Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares codegen opcodes and related utilities.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_ISDOPCODES_H
     15 #define LLVM_CODEGEN_ISDOPCODES_H
     16 
     17 namespace llvm {
     18 
     19 /// ISD namespace - This namespace contains an enum which represents all of the
     20 /// SelectionDAG node types and value types.
     21 ///
     22 namespace ISD {
     23 
     24   //===--------------------------------------------------------------------===//
     25   /// ISD::NodeType enum - This enum defines the target-independent operators
     26   /// for a SelectionDAG.
     27   ///
     28   /// Targets may also define target-dependent operator codes for SDNodes. For
     29   /// example, on x86, these are the enum values in the X86ISD namespace.
     30   /// Targets should aim to use target-independent operators to model their
     31   /// instruction sets as much as possible, and only use target-dependent
     32   /// operators when they have special requirements.
     33   ///
     34   /// Finally, during and after selection proper, SNodes may use special
     35   /// operator codes that correspond directly with MachineInstr opcodes. These
     36   /// are used to represent selected instructions. See the isMachineOpcode()
     37   /// and getMachineOpcode() member functions of SDNode.
     38   ///
     39   enum NodeType {
     40     // DELETED_NODE - This is an illegal value that is used to catch
     41     // errors.  This opcode is not a legal opcode for any node.
     42     DELETED_NODE,
     43 
     44     // EntryToken - This is the marker used to indicate the start of the region.
     45     EntryToken,
     46 
     47     // TokenFactor - This node takes multiple tokens as input and produces a
     48     // single token result.  This is used to represent the fact that the operand
     49     // operators are independent of each other.
     50     TokenFactor,
     51 
     52     // AssertSext, AssertZext - These nodes record if a register contains a
     53     // value that has already been zero or sign extended from a narrower type.
     54     // These nodes take two operands.  The first is the node that has already
     55     // been extended, and the second is a value type node indicating the width
     56     // of the extension
     57     AssertSext, AssertZext,
     58 
     59     // Various leaf nodes.
     60     BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
     61     Constant, ConstantFP,
     62     GlobalAddress, GlobalTLSAddress, FrameIndex,
     63     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
     64 
     65     // The address of the GOT
     66     GLOBAL_OFFSET_TABLE,
     67 
     68     // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
     69     // llvm.returnaddress on the DAG.  These nodes take one operand, the index
     70     // of the frame or return address to return.  An index of zero corresponds
     71     // to the current function's frame or return address, an index of one to the
     72     // parent's frame or return address, and so on.
     73     FRAMEADDR, RETURNADDR,
     74 
     75     // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
     76     // first (possible) on-stack argument. This is needed for correct stack
     77     // adjustment during unwind.
     78     FRAME_TO_ARGS_OFFSET,
     79 
     80     // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
     81     // address of the exception block on entry to an landing pad block.
     82     EXCEPTIONADDR,
     83 
     84     // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
     85     // address of the Language Specific Data Area for the enclosing function.
     86     LSDAADDR,
     87 
     88     // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
     89     // the selection index of the exception thrown.
     90     EHSELECTION,
     91 
     92     // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
     93     // 'eh_return' gcc dwarf builtin, which is used to return from
     94     // exception. The general meaning is: adjust stack by OFFSET and pass
     95     // execution to HANDLER. Many platform-related details also :)
     96     EH_RETURN,
     97 
     98     // RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
     99     // This corresponds to the eh.sjlj.setjmp intrinsic.
    100     // It takes an input chain and a pointer to the jump buffer as inputs
    101     // and returns an outchain.
    102     EH_SJLJ_SETJMP,
    103 
    104     // OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
    105     // This corresponds to the eh.sjlj.longjmp intrinsic.
    106     // It takes an input chain and a pointer to the jump buffer as inputs
    107     // and returns an outchain.
    108     EH_SJLJ_LONGJMP,
    109 
    110     // TargetConstant* - Like Constant*, but the DAG does not do any folding,
    111     // simplification, or lowering of the constant. They are used for constants
    112     // which are known to fit in the immediate fields of their users, or for
    113     // carrying magic numbers which are not values which need to be materialized
    114     // in registers.
