will be an offset relative to the same base. We allow such offsets
   2320 /// to potentially be used as chain increment as long as it's not obviously
   2321 /// expensive to expand using real instructions.
   2322 static const SCEV *
   2323 getProfitableChainIncrement(Value *NextIV, Value *PrevIV,
   2324                             const IVChain &Chain, Loop *L,
   2325                             ScalarEvolution &SE, const TargetLowering *TLI) {
   2326   // Prune the solution space aggressively by checking that both IV operands
   2327   // are expressions that operate on the same unscaled SCEVUnknown. This
   2328   // "base" will be canceled by the subsequent getMinusSCEV call. Checking first
   2329   // avoids creating extra SCEV expressions.
   2330   const SCEV *OperExpr = SE.getSCEV(NextIV);
   2331   const SCEV *PrevExpr = SE.getSCEV(PrevIV);
   2332   if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain)
   2333     return 0;
   2334 
   2335   const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
   2336   if (!SE.isLoopInvariant(IncExpr, L))
   2337     return 0;
   2338 
   2339   // We are not able to expand an increment unless it is loop invariant,
   2340   // however, the following checks are purely for profitability.
   2341   if (StressIVChain)
   2342     return IncExpr;
   2343 
   2344   // Do not replace a constant offset from IV head with a nonconstant IV
   2345   // increment.
   2346   if (!isa<SCEVConstant>(IncExpr)) {
   2347     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand));
   2348     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
   2349       return 0;
   2350   }
   2351 
   2352   SmallPtrSet<const SCEV*, 8> Processed;
   2353   if (isHighCostExpansion(IncExpr, Processed, SE))
   2354     return 0;
   2355 
   2356   return IncExpr;
   2357 }
   2358 
   2359 /// Return true if the number of registers needed for the chain is estimated to
   2360 /// be less than the number required for the individual IV users. First prohibit
   2361 /// any IV users that keep the IV live across increments (the Users set should
   2362 /// be empty). Next count the number and type of increments in the chain.
   2363 ///
   2364 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
   2365 /// effectively use postinc addressing modes. Only consider it profitable it the
   2366 /// increments can be computed in fewer registers when chained.
   2367 ///
   2368 /// TODO: Consider IVInc free if it's already used in another chains.
   2369 static bool
   2370 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
   2371                   ScalarEvolution &SE, const TargetLowering *TLI) {
   2372   if (StressIVChain)
   2373     return true;
   2374 
   2375   if (Chain.size() <= 2)
   2376     return false;
   2377 
   2378   if (!Users.empty()) {
   2379     DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n";
   2380           for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
   2381                  E = Users.end(); I != E; ++I) {
   2382             dbgs() << "  " << **I << "\n";
   2383           });
   2384     return false;
   2385   }
   2386   assert(!Chain.empty() && "empty IV chains are not allowed");
   2387 
   2388   // The chain itself may require a register, so intialize cost to 1.
   2389   int cost = 1;
   2390 
   2391   // A complete chain likely eliminates the need for keeping the original IV in
   2392   // a register. LSR does not currently know how to form a complete chain unless
   2393   // the header phi already exists.
   2394   if (isa<PHINode>(Chain.back().UserInst)
   2395       && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) {
   2396     --cost;
   2397   }
   2398   const SCEV *LastIncExpr = 0;
   2399   unsigned NumConstIncrements = 0;
   2400   unsigned NumVarIncrements = 0;
   2401   unsigned NumReusedIncrements = 0;
   2402   for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
   2403        I != E; ++I) {
   2404 
   2405     if (I->IncExpr->isZero())
   2406       continue;
   2407 
   2408     // Incrementing by zero or some constant is neutral. We assume constants can
   2409     // be folded into an addressing mode or an add's immediate operand.
   2410     if (isa<SCEVConstant>(I->IncExpr)) {
   2411       ++NumConstIncrements;
   2412       continue;
   2413     }
   2414 
   2415     if (I->IncExpr == LastIncExpr)
   2416       ++NumReusedIncrements;
   2417     else
   2418       ++NumVarIncrements;
   2419 
   2420     LastIncExpr = I->IncExpr;
   2421   }
   2422   // An IV chain with a single increment is handled by LSR's postinc
   2423   // uses. However, a chain with multiple increments requires keeping the IV's
   2424   // value live longer than it needs to be if chained.
   2425   if (NumConstIncrements > 1)
   2426     --cost;
   2427 
   2428   // Materializing increment expressions in the preheader that didn't exist in
   2429   // the original code may cost a register. For example, sign-extended array
   2430   // indices can produce ridiculous increments like this:
   2431   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
   2432   cost += NumVarIncrements;
   2433 
   2434   // Reusing variable increments likely saves a register to hold the multiple of
   2435   // the stride.
   2436   cost -= NumReusedIncrements;
   2437 
   2438   DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n");
   2439 
   2440   return cost < 0;
   2441 }
   2442 
   2443 /// ChainInstruction - Add this IV user to an existing chain or make it the head
   2444 /// of a new chain.
   2445 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   2446                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
   2447   // When IVs are used as types of varying widths, they are generally converted
   2448   // to a wider type with some uses remaining narrow under a (free) trunc.
   2449   Value *NextIV = getWideOperand(IVOper);
   2450 
   2451   // Visit all existing chains. Check if its IVOper can be computed as a
   2452   // profitable loop invariant increment from the last link in the Chain.
   2453   unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2454   const SCEV *LastIncExpr = 0;
   2455   for (; ChainIdx < NChains; ++ChainIdx) {
   2456     Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand);
   2457     if (!isCompatibleIVType(PrevIV, NextIV))
   2458       continue;
   2459 
   2460     // A phi node terminates a chain.
   2461     if (isa<PHINode>(UserInst)
   2462         && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst))
   2463       continue;
   2464 
   2465     if (const SCEV *IncExpr =
   2466         getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx],
   2467                                     L, SE, TLI)) {
   2468       LastIncExpr = IncExpr;
   2469       break;
   2470     }
   2471   }
   2472   // If we haven't found a chain, create a new one, unless we hit the max. Don't
   2473   // bother for phi nodes, because they must be last in the chain.
   2474   if (ChainIdx == NChains) {
   2475     if (isa<PHINode>(UserInst))
   2476       return;
   2477     if (NChains >= MaxChains && !StressIVChain) {
   2478       DEBUG(dbgs() << "IV Chain Limit\n");
   2479       return;
   2480     }
   2481     LastIncExpr = SE.getSCEV(NextIV);
   2482     // IVUsers may have skipped over sign/zero extensions. We don't currently
   2483     // attempt to form chains involving extensions unless they can be hoisted
   2484     // into this loop's AddRec.
   2485     if (!isa<SCEVAddRecExpr>(LastIncExpr))
   2486       return;
   2487     ++NChains;
   2488     IVChainVec.resize(NChains);
   2489     ChainUsersVec.resize(NChains);
   2490     DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr
   2491           << "\n");
   2492   }
   2493   else
   2494     DEBUG(dbgs() << "IV  Inc: (" << *UserInst << ") IV+" << *LastIncExpr
   2495           << "\n");
   2496 
   2497   // Add this IV user to the end of the chain.
   2498   IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr));
   2499 
   2500   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
   2501   // This chain's NearUsers become FarUsers.
   2502   if (!LastIncExpr->isZero()) {
   2503     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
   2504                                             NearUsers.end());
   2505     NearUsers.clear();
   2506   }
   2507 
   2508   // All other uses of IVOperand become near uses of the chain.
   2509   // We currently ignore intermediate values within SCEV expressions, assuming
   2510   // they will eventually be used be the current chain, or can be computed
   2511   // from one of the chain increments. To be more precise we could
   2512   // transitively follow its user and only add leaf IV users to the set.
   2513   for (Value::use_iterator UseIter = IVOper->use_begin(),
   2514          UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
   2515     Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
   2516     if (!OtherUse || OtherUse == UserInst)
   2517       continue;
   2518     if (SE.isSCEVable(OtherUse->getType())
   2519         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
   2520         && IU.isIVUserOrOperand(OtherUse)) {
   2521       continue;
   2522     }
   2523     NearUsers.insert(OtherUse);
   2524   }
   2525 
   2526   // Since this user is part of the chain, it's no longer considered a use
   2527   // of the chain.
   2528   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
   2529 }
   2530 
   2531 /// CollectChains - Populate the vector of Chains.
   2532 ///
   2533 /// This decreases ILP at the architecture level. Targets with ample registers,
   2534 /// multiple memory ports, and no register renaming probably don't want
   2535 /// this. However, such targets should probably disable LSR altogether.
   2536 ///
   2537 /// The job of LSR is to make a reasonable choice of induction variables across
   2538 /// the loop. Subsequent passes can easily "unchain" computation exposing more
   2539 /// ILP *within the loop* if the target wants it.
   2540 ///
   2541 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
   2542 /// will not reorder memory operations, it will recognize this as a chain, but
   2543 /// will generate redundant IV increments. Ideally this would be corrected later
   2544 /// by a smart scheduler:
   2545 ///        = A[i]
   2546 ///        = A[i+x]
   2547 /// A[i]   =
   2548 /// A[i+x] =
   2549 ///
   2550 /// TODO: Walk the entire domtree within this loop, not just the path to the
   2551 /// loop latch. This will discover chains on side paths, but requires
   2552 /// maintaining multiple copies of the Chains state.
   2553 void LSRInstance::CollectChains() {
   2554   SmallVector<ChainUsers, 8> ChainUsersVec;
   2555 
   2556   SmallVector<BasicBlock *,8> LatchPath;
   2557   BasicBlock *LoopHeader = L->getHeader();
   2558   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
   2559        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
   2560     LatchPath.push_back(Rung->getBlock());
   2561   }
   2562   LatchPath.push_back(LoopHeader);
   2563 
   2564   // Walk the instruction stream from the loop header to the loop latch.
   2565   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
   2566          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
   2567        BBIter != BBEnd; ++BBIter) {
   2568     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
   2569          I != E; ++I) {
   2570       // Skip instructions that weren't seen by IVUsers analysis.
   2571       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
   2572         continue;
   2573 
   2574       // Ignore users that are part of a SCEV expression. This way we only
   2575       // consider leaf IV Users. This effectively rediscovers a portion of
   2576       // IVUsers analysis but in program order this time.
   2577       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
   2578         continue;
   2579 
   2580       // Remove this instruction from any NearUsers set it may be in.
   2581       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2582            ChainIdx < NChains; ++ChainIdx) {
   2583         ChainUsersVec[ChainIdx].NearUsers.erase(I);
   2584       }
   2585       // Search for operands that can be chained.
   2586       SmallPtrSet<Instruction*, 4> UniqueOperands;
   2587       User::op_iterator IVOpEnd = I->op_end();
   2588       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
   2589       while (IVOpIter != IVOpEnd) {
   2590         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
   2591         if (UniqueOperands.insert(IVOpInst))
   2592           ChainInstruction(I, IVOpInst, ChainUsersVec);
   2593         IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
   2594       }
   2595     } // Continue walking down the instructions.
   2596   } // Continue walking down the domtree.
   2597   // Visit phi backedges to determine if the chain can generate the IV postinc.