    115     TargetConstant,
    116     TargetConstantFP,
    117 
    118     // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
    119     // anything else with this node, and this is valid in the target-specific
    120     // dag, turning into a GlobalAddress operand.
    121     TargetGlobalAddress,
    122     TargetGlobalTLSAddress,
    123     TargetFrameIndex,
    124     TargetJumpTable,
    125     TargetConstantPool,
    126     TargetExternalSymbol,
    127     TargetBlockAddress,
    128 
    129     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
    130     /// This node represents a target intrinsic function with no side effects.
    131     /// The first operand is the ID number of the intrinsic from the
    132     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
    133     /// node returns the result of the intrinsic.
    134     INTRINSIC_WO_CHAIN,
    135 
    136     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
    137     /// This node represents a target intrinsic function with side effects that
    138     /// returns a result.  The first operand is a chain pointer.  The second is
    139     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
    140     /// operands to the intrinsic follow.  The node has two results, the result
    141     /// of the intrinsic and an output chain.
    142     INTRINSIC_W_CHAIN,
    143 
    144     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
    145     /// This node represents a target intrinsic function with side effects that
    146     /// does not return a result.  The first operand is a chain pointer.  The
    147     /// second is the ID number of the intrinsic from the llvm::Intrinsic
    148     /// namespace.  The operands to the intrinsic follow.
    149     INTRINSIC_VOID,
    150 
    151     // CopyToReg - This node has three operands: a chain, a register number to
    152     // set to this value, and a value.
    153     CopyToReg,
    154 
    155     // CopyFromReg - This node indicates that the input value is a virtual or
    156     // physical register that is defined outside of the scope of this
    157     // SelectionDAG.  The register is available from the RegisterSDNode object.
    158     CopyFromReg,
    159 
    160     // UNDEF - An undefined node
    161     UNDEF,
    162 
    163     // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
    164     // a Constant, which is required to be operand #1) half of the integer or
    165     // float value specified as operand #0.  This is only for use before
    166     // legalization, for values that will be broken into multiple registers.
    167     EXTRACT_ELEMENT,
    168 
    169     // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
    170     // two values of the same integer value type, this produces a value twice as
    171     // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
    172     BUILD_PAIR,
    173 
    174     // MERGE_VALUES - This node takes multiple discrete operands and returns
    175     // them all as its individual results.  This nodes has exactly the same
    176     // number of inputs and outputs. This node is useful for some pieces of the
    177     // code generator that want to think about a single node with multiple
    178     // results, not multiple nodes.
    179     MERGE_VALUES,
    180 
    181     // Simple integer binary arithmetic operators.
    182     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
    183 
    184     // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
    185     // a signed/unsigned value of type i[2*N], and return the full value as
    186     // two results, each of type iN.
    187     SMUL_LOHI, UMUL_LOHI,
    188 
    189     // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
    190     // remainder result.
    191     SDIVREM, UDIVREM,
    192 
    193     // CARRY_FALSE - This node is used when folding other nodes,
    194     // like ADDC/SUBC, which indicate the carry result is always false.
    195     CARRY_FALSE,
    196 
    197     // Carry-setting nodes for multiple precision addition and subtraction.
    198     // These nodes take two operands of the same value type, and produce two
    199     // results.  The first result is the normal add or sub result, the second
    200     // result is the carry flag result.
    201     ADDC, SUBC,
    202 
    203     // Carry-using nodes for multiple precision addition and subtraction.  These
    204     // nodes take three operands: The first two are the normal lhs and rhs to
    205     // the add or sub, and the third is the input carry flag.  These nodes
    206     // produce two results; the normal result of the add or sub, and the output
    207     // carry flag.  These nodes both read and write a carry flag to allow them
    208     // to them to be chained together for add and sub of arbitrarily large
    209     // values.
    210     ADDE, SUBE,
    211 
    212     // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
    213     // These nodes take two operands: the normal LHS and RHS to the add. They
    214     // produce two results: the normal result of the add, and a boolean that
    215     // indicates if an overflow occurred (*not* a flag, because it may be stored
    216     // to memory, etc.).  If the type of the boolean is not i1 then the high
    217     // bits conform to getBooleanContents.
    218     // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
    219     SADDO, UADDO,
    220 
    221     // Same for subtraction
    222     SSUBO, USUBO,
    223 
    224     // Same for multiplication
    225     SMULO, UMULO,
    226 
    227     // Simple binary floating point operators.
    228     FADD, FSUB, FMUL, FMA, FDIV, FREM,
    229 
    230     // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
    231     // DAG node does not require that X and Y have the same type, just that they
    232     // are both floating point.  X and the result must have the same type.
    233     // FCOPYSIGN(f32, f64) is allowed.
    234     FCOPYSIGN,
    235 
    236     // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
    237     // value as an integer 0/1 value.
    238     FGETSIGN,
    239 
    240     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
    241     /// specified, possibly variable, elements.  The number of elements is
    242     /// required to be a power of two.  The types of the operands must all be
    243     /// the same and must match the vector element type, except that integer
    244     /// types are allowed to be larger than the element type, in which case
    245     /// the operands are implicitly truncated.
    246     BUILD_VECTOR,
    247 
    248     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
    249     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
    250     /// element type then VAL is truncated before replacement.
    251     INSERT_VECTOR_ELT,
    252 
    253     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
    254     /// identified by the (potentially variable) element number IDX.  If the
    255     /// return type is an integer type larger than the element type of the
    256     /// vector, the result is extended to the width of the return type.
    257     EXTRACT_VECTOR_ELT,
    258 
    259     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
    260     /// vector type with the same length and element type, this produces a
    261     /// concatenated vector result value, with length equal to the sum of the
    262     /// lengths of the input vectors.
    263     CONCAT_VECTORS,
    264 
    265     /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
    266     /// with VECTOR2 inserted into VECTOR1 at the (potentially
    267     /// variable) element number IDX, which must be a multiple of the
    268     /// VECTOR2 vector length.  The elements of VECTOR1 starting at
    269     /// IDX are overwritten with VECTOR2.  Elements IDX through
    270     /// vector_length(VECTOR2) must be valid VECTOR1 indices.
    271     INSERT_SUBVECTOR,
    272 
    273     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
    274     /// vector value) starting with the element number IDX, which must be a
    275     /// constant multiple of the result vector length.
    276     EXTRACT_SUBVECTOR,
    277 
    278     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
    279     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
    280     /// values that indicate which value (or undef) each result element will
    281     /// get.  These constant ints are accessible through the
    282     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
    283     /// 'vperm' instruction, except that the indices must be constants and are
    284     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
    285     VECTOR_SHUFFLE,
    286 
    287     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
    288     /// scalar value into element 0 of the resultant vector type.  The top
    289     /// elements 1 to N-1 of the N-element vector are undefined.  The type
    290     /// of the operand must match the vector element type, except when they
    291     /// are integer types.  In this case the operand is allowed to be wider
    292     /// than the vector element type, and is implicitly truncated to it.
    293     SCALAR_TO_VECTOR,
    294 
    295     // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
    296     // an unsigned/signed value of type i[2*N], then return the top part.
    297     MULHU, MULHS,
    298 
    299     /// Bitwise operators - logical and, logical or, logical xor.
    300     AND, OR, XOR,
    301 
    302     /// Shift and rotation operations.  After legalization, the type of the
    303     /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
    304     /// the shift amount can be any type, but care must be taken to ensure it is
    305     /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
    306     /// legalization, types like i1024 can occur and i8 doesn't have enough bits
    307     /// to represent the shift amount.  By convention, DAGCombine and
    308     /// SelectionDAGBuilder forces these shift amounts to i32 for simplicity.
    309     ///
    310     SHL, SRA, SRL, ROTL, ROTR,
    311 
    312     /// Byte Swap and Counting operators.