   2598   for (BasicBlock::iterator I = L->getHeader()->begin();
   2599        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   2600     if (!SE.isSCEVable(PN->getType()))
   2601       continue;
   2602 
   2603     Instruction *IncV =
   2604       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
   2605     if (IncV)
   2606       ChainInstruction(PN, IncV, ChainUsersVec);
   2607   }
   2608   // Remove any unprofitable chains.
   2609   unsigned ChainIdx = 0;
   2610   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
   2611        UsersIdx < NChains; ++UsersIdx) {
   2612     if (!isProfitableChain(IVChainVec[UsersIdx],
   2613                            ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
   2614       continue;
   2615     // Preserve the chain at UsesIdx.
   2616     if (ChainIdx != UsersIdx)
   2617       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
   2618     FinalizeChain(IVChainVec[ChainIdx]);
   2619     ++ChainIdx;
   2620   }
   2621   IVChainVec.resize(ChainIdx);
   2622 }
   2623 
   2624 void LSRInstance::FinalizeChain(IVChain &Chain) {
   2625   assert(!Chain.empty() && "empty IV chains are not allowed");
   2626   DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n");
   2627 
   2628   for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
   2629        I != E; ++I) {
   2630     DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
   2631     User::op_iterator UseI =
   2632       std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
   2633     assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
   2634     IVIncSet.insert(UseI);
   2635   }
   2636 }
   2637 
   2638 /// Return true if the IVInc can be folded into an addressing mode.
   2639 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
   2640                              Value *Operand, const TargetLowering *TLI) {
   2641   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
   2642   if (!IncConst || !isAddressUse(UserInst, Operand))
   2643     return false;
   2644 
   2645   if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
   2646     return false;
   2647 
   2648   int64_t IncOffset = IncConst->getValue()->getSExtValue();
   2649   if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
   2650                        LSRUse::Address, getAccessType(UserInst), TLI))
   2651     return false;
   2652 
   2653   return true;
   2654 }
   2655 
   2656 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
   2657 /// materialize the IV user's operand from the previous IV user's operand.
   2658 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   2659                                   SmallVectorImpl<WeakVH> &DeadInsts) {
   2660   // Find the new IVOperand for the head of the chain. It may have been replaced
   2661   // by LSR.
   2662   const IVInc &Head = Chain[0];
   2663   User::op_iterator IVOpEnd = Head.UserInst->op_end();
   2664   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
   2665                                              IVOpEnd, L, SE);
   2666   Value *IVSrc = 0;
   2667   while (IVOpIter != IVOpEnd) {
   2668     IVSrc = getWideOperand(*IVOpIter);
   2669 
   2670     // If this operand computes the expression that the chain needs, we may use
   2671     // it. (Check this after setting IVSrc which is used below.)
   2672     //
   2673     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
   2674     // narrow for the chain, so we can no longer use it. We do allow using a
   2675     // wider phi, assuming the LSR checked for free truncation. In that case we
   2676     // should already have a truncate on this operand such that
   2677     // getSCEV(IVSrc) == IncExpr.
   2678     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
   2679         || SE.getSCEV(IVSrc) == Head.IncExpr) {
   2680       break;
   2681     }
   2682     IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
   2683   }
   2684   if (IVOpIter == IVOpEnd) {
   2685     // Gracefully give up on this chain.
   2686     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
   2687     return;
   2688   }
   2689 
   2690   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
   2691   Type *IVTy = IVSrc->getType();
   2692   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
   2693   const SCEV *LeftOverExpr = 0;
   2694   for (IVChain::const_iterator IncI = llvm::next(Chain.begin()),
   2695          IncE = Chain.end(); IncI != IncE; ++IncI) {
   2696 
   2697     Instruction *InsertPt = IncI->UserInst;
   2698     if (isa<PHINode>(InsertPt))
   2699       InsertPt = L->getLoopLatch()->getTerminator();
   2700 
   2701     // IVOper will replace the current IV User's operand. IVSrc is the IV
   2702     // value currently held in a register.
   2703     Value *IVOper = IVSrc;
   2704     if (!IncI->IncExpr->isZero()) {
   2705       // IncExpr was the result of subtraction of two narrow values, so must
   2706       // be signed.
   2707       const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
   2708       LeftOverExpr = LeftOverExpr ?
   2709         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
   2710     }
   2711     if (LeftOverExpr && !LeftOverExpr->isZero()) {
   2712       // Expand the IV increment.
   2713       Rewriter.clearPostInc();
   2714       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
   2715       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
   2716                                              SE.getUnknown(IncV));
   2717       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
   2718 
   2719       // If an IV increment can't be folded, use it as the next IV value.
   2720       if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
   2721                             TLI)) {
   2722         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
   2723         IVSrc = IVOper;
   2724         LeftOverExpr = 0;
   2725       }
   2726     }
   2727     Type *OperTy = IncI->IVOperand->getType();
   2728     if (IVTy != OperTy) {
   2729       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
   2730              "cannot extend a chained IV");
   2731       IRBuilder<> Builder(InsertPt);
   2732       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
   2733     }
   2734     IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
   2735     DeadInsts.push_back(IncI->IVOperand);
   2736   }
   2737   // If LSR created a new, wider phi, we may also replace its postinc. We only
   2738   // do this if we also found a wide value for the head of the chain.
   2739   if (isa<PHINode>(Chain.back().UserInst)) {
   2740     for (BasicBlock::iterator I = L->getHeader()->begin();
   2741          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   2742       if (!isCompatibleIVType(Phi, IVSrc))
   2743         continue;
   2744       Instruction *PostIncV = dyn_cast<Instruction>(
   2745         Phi->getIncomingValueForBlock(L->getLoopLatch()));
   2746       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
   2747         continue;
   2748       Value *IVOper = IVSrc;
   2749       Type *PostIncTy = PostIncV->getType();
   2750       if (IVTy != PostIncTy) {
   2751         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
   2752         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
   2753         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
   2754         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
   2755       }
   2756       Phi->replaceUsesOfWith(PostIncV, IVOper);
   2757       DeadInsts.push_back(PostIncV);
   2758     }
   2759   }
   2760 }
   2761 
   2762 void LSRInstance::CollectFixupsAndInitialFormulae() {
   2763   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2764     Instruction *UserInst = UI->getUser();
   2765     // Skip IV users that are part of profitable IV Chains.
   2766     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
   2767                                        UI->getOperandValToReplace());
   2768     assert(UseI != UserInst->op_end() && "cannot find IV operand");
   2769     if (IVIncSet.count(UseI))
   2770       continue;
   2771 
   2772     // Record the uses.
   2773     LSRFixup &LF = getNewFixup();
   2774     LF.UserInst = UserInst;
   2775     LF.OperandValToReplace = UI->getOperandValToReplace();
   2776     LF.PostIncLoops = UI->getPostIncLoops();
   2777 
   2778     LSRUse::KindType Kind = LSRUse::Basic;
   2779     Type *AccessTy = 0;
   2780     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
   2781       Kind = LSRUse::Address;
   2782       AccessTy = getAccessType(LF.UserInst);
   2783     }
   2784 
   2785     const SCEV *S = IU.getExpr(*UI);
   2786 
   2787     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
   2788     // (N - i == 0), and this allows (N - i) to be the expression that we work
   2789     // with rather than just N or i, so we can consider the register
   2790     // requirements for both N and i at the same time. Limiting this code to
   2791     // equality icmps is not a problem because all interesting loops use
   2792     // equality icmps, thanks to IndVarSimplify.
   2793     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
   2794       if (CI->isEquality()) {
   2795         // Swap the operands if needed to put the OperandValToReplace on the
   2796         // left, for consistency.
   2797         Value *NV = CI->getOperand(1);
   2798         if (NV == LF.OperandValToReplace) {
   2799           CI->setOperand(1, CI->getOperand(0));
   2800           CI->setOperand(0, NV);
   2801           NV = CI->getOperand(1);
   2802           Changed = true;
   2803         }
   2804 
   2805         // x == y  -->  x - y == 0
   2806         const SCEV *N = SE.getSCEV(NV);
   2807         if (SE.isLoopInvariant(N, L)) {
   2808           // S is normalized, so normalize N before folding it into S
   2809           // to keep the result normalized.
   2810           N = TransformForPostIncUse(Normalize, N, CI, 0,
   2811                                      LF.PostIncLoops, SE, DT);
   2812           Kind = LSRUse::ICmpZero;
   2813           S = SE.getMinusSCEV(N, S);
   2814         }
   2815 
   2816         // -1 and the negations of all interesting strides (except the negation
   2817         // of -1) are now also interesting.
   2818         for (size_t i = 0, e = Factors.size(); i != e; ++i)
   2819           if (Factors[i] != -1)
   2820             Factors.insert(-(uint64_t)Factors[i]);
   2821         Factors.insert(-1);
   2822       }
   2823 
   2824     // Set up the initial formula for this use.
   2825     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
   2826     LF.LUIdx = P.first;
   2827     LF.Offset = P.second;
   2828     LSRUse &LU = Uses[LF.LUIdx];
   2829     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   2830     if (!LU.WidestFixupType ||
   2831         SE.getTypeSizeInBits(LU.WidestFixupType) <
   2832         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   2833       LU.WidestFixupType = LF.OperandValToReplace->getType();
   2834 
   2835     // If this is the first use of this LSRUse, give it a formula.
   2836     if (LU.Formulae.empty()) {
   2837       InsertInitialFormula(S, LU, LF.LUIdx);
   2838       CountRegisters(LU.Formulae.back(), LF.LUIdx);
   2839     }
   2840   }
   2841 
   2842   DEBUG(print_fixups(dbgs()));
   2843 }
   2844 
   2845 /// InsertInitialFormula - Insert a formula for the given expression into
   2846 /// the given use, separating out loop-variant portions from loop-invariant
   2847 /// and loop-computable portions.
   2848 void
   2849 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
   2850   Formula F;
   2851   F.InitialMatch(S, L, SE);
   2852   bool Inserted = InsertFormula(LU, LUIdx, F);
   2853   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
   2854 }
   2855 
   2856 /// InsertSupplementalFormula - Insert a simple single-register formula for
   2857 /// the given expression into the given use.
   2858 void
   2859 LSRInstance::InsertSupplementalFormula(const SCEV *S,
   2860                                        LSRUse &LU, size_t LUIdx) {
   2861   Formula F;
   2862   F.BaseRegs.push_back(S);
   2863   F.AM.HasBaseReg = true;
   2864   bool Inserted = InsertFormula(LU, LUIdx, F);
   2865   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
   2866 }
   2867 
   2868 /// CountRegisters - Note which registers are used by the given formula,
   2869 /// updating RegUses.
   2870 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
   2871   if (F.ScaledReg)
   2872     RegUses.CountRegister(F.ScaledReg, LUIdx);
   2873   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   2874        E = F.BaseRegs.end(); I != E; ++I)
   2875     RegUses.CountRegister(*I, LUIdx);
   2876 }
   2877 
   2878 /// InsertFormula - If the given formula has not yet been inserted, add it to
   2879 /// the list, and return true. Return false otherwise.
   2880 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
   2881   if (!LU.InsertFormula(F))
   2882     return false;
   2883 
   2884   CountRegisters(F, LUIdx);
   2885   return true;
   2886 }
   2887 
   2888 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
   2889 /// loop-invariant values which we're tracking. These other uses will pin these
   2890 /// values in registers, making them less profitable for elimination.