    313     BSWAP, CTTZ, CTLZ, CTPOP,
    314 
    315     /// Bit counting operators with an undefined result for zero inputs.
    316     CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
    317 
    318     // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
    319     // i1 then the high bits must conform to getBooleanContents.
    320     SELECT,
    321 
    322     // Select with a vector condition (op #0) and two vector operands (ops #1
    323     // and #2), returning a vector result.  All vectors have the same length.
    324     // Much like the scalar select and setcc, each bit in the condition selects
    325     // whether the corresponding result element is taken from op #1 or op #2.
    326     // At first, the VSELECT condition is of vXi1 type. Later, targets may change
    327     // the condition type in order to match the VSELECT node using a a pattern.
    328     // The condition follows the BooleanContent format of the target.
    329     VSELECT,
    330 
    331     // Select with condition operator - This selects between a true value and
    332     // a false value (ops #2 and #3) based on the boolean result of comparing
    333     // the lhs and rhs (ops #0 and #1) of a conditional expression with the
    334     // condition code in op #4, a CondCodeSDNode.
    335     SELECT_CC,
    336 
    337     // SetCC operator - This evaluates to a true value iff the condition is
    338     // true.  If the result value type is not i1 then the high bits conform
    339     // to getBooleanContents.  The operands to this are the left and right
    340     // operands to compare (ops #0, and #1) and the condition code to compare
    341     // them with (op #2) as a CondCodeSDNode. If the operands are vector types
    342     // then the result type must also be a vector type.
    343     SETCC,
    344 
    345     // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
    346     // integer shift operations, just like ADD/SUB_PARTS.  The operation
    347     // ordering is:
    348     //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
    349     SHL_PARTS, SRA_PARTS, SRL_PARTS,
    350 
    351     // Conversion operators.  These are all single input single output
    352     // operations.  For all of these, the result type must be strictly
    353     // wider or narrower (depending on the operation) than the source
    354     // type.
    355 
    356     // SIGN_EXTEND - Used for integer types, replicating the sign bit
    357     // into new bits.
    358     SIGN_EXTEND,
    359 
    360     // ZERO_EXTEND - Used for integer types, zeroing the new bits.
    361     ZERO_EXTEND,
    362 
    363     // ANY_EXTEND - Used for integer types.  The high bits are undefined.
    364     ANY_EXTEND,
    365 
    366     // TRUNCATE - Completely drop the high bits.
    367     TRUNCATE,
    368 
    369     // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
    370     // depends on the first letter) to floating point.
    371     SINT_TO_FP,
    372     UINT_TO_FP,
    373 
    374     // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
    375     // sign extend a small value in a large integer register (e.g. sign
    376     // extending the low 8 bits of a 32-bit register to fill the top 24 bits
    377     // with the 7th bit).  The size of the smaller type is indicated by the 1th
    378     // operand, a ValueType node.
    379     SIGN_EXTEND_INREG,
    380 
    381     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
    382     /// integer.
    383     FP_TO_SINT,
    384     FP_TO_UINT,
    385 
    386     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
    387     /// down to the precision of the destination VT.  TRUNC is a flag, which is
    388     /// always an integer that is zero or one.  If TRUNC is 0, this is a
    389     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
    390     /// value of Y.
    391     ///
    392     /// The TRUNC = 1 case is used in cases where we know that the value will
    393     /// not be modified by the node, because Y is not using any of the extra
    394     /// precision of source type.  This allows certain transformations like
    395     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
    396     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
    397     FP_ROUND,
    398 
    399     // FLT_ROUNDS_ - Returns current rounding mode:
    400     // -1 Undefined
    401     //  0 Round to 0
    402     //  1 Round to nearest
    403     //  2 Round to +inf
    404     //  3 Round to -inf
    405     FLT_ROUNDS_,
    406 
    407     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
    408     /// rounds it to a floating point value.  It then promotes it and returns it
    409     /// in a register of the same size.  This operation effectively just
    410     /// discards excess precision.  The type to round down to is specified by
    411     /// the VT operand, a VTSDNode.
    412     FP_ROUND_INREG,
    413 
    414     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
    415     FP_EXTEND,
    416 
    417     // BITCAST - This operator converts between integer, vector and FP
    418     // values, as if the value was stored to memory with one type and loaded
    419     // from the same address with the other type (or equivalently for vector
    420     // format conversions, etc).  The source and result are required to have
    421     // the same bit size (e.g.  f32 <-> i32).  This can also be used for
    422     // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
    423     // getNode().
    424     BITCAST,
    425 
    426     // CONVERT_RNDSAT - This operator is used to support various conversions
    427     // between various types (float, signed, unsigned and vectors of those
    428     // types) with rounding and saturation. NOTE: Avoid using this operator as
    429     // most target don't support it and the operator might be removed in the
    430     // future. It takes the following arguments:
    431     //   0) value
    432     //   1) dest type (type to convert to)
    433     //   2) src type (type to convert from)
    434     //   3) rounding imm
    435     //   4) saturation imm
    436     //   5) ISD::CvtCode indicating the type of conversion to do
    437     CONVERT_RNDSAT,
    438 
    439     // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
    440     // promotions and truncation for half-precision (16 bit) floating
    441     // numbers. We need special nodes since FP16 is a storage-only type with
    442     // special semantics of operations.
    443     FP16_TO_FP32, FP32_TO_FP16,
    444 
    445     // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
    446     // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
    447     // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
    448     // point operations. These are inspired by libm.
    449     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
    450     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
    451     FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
    452 
    453     // LOAD and STORE have token chains as their first operand, then the same
    454     // operands as an LLVM load/store instruction, then an offset node that
    455     // is added / subtracted from the base pointer to form the address (for
    456     // indexed memory ops).
    457     LOAD, STORE,
    458 
    459     // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
    460     // to a specified boundary.  This node always has two return values: a new
    461     // stack pointer value and a chain. The first operand is the token chain,
    462     // the second is the number of bytes to allocate, and the third is the
    463     // alignment boundary.  The size is guaranteed to be a multiple of the stack
    464     // alignment, and the alignment is guaranteed to be bigger than the stack
    465     // alignment (if required) or 0 to get standard stack alignment.
    466     DYNAMIC_STACKALLOC,
    467 
    468     // Control flow instructions.  These all have token chains.
    469 
    470     // BR - Unconditional branch.  The first operand is the chain
    471     // operand, the second is the MBB to branch to.
    472     BR,
    473 
    474     // BRIND - Indirect branch.  The first operand is the chain, the second
    475     // is the value to branch to, which must be of the same type as the target's
    476     // pointer type.
    477     BRIND,
    478 
    479     // BR_JT - Jumptable branch. The first operand is the chain, the second
    480     // is the jumptable index, the last one is the jumptable entry index.
    481     BR_JT,
    482 
    483     // BRCOND - Conditional branch.  The first operand is the chain, the
    484     // second is the condition, the third is the block to branch to if the
    485     // condition is true.  If the type of the condition is not i1, then the
    486     // high bits must conform to getBooleanContents.
    487     BRCOND,
    488 
    489     // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
    490     // that the condition is represented as condition code, and two nodes to
    491     // compare, rather than as a combined SetCC node.  The operands in order are
    492     // chain, cc, lhs, rhs, block to branch to if condition is true.
    493     BR_CC,
    494 
    495     // INLINEASM - Represents an inline asm block.  This node always has two
    496     // return values: a chain and a flag result.  The inputs are as follows:
    497     //   Operand #0   : Input chain.
    498     //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
    499     //   Operand #2   : a MDNodeSDNode with the !srcloc metadata.
    500     //   Operand #3   : HasSideEffect, IsAlignStack bits.
    501     //   After this, it is followed by a list of operands with this format:
    502     //     ConstantSDNode: Flags that encode whether it is a mem or not, the
    503     //                     of operands that follow, etc.  See InlineAsm.h.