   2891 /// TODO: This currently misses non-constant addrec step registers.
   2892 /// TODO: Should this give more weight to users inside the loop?
   2893 void
   2894 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
   2895   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
   2896   SmallPtrSet<const SCEV *, 8> Inserted;
   2897 
   2898   while (!Worklist.empty()) {
   2899     const SCEV *S = Worklist.pop_back_val();
   2900 
   2901     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
   2902       Worklist.append(N->op_begin(), N->op_end());
   2903     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
   2904       Worklist.push_back(C->getOperand());
   2905     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   2906       Worklist.push_back(D->getLHS());
   2907       Worklist.push_back(D->getRHS());
   2908     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   2909       if (!Inserted.insert(U)) continue;
   2910       const Value *V = U->getValue();
   2911       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   2912         // Look for instructions defined outside the loop.
   2913         if (L->contains(Inst)) continue;
   2914       } else if (isa<UndefValue>(V))
   2915         // Undef doesn't have a live range, so it doesn't matter.
   2916         continue;
   2917       for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
   2918            UI != UE; ++UI) {
   2919         const Instruction *UserInst = dyn_cast<Instruction>(*UI);
   2920         // Ignore non-instructions.
   2921         if (!UserInst)
   2922           continue;
   2923         // Ignore instructions in other functions (as can happen with
   2924         // Constants).
   2925         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
   2926           continue;
   2927         // Ignore instructions not dominated by the loop.
   2928         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
   2929           UserInst->getParent() :
   2930           cast<PHINode>(UserInst)->getIncomingBlock(
   2931             PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
   2932         if (!DT.dominates(L->getHeader(), UseBB))
   2933           continue;
   2934         // Ignore uses which are part of other SCEV expressions, to avoid
   2935         // analyzing them multiple times.
   2936         if (SE.isSCEVable(UserInst->getType())) {
   2937           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
   2938           // If the user is a no-op, look through to its uses.
   2939           if (!isa<SCEVUnknown>(UserS))
   2940             continue;
   2941           if (UserS == U) {
   2942             Worklist.push_back(
   2943               SE.getUnknown(const_cast<Instruction *>(UserInst)));
   2944             continue;
   2945           }
   2946         }
   2947         // Ignore icmp instructions which are already being analyzed.
   2948         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
   2949           unsigned OtherIdx = !UI.getOperandNo();
   2950           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
   2951           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
   2952             continue;
   2953         }
   2954 
   2955         LSRFixup &LF = getNewFixup();
   2956         LF.UserInst = const_cast<Instruction *>(UserInst);
   2957         LF.OperandValToReplace = UI.getUse();
   2958         std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
   2959         LF.LUIdx = P.first;
   2960         LF.Offset = P.second;
   2961         LSRUse &LU = Uses[LF.LUIdx];
   2962         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   2963         if (!LU.WidestFixupType ||
   2964             SE.getTypeSizeInBits(LU.WidestFixupType) <
   2965             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   2966           LU.WidestFixupType = LF.OperandValToReplace->getType();
   2967         InsertSupplementalFormula(U, LU, LF.LUIdx);
   2968         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
   2969         break;
   2970       }
   2971     }
   2972   }
   2973 }
   2974 
   2975 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
   2976 /// separate registers. If C is non-null, multiply each subexpression by C.
   2977 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
   2978                             SmallVectorImpl<const SCEV *> &Ops,
   2979                             const Loop *L,
   2980                             ScalarEvolution &SE) {
   2981   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2982     // Break out add operands.
   2983     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   2984          I != E; ++I)
   2985       CollectSubexprs(*I, C, Ops, L, SE);
   2986     return;
   2987   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2988     // Split a non-zero base out of an addrec.
   2989     if (!AR->getStart()->isZero()) {
   2990       CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
   2991                                        AR->getStepRecurrence(SE),
   2992                                        AR->getLoop(),
   2993                                        //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
   2994                                        SCEV::FlagAnyWrap),
   2995                       C, Ops, L, SE);
   2996       CollectSubexprs(AR->getStart(), C, Ops, L, SE);
   2997       return;
   2998     }
   2999   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3000     // Break (C * (a + b + c)) into C*a + C*b + C*c.
   3001     if (Mul->getNumOperands() == 2)
   3002       if (const SCEVConstant *Op0 =
   3003             dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   3004         CollectSubexprs(Mul->getOperand(1),
   3005                         C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
   3006                         Ops, L, SE);
   3007         return;
   3008       }
   3009   }
   3010 
   3011   // Otherwise use the value itself, optionally with a scale applied.
   3012   Ops.push_back(C ? SE.getMulExpr(C, S) : S);
   3013 }
   3014 
   3015 /// GenerateReassociations - Split out subexpressions from adds and the bases of
   3016 /// addrecs.
   3017 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
   3018                                          Formula Base,
   3019                                          unsigned Depth) {
   3020   // Arbitrarily cap recursion to protect compile time.
   3021   if (Depth >= 3) return;
   3022 
   3023   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3024     const SCEV *BaseReg = Base.BaseRegs[i];
   3025 
   3026     SmallVector<const SCEV *, 8> AddOps;
   3027     CollectSubexprs(BaseReg, 0, AddOps, L, SE);
   3028 
   3029     if (AddOps.size() == 1) continue;
   3030 
   3031     for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
   3032          JE = AddOps.end(); J != JE; ++J) {
   3033 
   3034       // Loop-variant "unknown" values are uninteresting; we won't be able to
   3035       // do anything meaningful with them.
   3036       if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
   3037         continue;
   3038 
   3039       // Don't pull a constant into a register if the constant could be folded
   3040       // into an immediate field.
   3041       if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
   3042                            Base.getNumRegs() > 1,
   3043                            LU.Kind, LU.AccessTy, TLI, SE))
   3044         continue;
   3045 
   3046       // Collect all operands except *J.
   3047       SmallVector<const SCEV *, 8> InnerAddOps
   3048         (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
   3049       InnerAddOps.append
   3050         (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
   3051 
   3052       // Don't leave just a constant behind in a register if the constant could
   3053       // be folded into an immediate field.
   3054       if (InnerAddOps.size() == 1 &&
   3055           isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
   3056                            Base.getNumRegs() > 1,
   3057                            LU.Kind, LU.AccessTy, TLI, SE))
   3058         continue;
   3059 
   3060       const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
   3061       if (InnerSum->isZero())
   3062         continue;
   3063       Formula F = Base;
   3064 
   3065       // Add the remaining pieces of the add back into the new formula.
   3066       const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
   3067       if (TLI && InnerSumSC &&
   3068           SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
   3069           TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3070                                    InnerSumSC->getValue()->getZExtValue())) {
   3071         F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
   3072                            InnerSumSC->getValue()->getZExtValue();
   3073         F.BaseRegs.erase(F.BaseRegs.begin() + i);
   3074       } else
   3075         F.BaseRegs[i] = InnerSum;
   3076 
   3077       // Add J as its own register, or an unfolded immediate.
   3078       const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
   3079       if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
   3080           TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3081                                    SC->getValue()->getZExtValue()))
   3082         F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
   3083                            SC->getValue()->getZExtValue();
   3084       else
   3085         F.BaseRegs.push_back(*J);
   3086 
   3087       if (InsertFormula(LU, LUIdx, F))
   3088         // If that formula hadn't been seen before, recurse to find more like
   3089         // it.
   3090         GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
   3091     }
   3092   }
   3093 }
   3094 
   3095 /// GenerateCombinations - Generate a formula consisting of all of the
   3096 /// loop-dominating registers added into a single register.
   3097 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
   3098                                        Formula Base) {
   3099   // This method is only interesting on a plurality of registers.
   3100   if (Base.BaseRegs.size() <= 1) return;
   3101 
   3102   Formula F = Base;
   3103   F.BaseRegs.clear();
   3104   SmallVector<const SCEV *, 4> Ops;
   3105   for (SmallVectorImpl<const SCEV *>::const_iterator
   3106        I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
   3107     const SCEV *BaseReg = *I;
   3108     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
   3109         !SE.hasComputableLoopEvolution(BaseReg, L))
   3110       Ops.push_back(BaseReg);
   3111     else
   3112       F.BaseRegs.push_back(BaseReg);
   3113   }
   3114   if (Ops.size() > 1) {
   3115     const SCEV *Sum = SE.getAddExpr(Ops);
   3116     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
   3117     // opportunity to fold something. For now, just ignore such cases
   3118     // rather than proceed with zero in a register.
   3119     if (!Sum->isZero()) {
   3120       F.BaseRegs.push_back(Sum);
   3121       (void)InsertFormula(LU, LUIdx, F);
   3122     }
   3123   }
   3124 }
   3125 
   3126 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
   3127 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
   3128                                           Formula Base) {
   3129   // We can't add a symbolic offset if the address already contains one.
   3130   if (Base.AM.BaseGV) return;
   3131 
   3132   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3133     const SCEV *G = Base.BaseRegs[i];
   3134     GlobalValue *GV = ExtractSymbol(G, SE);
   3135     if (G->isZero() || !GV)
   3136       continue;
   3137     Formula F = Base;
   3138     F.AM.BaseGV = GV;
   3139     if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
   3140                     LU.Kind, LU.AccessTy, TLI))
   3141       continue;
   3142     F.BaseRegs[i] = G;
   3143     (void)InsertFormula(LU, LUIdx, F);
   3144   }
   3145 }
   3146 
   3147 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
   3148 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
   3149                                           Formula Base) {
   3150   // TODO: For now, just add the min and max offset, because it usually isn't
   3151   // worthwhile looking at everything inbetween.
   3152   SmallVector<int64_t, 2> Worklist;
   3153   Worklist.push_back(LU.MinOffset);
   3154   if (LU.MaxOffset != LU.MinOffset)
   3155     Worklist.push_back(LU.MaxOffset);
   3156 
   3157   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3158     const SCEV *G = Base.BaseRegs[i];
   3159 
   3160     for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
   3161          E = Worklist.end(); I != E; ++I) {
   3162       Formula F = Base;
   3163       F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
   3164       if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
   3165                      LU.Kind, LU.AccessTy, TLI)) {
   3166         // Add the offset to the base register.
   3167         const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
   3168         // If it cancelled out, drop the base register, otherwise update it.
   3169         if (NewG->isZero()) {
   3170           std::swap(F.BaseRegs[i], F.BaseRegs.back());
   3171           F.BaseRegs.pop_back();
   3172         } else
   3173           F.BaseRegs[i] = NewG;
   3174 
   3175         (void)InsertFormula(LU, LUIdx, F);
   3176       }
   3177     }
   3178 
   3179     int64_t Imm = ExtractImmediate(G, SE);
   3180     if (G->isZero() || Imm == 0)
   3181       continue;
   3182     Formula F = Base;
   3183     F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
   3184     if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
   3185                     LU.Kind, LU.AccessTy, TLI))
   3186       continue;
   3187     F.BaseRegs[i] = G;
   3188     (void)InsertFormula(LU, LUIdx, F);
   3189   }
   3190 }
   3191 
   3192 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
   3193 /// the comparison. For example, x == y -> x*c == y*c.
   3194 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
   3195                                          Formula Base) {
   3196   if (LU.Kind != LSRUse::ICmpZero) return;
   3197 
   3198   // Determine the integer type for the base formula.