    504     //     ... however many operands ...
    505     //   Operand #last: Optional, an incoming flag.
    506     //
    507     // The variable width operands are required to represent target addressing
    508     // modes as a single "operand", even though they may have multiple
    509     // SDOperands.
    510     INLINEASM,
    511 
    512     // EH_LABEL - Represents a label in mid basic block used to track
    513     // locations needed for debug and exception handling tables.  These nodes
    514     // take a chain as input and return a chain.
    515     EH_LABEL,
    516 
    517     // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
    518     // value, the same type as the pointer type for the system, and an output
    519     // chain.
    520     STACKSAVE,
    521 
    522     // STACKRESTORE has two operands, an input chain and a pointer to restore to
    523     // it returns an output chain.
    524     STACKRESTORE,
    525 
    526     // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
    527     // a call sequence, and carry arbitrary information that target might want
    528     // to know.  The first operand is a chain, the rest are specified by the
    529     // target and not touched by the DAG optimizers.
    530     // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
    531     CALLSEQ_START,  // Beginning of a call sequence
    532     CALLSEQ_END,    // End of a call sequence
    533 
    534     // VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
    535     // and the alignment. It returns a pair of values: the vaarg value and a
    536     // new chain.
    537     VAARG,
    538 
    539     // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
    540     // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
    541     // source.
    542     VACOPY,
    543 
    544     // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
    545     // pointer, and a SRCVALUE.
    546     VAEND, VASTART,
    547 
    548     // SRCVALUE - This is a node type that holds a Value* that is used to
    549     // make reference to a value in the LLVM IR.
    550     SRCVALUE,
    551 
    552     // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
    553     // reference metadata in the IR.
    554     MDNODE_SDNODE,
    555 
    556     // PCMARKER - This corresponds to the pcmarker intrinsic.
    557     PCMARKER,
    558 
    559     // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
    560     // The only operand is a chain and a value and a chain are produced.  The
    561     // value is the contents of the architecture specific cycle counter like
    562     // register (or other high accuracy low latency clock source)
    563     READCYCLECOUNTER,
    564 
    565     // HANDLENODE node - Used as a handle for various purposes.
    566     HANDLENODE,
    567 
    568     // INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
    569     // takes as input a token chain, the pointer to the trampoline, the pointer
    570     // to the nested function, the pointer to pass for the 'nest' parameter, a
    571     // SRCVALUE for the trampoline and another for the nested function (allowing
    572     // targets to access the original Function*).  It produces a token chain as
    573     // output.
    574     INIT_TRAMPOLINE,
    575 
    576     // ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
    577     // It takes a pointer to the trampoline and produces a (possibly) new
    578     // pointer to the same trampoline with platform-specific adjustments
    579     // applied.  The pointer it returns points to an executable block of code.
    580     ADJUST_TRAMPOLINE,
    581 
    582     // TRAP - Trapping instruction
    583     TRAP,
    584 
    585     // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
    586     // their first operand. The other operands are the address to prefetch,
    587     // read / write specifier, locality specifier and instruction / data cache
    588     // specifier.
    589     PREFETCH,
    590 
    591     // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
    592     //                       store-store, device)
    593     // This corresponds to the memory.barrier intrinsic.
    594     // it takes an input chain, 4 operands to specify the type of barrier, an
    595     // operand specifying if the barrier applies to device and uncached memory
    596     // and produces an output chain.
    597     MEMBARRIER,
    598 
    599     // OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
    600     // This corresponds to the fence instruction. It takes an input chain, and
    601     // two integer constants: an AtomicOrdering and a SynchronizationScope.
    602     ATOMIC_FENCE,
    603 
    604     // Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
    605     // This corresponds to "load atomic" instruction.
    606     ATOMIC_LOAD,
    607 
    608     // OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr, val)
    609     // This corresponds to "store atomic" instruction.
    610     ATOMIC_STORE,
    611 
    612     // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
    613     // This corresponds to the cmpxchg instruction.
    614     ATOMIC_CMP_SWAP,
    615 
    616     // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
    617     // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
    618     // These correspond to the atomicrmw instruction.
    619     ATOMIC_SWAP,
    620     ATOMIC_LOAD_ADD,
    621     ATOMIC_LOAD_SUB,
    622     ATOMIC_LOAD_AND,
    623     ATOMIC_LOAD_OR,
    624     ATOMIC_LOAD_XOR,
    625     ATOMIC_LOAD_NAND,
    626     ATOMIC_LOAD_MIN,
    627     ATOMIC_LOAD_MAX,
    628     ATOMIC_LOAD_UMIN,
    629     ATOMIC_LOAD_UMAX,
    630 
    631     /// BUILTIN_OP_END - This must be the last enum value in this list.
    632     /// The target-specific pre-isel opcode values start here.
    633     BUILTIN_OP_END
    634   };
    635 
    636   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
    637   /// which do not reference a specific memory location should be less than
    638   /// this value. Those that do must not be less than this value, and can
    639   /// be used with SelectionDAG::getMemIntrinsicNode.
    640   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150;
    641 
    642   //===--------------------------------------------------------------------===//
    643   /// MemIndexedMode enum - This enum defines the load / store indexed
    644   /// addressing modes.
    645   ///
    646   /// UNINDEXED    "Normal" load / store. The effective address is already
    647   ///              computed and is available in the base pointer. The offset
    648   ///              operand is always undefined. In addition to producing a
    649   ///              chain, an unindexed load produces one value (result of the
    650   ///              load); an unindexed store does not produce a value.
    651   ///
    652   /// PRE_INC      Similar to the unindexed mode where the effective address is
    653   /// PRE_DEC      the value of the base pointer add / subtract the offset.
    654   ///              It considers the computation as being folded into the load /
    655   ///              store operation (i.e. the load / store does the address
    656   ///              computation as well as performing the memory transaction).
    657   ///              The base operand is always undefined. In addition to
    658   ///              producing a chain, pre-indexed load produces two values
    659   ///              (result of the load and the result of the address
    660   ///              computation); a pre-indexed store produces one value (result
    661   ///              of the address computation).
    662   ///
    663   /// POST_INC     The effective address is the value of the base pointer. The
    664   /// POST_DEC     value of the offset operand is then added to / subtracted
    665   ///              from the base after memory transaction. In addition to
    666   ///              producing a chain, post-indexed load produces two values
    667   ///              (the result of the load and the result of the base +/- offset
    668   ///              computation); a post-indexed store produces one value (the
    669   ///              the result of the base +/- offset computation).
    670   enum MemIndexedMode {
    671     UNINDEXED = 0,
    672     PRE_INC,
    673     PRE_DEC,
    674     POST_INC,
    675     POST_DEC,
    676     LAST_INDEXED_MODE
    677   };
    678 
    679   //===--------------------------------------------------------------------===//
    680   /// LoadExtType enum - This enum defines the three variants of LOADEXT
    681   /// (load with extension).
    682   ///
    683   /// SEXTLOAD loads the integer operand and sign extends it to a larger
    684   ///          integer result type.
    685   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
    686   ///          integer result type.
    687   /// EXTLOAD  is used for two things: floating point extending loads and
    688   ///          integer extending loads [the top bits are undefined].
    689   enum LoadExtType {
    690     NON_EXTLOAD = 0,
    691     EXTLOAD,
    692     SEXTLOAD,
    693     ZEXTLOAD,
    694     LAST_LOADEXT_TYPE
    695   };
    696 
    697   //===--------------------------------------------------------------------===//
    698   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
    699   /// below work out, when considering SETFALSE (something that never exists
    700   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
    701   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
    702   /// to.  If the "N" column is 1, the result of the comparison is undefined if
    703   /// the input is a NAN.
    704   ///
    705   /// All of these (except for the 'always folded ops') should be handled for
    706   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
    707   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
    708   ///
    709   /// Note that these are laid out in a specific order to allow bit-twiddling
    710   /// to transform conditions.