   3199   Type *IntTy = Base.getType();
   3200   if (!IntTy) return;
   3201   if (SE.getTypeSizeInBits(IntTy) > 64) return;
   3202 
   3203   // Don't do this if there is more than one offset.
   3204   if (LU.MinOffset != LU.MaxOffset) return;
   3205 
   3206   assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
   3207 
   3208   // Check each interesting stride.
   3209   for (SmallSetVector<int64_t, 8>::const_iterator
   3210        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3211     int64_t Factor = *I;
   3212 
   3213     // Check that the multiplication doesn't overflow.
   3214     if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
   3215       continue;
   3216     int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
   3217     if (NewBaseOffs / Factor != Base.AM.BaseOffs)
   3218       continue;
   3219 
   3220     // Check that multiplying with the use offset doesn't overflow.
   3221     int64_t Offset = LU.MinOffset;
   3222     if (Offset == INT64_MIN && Factor == -1)
   3223       continue;
   3224     Offset = (uint64_t)Offset * Factor;
   3225     if (Offset / Factor != LU.MinOffset)
   3226       continue;
   3227 
   3228     Formula F = Base;
   3229     F.AM.BaseOffs = NewBaseOffs;
   3230 
   3231     // Check that this scale is legal.
   3232     if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
   3233       continue;
   3234 
   3235     // Compensate for the use having MinOffset built into it.
   3236     F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
   3237 
   3238     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3239 
   3240     // Check that multiplying with each base register doesn't overflow.
   3241     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
   3242       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
   3243       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
   3244         goto next;
   3245     }
   3246 
   3247     // Check that multiplying with the scaled register doesn't overflow.
   3248     if (F.ScaledReg) {
   3249       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
   3250       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
   3251         continue;
   3252     }
   3253 
   3254     // Check that multiplying with the unfolded offset doesn't overflow.
   3255     if (F.UnfoldedOffset != 0) {
   3256       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
   3257         continue;
   3258       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
   3259       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
   3260         continue;
   3261     }
   3262 
   3263     // If we make it here and it's legal, add it.
   3264     (void)InsertFormula(LU, LUIdx, F);
   3265   next:;
   3266   }
   3267 }
   3268 
   3269 /// GenerateScales - Generate stride factor reuse formulae by making use of
   3270 /// scaled-offset address modes, for example.
   3271 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3272   // Determine the integer type for the base formula.
   3273   Type *IntTy = Base.getType();
   3274   if (!IntTy) return;
   3275 
   3276   // If this Formula already has a scaled register, we can't add another one.
   3277   if (Base.AM.Scale != 0) return;
   3278 
   3279   // Check each interesting stride.
   3280   for (SmallSetVector<int64_t, 8>::const_iterator
   3281        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3282     int64_t Factor = *I;
   3283 
   3284     Base.AM.Scale = Factor;
   3285     Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
   3286     // Check whether this scale is going to be legal.
   3287     if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
   3288                     LU.Kind, LU.AccessTy, TLI)) {
   3289       // As a special-case, handle special out-of-loop Basic users specially.
   3290       // TODO: Reconsider this special case.
   3291       if (LU.Kind == LSRUse::Basic &&
   3292           isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
   3293                      LSRUse::Special, LU.AccessTy, TLI) &&
   3294           LU.AllFixupsOutsideLoop)
   3295         LU.Kind = LSRUse::Special;
   3296       else
   3297         continue;
   3298     }
   3299     // For an ICmpZero, negating a solitary base register won't lead to
   3300     // new solutions.
   3301     if (LU.Kind == LSRUse::ICmpZero &&
   3302         !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
   3303       continue;
   3304     // For each addrec base reg, apply the scale, if possible.
   3305     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3306       if (const SCEVAddRecExpr *AR =
   3307             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
   3308         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3309         if (FactorS->isZero())
   3310           continue;
   3311         // Divide out the factor, ignoring high bits, since we'll be
   3312         // scaling the value back up in the end.
   3313         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
   3314           // TODO: This could be optimized to avoid all the copying.
   3315           Formula F = Base;
   3316           F.ScaledReg = Quotient;
   3317           F.DeleteBaseReg(F.BaseRegs[i]);
   3318           (void)InsertFormula(LU, LUIdx, F);
   3319         }
   3320       }
   3321   }
   3322 }
   3323 
   3324 /// GenerateTruncates - Generate reuse formulae from different IV types.
   3325 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3326   // This requires TargetLowering to tell us which truncates are free.
   3327   if (!TLI) return;
   3328 
   3329   // Don't bother truncating symbolic values.
   3330   if (Base.AM.BaseGV) return;
   3331 
   3332   // Determine the integer type for the base formula.
   3333   Type *DstTy = Base.getType();
   3334   if (!DstTy) return;
   3335   DstTy = SE.getEffectiveSCEVType(DstTy);
   3336 
   3337   for (SmallSetVector<Type *, 4>::const_iterator
   3338        I = Types.begin(), E = Types.end(); I != E; ++I) {
   3339     Type *SrcTy = *I;
   3340     if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
   3341       Formula F = Base;
   3342 
   3343       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
   3344       for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
   3345            JE = F.BaseRegs.end(); J != JE; ++J)
   3346         *J = SE.getAnyExtendExpr(*J, SrcTy);
   3347 
   3348       // TODO: This assumes we've done basic processing on all uses and
   3349       // have an idea what the register usage is.
   3350       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
   3351         continue;
   3352 
   3353       (void)InsertFormula(LU, LUIdx, F);
   3354     }
   3355   }
   3356 }
   3357 
   3358 namespace {
   3359 
   3360 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
   3361 /// defer modifications so that the search phase doesn't have to worry about
   3362 /// the data structures moving underneath it.
   3363 struct WorkItem {
   3364   size_t LUIdx;
   3365   int64_t Imm;
   3366   const SCEV *OrigReg;
   3367 
   3368   WorkItem(size_t LI, int64_t I, const SCEV *R)
   3369     : LUIdx(LI), Imm(I), OrigReg(R) {}
   3370 
   3371   void print(raw_ostream &OS) const;
   3372   void dump() const;
   3373 };
   3374 
   3375 }
   3376 
   3377 void WorkItem::print(raw_ostream &OS) const {
   3378   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
   3379      << " , add offset " << Imm;
   3380 }
   3381 
   3382 void WorkItem::dump() const {
   3383   print(errs()); errs() << '\n';
   3384 }
   3385 
   3386 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
   3387 /// distance apart and try to form reuse opportunities between them.
   3388 void LSRInstance::GenerateCrossUseConstantOffsets() {
   3389   // Group the registers by their value without any added constant offset.
   3390   typedef std::map<int64_t, const SCEV *> ImmMapTy;
   3391   typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
   3392   RegMapTy Map;
   3393   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
   3394   SmallVector<const SCEV *, 8> Sequence;
   3395   for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3396        I != E; ++I) {
   3397     const SCEV *Reg = *I;
   3398     int64_t Imm = ExtractImmediate(Reg, SE);
   3399     std::pair<RegMapTy::iterator, bool> Pair =
   3400       Map.insert(std::make_pair(Reg, ImmMapTy()));
   3401     if (Pair.second)
   3402       Sequence.push_back(Reg);
   3403     Pair.first->second.insert(std::make_pair(Imm, *I));
   3404     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
   3405   }
   3406 
   3407   // Now examine each set of registers with the same base value. Build up
   3408   // a list of work to do and do the work in a separate step so that we're
   3409   // not adding formulae and register counts while we're searching.
   3410   SmallVector<WorkItem, 32> WorkItems;
   3411   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
   3412   for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
   3413        E = Sequence.end(); I != E; ++I) {
   3414     const SCEV *Reg = *I;
   3415     const ImmMapTy &Imms = Map.find(Reg)->second;
   3416 
   3417     // It's not worthwhile looking for reuse if there's only one offset.
   3418     if (Imms.size() == 1)
   3419       continue;
   3420 
   3421     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
   3422           for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3423                J != JE; ++J)
   3424             dbgs() << ' ' << J->first;
   3425           dbgs() << '\n');
   3426 
   3427     // Examine each offset.
   3428     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3429          J != JE; ++J) {
   3430       const SCEV *OrigReg = J->second;
   3431 
   3432       int64_t JImm = J->first;
   3433       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
   3434 
   3435       if (!isa<SCEVConstant>(OrigReg) &&
   3436           UsedByIndicesMap[Reg].count() == 1) {
   3437         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
   3438         continue;
   3439       }
   3440 
   3441       // Conservatively examine offsets between this orig reg a few selected
   3442       // other orig regs.
   3443       ImmMapTy::const_iterator OtherImms[] = {
   3444         Imms.begin(), prior(Imms.end()),
   3445         Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
   3446       };
   3447       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
   3448         ImmMapTy::const_iterator M = OtherImms[i];
   3449         if (M == J || M == JE) continue;
   3450 
   3451         // Compute the difference between the two.
   3452         int64_t Imm = (uint64_t)JImm - M->first;
   3453         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
   3454              LUIdx = UsedByIndices.find_next(LUIdx))
   3455           // Make a memo of this use, offset, and register tuple.
   3456           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
   3457             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
   3458       }
   3459     }
   3460   }
   3461 
   3462   Map.clear();
   3463   Sequence.clear();
   3464   UsedByIndicesMap.clear();
   3465   UniqueItems.clear();
   3466 
   3467   // Now iterate through the worklist and add new formulae.
   3468   for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
   3469        E = WorkItems.end(); I != E; ++I) {
   3470     const WorkItem &WI = *I;
   3471     size_t LUIdx = WI.LUIdx;
   3472     LSRUse &LU = Uses[LUIdx];
   3473     int64_t Imm = WI.Imm;
   3474     const SCEV *OrigReg = WI.OrigReg;
   3475 
   3476     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
   3477     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
   3478     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
   3479 
   3480     // TODO: Use a more targeted data structure.
   3481     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
   3482       const Formula &F = LU.Formulae[L];
   3483       // Use the immediate in the scaled register.
   3484       if (F.ScaledReg == OrigReg) {
   3485         int64_t Offs = (uint64_t)F.AM.BaseOffs +
   3486                        Imm * (uint64_t)F.AM.Scale;
   3487         // Don't create 50 + reg(-50).
   3488         if (F.referencesReg(SE.getSCEV(
   3489                    ConstantInt::get(IntTy, -(uint64_t)Offs))))
   3490           continue;
   3491         Formula NewF = F;
   3492         NewF.AM.BaseOffs = Offs;
   3493         if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
   3494                         LU.Kind, LU.AccessTy, TLI))
   3495           continue;
   3496         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
   3497 
   3498         // If the new scale is a constant in a register, and adding the constant
   3499         // value to the immediate would produce a value closer to zero than the
   3500         // immediate itself, then the formula isn't worthwhile.
   3501         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
   3502           if (C->getValue()->isNegative() !=
   3503                 (NewF.AM.BaseOffs < 0) &&
   3504               (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
   3505                 .ule(abs64(NewF.AM.BaseOffs)))
   3506             continue;
   3507 
   3508         // OK, looks good.
   3509         (void)InsertFormula(LU, LUIdx, NewF);
   3510       } else {
   3511         // Use the immediate in a base register.
   3512         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
   3513           const SCEV *BaseReg = F.BaseRegs[N];
   3514           if (BaseReg != OrigReg)
   3515             continue;
   3516           Formula NewF = F;
   3517           NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
   3518           if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
   3519                           LU.Kind, LU.AccessTy, TLI)) {
   3520             if (!TLI ||
   3521                 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
   3522               continue;
   3523             NewF = F;
   3524             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
   3525           }
   3526           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
   3527 
   3528           // If the new formula has a constant in a register, and adding the
   3529           // constant value to the immediate would produce a value closer to
   3530           // zero than the immediate itself, then the formula isn't worthwhile.
   3531           for (SmallVectorImpl<const SCEV *>::const_iterator
   3532                J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
   3533                J != JE; ++J)
   3534             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
   3535               if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
   3536                    abs64(NewF.AM.BaseOffs)) &&
   3537                   (C->getValue()->getValue() +
   3538                    NewF.AM.BaseOffs).countTrailingZeros() >=
   3539                    CountTrailingZeros_64(NewF.AM.BaseOffs))
   3540                 goto skip_formula;
   3541 
   3542           // Ok, looks good.
   3543           (void)InsertFormula(LU, LUIdx, NewF);
   3544           break;
   3545         skip_formula:;
   3546         }
   3547       }
   3548     }
   3549   }
   3550 }
   3551 
   3552 /// GenerateAllReuseFormulae - Generate formulae for each use.
   3553 void
   3554 LSRInstance::GenerateAllReuseFormulae() {
   3555   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
   3556   // queries are more precise.
   3557   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3558     LSRUse &LU = Uses[LUIdx];
   3559     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3560       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
   3561     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3562       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
   3563   }
   3564   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3565     LSRUse &LU = Uses[LUIdx];
   3566     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3567       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
   3568     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3569       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
   3570     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3571       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
   3572     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3573       GenerateScales(LU, LUIdx, LU.Formulae[i]);
   3574   }
   3575   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3576     LSRUse &LU = Uses[LUIdx];
   3577     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3578       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
   3579   }
   3580 
   3581   GenerateCrossUseConstantOffsets();
   3582 
   3583   DEBUG(dbgs() << "\n"
   3584                   "After generating reuse formulae:\n";
   3585         print_uses(dbgs()));
   3586 }
   3587 
   3588 /// If there are multiple formulae with the same set of registers used
   3589 /// by other uses, pick the best one and delete the others.
   3590 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
   3591   DenseSet<const SCEV *> VisitedRegs;
   3592   SmallPtrSet<const SCEV *, 16> Regs;
   3593   SmallPtrSet<const SCEV *, 16> LoserRegs;
   3594 #ifndef NDEBUG
   3595   bool ChangedFormulae = false;
   3596 #endif
   3597 
   3598   // Collect the best formula for each unique set of shared registers. This
   3599   // is reset for each use.
   3600   typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
   3601     BestFormulaeTy;
   3602   BestFormulaeTy BestFormulae;
   3603 
   3604   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3605     LSRUse &LU = Uses[LUIdx];
   3606     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
   3607 
   3608     bool Any = false;
   3609     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
   3610          FIdx != NumForms; ++FIdx) {
   3611       Formula &F = LU.Formulae[FIdx];
   3612 
   3613       // Some formulas are instant losers. For example, they may depend on
   3614       // nonexistent AddRecs from other loops. These need to be filtered
   3615       // immediately, otherwise heuristics could choose them over others leading
   3616       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
   3617       // avoids the need to recompute this information across formulae using the
   3618       // same bad AddRec. Passing LoserRegs is also essential unless we remove
   3619       // the corresponding bad register from the Regs set.
   3620       Cost CostF;
   3621       Regs.clear();
   3622       CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
   3623                         &LoserRegs);
   3624       if (CostF.isLoser()) {
   3625         // During initial formula generation, undesirable formulae are generated
   3626         // by uses within other loops that have some non-trivial address mode or
   3627         // use the postinc form of the IV. LSR needs to provide these formulae
   3628         // as the basis of rediscovering the desired formula that uses an AddRec
   3629         // corresponding to the existing phi. Once all formulae have been
   3630         // generated, these initial losers may be pruned.
   3631         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
   3632               dbgs() << "\n");
   3633       }
   3634       else {
   3635         SmallVector<const SCEV *, 2> Key;
   3636         for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
   3637                JE = F.BaseRegs.end(); J != JE; ++J) {
   3638           const SCEV *Reg = *J;
   3639           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
   3640             Key.push_back(Reg);
   3641         }
   3642         if (F.ScaledReg &&
   3643             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
   3644           Key.push_back(F.ScaledReg);
   3645         // Unstable sort by host order ok, because this is only used for
   3646         // uniquifying.
   3647         std::sort(Key.begin(), Key.end());
   3648 
   3649         std::pair<BestFormulaeTy::const_iterator, bool> P =
   3650           BestFormulae.insert(std::make_pair(Key, FIdx));
   3651         if (P.second)
   3652           continue;
   3653 
   3654         Formula &Best = LU.Formulae[P.first->second];
   3655 
   3656         Cost CostBest;
   3657         Regs.clear();
   3658         CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
   3659         if (CostF < CostBest)
   3660           std::swap(F, Best);
   3661         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
   3662               dbgs() << "\n"
   3663                         "    in favor of formula "; Best.print(dbgs());
   3664               dbgs() << '\n');
   3665       }
   3666 #ifndef NDEBUG
   3667       ChangedFormulae = true;
   3668 #endif
   3669       LU.DeleteFormula(F);
   3670       --FIdx;
   3671       --NumForms;
   3672       Any = true;
   3673     }
   3674 
   3675     // Now that we've filtered out some formulae, recompute the Regs set.
   3676     if (Any)
   3677       LU.RecomputeRegs(LUIdx, RegUses);
   3678 
   3679     // Reset this to prepare for the next use.
   3680     BestFormulae.clear();
   3681   }
   3682 
   3683   DEBUG(if (ChangedFormulae) {
   3684           dbgs() << "\n"
   3685                     "After filtering out undesirable candidates:\n";
   3686           print_uses(dbgs());
   3687         });
   3688 }
   3689 
   3690 // This is a rough guess that seems to work fairly well.
   3691 static const size_t ComplexityLimit = UINT16_MAX;
   3692 
   3693 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
   3694 /// solutions the solver might have to consider. It almost never considers
   3695 /// this many solutions because it prune the search space, but the pruning
   3696 /// isn't always sufficient.
   3697 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
   3698   size_t Power = 1;
   3699   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   3700        E = Uses.end(); I != E; ++I) {
   3701     size_t FSize = I->Formulae.size();
   3702     if (FSize >= ComplexityLimit) {
   3703       Power = ComplexityLimit;
   3704       break;
   3705     }
   3706     Power *= FSize;
   3707     if (Power >= ComplexityLimit)
   3708       break;
   3709   }
   3710   return Power;
   3711 }
   3712 
   3713 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
   3714 /// of the registers of another formula, it won't help reduce register
   3715 /// pressure (though it may not necessarily hurt register pressure); remove
   3716 /// it to simplify the system.
   3717 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
   3718   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3719     DEBUG(dbgs() << "The search space is too complex.\n");
   3720 
   3721     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
   3722                     "which use a superset of registers used by other "
   3723                     "formulae.\n");
   3724 
   3725     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3726       LSRUse &LU = Uses[LUIdx];
   3727       bool Any = false;
   3728       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3729         Formula &F = LU.Formulae[i];
   3730         // Look for a formula with a constant or GV in a register. If the use
   3731         // also has a formula with that same value in an immediate field,
   3732         // delete the one that uses a register.
   3733         for (SmallVectorImpl<const SCEV *>::const_iterator
   3734              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
   3735           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
   3736             Formula NewF = F;
   3737             NewF.AM.BaseOffs += C->getValue()->getSExtValue();
   3738             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3739                                 (I - F.BaseRegs.begin()));
   3740             if (LU.HasFormulaWithSameRegs(NewF)) {
   3741               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   3742               LU.DeleteFormula(F);
   3743               --i;
   3744               --e;
   3745               Any = true;
   3746               break;
   3747             }
   3748           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
   3749             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
   3750               if (!F.AM.BaseGV) {
   3751                 Formula NewF = F;
   3752                 NewF.AM.BaseGV = GV;
   3753                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3754                                     (I - F.BaseRegs.begin()));
   3755                 if (LU.HasFormulaWithSameRegs(NewF)) {
   3756                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   3757                         dbgs() << '\n');
   3758                   LU.DeleteFormula(F);
   3759                   --i;
   3760                   --e;
   3761                   Any = true;
   3762                   break;
   3763                 }
   3764               }
   3765           }
   3766         }
   3767       }
   3768       if (Any)
   3769         LU.RecomputeRegs(LUIdx, RegUses);
   3770     }
   3771 
   3772     DEBUG(dbgs() << "After pre-selection:\n";
   3773           print_uses(dbgs()));
   3774   }
   3775 }
   3776 
   3777 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
   3778 /// for expressions like A, A+1, A+2, etc., allocate a single register for
   3779 /// them.
   3780 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
   3781   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3782     DEBUG(dbgs() << "The search space is too complex.\n");
   3783 
   3784     DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
   3785                     "separated by a constant offset will use the same "
   3786                     "registers.\n");
   3787 
   3788     // This is especially useful for unrolled loops.
   3789 
   3790     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3791       LSRUse &LU = Uses[LUIdx];
   3792       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   3793            E = LU.Formulae.end(); I != E; ++I) {
   3794         const Formula &F = *I;
   3795         if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
   3796           if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
   3797             if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
   3798                                    /*HasBaseReg=*/false,
   3799                                    LU.Kind, LU.AccessTy)) {
   3800               DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
   3801                     dbgs() << '\n');
   3802 
   3803               LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
   3804 
   3805               // Update the relocs to reference the new use.
   3806               for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
   3807                    E = Fixups.end(); I != E; ++I) {
   3808                 LSRFixup &Fixup = *I;
   3809                 if (Fixup.LUIdx == LUIdx) {
   3810                   Fixup.LUIdx = LUThatHas - &Uses.front();
   3811                   Fixup.Offset += F.AM.BaseOffs;
   3812                   // Add the new offset to LUThatHas' offset list.
   3813                   if (LUThatHas->Offsets.back() != Fixup.Offset) {
   3814                     LUThatHas->Offsets.push_back(Fixup.Offset);
   3815                     if (Fixup.Offset > LUThatHas->MaxOffset)
   3816                       LUThatHas->MaxOffset = Fixup.Offset;
   3817                     if (Fixup.Offset < LUThatHas->MinOffset)
   3818                       LUThatHas->MinOffset = Fixup.Offset;
   3819                   }
   3820                   DEBUG(dbgs() << "New fixup has offset "
   3821                                << Fixup.Offset << '\n');
   3822                 }
   3823                 if (Fixup.LUIdx == NumUses-1)
   3824                   Fixup.LUIdx = LUIdx;
   3825               }
   3826 
   3827               // Delete formulae from the new use which are no longer legal.
   3828               bool Any = false;
   3829               for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
   3830                 Formula &F = LUThatHas->Formulae[i];
   3831                 if (!isLegalUse(F.AM,
   3832                                 LUThatHas->MinOffset, LUThatHas->MaxOffset,
   3833                                 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
   3834                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   3835                         dbgs() << '\n');
   3836                   LUThatHas->DeleteFormula(F);
   3837                   --i;
   3838                   --e;
   3839                   Any = true;
   3840                 }
   3841               }
   3842               if (Any)
   3843                 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
   3844 
   3845               // Delete the old use.