    711   enum CondCode {
    712     // Opcode          N U L G E       Intuitive operation
    713     SETFALSE,      //    0 0 0 0       Always false (always folded)
    714     SETOEQ,        //    0 0 0 1       True if ordered and equal
    715     SETOGT,        //    0 0 1 0       True if ordered and greater than
    716     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
    717     SETOLT,        //    0 1 0 0       True if ordered and less than
    718     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
    719     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
    720     SETO,          //    0 1 1 1       True if ordered (no nans)
    721     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
    722     SETUEQ,        //    1 0 0 1       True if unordered or equal
    723     SETUGT,        //    1 0 1 0       True if unordered or greater than
    724     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
    725     SETULT,        //    1 1 0 0       True if unordered or less than
    726     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
    727     SETUNE,        //    1 1 1 0       True if unordered or not equal
    728     SETTRUE,       //    1 1 1 1       Always true (always folded)
    729     // Don't care operations: undefined if the input is a nan.
    730     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
    731     SETEQ,         //  1 X 0 0 1       True if equal
    732     SETGT,         //  1 X 0 1 0       True if greater than
    733     SETGE,         //  1 X 0 1 1       True if greater than or equal
    734     SETLT,         //  1 X 1 0 0       True if less than
    735     SETLE,         //  1 X 1 0 1       True if less than or equal
    736     SETNE,         //  1 X 1 1 0       True if not equal
    737     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
    738 
    739     SETCC_INVALID       // Marker value.
    740   };
    741 
    742   /// isSignedIntSetCC - Return true if this is a setcc instruction that
    743   /// performs a signed comparison when used with integer operands.
    744   inline bool isSignedIntSetCC(CondCode Code) {
    745     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
    746   }
    747 
    748   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
    749   /// performs an unsigned comparison when used with integer operands.
    750   inline bool isUnsignedIntSetCC(CondCode Code) {
    751     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
    752   }
    753 
    754   /// isTrueWhenEqual - Return true if the specified condition returns true if
    755   /// the two operands to the condition are equal.  Note that if one of the two
    756   /// operands is a NaN, this value is meaningless.
    757   inline bool isTrueWhenEqual(CondCode Cond) {
    758     return ((int)Cond & 1) != 0;
    759   }
    760 
    761   /// getUnorderedFlavor - This function returns 0 if the condition is always
    762   /// false if an operand is a NaN, 1 if the condition is always true if the
    763   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
    764   /// NaN.
    765   inline unsigned getUnorderedFlavor(CondCode Cond) {
    766     return ((int)Cond >> 3) & 3;
    767   }
    768 
    769   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
    770   /// 'op' is a valid SetCC operation.
    771   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
    772 
    773   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
    774   /// when given the operation for (X op Y).
    775   CondCode getSetCCSwappedOperands(CondCode Operation);
    776 
    777   /// getSetCCOrOperation - Return the result of a logical OR between different
    778   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
    779   /// function returns SETCC_INVALID if it is not possible to represent the
    780   /// resultant comparison.
    781   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
    782 
    783   /// getSetCCAndOperation - Return the result of a logical AND between
    784   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
    785   /// function returns SETCC_INVALID if it is not possible to represent the
    786   /// resultant comparison.
    787   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
    788 
    789   //===--------------------------------------------------------------------===//
    790   /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
    791   /// supports.
    792   enum CvtCode {
    793     CVT_FF,     // Float from Float
    794     CVT_FS,     // Float from Signed
    795     CVT_FU,     // Float from Unsigned
    796     CVT_SF,     // Signed from Float
    797     CVT_UF,     // Unsigned from Float
    798     CVT_SS,     // Signed from Signed
    799     CVT_SU,     // Signed from Unsigned
    800     CVT_US,     // Unsigned from Signed
    801     CVT_UU,     // Unsigned from Unsigned
    802     CVT_INVALID // Marker - Invalid opcode
    803   };
    804 
    805 } // end llvm::ISD namespace
    806 
    807 } // end llvm namespace
    808 
    809 #endif
    810