   3846               DeleteUse(LU, LUIdx);
   3847               --LUIdx;
   3848               --NumUses;
   3849               break;
   3850             }
   3851           }
   3852         }
   3853       }
   3854     }
   3855 
   3856     DEBUG(dbgs() << "After pre-selection:\n";
   3857           print_uses(dbgs()));
   3858   }
   3859 }
   3860 
   3861 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
   3862 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
   3863 /// we've done more filtering, as it may be able to find more formulae to
   3864 /// eliminate.
   3865 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
   3866   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3867     DEBUG(dbgs() << "The search space is too complex.\n");
   3868 
   3869     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
   3870                     "undesirable dedicated registers.\n");
   3871 
   3872     FilterOutUndesirableDedicatedRegisters();
   3873 
   3874     DEBUG(dbgs() << "After pre-selection:\n";
   3875           print_uses(dbgs()));
   3876   }
   3877 }
   3878 
   3879 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
   3880 /// to be profitable, and then in any use which has any reference to that
   3881 /// register, delete all formulae which do not reference that register.
   3882 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
   3883   // With all other options exhausted, loop until the system is simple
   3884   // enough to handle.
   3885   SmallPtrSet<const SCEV *, 4> Taken;
   3886   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3887     // Ok, we have too many of formulae on our hands to conveniently handle.
   3888     // Use a rough heuristic to thin out the list.
   3889     DEBUG(dbgs() << "The search space is too complex.\n");
   3890 
   3891     // Pick the register which is used by the most LSRUses, which is likely
   3892     // to be a good reuse register candidate.
   3893     const SCEV *Best = 0;
   3894     unsigned BestNum = 0;
   3895     for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3896          I != E; ++I) {
   3897       const SCEV *Reg = *I;
   3898       if (Taken.count(Reg))
   3899         continue;
   3900       if (!Best)
   3901         Best = Reg;
   3902       else {
   3903         unsigned Count = RegUses.getUsedByIndices(Reg).count();
   3904         if (Count > BestNum) {
   3905           Best = Reg;
   3906           BestNum = Count;
   3907         }
   3908       }
   3909     }
   3910 
   3911     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
   3912                  << " will yield profitable reuse.\n");
   3913     Taken.insert(Best);
   3914 
   3915     // In any use with formulae which references this register, delete formulae
   3916     // which don't reference it.
   3917     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3918       LSRUse &LU = Uses[LUIdx];
   3919       if (!LU.Regs.count(Best)) continue;
   3920 
   3921       bool Any = false;
   3922       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3923         Formula &F = LU.Formulae[i];
   3924         if (!F.referencesReg(Best)) {
   3925           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   3926           LU.DeleteFormula(F);
   3927           --e;
   3928           --i;
   3929           Any = true;
   3930           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
   3931           continue;
   3932         }
   3933       }
   3934 
   3935       if (Any)
   3936         LU.RecomputeRegs(LUIdx, RegUses);
   3937     }
   3938 
   3939     DEBUG(dbgs() << "After pre-selection:\n";
   3940           print_uses(dbgs()));
   3941   }
   3942 }
   3943 
   3944 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
   3945 /// formulae to choose from, use some rough heuristics to prune down the number
   3946 /// of formulae. This keeps the main solver from taking an extraordinary amount
   3947 /// of time in some worst-case scenarios.
   3948 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
   3949   NarrowSearchSpaceByDetectingSupersets();
   3950   NarrowSearchSpaceByCollapsingUnrolledCode();
   3951   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   3952   NarrowSearchSpaceByPickingWinnerRegs();
   3953 }
   3954 
   3955 /// SolveRecurse - This is the recursive solver.
   3956 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   3957                                Cost &SolutionCost,
   3958                                SmallVectorImpl<const Formula *> &Workspace,
   3959                                const Cost &CurCost,
   3960                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
   3961                                DenseSet<const SCEV *> &VisitedRegs) const {
   3962   // Some ideas:
   3963   //  - prune more:
   3964   //    - use more aggressive filtering
   3965   //    - sort the formula so that the most profitable solutions are found first
   3966   //    - sort the uses too
   3967   //  - search faster:
   3968   //    - don't compute a cost, and then compare. compare while computing a cost
   3969   //      and bail early.
   3970   //    - track register sets with SmallBitVector
   3971 
   3972   const LSRUse &LU = Uses[Workspace.size()];
   3973 
   3974   // If this use references any register that's already a part of the
   3975   // in-progress solution, consider it a requirement that a formula must
   3976   // reference that register in order to be considered. This prunes out
   3977   // unprofitable searching.
   3978   SmallSetVector<const SCEV *, 4> ReqRegs;
   3979   for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
   3980        E = CurRegs.end(); I != E; ++I)
   3981     if (LU.Regs.count(*I))
   3982       ReqRegs.insert(*I);
   3983 
   3984   SmallPtrSet<const SCEV *, 16> NewRegs;
   3985   Cost NewCost;
   3986   for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   3987        E = LU.Formulae.end(); I != E; ++I) {
   3988     const Formula &F = *I;
   3989 
   3990     // Ignore formulae which do not use any of the required registers.
   3991     bool SatisfiedReqReg = true;
   3992     for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
   3993          JE = ReqRegs.end(); J != JE; ++J) {
   3994       const SCEV *Reg = *J;
   3995       if ((!F.ScaledReg || F.ScaledReg != Reg) &&
   3996           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
   3997           F.BaseRegs.end()) {
   3998         SatisfiedReqReg = false;
   3999         break;
   4000       }
   4001     }
   4002     if (!SatisfiedReqReg) {
   4003       // If none of the formulae satisfied the required registers, then we could
   4004       // clear ReqRegs and try again. Currently, we simply give up in this case.
   4005       continue;
   4006     }
   4007 
   4008     // Evaluate the cost of the current formula. If it's already worse than
   4009     // the current best, prune the search at that point.
   4010     NewCost = CurCost;
   4011     NewRegs = CurRegs;
   4012     NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
   4013     if (NewCost < SolutionCost) {
   4014       Workspace.push_back(&F);
   4015       if (Workspace.size() != Uses.size()) {
   4016         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
   4017                      NewRegs, VisitedRegs);
   4018         if (F.getNumRegs() == 1 && Workspace.size() == 1)
   4019           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
   4020       } else {
   4021         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
   4022               dbgs() << ".\n Regs:";
   4023               for (SmallPtrSet<const SCEV *, 16>::const_iterator
   4024                    I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
   4025                 dbgs() << ' ' << **I;
   4026               dbgs() << '\n');
   4027 
   4028         SolutionCost = NewCost;
   4029         Solution = Workspace;
   4030       }
   4031       Workspace.pop_back();
   4032     }
   4033   }
   4034 }
   4035 
   4036 /// Solve - Choose one formula from each use. Return the results in the given
   4037 /// Solution vector.
   4038 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
   4039   SmallVector<const Formula *, 8> Workspace;
   4040   Cost SolutionCost;
   4041   SolutionCost.Loose();
   4042   Cost CurCost;
   4043   SmallPtrSet<const SCEV *, 16> CurRegs;
   4044   DenseSet<const SCEV *> VisitedRegs;
   4045   Workspace.reserve(Uses.size());
   4046 
   4047   // SolveRecurse does all the work.
   4048   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
   4049                CurRegs, VisitedRegs);
   4050   if (Solution.empty()) {
   4051     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
   4052     return;
   4053   }
   4054 
   4055   // Ok, we've now made all our decisions.
   4056   DEBUG(dbgs() << "\n"
   4057                   "The chosen solution requires "; SolutionCost.print(dbgs());
   4058         dbgs() << ":\n";
   4059         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
   4060           dbgs() << "  ";
   4061           Uses[i].print(dbgs());
   4062           dbgs() << "\n"
   4063                     "    ";
   4064           Solution[i]->print(dbgs());
   4065           dbgs() << '\n';
   4066         });
   4067 
   4068   assert(Solution.size() == Uses.size() && "Malformed solution!");
   4069 }
   4070 
   4071 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
   4072 /// the dominator tree far as we can go while still being dominated by the
   4073 /// input positions. This helps canonicalize the insert position, which
   4074 /// encourages sharing.
   4075 BasicBlock::iterator
   4076 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
   4077                                  const SmallVectorImpl<Instruction *> &Inputs)
   4078                                                                          const {
   4079   for (;;) {
   4080     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
   4081     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
   4082 
   4083     BasicBlock *IDom;
   4084     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
   4085       if (!Rung) return IP;
   4086       Rung = Rung->getIDom();
   4087       if (!Rung) return IP;
   4088       IDom = Rung->getBlock();
   4089 
   4090       // Don't climb into a loop though.
   4091       const Loop *IDomLoop = LI.getLoopFor(IDom);
   4092       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
   4093       if (IDomDepth <= IPLoopDepth &&
   4094           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
   4095         break;
   4096     }
   4097 
   4098     bool AllDominate = true;
   4099     Instruction *BetterPos = 0;
   4100     Instruction *Tentative = IDom->getTerminator();
   4101     for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
   4102          E = Inputs.end(); I != E; ++I) {
   4103       Instruction *Inst = *I;
   4104       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
   4105         AllDominate = false;
   4106         break;
   4107       }
   4108       // Attempt to find an insert position in the middle of the block,
   4109       // instead of at the end, so that it can be used for other expansions.
   4110       if (IDom == Inst->getParent() &&
   4111           (!BetterPos || DT.dominates(BetterPos, Inst)))
   4112         BetterPos = llvm::next(BasicBlock::iterator(Inst));
   4113     }
   4114     if (!AllDominate)
   4115       break;
   4116     if (BetterPos)
   4117       IP = BetterPos;
   4118     else
   4119       IP = Tentative;
   4120   }
   4121 
   4122   return IP;
   4123 }
   4124 
   4125 /// AdjustInsertPositionForExpand - Determine an input position which will be
   4126 /// dominated by the operands and which will dominate the result.
   4127 BasicBlock::iterator
   4128 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
   4129                                            const LSRFixup &LF,
   4130                                            const LSRUse &LU,
   4131                                            SCEVExpander &Rewriter) const {
   4132   // Collect some instructions which must be dominated by the
   4133   // expanding replacement. These must be dominated by any operands that
   4134   // will be required in the expansion.
   4135   SmallVector<Instruction *, 4> Inputs;
   4136   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
   4137     Inputs.push_back(I);
   4138   if (LU.Kind == LSRUse::ICmpZero)
   4139     if (Instruction *I =
   4140           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
   4141       Inputs.push_back(I);
   4142   if (LF.PostIncLoops.count(L)) {
   4143     if (LF.isUseFullyOutsideLoop(L))
   4144       Inputs.push_back(L->getLoopLatch()->getTerminator());
   4145     else
   4146       Inputs.push_back(IVIncInsertPos);
   4147   }
   4148   // The expansion must also be dominated by the increment positions of any
   4149   // loops it for which it is using post-inc mode.
   4150   for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
   4151        E = LF.PostIncLoops.end(); I != E; ++I) {
   4152     const Loop *PIL = *I;
   4153     if (PIL == L) continue;
   4154 
   4155     // Be dominated by the loop exit.
   4156     SmallVector<BasicBlock *, 4> ExitingBlocks;
   4157     PIL->getExitingBlocks(ExitingBlocks);
   4158     if (!ExitingBlocks.empty()) {
   4159       BasicBlock *BB = ExitingBlocks[0];
   4160       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
   4161         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
   4162       Inputs.push_back(BB->getTerminator());
   4163     }
   4164   }
   4165 
   4166   assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
   4167          && !isa<DbgInfoIntrinsic>(LowestIP) &&
   4168          "Insertion point must be a normal instruction");
   4169 
   4170   // Then, climb up the immediate dominator tree as far as we can go while
   4171   // still being dominated by the input positions.
   4172   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
   4173 
   4174   // Don't insert instructions before PHI nodes.
   4175   while (isa<PHINode>(IP)) ++IP;
   4176 
   4177   // Ignore landingpad instructions.
   4178   while (isa<LandingPadInst>(IP)) ++IP;
   4179 
   4180   // Ignore debug intrinsics.
   4181   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
   4182 
   4183   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
   4184   // IP consistent across expansions and allows the previously inserted
   4185   // instructions to be reused by subsequent expansion.
   4186   while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
   4187 
   4188   return IP;
   4189 }
   4190 
   4191 /// Expand - Emit instructions for the leading candidate expression for this
   4192 /// LSRUse (this is called "expanding").
   4193 Value *LSRInstance::Expand(const LSRFixup &LF,
   4194                            const Formula &F,
   4195                            BasicBlock::iterator IP,
   4196                            SCEVExpander &Rewriter,
   4197                            SmallVectorImpl<WeakVH> &DeadInsts) const {
   4198   const LSRUse &LU = Uses[LF.LUIdx];
   4199 
   4200   // Determine an input position which will be dominated by the operands and
   4201   // which will dominate the result.
   4202   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
   4203 
   4204   // Inform the Rewriter if we have a post-increment use, so that it can
   4205   // perform an advantageous expansion.
   4206   Rewriter.setPostInc(LF.PostIncLoops);
   4207 
   4208   // This is the type that the user actually needs.
   4209   Type *OpTy = LF.OperandValToReplace->getType();
   4210   // This will be the type that we'll initially expand to.
   4211   Type *Ty = F.getType();
   4212   if (!Ty)
   4213     // No type known; just expand directly to the ultimate type.
   4214     Ty = OpTy;
   4215   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
   4216     // Expand directly to the ultimate type if it's the right size.
   4217     Ty = OpTy;
   4218   // This is the type to do integer arithmetic in.
   4219   Type *IntTy = SE.getEffectiveSCEVType(Ty);
   4220 
   4221   // Build up a list of operands to add together to form the full base.
   4222   SmallVector<const SCEV *, 8> Ops;
   4223 
   4224   // Expand the BaseRegs portion.
   4225   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   4226        E = F.BaseRegs.end(); I != E; ++I) {
   4227     const SCEV *Reg = *I;
   4228     assert(!Reg->isZero() && "Zero allocated in a base register!");
   4229 
   4230     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4231     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4232     Reg = TransformForPostIncUse(Denormalize, Reg,
   4233                                  LF.UserInst, LF.OperandValToReplace,
   4234                                  Loops, SE, DT);
   4235 
   4236     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
   4237   }
   4238 
   4239   // Flush the operand list to suppress SCEVExpander hoisting.
   4240   if (!Ops.empty()) {
   4241     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4242     Ops.clear();
   4243     Ops.push_back(SE.getUnknown(FullV));
   4244   }
   4245 
   4246   // Expand the ScaledReg portion.
   4247   Value *ICmpScaledV = 0;
   4248   if (F.AM.Scale != 0) {
   4249     const SCEV *ScaledS = F.ScaledReg;
   4250 
   4251     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4252     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4253     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
   4254                                      LF.UserInst, LF.OperandValToReplace,
   4255                                      Loops, SE, DT);
   4256 
   4257     if (LU.Kind == LSRUse::ICmpZero) {
   4258       // An interesting way of "folding" with an icmp is to use a negated
   4259       // scale, which we'll implement by inserting it into the other operand
   4260       // of the icmp.
   4261       assert(F.AM.Scale == -1 &&
   4262              "The only scale supported by ICmpZero uses is -1!");
   4263       ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
   4264     } else {
   4265       // Otherwise just expand the scaled register and an explicit scale,
   4266       // which is expected to be matched as part of the address.
   4267       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
   4268       ScaledS = SE.getMulExpr(ScaledS,
   4269                               SE.getConstant(ScaledS->getType(), F.AM.Scale));
   4270       Ops.push_back(ScaledS);
   4271 
   4272       // Flush the operand list to suppress SCEVExpander hoisting.
   4273       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4274       Ops.clear();
   4275       Ops.push_back(SE.getUnknown(FullV));
   4276     }
   4277   }
   4278 
   4279   // Expand the GV portion.
   4280   if (F.AM.BaseGV) {
   4281     Ops.push_back(SE.getUnknown(F.AM.BaseGV));
   4282 
   4283     // Flush the operand list to suppress SCEVExpander hoisting.
   4284     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4285     Ops.clear();
   4286     Ops.push_back(SE.getUnknown(FullV));
   4287   }
   4288 
   4289   // Expand the immediate portion.
   4290   int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
   4291   if (Offset != 0) {
   4292     if (LU.Kind == LSRUse::ICmpZero) {
   4293       // The other interesting way of "folding" with an ICmpZero is to use a
   4294       // negated immediate.
   4295       if (!ICmpScaledV)
   4296         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
   4297       else {
   4298         Ops.push_back(SE.getUnknown(ICmpScaledV));
   4299         ICmpScaledV = ConstantInt::get(IntTy, Offset);
   4300       }
   4301     } else {
   4302       // Just add the immediate values. These again are expected to be matched
   4303       // as part of the address.
   4304       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
   4305     }
   4306   }
   4307 
   4308   // Expand the unfolded offset portion.
   4309   int64_t UnfoldedOffset = F.UnfoldedOffset;
   4310   if (UnfoldedOffset != 0) {
   4311     // Just add the immediate values.
   4312     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
   4313                                                        UnfoldedOffset)));
   4314   }
   4315 
   4316   // Emit instructions summing all the operands.
   4317   const SCEV *FullS = Ops.empty() ?
   4318                       SE.getConstant(IntTy, 0) :
   4319                       SE.getAddExpr(Ops);
   4320   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
   4321 
   4322   // We're done expanding now, so reset the rewriter.
   4323   Rewriter.clearPostInc();
   4324 
   4325   // An ICmpZero Formula represents an ICmp which we're handling as a
   4326   // comparison against zero. Now that we've expanded an expression for that
   4327   // form, update the ICmp's other operand.
   4328   if (LU.Kind == LSRUse::ICmpZero) {
   4329     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
   4330     DeadInsts.push_back(CI->getOperand(1));
   4331     assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
   4332                            "a scale at the same time!");
   4333     if (F.AM.Scale == -1) {
   4334       if (ICmpScaledV->getType() != OpTy) {
   4335         Instruction *Cast =
   4336           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
   4337                                                    OpTy, false),
   4338                            ICmpScaledV, OpTy, "tmp", CI);
   4339         ICmpScaledV = Cast;
   4340       }
   4341       CI->setOperand(1, ICmpScaledV);
   4342     } else {
   4343       assert(F.AM.Scale == 0 &&
   4344              "ICmp does not support folding a global value and "
   4345              "a scale at the same time!");
   4346       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
   4347                                            -(uint64_t)Offset);
   4348       if (C->getType() != OpTy)
   4349         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4350                                                           OpTy, false),
   4351                                   C, OpTy);
   4352 
   4353       CI->setOperand(1, C);
   4354     }
   4355   }
   4356 
   4357   return FullV;
   4358 }
   4359 
   4360 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
   4361 /// of their operands effectively happens in their predecessor blocks, so the
   4362 /// expression may need to be expanded in multiple places.
   4363 void LSRInstance::RewriteForPHI(PHINode *PN,
   4364                                 const LSRFixup &LF,
   4365                                 const Formula &F,
   4366                                 SCEVExpander &Rewriter,
   4367                                 SmallVectorImpl<WeakVH> &DeadInsts,
   4368                                 Pass *P) const {
   4369   DenseMap<BasicBlock *, Value *> Inserted;
   4370   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4371     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
   4372       BasicBlock *BB = PN->getIncomingBlock(i);
   4373 
   4374       // If this is a critical edge, split the edge so that we do not insert
   4375       // the code on all predecessor/successor paths.  We do this unless this
   4376       // is the canonical backedge for this loop, which complicates post-inc
   4377       // users.
   4378       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
   4379           !isa<IndirectBrInst>(BB->getTerminator())) {
   4380         BasicBlock *Parent = PN->getParent();
   4381         Loop *PNLoop = LI.getLoopFor(Parent);
   4382         if (!PNLoop || Parent != PNLoop->getHeader()) {
   4383           // Split the critical edge.
   4384           BasicBlock *NewBB = 0;
   4385           if (!Parent->isLandingPad()) {
   4386             NewBB = SplitCriticalEdge(BB, Parent, P,
   4387                                       /*MergeIdenticalEdges=*/true,
   4388                                       /*DontDeleteUselessPhis=*/true);
   4389           } else {
   4390             SmallVector<BasicBlock*, 2> NewBBs;
   4391             SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
   4392             NewBB = NewBBs[0];
   4393           }
   4394 
   4395           // If PN is outside of the loop and BB is in the loop, we want to
   4396           // move the block to be immediately before the PHI block, not
   4397           // immediately after BB.
   4398           if (L->contains(BB) && !L->contains(PN))
   4399             NewBB->moveBefore(PN->getParent());
   4400 
   4401           // Splitting the edge can reduce the number of PHI entries we have.
   4402           e = PN->getNumIncomingValues();
   4403           BB = NewBB;
   4404           i = PN->getBasicBlockIndex(BB);
   4405         }
   4406       }
   4407 
   4408       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
   4409         Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
   4410       if (!Pair.second)
   4411         PN->setIncomingValue(i, Pair.first->second);
   4412       else {
   4413         Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
   4414 
   4415         // If this is reuse-by-noop-cast, insert the noop cast.
   4416         Type *OpTy = LF.OperandValToReplace->getType();
   4417         if (FullV->getType() != OpTy)
   4418           FullV =
   4419             CastInst::Create(CastInst::getCastOpcode(FullV, false,
   4420                                                      OpTy, false),
   4421                              FullV, LF.OperandValToReplace->getType(),
   4422                              "tmp", BB->getTerminator());
   4423 
   4424         PN->setIncomingValue(i, FullV);
   4425         Pair.first->second = FullV;
   4426       }
   4427     }
   4428 }
   4429 
   4430 /// Rewrite - Emit instructions for the leading candidate expression for this
   4431 /// LSRUse (this is called "expanding"), and update the UserInst to reference
   4432 /// the newly expanded value.
   4433 void LSRInstance::Rewrite(const LSRFixup &LF,
   4434                           const Formula &F,
   4435                           SCEVExpander &Rewriter,
   4436                           SmallVectorImpl<WeakVH> &DeadInsts,
   4437                           Pass *P) const {
   4438   // First, find an insertion point that dominates UserInst. For PHI nodes,
   4439   // find the nearest block which dominates all the relevant uses.
   4440   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
   4441     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
   4442   } else {
   4443     Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
   4444 
   4445     // If this is reuse-by-noop-cast, insert the noop cast.
   4446     Type *OpTy = LF.OperandValToReplace->getType();
   4447     if (FullV->getType() != OpTy) {
   4448       Instruction *Cast =
   4449         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
   4450                          FullV, OpTy, "tmp", LF.UserInst);
   4451       FullV = Cast;
   4452     }
   4453 
   4454     // Update the user. ICmpZero is handled specially here (for now) because
   4455     // Expand may have updated one of the operands of the icmp already, and
   4456     // its new value may happen to be equal to LF.OperandValToReplace, in
   4457     // which case doing replaceUsesOfWith leads to replacing both operands
   4458     // with the same value. TODO: Reorganize this.
   4459     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
   4460       LF.UserInst->setOperand(0, FullV);
   4461     else
   4462       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
   4463   }
   4464 
   4465   DeadInsts.push_back(LF.OperandValToReplace);
   4466 }
   4467 
   4468 /// ImplementSolution - Rewrite all the fixup locations with new values,
   4469 /// following the chosen solution.
   4470 void
   4471 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   4472                                Pass *P) {
   4473   // Keep track of instructions we may have made dead, so that
   4474   // we can remove them after we are done working.
   4475   SmallVector<WeakVH, 16> DeadInsts;
   4476 
   4477   SCEVExpander Rewriter(SE, "lsr");
   4478 #ifndef NDEBUG
   4479   Rewriter.setDebugType(DEBUG_TYPE);
   4480 #endif
   4481   Rewriter.disableCanonicalMode();
   4482   Rewriter.enableLSRMode();
   4483   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
   4484 
   4485   // Mark phi nodes that terminate chains so the expander tries to reuse them.
   4486   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4487          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4488     if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst))
   4489       Rewriter.setChainedPhi(PN);
   4490   }
   4491 
   4492   // Expand the new value definitions and update the users.
   4493   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4494        E = Fixups.end(); I != E; ++I) {
   4495     const LSRFixup &Fixup = *I;
   4496 
   4497     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
   4498 
   4499     Changed = true;
   4500   }
   4501 
   4502   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4503          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4504     GenerateIVChain(*ChainI, Rewriter, DeadInsts);
   4505     Changed = true;
   4506   }
   4507   // Clean up after ourselves. This must be done before deleting any
   4508   // instructions.
   4509   Rewriter.clear();
   4510 
   4511   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
   4512 }
   4513 
   4514 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
   4515   : IU(P->getAnalysis<IVUsers>()),
   4516     SE(P->getAnalysis<ScalarEvolution>()),
   4517     DT(P->getAnalysis<DominatorTree>()),
   4518     LI(P->getAnalysis<LoopInfo>()),
   4519     TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
   4520 
   4521   // If LoopSimplify form is not available, stay out of trouble.
   4522   if (!L->isLoopSimplifyForm())
   4523     return;
   4524 
   4525   // If there's no interesting work to be done, bail early.
   4526   if (IU.empty()) return;
   4527 
   4528   // If there's too much analysis to be done, bail early. We won't be able to
   4529   // model the problem anyway.
   4530   unsigned NumUsers = 0;
   4531   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   4532     if (++NumUsers > MaxIVUsers) {
   4533       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
   4534             << "\n");
   4535       return;
   4536     }
   4537   }
   4538 
   4539 #ifndef NDEBUG
   4540   // All dominating loops must have preheaders, or SCEVExpander may not be able
   4541   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
   4542   //
   4543   // IVUsers analysis should only create users that are dominated by simple loop
   4544   // headers. Since this loop should dominate all of its users, its user list
   4545   // should be empty if this loop itself is not within a simple loop nest.
   4546   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
   4547        Rung; Rung = Rung->getIDom()) {
   4548     BasicBlock *BB = Rung->getBlock();
   4549     const Loop *DomLoop = LI.getLoopFor(BB);
   4550     if (DomLoop && DomLoop->getHeader() == BB) {
   4551       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
   4552     }
   4553   }
   4554 #endif // DEBUG
   4555 
   4556   DEBUG(dbgs() << "\nLSR on loop ";
   4557         WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
   4558         dbgs() << ":\n");
   4559 
   4560   // First, perform some low-level loop optimizations.
   4561   OptimizeShadowIV();
   4562   OptimizeLoopTermCond();
   4563 
   4564   // If loop preparation eliminates all interesting IV users, bail.
   4565   if (IU.empty()) return;
   4566 
   4567   // Skip nested loops until we can model them better with formulae.
   4568   if (!L->empty()) {
   4569     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
   4570     return;
   4571   }
   4572 
   4573   // Start collecting data and preparing for the solver.
   4574   CollectChains();
   4575   CollectInterestingTypesAndFactors();
   4576   CollectFixupsAndInitialFormulae();
   4577   CollectLoopInvariantFixupsAndFormulae();
   4578 
   4579   assert(!Uses.empty() && "IVUsers reported at least one use");
   4580   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
   4581         print_uses(dbgs()));
   4582 
   4583   // Now use the reuse data to generate a bunch of interesting ways
   4584   // to formulate the values needed for the uses.
   4585   GenerateAllReuseFormulae();
   4586 
   4587   FilterOutUndesirableDedicatedRegisters();
   4588   NarrowSearchSpaceUsingHeuristics();
   4589 
   4590   SmallVector<const Formula *, 8> Solution;
   4591   Solve(Solution);
   4592 
   4593   // Release memory that is no longer needed.
   4594   Factors.clear();
   4595   Types.clear();
   4596   RegUses.clear();
   4597 
   4598   if (Solution.empty())
   4599     return;
   4600 
   4601 #ifndef NDEBUG
   4602   // Formulae should be legal.
   4603   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   4604        E = Uses.end(); I != E; ++I) {
   4605      const LSRUse &LU = *I;
   4606      for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4607           JE = LU.Formulae.end(); J != JE; ++J)
   4608         assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
   4609                           LU.Kind, LU.AccessTy, TLI) &&
   4610                "Illegal formula generated!");
   4611   };
   4612 #endif
   4613 
   4614   // Now that we've decided what we want, make it so.
   4615   ImplementSolution(Solution, P);
   4616 }
   4617 
   4618 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
   4619   if (Factors.empty() && Types.empty()) return;
   4620 
   4621   OS << "LSR has identified the following interesting factors and types: ";
   4622   bool First = true;
   4623 
   4624   for (SmallSetVector<int64_t, 8>::const_iterator
   4625        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   4626     if (!First) OS << ", ";
   4627     First = false;
   4628     OS << '*' << *I;
   4629   }
   4630 
   4631   for (SmallSetVector<Type *, 4>::const_iterator
   4632        I = Types.begin(), E = Types.end(); I != E; ++I) {
   4633     if (!First) OS << ", ";
   4634     First = false;
   4635     OS << '(' << **I << ')';
   4636   }
   4637   OS << '\n';
   4638 }
   4639 
   4640 void LSRInstance::print_fixups(raw_ostream &OS) const {
   4641   OS << "LSR is examining the following fixup sites:\n";
   4642   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4643        E = Fixups.end(); I != E; ++I) {
   4644     dbgs() << "  ";
   4645     I->print(OS);
   4646     OS << '\n';
   4647   }
   4648 }
   4649 
   4650 void LSRInstance::print_uses(raw_ostream &OS) const {
   4651   OS << "LSR is examining the following uses:\n";
   4652   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   4653        E = Uses.end(); I != E; ++I) {
   4654     const LSRUse &LU = *I;
   4655     dbgs() << "  ";
   4656     LU.print(OS);
   4657     OS << '\n';
   4658     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4659          JE = LU.Formulae.end(); J != JE; ++J) {
   4660       OS << "    ";
   4661       J->print(OS);
   4662       OS << '\n';
   4663     }
   4664   }
   4665 }
   4666 
   4667 void LSRInstance::print(raw_ostream &OS) const {
   4668   print_factors_and_types(OS);
   4669   print_fixups(OS);
   4670   print_uses(OS);
   4671 }
   4672 
   4673 void LSRInstance::dump() const {
   4674   print(errs()); errs() << '\n';
   4675 }
   4676 
   4677 namespace {
   4678 
   4679 class LoopStrengthReduce : public LoopPass {
   4680   /// TLI - Keep a pointer of a TargetLowering to consult for determining
   4681   /// transformation profitability.
   4682   const TargetLowering *const TLI;
   4683 
   4684 public:
   4685   static char ID; // Pass ID, replacement for typeid
   4686   explicit LoopStrengthReduce(const TargetLowering *tli = 0);
   4687 
   4688 private:
   4689   bool runOnLoop(Loop *L, LPPassManager &LPM);
   4690   void getAnalysisUsage(AnalysisUsage &AU) const;
   4691 };
   4692 
   4693 }
   4694 
   4695 char LoopStrengthReduce::ID = 0;
   4696 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
   4697                 "Loop Strength Reduction", false, false)
   4698 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
   4699 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   4700 INITIALIZE_PASS_DEPENDENCY(IVUsers)
   4701 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
   4702 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   4703 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
   4704                 "Loop Strength Reduction", false, false)
   4705 
   4706 
   4707 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
   4708   return new LoopStrengthReduce(TLI);
   4709 }
   4710 
   4711 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
   4712   : LoopPass(ID), TLI(tli) {
   4713     initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
   4714   }
   4715 
   4716 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
   4717   // We split critical edges, so we change the CFG.  However, we do update
   4718   // many analyses if they are around.
   4719   AU.addPreservedID(LoopSimplifyID);
   4720 
   4721   AU.addRequired<LoopInfo>();
   4722   AU.addPreserved<LoopInfo>();
   4723   AU.addRequiredID(LoopSimplifyID);
   4724   AU.addRequired<DominatorTree>();
   4725   AU.addPreserved<DominatorTree>();
   4726   AU.addRequired<ScalarEvolution>();
   4727   AU.addPreserved<ScalarEvolution>();
   4728   // Requiring LoopSimplify a second time here prevents IVUsers from running
   4729   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
   4730   AU.addRequiredID(LoopSimplifyID);
   4731   AU.addRequired<IVUsers>();
   4732   AU.addPreserved<IVUsers>();
   4733 }
   4734 
   4735 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
   4736   bool Changed = false;
   4737 
   4738   // Run the main LSR transformation.
   4739   Changed |= LSRInstance(TLI, L, this).getChanged();
   4740 
   4741   // Remove any extra phis created by processing inner loops.
   4742   Changed |= DeleteDeadPHIs(L->getHeader());
   4743   if (EnablePhiElim) {
   4744     SmallVector<WeakVH, 16> DeadInsts;
   4745     SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
   4746 #ifndef NDEBUG
   4747     Rewriter.setDebugType(DEBUG_TYPE);
   4748 #endif
   4749     unsigned numFolded = Rewriter.
   4750       replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
   4751     if (numFolded) {
   4752       Changed = true;
   4753       DeleteTriviallyDeadInstructions(DeadInsts);
   4754       DeleteDeadPHIs(L->getHeader());
   4755     }
   4756   }
   4757   return Changed;
   4758 }
   4759